

The following document contains information on Cypress products. The document has the series name, product name, and ordering part numbering with the prefix "MB". However, Cypress will offer these products to new and existing customers with the series name, product name, and ordering part number with the prefix "CY".

How to Check the Ordering Part Number

- 1. Go to www.cypress.com/pcn.
- 2. Enter the keyword (for example, ordering part number) in the **SEARCH PCNS** field and click **Apply**.
- 3. Click the corresponding title from the search results.
- 4. Download the Affected Parts List file, which has details of all changes

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress is the leader in advanced embedded system solutions for the world's most innovative automotive, industrial, smart home appliances, consumer electronics and medical products. Cypress' microcontrollers, analog ICs, wireless and USB-based connectivity solutions and reliable, high-performance memories help engineers design differentiated products and get them to market first. Cypress is committed to providing customers with the best support and development resources on the planet enabling them to disrupt markets by creating new product categories in record time. To learn more, go to www.cypress.com.

1

FR, MB91460, External Bus Interface

This Application Note describes how to achieve the maximum performance for external connected memories and how to connect the different types with the MB91460 series MCUs. The Application note is also covering the constraints which have to be taken into account for maximum bus frequencies and the selection of suitable memories for optimized performance.

Contents

1	Int	troduction	
	1.1	Key Features	1
2	Th	ne External Bus Interface	3
	2.1	Outline	3
	2.2	Registers	6
3	Ini	tialization in Start.asm	
	3.1	Start.asm	21
4	Ex	ternal Bus Interface examples	30
	4.1		
		memory	30
	4.2		
		memory	
5	Tir	ming analysis	31
	5.1	Flash Read AC characteristics	31
	5.2	RAM Read AC characteristics	32
	5.3	RAM Write AC characteristics	33
	5.4	MCU External Bus Basic Timings	34

35							
36							
37							
38							
41							
kternal 41							
ed on 42							
ed on							
42							
43							
Document History44							

1 Introduction

High flexibility to adapt MCUs to different and fast external memories in a variety of voltage levels is a customer demand. To meet this requirement the MB91460 Series MCUs provide a external bus interface with the capabilities to connect Flash, SRAM and SDRAM with up to 8 different chip select lines.

This Application Note describes how to achieve the maximum performance for external connected memories and how to connect the different types with the MB91460 series MCUs. The Application note is also covering the constraints which have to be taken into account for maximum bus frequencies and the selection of suitable memories for optimized performance.

1.1 Key Features

The External Bus Interface has the following features

- Addresses of up to 32 bits (4 GB space) can be output.
- Various kinds of external memory (8-bit/16-bit/32-bit modules) can be directly connected and multiple access timings can be mixed and controlled.
- Asynchronous SRAM and asynchronous ROM/FLASH memory (multiple write strobe method or byte enable method)
- Page mode ROM/FLASH memory (Page sizes 2, 4, and 8 can be used)

- Burst mode ROM/FLASH memory (such as MBM29BL160D/161D/162D)
- Address/data multiplex bus (8-bit/16-bit width only)
- SDRAM (FCRAM modules are also supported, including two and four bank types with CAS latency 1 to 8)
- Synchronous memory (such as ASIC built-in memory) (Synchronous SRAM cannot be directly connected)
- Eight independent banks (chip select areas) can be set, and chip select corresponding to each bank can be output.
- [□] The size of each area can be set in multiples of 64 KB (64 KB to 2 GB for each chip select area).
- An area can be set at any location in the logical address space (Boundaries may be limited depending on the size of the area.)

In each chip select area, the following functions can be set independently

- Enabling and disabling of the chip select area (Disabled areas cannot be accessed)
- Setting of the access timing type to support various kinds of memory
- Detailed access timing setting (individual setting of the access type such as the wait cycle)
- Setting of the data bus width (8-bit/16-bit)
- Setting of the order of bytes (big or little endian) (Only big endian can be set for the CS0 area)
- Setting of write disable (read-only area)
- Enabling and disabling of fetches from the built-in cache
- Enabling and disabling of the prefetch function
- Maximum burst length setting (1, 2, 4, 8)

A different detailed timing can be set for each access timing type

- For the same type of access timing, a different setting can be made in each chip select area.
- Auto-wait can be set to up to 15 cycles (asynchronous SRAM, ROM, Flash, and I/O area).
- □ The bus cycle can be extended by external RDY input (asynchronous SRAM, ROM, Flash, and I/O area).
- The first access wait and page wait can be set (burst, page mode, and ROM/FLASH area).
- Various kinds of idle/recovery cycles and setting delays can be inserted.
- Capable of setting timing values such as the CAS latency and RAS CAS delay (SDRAM area)
- Capable of controlling the distributed/centralized auto refresh, self refresh, and other refresh timings (SDRAM area)

■ Fly-by transfer by DMA can be performed.

- Transfer between memory and I/O can be performed in a single access operation.
- □ The memory wait cycle can be synchronized with the I/O wait cycle in fly-by transfer.
- The hold time can be secured by only extending transfer source access.
- Idle/recovery cycles specific to fly-by transfer can be set.
- External bus arbitration using BRQ and BGRNT can be performed.
- Pins that are not used by the external interface can be used as general-purpose I/O ports through settings.

2 The External Bus Interface

The basic functionality of the external bus interface

2.1 Outline

The External Bus Interface allows the user to connect external peripherals or memory to the MCU. The Bus consists of data, address and control signals. Various settings are possible for several bus timings.

2.1.1 Bus modes and access modes

Bus modes

The bus mode controls internal ROM operation and the external access function. The bus mode is specified by the mode setting pins (MD2, MD1, and MD0) and internal ROM enable bit.

The FR-family CPU has the following three bus modes.

Single chip mode

In this mode, internal I/O, internal RAM, and internal ROM are available but access to other areas is disabled. External pins are used either by the peripheral functions or as general-purpose ports. Pins cannot be used as bus pins. This mode cannot be used when using the fixed mode/reset vector as implemented on most of the MB91460 series devices.

Internal ROM, external bus mode

In this mode, internal I/O, internal RAM, and internal ROM are available, and access to areas for which external access is enabled results in access to the external area. Some external pins function as bus pins.

External ROM, external bus mode

In this mode, internal I/O and internal RAM are available but access to internal ROM is prohibited. Access to internal ROM areas and areas for which external access is enabled results in access to the external area. Some external pins function as bus pins.

Access mode

The access mode controls the width of the external data bus.

2.1.2 Address Maps Of Bus Modes

Figure 2-1 shows the different address maps for the three MCU bus modes for MB91F467DA.

Figure 2-1. Address maps of MB91F467DA bus modes

	Single Chip		Internal ROM, External Bus		External ROM, External Bus
0000:0000 _H	I/0 (Direct addressing area)	0000:0000 _H	I/0 (Direct addressing area)	0000:0000 _H	I/0 (Direct addressing area)
0000:0400 _H	I/O	0000:0400 _H	I/O	0000:0400 _н	I/O
0000:1000 _H	DMA	0000:1000 _н	DMA	0000:1000 _H	DMA
0000:2000 _H		0000:2000 _н		0000:2000 _H	
0000:4000 _H	Flash-Cache (8KByte)	0000:4000 _H	Flash-Cache (8KByte)	0000:4000 _H	Flash-Cache (8KByte)
0000:6000 _H		0000:6000 _н		0000:6000н	
0000:7000 _H	Flash Memory Control	0000:7000 _H	Flash Memory Control	0000:7000 _H	Flash Memory Control
0000:8000 _H		0000:8000 _H		0000:8000 _H	
0000:B000 _H	Boot ROM (4KBytes)	0000:B000 _H	Boot ROM (4KBytes)	0000:В000 _Н	Boot ROM (4KBytes)
0000:C000 _H	CAN	0000:С000 _Н	CAN	0000:C000 _H	CAN
0000:D000 _H		0000:D000 _Н		0000:D000 _H	
0002:8000 _H	D-RAM (0 wait, 32Kbytes)	0002:8000 _H	D-RAM (0 wait, 32Kbytes)	0002:8000 _Н	D-RAM (0 wait, 32Kbytes)
0003:0000 _H	ID RAM (32KBytes)	0003:0000 _Н	ID RAM (32KBytes)	0003:0000 _H	ID RAM (32KBytes)
0003:8000 _H		0003:8000 _н		0003:8000 _H	
0004:0000 _H		0004:0000 _Н		0004:0000 _н	
	Flash Memory (1088KBytes)		Flash Memory (1088KBytes)		External Bus Area
0015:0000 _H		0015:0000 _Н		0015:0000 _н	
0018:0000 _H		0018:0000 _Н	External Bus Area	0018:0000 _Н	External Bus Area
0050:0000 _H		0050:0000 _H	External Bus Area	0050:0000 _н	External Bus Area
FFFF:FFFF _H [Internal	FFFF:FFFF _H	No Access	FFFF:FFFF _H	External

Figure 2-2. Address maps of MB91F467BA bus modes shows the different address maps for the three MCU bus modes for MB91F467BA.

Figure 2-2. Address maps of MB91F467BA bus modes

	Single Chip	_	Internal ROM, External Bus		External ROM, External Bus
0000:0000 _н	I/0 (Direct addressing area)	0000:0000 _H	I/0 (Direct addressing area)	0000:0000 _H	I/0 (Direct addressing area)
0000:0400 _н	I/O	0000:0400н	I/O	0000:0400 _н	I/O
0000:1000 _н - 0000-10FF _н	DMA	0000:1000 _н - 0000-10FF _н	DMA	0000:1000 _н - 0000-10FF _н	DMA
0000:2000 _H - 0000:5FFF	Flash Memory I-Cache or Instruction RAM	0000:2000 _H - 0000:5FFF	Flash Memory I-Cache or Instruction RAM	0000:2000 _H - 0000:5FFF	Flash Memory I-Cache or Instruction RAM
0000:7000 _H - 0000:70FF	Flash Memory Control	0000:7000 _H - 0000:70FF	Flash Memory Control	0000:7000 _H - 0000:70FF	Flash Memory Control
0000:8000 _H - 0000: BFFF	Boot ROM (4KBytes)		Boot ROM (4KBytes)		Boot ROM (4KBytes)
0000:C000 _H - 0000:CFFF _H	CAN	0000:С000 _н - 0000:СFFF _н	CAN	0000:С000 _Н - 0000:СFFF _Н	CAN
0002:0000 _H	D-RAM (0 wait, 32Kbytes) ID RAM (32KBytes) Flash Memory	0002:0000 _H	D-RAM (0 wait, 32Kbytes) ID RAM (32KBytes) External Bus area	0002:0000 _H 0003:0000 _H 0004:0000 _H 0008:0000 _H	D-RAM (0 wait, 32Kbytes) ID RAM (32KBytes) External Bus area
0010:0000 _H	(512KBytes)	0010:0000 _H	Flash Memory (512KBytes)	0010:0000н	External Bus area External Bus area
0014:0000 _н - 0017:FFFF	Flash Memory area (32KBytes)	0014:0000 _H - 0017:FFFF	External Bus area Flash Memory area (32KBytes)	0014:0000 _н - 0017:FFFF	Flash Memory area (32KBytes)
0018:0000 _Н		0018:0000н	External Bus area	0018:0000 _H	External Bus area
0050:0000 _H -		0050:0000 _H	External Bus area	0050:0000 _H	External Bus area
	Internal		No Access		External

2.2 Registers

2.2.1 Area Select Registers (ASRn)

The Area Select Registers (ASR0-7) specifies the higher order bytes of start address of each chip select area of CSX0-CSX7.

Each chip select area starts with the address set in this register and covers the range set by the four bits ASZ3-0 of the Area Configuration Register (ACR0-7) registers.

Register	Initial Value
ASR0	0000 _H
ASR1	XXXX _H
ASR2	XXXX _H
ASR3	XXXX _H
ASR4	XXXX _H
ASR5	XXXX _H
ASR6	XXXX _H
ASR7	XXXX _H

The ASR0 register is initialized to $0000_{\rm H}$ by INIT and RST. ASR1-7 are not initialized by INIT and RST, and are therefore undefined. After starting chip operation, be sure to set the corresponding ASR register before enabling each chip select area with the CSER register.

Lets for example if we set ASR1 to 0x2000 than start address for CS1 will start from H'20000000

2.2.2 Area Configuration Registers 0-7 (ACRn)

Bit No.	Name	Explanation	Initial Value	Value	Operation	
				0000	64 KB (00010000H byte, ASR A[31:16] bits are valid)	
				0001	128 KB (00020000H byte, ASR A[31:17] bits are valid)	
				0010	256 KB (00040000H byte, ASR A[31:18] bits are valid)	
				0011	512 KB (00080000H byte, ASR A[31:19] bits are valid)	
				0100	1MB (00100000H byte, ASR A[31:20] bits are valid)	
				0101	2 MB(00200000H byte, ASR A[31:21] bits are valid)	
				0110	4 MB (00400000H byte, ASR A[31:22] bits are valid)	
15-12	ASZ3:ASZ	set area size	0000 _B (ACR0) 1111 _B (ACR1-	0111	8 MB (00800000H byte, ASR A[31:23] bits are valid)	
	U		7)	1000	16 MB (01000000H byte, ASR A[31:24] bits are valid)	
				1001	32 MB (02000000H byte, ASR A[31:25] bits are valid)	
				1010	64 MB (04000000H byte, ASR A[31:26] bits are valid)	
				1011	128 MB (08000000H byte, ASR A[31:27] bits are valid)	
				1100	Valid) 512 MB (20000000H byte ASR A[31:20] bits are	
				1101		
				1110	1024 MB (40000000H byte, ASR A[31:30] bits are valid)	
				1111	2048 MB (80000000H byte, ASR A[31] bit isalid)	
				00	8 bits (byte access)	
11-10	DBW1:0	set data bus width	XX _B	01	16 bits (half word access)	
				10	32 bits (word access)	
				11	Reserved Setting	
				00	1 (single access)	
		set the maximum		01	2 bursts (address boundary: 1 bit)	
9-8	BST1:0	set the maximum burst length	XX _B	10	4 bursts (address boundary: 2 bits)	
				11	8 bursts (address boundary: 3 bits)	
7	SREN	enable or disable sharing of chip select area by	X _B	0	Disable sharing by BRQ/BGRNTX	

		RQ/BGRNTX		1	Enable sharing by BRQ/BGRNTX	
5	enable or disable		Disable pre fetch			
	PFEN	pre fetching of chip select area	X _B	1	Enable pre fetch	
	WREN	enable or disable writing to each chip	X _B	0 Disable write		
		select area	2	1	Enable write	
4	LEND*	sets endian	X _B	0 Big endian		
				1	Little endian	
				00XX	Normal access	
				01XX	Address data multiplex access	
				0XX0 Disable WAIT insertion by the RDY pin		
				0XX1		
				0X0X	Use the WRX0-WRX3 pins as write strobes	
				0X1X	Use the WEX pin as the write strobe	
3:0	TYP3:0**	and the angeles time	VVVV	1000 Memory type A: SDRAM/FCRAM		
3.0	1123:0	set the access type	XXXX _B	1001	Memory type B: FCRAM	
				1010	Setting disabled	
				1011	Setting disabled	
				1100	Setting disabled	
				1101	Setting disabled	
				1100	Setting disabled	
				1111	Mask area setting	

^{*}CS0 supports only the big endian method

**Further information can be found in Appendix

2.2.3 Area Wait Register (AWRn)

The area wait registers (AWR0-7: Area Wait Register 0-7) specify various kinds of waits for each chip select area. The function of each bit changes according to the access type setting of the ACRn [TYP3:0] registers. More information about ACRn [TYP3:0] can be found in section 0

AWRn-register settings for ACRn [TYP3:0] is set to "SRAM" access type

TYP3	TYP2	TYP1	TYP0	Access Type
0	0	x	x	Normal access (asynchronous SRAM, I/O, and single/page/burst-ROM/FLASH)

Bit No.	Name	Explanation	Initial Value	Value	Operation
			0444	0000 _B	Auto-wait cycle 0
15-12	W15:12	set number of auto- wait cycles to be inserted into the first	0111 _B (AWR0)	0001 _B	Auto-wait cycle 1
10 12	W13.12	access cycle of each cycle.	XXXX _B (AWR1-7)		
				1111 _B	Auto-wait cycle 15
				0000 _B	Auto-wait cycle 0
11-8	W11:08	set the number of auto-wait cycles to be inserted into the in	1111 _B (AWR0)	0001 _B	Auto-wait cycle 1
		page access cycle during burst access	XXXX _B (AWR1-7)		
			_	1111 _B	Auto-wait cycle 15
	The read -> write idle cycle is set to prevent collision of read data and write data on the data bus when a write cycle follows a read cycle. The read -> write idle cycle is set to prevent (AWR0) XX _B (AWR1-7) 11 _B 01 _B 1 Read -> write (AWR0) XX _B (AWR1-7)			00 _B	0 Read -> write idle cycles
		cycle is set to prevent collision of read data		01 _B	1 Read -> write idle cycles
7:6		2 Read -> write idle cycles			
		read cycle.		11 _B	3 Read -> write idle cycles
				00 _B	0 Write recovery cycles
5:4	W05:04	The write recovery cycle is set if a device that limits the access	11 _B (AWR0)	01 _B	1 Write recovery cycles
5.4	W03.04	period after write access is to be controlled	XX _B (AWR1-7)	10 _B	2 Write recovery cycles
		Controlled		11 _B	3 Write recovery cycles
3	W03	The WRX0-WRX3, WRXn output time setting selects whether to use write strobe output as an asynchronous strobe	1 _B (AWR0) X _B	0	MCLK synchronous write enable output (valid from ASX=L)
		or synchronous write enable.	(AWR1-7)	1	Asynchronous write strobe output (normal operation)

2	W02	The address -> CSXn delay setting is made when a certain type of setup is required for the address when CSXn falls or CSXn edges are needed for successive accesses to the same chip select area.	O _B (AWR0) X _B (AWR1-7)	0	Assertion of CSX0-CSX7 starts at the same timing that ASX is asserted
				1	Assertion of CSX0-CSX7 starts when the external clock memory MCLK output rises
1	W01	The CSXn -> RDX/WRXn setup extension cycle is set to extend the period before the read/write strobe is asserted after CSXn is asserted.	1 _B (AWR0) X _B (AWR1-7)	0	RDX/WRX0-WRX3/WRXn are output at the earliest when external clock MCLK output rises just after CSX is asserted
				1	RDX/WRX0-WRX3/WRXn are always output 1 cycle or more later
0	W00	The RDX/WRXn -> CSXn hold extension cycle is set to extend the period before negating CSXn after the read/write strobe is negated.	1 _B (AWR0) X _B (AWR1-7)	0	CSX0-CSX7 are negated after the hold delay after it starts on the rising edge of external memory clock MCLK output after RDX/WRX0-WRX3/WRXn are negated.
				1	CSX0-CSX7 are negated one cycle later

AWRn-register settings for ACRn [TYP3:0] is set to "SDRAM" access type

TYP3	TYP2	TYP1	TYP0	Access Type
1	0	0	0	Memory type A: SDRAM/FCRAM (Auto - precharge is not used.)

Bit No.	Name	Explanation	Initial Value	Value	Operation
15	W15	Reserved			
			111 _B	000 _B	1 RAS-CAS delay cycle
4440	T-11 4 . 1 O	RAS - CAS delay	(AWR0)	001 _B	2 RAS-CAS delay cycle
14-12	W14:12	Cycle	XXX _B		
			(AWR1-7)	111 _B	8 RAS-CAS delay cycle
11	W11	Reserved			
			111 _B	000 _B	1 cycles
10:8	W10:08	Set CAS latency.	(AWR0)	001 _B	2 cycles
10.6	W10.00	Set CAS latericy.	XXX _B (AWR1-7)		
			(AVVX1-7)	111 _B	8 cycles
	W07:06	Set minimum number of cycles from the last read data input cycle to the write command		00 _B	1 cycles
7.0			11 _B (AWR0) XX _B (AWR1-7)	01 _B	2 cycles
7-6				10 _B	3 cycles
				11 _B	4 cycles
	W05:04	Set minimum number of cycles from the last write data output to the next read command	11 _B (AWR0) XX _B (AWR1-7)	00 _B	Prohibited
				01 _B	2 cycles
5:4				10 _B	3 cycles
				11 _B	4 cycles
			01 _B	00 _B	1 cycles
3:2	W03:02	Set minimum number of cycles for RAS	(AWR0)	01 _B	2 cycles
3.2	WUJ.UZ	active time	XX _B	10 _B	3 cycles
			(AWR1-7)	11 _B	4 cycles
			11 _B	00 _B	1 cycles
1:0	W01:00	Set RAS pre charge	(AWR0)	01 _B	2 cycles
1.0	WOI.00	cycles	XX _B	10 _B	3 cycles
			(AWR1-7)	11 _B	4 cycles

2.2.4 Memory Setting Register (MCRA)

The register serves as the area for making various settings for SDRAM/FCRAM connected to the chip select area for which the access type (TYP3 to TYP0 bits) in the ACR6 and ACR7 registers has been set as 1000_B

Bit No.	Name	Explanation	Initial Value	Value	Operation
31		Reserved			
				000 _B	8-bit column address:A0 to A7(256 memory words)
			,	001 _B	9-bit column address:A0 to A8(512 memory words)
30-28	PSZ2:0	sets page size of SDRAM	XXX _B	010 _B	10-bit column address:A0 to A9(1024 memory words)
				011 _B	11-bit column address:A0 to A9, A11(2048memory words)
				1XX _B	Prohibited
27	WBST	Select t burst - write or a single	X _B	0	Single write
		write access		1	Burst write
26	Select number of BANK SDRAM banks to X _R	X _B	0	2 banks	
		be connected		1	4 banks
				00 _B	1 banks
25-24	ABS1:0	Select maximum number of banks to	XX _B	01 _B	2 banks
20-24	ADSI:U	be made active simultaneously		10 _B	3 banks
				11 _B	4 banks

2.2.5 Memory Setting Register (MCRB)

The register serves as the area for making various settings for FCRAM connected to the chip select area for which the access type (TYP3 to TYP0 bits) in the ACR6 and ACR7 registers has been set as 1001_B

Bit No.	Name	Explanation	Initial Value	Value	Operation
23		Reserved			
				000 _B	8-bit column address:A0 to A7(256 memory words)
				001 _B	9-bit column address:A0 to A8(512 memory words)
22-20	PSZ2:0	sets page size of SDRAM	XXX _B	010 _B	10-bit column address:A0 to A9(1024 memory words)
				011 _B	11-bit column address:A0 to A9, A11(2048memory words)
				1XX _B	Prohibited
19	WBST*	Select t burst - write or a single write access	X _B	0	Single write
				1	Burst write
18	BANK	Select number of SDRAM banks to	X _B	0	2 banks
		be connected		1	4 banks
				00 _B	1 banks
17-16	ABS1:0	Select maximum number of banks to	XX _B	01 _B	2 banks
17-10	ADDI.U	be made active simultaneously		10 _B	3 banks
				11в	4 banks

^{*}FCRAM supports neither burst read nor single write mode

2.2.6 I/O Wait Registers for DMAC (IOWRn)

The I/O wait registers for DMAC (IOWR0-3: I/O Wait Register for DMAC 0-3) set various kinds of waits during DMA fly-by access.

Bit No.	Name	Explanation	Initial Value	Value	Operation
31,23,1	RYEn	set wait control, using RDY, of channels 0-3	XB	0	Disable RDY input for I/O access
5,7		during DMAC fly-by access.		1	Enable RDY input for I/O access
30,22,1	30,22,1 4,6	control the hold cycle of the read strobe signal on the transfer source access side during DMA flyby access	ХВ	0	Do not insert a hold extension cycle.
4,6				1	Insert a hold extension cycle to extend the read cycle by one cycle.
				00	0 cycle
29-28, 21-20,	WRn1:0	select burst - write	XXB	01	1 cycle
13-12, 5-4	WKIII.U	or a single write access	AAB	10	2 cycle
0.				11	3 cycle
				0000	0 cycle
27-24, 19-16,	IVM/= Q.4	set number of auto- wait cycles for I/O	VVVVD	0001	1 cycle
11-08, 03-00	IWn3:1	access during DMA fly-by access	XXXXB		
				1111	15 cycle

2.2.7 Chip Select Enable Register (CSER)

The chip select enable register (CSER: Chip Select Enable register) enables and disables each chip select area.

Bit No.	Name	Explanation	Initial Value	Value	Operation
31	CSE7		0	0	Disable
31	CSE /		U	1	Enable
30	CSE6		0	0	Disable
30	CSEO		U	1	Enable
29	CSE5		0	0	Disable
29	CSES		U	1	Enable
28	CSE4		0	0	Disable
20	CSE4	chip select enable bits for CSX0-	U	1	Enable
27	CSE3	CSX7	0	0	Disable
21	CSES		U	1	Enable
26	CSE2		0	0	Disable
20	CSEZ		0	1	Enable
25	CSE1		0	0	Disable
25	CSEI		U	1	Enable
24	CSEO		1	0	Disable
24	CSE0			1	Enable

2.2.8 Cache Enable Register (CHER)

The cache enable register (CHER: CacHe Enable Register) controls the transfer of data read from each chip select area.

Bit No.	Name	Explanation	Initial Value	Value	Operation	
22	CHE7		4	0	Not a cache area (data read from the applicable area is not saved in the cache)	
23	CHE7		1	1	Cache area (data read from the applicable area is saved in the cache)	
22	CHE6		1	0	Not a cache area (data read from the applicable area is not saved in the cache)	
22	CHEO		1	1	Cache area (data read from the applicable area is saved in the cache)	
21	CHE5		1	0	Not a cache area (data read from the applicable area is not saved in the cache)	
21	CHES			1	Cache area (data read from the applicable area is saved in the cache)	
20		enable or disable each chip select area for transfers to the built-in cache	1	0	Not a cache area (data read from the applicable area is not saved in the cache)	
20	CHE4			1	Cache area (data read from the applicable area is saved in the cache)	
19	CHE3		to the built-in		0	Not a cache area (data read from the applicable area is not saved in the cache)
19	CHES		1	1	Cache area (data read from the applicable area is saved in the cache)	
40	CHEO		1	0	Not a cache area (data read from the applicable area is not saved in the cache)	
18	CHE2			1	Cache area (data read from the applicable area is saved in the cache)	
17	CHE1		1	0	Not a cache area (data read from the applicable area is not saved in the cache)	
				1	Cache area (data read from the applicable area is saved in the cache)	
16	CHEO		1	0	Not a cache area (data read from the applicable area is not saved in the cache)	
16	CHE0			1	Cache area (data read from the applicable area is saved in the cache)	

2.2.9 Pin/Timing Control Register (TCR)

The pin/timing control register (TCR: Terminal and Limiting Control Register) controls the functions related to the general external bus interface controller, such as the setting of common pin functions and timing control.

Bit No.	Name	Explanation	Initial Value	Value	Operation
7	BREN	enable BRQ pin input and external bus sharing	0	0	No bus sharing by BRQ/BGRNTX. BRQ input is disabled.
/				1	Bus sharing by BRQ/BGRNTX. BRQ input is enabled.
6	PSUS	Control temporary stopping of pre-fetch	0	0	Enable pre-fetch

				1	Suspend pre-fetch
5	PCLR	completely clear the pre-fetch	0	0	Normal state
		buffer		1	Clear the pre-fetch buffer
4-2	CHE4	Reserved			
		These bits instruct all chip select areas and fly-by I/O channels to reduce only the number of autowait cycles in the auto-access cycle wait settings uniformly while the AWR register settings are retained unchanged	00 _B	00	Normal wait (AWR0-7 settings)
1-0	RDW1:0			01	1/2 (1-bit shift to the right) of the AWR0-7 settings
				10	1/4 (2-bit shift to the right) of the AWR0-7 settings
				11	1/8 (3-bit shift to the right) of the AWR0-7 settings

2.2.10 Refresh Control Register (RCR)

The refresh control register (RCR) is used to make various refresh control settings for SDRAM.

The setting of this register is meaningless as long as SDRAM control is not set for any area, in that case the register value must not be updated from the initial state.

When read by a Read - modify - Write instruction, the SELF, RRLD, and PON bits always return to 0.

Bit No.	Name	Explanation	Initial Value	Value	Operation
31	SELF	Control the self -	0	0	Auto - refresh or power - down
31	SETE	refresh mode	U	1	Transition to self-refresh mode
		Start and reload the		0	Disable (no operation)
30	RRLD	fresh counter	0	1	Execute auto - refreshing once and reload the RFINT value.
29-24	RFINT5:0	Set interval for	XXXXXX _B		The auto - refresh interval can be obtained for distributed refresh mode {(REFINT5 - REFINT0 value) x 32 x (external bus clock cycle)}
	S-24 REINIS.0	automatic refreshing	AAAAAAB		The auto - refresh interval can be obtained for centralized refresh mode {(REFINT5 - REFINT0 value) x 32 x (RFC specified number of times) x (external bus clock cycle)}
00	220	control the operation mode for auto - refreshing		0	Distributed refresh (Auto - refresh is activated at intervals.)
23	BRST		X	1	Burst refresh (Auto - refresh is activated repeatedly at one time.)
	RFC2:0	Set these bits to the	XXX _B	000	Refresh 256 times
				001	Refresh 512 times
				010	Refresh 1024 times
22-20		number of times a refresh must be		011	Refresh 2048 times
22-20	N1 02 • 0	performed to refresh		100	Refresh 4096 times
		all SDRAM		101	Refresh 8192 times
				110	Setting prohibited
				111	Refresh prohibited
19	PON	control the SDRAM (FCRAM) power -	Х	0	Disabled (no-operation)
		on sequence		1	Start power-on sequence
				000	4 Refresh Cycle
				001	5 Refresh Cycle
18-16	TRC2:0	set the refresh cycle (tRC).	XXX_B	010	6 Refresh Cycle
				011	7 Refresh Cycle
				100	8 Refresh Cycle

	101	9 Refresh Cycle
	110	10 Refresh Cycle
	111	11 Refresh Cycle

2.2.11 Port Function Register (PFR7-0)

Register Name	Value	Operation
PFR00	11111111 _B	Port 00 is in external bus data D[31:24] mode (if external bus is enabled otherwise general purpose port)
	00000000 _B	Port 00 is in general purpose port mode
PFR01	11111111 _B	Port 01 is in external bus data D[23:16] mode (if external bus is enabled otherwise general purpose port)
-	00000000 _B	Port 01 is in general purpose port mode
PFR02	11111111 _B	Port 02 is in external bus data D[15:8] mode (if external bus is enabled otherwise general purpose port)
	00000000 _B	Port 02 is in general purpose port mode
PFR03	11111111 _B	Port 03 is in external bus data D[7:0] mode (if external bus is enabled otherwise general purpose port)
	00000000 _B	Port 03 is in general purpose port mode
PFR04	11111111 _B	Port 04 is in external bus address A[31:24] mode (if external bus is enabled otherwise general purpose port)
	00000000 _B	Port 04 is in general purpose port mode
PFR05	11111111 _B	Port 05 is in external bus data A[23:16] mode (if external bus is enabled otherwise general purpose port)
	00000000 _B	Port 05 is in general purpose port mode
PFR06	11111111 _B	Port 06 is in external bus data A[15:8] mode (if external bus is enabled otherwise general purpose port)
	00000000 _B	Port 06 is in general purpose port mode
PFR07	11111111 _B	Port 07 is in external bus data A[7:0] mode (if external bus is enabled otherwise general purpose port)
	00000000 _B	Port 07 is in general purpose port mode

2.2.12 Port Function Register (PFR6)

Bit No.	Name	Explanation	Value	Operation
7	PFR08.7	External bus	0	General purpose I/O mode.
,	PFRUO.7	control signal RDY	1	External bus RDY enable
6	PFR08.6 External bu	External bus	0	General purpose I/O mode.
0	FFR00.0	control signal BRQ	1	External bus BRQ enable
5	PFR08.5	External bus control signal	0	General purpose I/O mode.
	J 11100.5	BGRNTX	1	External bus BGRNTX enable
4	DED O 0	PFR08.4 External bus control signal RDX	0	General purpose I/O mode.
4	PERUO.4		1	External bus RDX enable

3	· -	External bus control signal	0	General purpose I/O mode.
3	11100.5	WRX3	1	External bus WRX3enable
2	PFR08.2	External bus control signal WRX2	0	General purpose I/O mode.
			1	External bus WRX2enable
	DED 0.0 1	External bus	0	General purpose I/O mode.
1	PFR08.1 control signal WRX1	J	1	External bus WRX1enable
		08.0 External bus control signal WRX0	0	General purpose I/O mode.
0	PFR08.0		1	External bus WRX0 enable

2.2.13 Port Function Register (PFR9)

Register Name	Value	Operation
PFR09	11111111B	Port 09 is in external bus data CSX [7:0] mode (if external bus is enabled otherwise general purpose port)
	00000000B	Port 09 is in general purpose port mode

2.2.14 Port Function Register (PFR10)

Bit No.	Name	Explanation	Value	Operation
7	PFR10.7			
6	PFR10.6	External bus control signal	0	General purpose I/O mode.
O	FFK10.0	MCLKE	1	External bus MCLKE enable
		External bus	0	General purpose I/O mode.
5	PFR10.5	control signal MCLKI/ MCLKIX	1	External bus MCLKI if EPFR10.5 is 0B External bus MCLKIX if EPFR10.5 is 1B
		External bus	0	General purpose I/O mode.
7	PFR10.4	control signal MCLKO/ MCLKOX	1	External bus MCLKO if EPFR10.4 is 0B External bus MCLKOX if EPFR10.4 is 1B
6	DED 40.0	External bus	0	General purpose I/O mode.
O	PFR10.3	control signal WEX	1	External bus WEX enable
5	PFR10.2	External bus control signal	0	General purpose I/O mode.
		BAAX	1	External bus BAAX enable
7	PFR10.1	External bus	0	General purpose I/O mode.
	111(10.1	control signal ASX	1	External bus ASX enable
		External bus	0	General purpose I/O mode.
7	PFR10.0	control signal SYSCLK/ SYSCLKX	1	External bus SYSCLK if EPFR10.4 is 0B External bus SYSCLKX if EPFR10.4 is 1B

3 Initialization in Start.asm

Initialization of the external bus inerface in start.asm

3.1 Start.asm

In the start up file *Start.asm*, which is included in our template project, the External Bus Interface can be initialized before branching to the application. Therefore the application itself does not need to set up the External Bus Interface, but use it from the beginning on.

The user can adjust the setting in the lines with a "<<<" in the comments on the right side.

3.1.1 Enabling the External Bus Interface

```
; 4.8 External Bus Interface
      The rest of the configuration is only applicable for devices with an external bus
     If the device does not offer an external bus interface, the configuration can be
     stopped at this point.
           ______
#set EXTBUS
                     ON
                                     ; <<< Ext. Bus on/off
                     ON
                           - The ext. bus interface is enabled and is configured as
                             set below.
;
                            - The ext. bus interface is disabled. The port function
                     OFF
;
                             Registers are set to general I/O. The registers of
;
                             ext. bus interface will not be touched by the start-up
                             file.
                             Be aware, that the device might be configured in ext.
                             bus mode by default after reset.
                     DEFAULT - Neither the register nor the respective port function
                             Registers are touched by the start-up file.
                             Be aware, that the device might be configured in ext.
                             Bus mode by default after reset.
; Note: This feature is not supported by every device. Please check the data sheet.
TheFollowing devices for example do not offer an external bus interface: MB91464A,
      MB91467C, MB91465K, MB91463N, MB91465X.
;
;
```


3.1.2 Enabling Chip Select

```
; 4.8.1 Select Chip select (Only EXTBUS == ON)
=====
      CS0
                   OFF
                                         ; <<< select CS (ON/OFF)
#set
#set
      CS1
                    ON
                                         ; <<< select CS (ON/OFF)
#set
      CS2
                    OFF
                                         ; <<< select CS (ON/OFF)
      CS3
                   OFF
                                         ; <<< select CS (ON/OFF)
#set
#set
      CS4
                   OFF
                                         ; <<< select CS (ON/OFF)
#set
      CS5
                    OFF
                                         ; <<< select CS (ON/OFF)
#set
                    OFF
                                         ; <<< select CS (ON/OFF)
      CS6
      CS7
                    ON
                                         ; <<< select CS (ON/OFF)
#set
                                          ; <<< select if a SDRAM is connected
#set
      SDRAM
                     ON
                     B'01000010
#set
      ENACSX
                                         ; <<< set CS, ENACSX
                       ||||||_ CS0 bit, enable/disable CS0 (1/0)
                      |||||| CS1 bit, enable/disable CS1 (1/0)
                      |||||| CS2 bit, enable/disable CS2 (1/0)
                       ||||| CS3 bit, enable/disable CS3 (1/0)
                       |||| CS4 bit, enable/disable CS4 (1/0)
                       ||| CS5 bit, enable/disable CS5 (1/0)
                          CS6 bit, enable/disable CS6 (1/0)
                             CS7 bit, enable/disable CS7 (1/0)
; Note: If the SWB Monitor Debugger is used, set the CS1 (external RAM only) or CS0
and
       CS 1 (external RAM and flash) to off.
; Note: Not all Chip selects are supported by the different devices. Please check
       data sheet.
```

3.1.3 Set Memory Addressing

```
; 4.8.2 Set memory addressing for Chip selects (only EXTBUS == ON)
AREASELO
                    0×0000
                                            ; <<< set start add. for CSO, ASRO
#set
     AREASEL1
                    0x2000
                                            ; <<< set start add. for CS1, ASR1
#set
#set AREASEL2
                    0x0000
                                            ; <<< set start add. for CS2, ASR2
#set AREASEL3
                    0x0000
                                            ; <<< set start add. for CS3, ASR3
                                            ; <<< set start add. for CS4, ASR4
#set AREASEL4
                    0x0000
      AREASEL5
                     0x0000
                                            ; <<< set start add. for CS5, ASR5
#set
      AREASEL6
                     0x3000
                                            ; <<< set start add. for CS6, ASR6
#set
      AREASEL7
                     0x0000
                                            ; <<< set start add. for CS7, ASR7
; Configure the starting address of each used Chip select. Chip selects which are not
used
; (not set to ON in "Select Chip select") need not be set (setting ignored).
; NOTE: Just the upper 16-bit of the start address must be set, e.g. when using start
; address 0x00080000 set 0x0008.
```


3.1.4 Configure Chip Select Area

```
; 4.8.3 Configure Chip select Area (only EXTBUS == ON)
#set CONFIGCS2 B'000000000000000
                            ; <<< Config. CS2, ACR2
            B'00000000000000000
#set CONFIGCS3
                            ; <<< Config. CS3, ACR3
#set CONFIGCS4 B'0000000000000000
                             ; <<< Config. CS4, ACR4
#set CONFIGCS5 B'0000000000000000
                            ; <<< Config. CS5, ACR5
                            ; <<< Config. CS6, ACR6
           B'0111100001101000
    CONFIGCS6
#set
#set CONFIGCS7
             B'00000000000000000
                             ; <<< Config. CS7, ACR7
                ;
                |||||||||| LEND bit, select little '1' or big endian '0'
                ||||||||||| WREN bit, en-/disable (1/0) Write access
                ||||||||| PFEN bit, en-/disable (1/0) pre-fetch
                |||||||| SREN bit, en-/disable (1/0)
                ||||||| BST0 bit, BSTx bits select burst size
                |||||| BST1 bit
                      DBW0 bit, DBWx select data bus width
                       _____DBW1 bit
                        ASZO bit, ASZx bits select address size of CS
                        ____ASZ1 bit
                         ____ ASZ2 bit
                         ASZ3 bit
```


3.1.5 Set Wait Cycles

```
; 4.8.4 Set Wait cycles for Chip selects for ordinary bus interface (only EXTBUS ON)
; Ordinary bus interface (w/o SDRAM and FRAM) (ACRx Type = 0xxx)
    WAITREG1
             B'0011001101111000
                              ; <<< CS1 Wait states, AWR1
    #set WAITREG2
#set WAITREG3
#set
#set
                ||||||||||| w00 bit, RDY/WRY-> CSX hold cycle
                ;
;
                |||||||| W07 bit
                                       selection
                |||||||| W08 bit, W08-W11 Intra-page access cycle
                |||||| W09 bit select (0-15 cycles)
                ||||| W10 bit
                ||||| W11 bit
                     W12 bit, W12-W15 First access wait cycle
                        W13 bit select (0-15 cycles)
                       _____ W14 bit
                             W15 bit
                ; SDRAM and FRAM bus interface (ACRx Type = 100x)
            B'0001000101011001
#set
     WAITREG6
#set
     WAITREG7
                  |||||||||||||| W02 bit, W2-W3 RAS active Time
                  ||||||||||||| W04 bit, W4-W5 Write recovery cycle
                  ||||||||||| W05 bit
                  |||||||||| W06 bit, W6-W7 Read->Write idle cycle
                  ||||||||| W07 bit
                  |||||||| W08 bit, W8-W10 CAS latency
                  |||||| W09 bit
                  |||||| W10 bit
                        W11 bit, reserved
                  | | | | | |
                              W12 bit, W12-W16 RAS-CAS delay
                              W13 bit
                              W14 bit
                             W15 bit, reserved
; The bit meaning depends on the configured bus interface type. The bus interface can
be configured for different memory types. Depending on the memory type, the wait
registers
; bits have a different meaning. CSO-5 should be configurable as ordinary bus
; (w/o SDRAM and FRAM) and CS6-7 should be configurable as SDRAM and FRAM. It is
```


3.1.6 Configure Chip Select For SDRAM

```
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM memory only (only EXTBUS == ON and SDRAM)
; 4.8.5 Configure Chipselects for SDRAM register, MCRA
; 4.8.5 Configure for SDRAM register
```

3.1.7 Set Refresh Control Register

```
; 4.8.6 Refresh Control Register RCR (only EXTBUS == ON and SDRAM)
#set REFRESH B'11100010010111
                                 ; <<< set Refresh Control Register, RCR
                   |||||||||||||__ TRC0 bit, set refresh cycle (TRC2-0)
                   ||||| TRC1 bit
                   ||||| TRC2 bit
                   ||||||||||||| PON bit, set power-on control
                   ||||||||||| RFC0 bit, set refresh count (RFC2-0)
                   |||||| RFC1 bit
                   |||||| RFC2 bit
                   ||||||| BRST bit, set burst refresh control
                   ||||||| RFINTO bit, set auto refresh interval
                                  RFINT1 bit, (RFINT5-0)
                                  RFINT2 bit
                                  RFINT3 bit
                                  RFINT4 bit
                                  RFINT5 bit
                                ___ RRLD bit, counter refresh start control
                                  SELF bit, self refresh control
; This register sets various SDRAM refresh controls. When SDRAM control is not set
; any area, the setting of this register is meaningless, but do not change the
register
; value at initial state. When a read is performed using a read-modify-write
; instruction, O always returns from the SELF, RRLD, and PON bits.
```


3.1.8 Timing Control Register

```
; 4.8.7 Terminal and Timing Control Register (only EXTBUS == ON)
B'00000000
                                   ; <<< set TCR register, TCR
#set TIMECONTR
                   ||||||| RDW0 bit, set wait cycle reduction (RDW0,1)
                   |||||| RDW1 bit
                   |||||| OHTO bit, set output hold delay (OHT1,0)
                   ||||| OHT1 bit
                   reserved, always write 0
||| PCLR bit, pre fetch buffer clear
                       PSUS bit, pre fetch suspend
                       BREN bit, BRQ input enable
; This register controls the general functions of the external bus interface
controller
; such as the common-pin function setting and timing control.
```

3.1.9 Set Cache

```
; 4.8.8 Enable/Disable I-CACHE (only EXTBUS == ON)
#set C1024
                                          ; CACHE Size: 1024 BYTE
#set C2048
                                          ; CACHE Size: 2048 BYTE
                                          ; CACHE Size: 4096 BYTE
#set C4096
#set CACHE_SIZE C40°
                                         ; <<< Select use of cache
                    C4096
                                          ; <<< Select size of cache, ISIZE
;It is possible to use cache functionality on the I-Bus on several devices. Please
; check the corresponding data sheet if this feature is available on a certain
device ; and for the size of the cache. This is the general cache configuration. It
is possible ;to configure for each CS area, if the cache should be used.
; Note: This feature is not supported by every device. Please check the data sheet.
      feature is for example supported by MB91461R, MB91469G.
;-----
; 4.8.9 Enable CACHE for chip select (only EXTBUS == ON)
#set
      CHEENA
                     B'11111111
                                          ; <<< en-/disable cache, CHER
                       |||||| CHE0 bit, CS0 area
                       |||||| CHE1 bit, CS1 area
                       |||||| ____ CHE2 bit, CS2 area
                       ||||| CHE3 bit, CS3 area
                       |||| CHE4 bit, CS4 area
                           CHE5 bit, CS5 area
```


3.1.10 Set External Bus Mode Data Pin

```
;-----
===
; 4.8.10 Select External bus mode (Data lines) (only EXTBUS == ON)
#set
     PFUNC0
                 B'11111111
                                  ;<<< Data lines or GIO, PFR00
                  |||||||D24 / P00_0
                   ||||||| D25 / P00_1
                   |||||| D26 / P00_2
                   D27 / P00_3
                   D29 / P00 5
| D30 / P00 6
| D31 / P00 7
     PFUNC1
                 B'11111111
                                  ; <<< Data lines or GIO, PFR01
#set
                   ||||||D16 / P01_0
                   |||||| D17 / P01_1
                   ||||||____ D18 / P01_2
                   ||||| D19 / P01_3
                   |||| D20 / P01_4
                   D21 / P01_5
                   D22 / P01_6
                          __ D23 / P01 7
                 B'11111111
#set
      PFUNC2
                                  ;<<< Data lines or GIO, PFR02
                   ;
                   ||||| D11 / P02_3
                   |||| D12 / P02 4
                   ||| D13 / P02_5
                   ||_____D14 / P02_6
                      D15 / P02 7
     PFUNC3
                 B'11111111
                                  ; <<< Data lines or GIO, PFR03
#set.
                   D7 / P03 7
; Select if the ports are set to
             1 : External bus mode, I/O for data lines or
              0 : General I/O port (GIO)
; Note: Not all data-lines are supported by the different devices. Please check the
datasheet.
```


3.1.11 Set External Bus Mode Address Pin

```
; 4.8.11 Select External bus mode (Address lines) (only EXTBUS == ON)
PFUNC4
                   B'11111111
                                      ; <<< Address lines or GIO, PFR04
#set
                     ||||||A24 / P04_0
                     ||||||A25 / P04_1
                     ||||| A26 / P04
                    A27 / P04_3
|||| A27 / P04_3
|||| A28 / P04_4
||| A29 / P04_5
|| A30 / P04_6
                         _____ A31 / P04 7
      PFUNC5
                   B'11111111
                                      ; <<< Address lines or GIO, PFR05
#set
                     ||||||| A16 / P05_0
                     |||||| A17 / P05_1
                     |||||| A18 / P05_2
                     ||||| A19 / P05_3
                     |||| A20 / P05_4
||| A21 / P05_5
                     A22 / P05_6
| A23 / P05_7
      PFUNC6
                   B'11111111
                                      ; <<< Address lines or GIO, PFR06
#set
                     |||||||A8 / P06_0
                     |||||| A9 / P06 1
                     |||||| A10 / P06_2
                     ||||| A11 / P06_3
                     |||| A12 / P06_4
                     ||| A13 / P06_5
                        _____ A14 / P06_6
                          A15 / P06 7
      PFUNC7
                   B'11111111
#set
                                      ; <<< Address lines or GIO, PFR07
                     |||| A4 / P07_4
                     || A5 / P07 5
                     A6 / P07 6
                            A7 / P07 7
; Select if the ports are set to
              1 : External bus mode, I/O for address lines or
               0 : General I/O port (GIO)
; Note: Not all address-lines are supported by the different devices. Please check
the data sheet.
```


3.1.12 Set External Bus Mode Control Pin

```
:-----
; 4.8.12 Select External bus mode (Control signals) (only EXTBUS == ON)
      PFUNC8
                    B'11111111
                                        ; <<< Control signals or GIO, PFR08
#set
                      |||||||| WRX0 / P08_0
                      |||||| WRX1 / P08_1
                      |||||| WRX2 / P08_2
                      ||||| WRX3 / P08_3
                      |||| RDX / P08_4
                      |||_____BGRNTX / P08_5
                      BRQ / P08_6
RDY / P08_7
;
                               RDY / P08 7
;
       PFUNC9
                    B'11111111
                                         ;<<< Control signals or GIO, PFR09
#set
                      |||||||| CSX0 / P09_0
                      ||||||| CSX1 / P09_1
                      |||||| CSX2 / P09_2
                      ||||| CSX3 / P09_3
                      |||| CSX4 / P09_4
                      ____ CSX6 / P09_6
                              CSX7 / P09 7
;
#set
       PFUNC10
                    B'01011111
                                         ; <<< Control signals or GIO, PFR10
                       ||||||| SYSCLK or !SYSCLK / P10_0
;
                      ;
                      |||| MCLKO or !MCLKO / P10 4
                            MCLKI or !MCLKI/ P10 \overline{5}
                            ____ MCLKE / P10 6
                    B'00000000
#set
      EPFUNC10
                                         ; <<< Control signals or GIO, EPFR10
                      ||||||| 0:SYSCLK / 1:!SYSCLK
                      |||||-
;
                      | | | | | | | _____
;
                      0:MCLKO / 1:!MCLKO
0:MCLKI / 1:!MCLKI
                      ||| 0:MCLKI / 1:!MCLKI
|| 0:MCLKI / 1:!MCLKI
; Select if the ports are set to
                1 : External bus mode, I/O for control lines or
                0 : General I/O port (GIO)
; Note: Not all control-lines are supported by the different devices. Please check
the data sheet.
```


4 External Bus Interface examples

Examples for the external bus interface

4.1 Hardware example for 32-bit Bus Interfacing to memory

Following Diagram shows that two 16-bit memory are connected to MCU MB91F467D to make 32-bit data access. Further A2 of MCU is connected to A0 of external memory device. Also note that WEX strobe is enabled and RDY of MCU is connected to RDY pin of memory hence MCU will wait for RDY signal from memory to go active before completing read or write access.

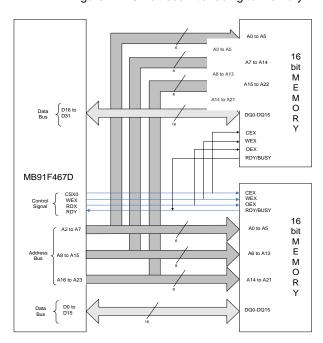


Figure 4-1. 32-bit bus interfacing to memory

4.2 Hardware example for 16-bit Bus Interfacing to memory

Following Diagram shows that 16-bit memory is connected to MCU MB91F467D to make 16-bit data access. Further A1 of MCU is connected to A0 of external memory device. Also note that WEX strobe is enabled and RDY of MCU is connected to RDY pin of memory hence MCU will wait for RDY signal from memory to go active before completing read or write access.

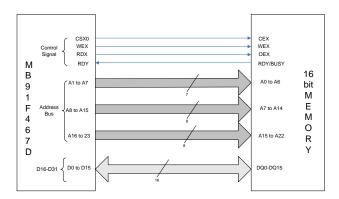


Figure 4-2. 16-bit bus interfacing to memory

5 Timing analysis

Timing consideration for interfacing flash and SRAM

5.1 Flash Read AC characteristics

Figure 5-1 below shows timing diagram of Flash read cycle.

Figure 5-1. Flash read timing diagram

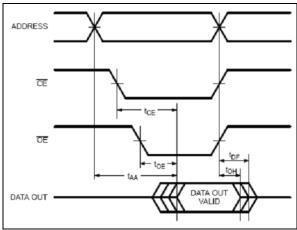


Table 5-1. Flash read characteristics

		Value						Unit
Parameter	Symbol	80		90		12		
		Min	Max	Min	Max	Min	Max	
Read Cycle Time	tRC	80	-	90		120		ns
Address to Output Delay	tAA	-	80	-	90	-	120	ns
Chip Enable to Output Delay	tCE	-	80	-	90	-	120	ns
Output Enable to Output Delay	tOE	-	30	-	35	-	50	ns
Chip Enable to Output High-Z	tDF	-	25	-	30	-	30	ns
Output Enable to Output High-Z	tDF	-	25	-	30	-	30	ns
Output Hold Time From Addresses, CEX or OEX, whichever Occurs First	tOH	0	-	0	-	0	-	ns

Here, t_{AA}, defines the maximum time after the address stabilizes that the Flash will return valid data. This parameter is commonly referred to as the 'access time' of the device

Similarly, t_{CE} defines the maximum time after the CEX input is asserted that the Flash will return data. This spec is typically, though not always, the same as t_{AA} . t_{OE} defines the maximum time from OEX assertion to valid data output much like t_{CE} . t_{OH} indicates the minimum time the data is guaranteed to remain valid after CEX/OEX de assertion. t_{DF} , defines the maximum time after which the output is guaranteed to completely float

5.2 RAM Read AC characteristics

Figure 5-2.RAM read timing diagram

Table 5-2. RAM read characteristics

			Unit			
Parameter	Symbol	15		20		
		Min	Max	Min	Max	
Read Cycle Time	t _{RC}	15	-	20	-	ns
Address Access Time	t _{ACC}	-	15	1	20	ns
Chip Enable Access Time	t _{CE}	-	15	1	20	ns
Output Enable Access Time	t _{OE}	-	8	1	10	ns
Chip Enable Low to Output Active	t _{CLZ}	3	-	3	-	ns
Output Enable Low to Output Active	t _{OLZ}	1	-	1	-	ns
Chip Enable High to Output High-Z	t _{CHZ}	-	7	ı	7	ns
Output Enable High to Output High-Z	t _{OHZ}	-	7	1	7	ns
Output Data Hold Time	t _{OH}	5	-	5	-	ns

Figure 5-2 shows the read cycle timing for a RAM which is quite similar to that of a Flash.

Here separate CEX and OEX data float specs (t_{CHZ} , t_{OHZ}) are defined instead of a single t_{DF} . Since the SRAM (unlike the EPROM/Flash) can be written. It also specifies the other side of the data float (i.e., enable to output driven) with t_{CLZ} and t_{OLZ} .

5.3 RAM Write AC characteristics

Figure 5-3.RAM write timing diagram

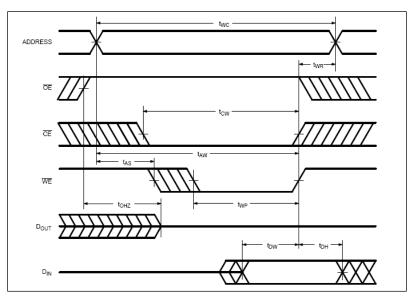


Table 5-3. RAM write Characteristics

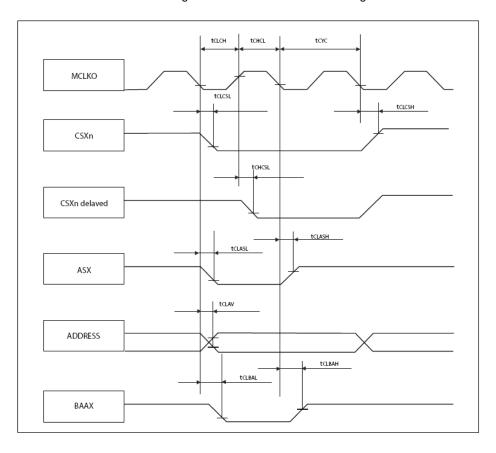
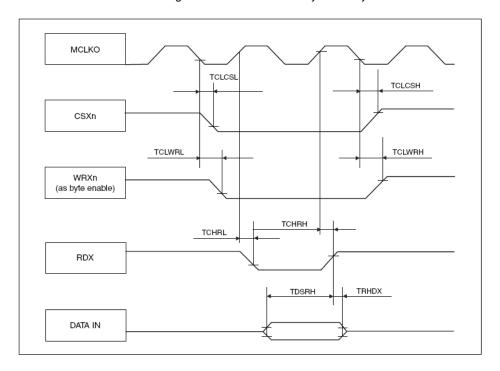

				Unit		
Parameter	Symbol	15		20		
		Min	Max	Min	Max	
Write Cycle Time	t _{wc}	15	-	20	-	ns
Write Pulse Width	t _{WP}	10	-	15	-	ns
Chip Enable to End of Write	t _{CW}	10	-	12	-	ns
Address Setup Time	t _{AS}	0	-	0	-	ns
Write Recovery Time	t _{WR}	0	-	0	-	ns
Output Enable High to Output High-Z	t _{OHZ}	-	7	-	7	ns
Data Setup Time	t _{DW}	8	-	10	-	ns
Data Hold Time	t _{DH}	0	-	0	-	ns

Figure 5-3 shows the write cycle timing. Write time (tWP) is defined as the time during which both CEX and WE are asserted. tWC simply defines the write cycle time which, along with tRC, is the same as the 'access time'. tCW and tAW specify the minimum time from valid CEX and address inputs to the end of the write cycle. tAS defines an address setup to the beginning of the write cycle. tWP simply specifies the minimum write pulse (the overlap of CEX and WE) width. tWR specifies a minimum write 'recovery' time, essentially an address hold time after the end of write. tDW and tDH specify the input data setup and hold times relative to the end of write. tOHZ defines time duration that must be elapsed before a new write cycle begin to allow previous read data to disappear and to avoid bus contention.

5.4 MCU External Bus Basic Timings

Figure 5-4. External bus basic timings

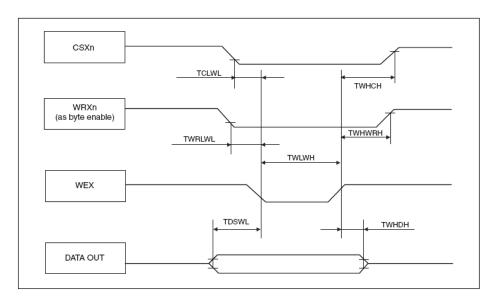
(V_{DD}35 = 4.5 V to 5.5 V, Vss5 = AVss5 = 0 V, $T_A = -40$ °C to + 105 °C)


Parameter	Symbol	Pin name	Va	Unit	
Parameter	Syllibol	Fili Hallie	Min	Max	Oilit
MCLKO	tсьсн	MCLKO	1/2 × tcvc − 7	1/2 × toyc + 7	ns
WOLKO	tonou	MICERO	1/2 × toyc - 7	1/2 × toyc + 7	ns
MCLKO ↓ to CSXn_delay time	tclcsl		_	9	ns
WOLKO V to COAIT delay time	tclcsH	MCLKO	_	8	ns
MCLKO \uparrow to CSXn delay time (Addr \rightarrow CS delay)	tcHcsL	CSXn	- 5	+ 2	ns
MCLKO ↓ to ASX delay time	tclasl	MCLKO	_	8	ns
MCLRO ↓ to ASA delay time	tclash	ASX	_	8	ns
MCLKO ↓ to BAAX delay time	tolbal	MCLKO	_	5	ns
MOLINO VIO BAAA delay lilile	tclbah	BAAX	1	_	ns
MCLKO ↓ to Address valid delay time	tclav	MCLKO A25 to A0	_	11	ns

Note: toyc is the frequency of clock cycle.

5.5 MCU External Bus Synchronous/Asynchronous Read Access

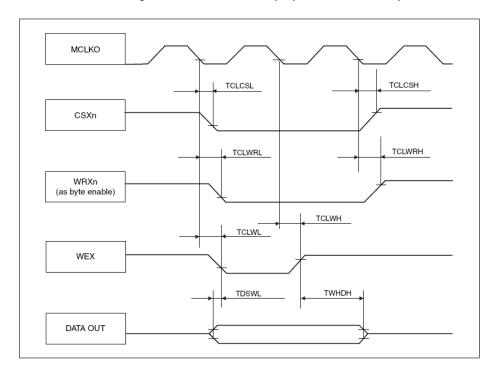
Figure 5-5. External Memory Read Cycle


(V_{DD}35 = 4.5 V to 5.5 V, Vss5 = AVss5 = 0 V, $T_A = -40$ °C to + 105 °C)

Parameter	Symbol Pin name		Va	Value		
Parameter	Syllibol	Pili lialile	Min	Max	Unit	
MCLKO ↑ to RDX delay time	TCHRL	MCLKO RDX	-5	2	ns	
WOLKO I to HDX delay time	TCHRH	MOLKO RDX	-5	2	ns	
Data valid to RDX ↑ setup time	TDSRH	TDSRH RDX D31 to D0		_	ns	
RDX ↑ to Data valid hold time (internal MCLKO → MCLKI MCLKI feedback)	TRHDX	RDX D31 to D0	0	_	ns	
MCLKO ↓ to WRXn	TCLWRL	MCLKO	_	9	ns	
(as byte enable) delay time	TCLWRH	WRXn	– 1	_	ns	
MCLKO ↓ to CSXn delay time	TCLCSL	MCLKO	_	9	ns	
I WOLKO 4 to COAH delay time	TCLCSH	CSXn	_	8	ns	

5.6 MCU External Bus Asynchronous Write Access - Byte Control Type

Figure 5-6. External Memory Asynchronous Write Cycle


(V_{DD}35 = 4.5 V to 5.5 V, Vss5 = AVss5 = 0 V, $T_A = -40$ °C to + 105 °C)

Parameter	Symbol	Pin name	Val	Unit	
Parameter	Symbol	Pili lialile	Min	Max	Offic
WEX ↓ to WEX ↑ pulse width	TWLWH	WEX	tovo – 2	_	ns
Data valid to WEX ↓ setup time	TDSWL	TDSWL WEX D31 to D0		_	ns
WEX ↑ to Data valid hold time	TWHDH	WEX D31 to D0	1/2 × toyc - 10	_	ns
WEX to WRXn delay time	TWRLWL	WEX	_	1/2 × tcvc + 2	ns
WEX to WHAII delay time	TWHWRH	WRXn	1/2 × tcyc - 4	_	ns
WEX to CSXn delay time	TCLWL	WEX	_	1/2 × tovo	ns
WEX to COMIT delay time	TWHCH	CSXn	1/2 × toyc - 5	_	ns

5.7 MCU External Bus Synchronous Write Access - Byte Control Type

Figure 5-7. External Memory Synchronous Write Cycle

 $(V_{DD}35 = 4.5 \text{ V to } 5.5 \text{ V}, V_{SS}5 = AV_{SS}5 = 0 \text{ V}, T_{A} = -40 \,^{\circ}\text{C to } + 105 \,^{\circ}\text{C})$

Parameter	Symbol	Pin name	Val	Unit	
Parameter	Symbol	Fill Hallie	Min	Max	Oilit
MCLKO ↓ to WEX delay time	TCLWL	MCLKO	_	9	ns
WEX delay time	TCLWH	WEX	2	_	ns
Data valid to WEX ↓ setup time	TDSWL	WEX D31 to D0	- 11	_	ns
WEX ↑ to Data valid hold time	TWHDH	WEX D31 to D0	toyc – 10	_	ns
MCLKO ↓ to WRXn (as byte enable)	TCLWRL	MCLKO	_	9	ns
delay time	TCLWRH	WRXn	-1	_	ns
MCLKO ↓ to CSXn delay time	TCLCSL	MCLKO	_	9	ns
INICERO VIO CONTI delay time	TCLCSH	CSXn	_	8	ns

5.8 Timing analysis

5.8.1 Constraint for maximum Bus Frequency

In the following the constraints caused by internal technology shows the settings for maximum achievable frequency and performance on the external bus

Check the MB91460 Series Hardware Manual, Datasheets and the MB91F460 series external bus AC spec of the corresponding MB91460 Series MCUs for details on these constraints.

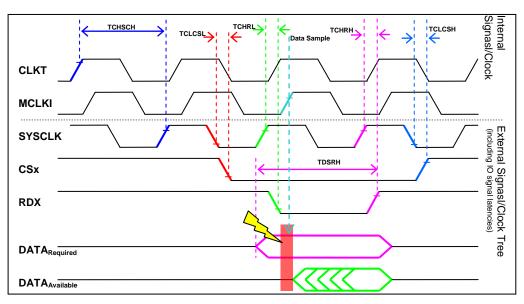


Figure 5.8 shows the non applicable bus timing for an external bus frequency of 50MHz.

The maximum applicable bus frequency (or minimum cyle duration) can be calculated with the following formula:

t_{cycle - min}

$$\frac{\text{MEM}_{\text{DataSetup}} - (\text{TCHRH}_{\text{Min}} - \text{TDSRH}_{\text{Min}} -}{(1 + \text{Nbr}_{\text{Wait Cycles}})}$$

The following calculations show an exemplary maximum frequency for a different number of wait cycles! Expected Memory data setup time MEM_{DataSetup} = 5ns!

Nbr_{Wait Cycles} = 0

$$t_{cycle - min (0WS)} = \frac{MEM_{DataSetup} - (TCHRH_{Min} - TDSRH_{Min} - TOLIBL)}{(1 + Nbr_{Wait Cycles})}$$

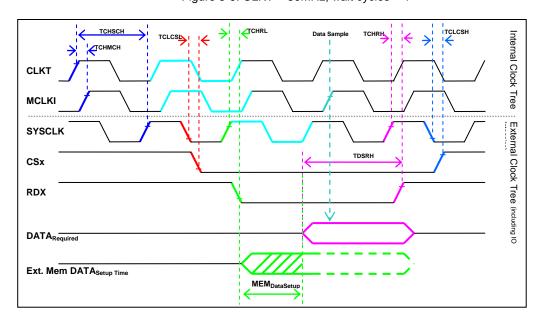
$$\frac{5ns - (-5ns - 20ns - 2ns)}{1}$$

$$t_{cycle - min (0WS)} \qquad 32ns$$

$$CLKT_{max (0WS)} \qquad 31.25MHz$$

The following calculations show an exemplary maximum frequency for a different number of wait cycles! Expected Memory data setup time $MEM_{DataSetup} = 5ns!$

Nbr_{Wait Cycles} = 1


$$t_{cvcle - min (1WS)} = \frac{MEM_{DataSetup} - (TCHRH_{Min} - TDSRH_{Min} - (1 + Nbr_{Wait Cvcles}))}{(1 + Nbr_{Wait Cvcles})}$$

$$\frac{5ns - (-5ns - 20ns - 2ns)}{2}$$

$$t_{cvcle - min (1WS)} = 16ns$$

$$CLKT_{max (1WS)} = 62.5MHz$$

Figure 5-9. CLKT = 50MHz, wait cycles = 1

The figure 5.9 above shows the maximum available data setup time for an external connected memory!

$$\begin{split} \text{MEM}_{\text{DataSetup(MAX)}} &= \text{CLKT} + (\text{Nbr}_{\text{Wait Cycles}} * \text{CLKT}) + \text{TCHRH}_{\text{Min}} - \text{TDSRH}_{\text{Min}} - \text{TCHRL}_{\text{Max}} \\ &= 20 \text{ns} + 20 \text{ns} + -5 \text{ns} - 20 \text{ns} - 2 \text{ns} \end{split}$$

 $MEM_{DataSetup(MAX)} = 13ns$

5.8.2 Flash Timing Analysis

The procedure is simply to step through each Flash spec one by one to identify a speed grade that meets all the relevant MCU timing requirements.

Lets us for the calculation assume that External bus frequency is 32Mhz i.e. t_{CYC} is equal to 31.25ns and there number of wait cycles are three.

Starting with t_{AA} , this parameter represents the time required for the memory device to decode the address and place the data on the data bus, it is apparent that address access time for the Flash must be less than the MCU t_{ADVDV} (address to valid data in).

```
\begin{array}{l} t_{\text{AA}} \; (\text{Flash}) < t_{\text{ADVDV}} \; (\text{MCU}) \\ t_{\text{AA}} \; (\text{Flash}) < ((\text{Nbr}_{\text{Wait Cycles}}^* \; t_{\text{CYC}}) + t_{\text{CYC}} + t_{\text{CLCHmin}} + t_{\text{CHRHmin}} - t_{\text{DSRHmin}}) - t_{\text{CLAVmax}} \\ t_{\text{AA}} \; (\text{Flash}) < ((3^*31.25\text{ns}) + 31.25\text{ns} + (\frac{1}{2}(\; t_{\text{CYC}}) - 7) + (-5\text{ns}) - (20\text{ns})) - 11\text{ns} \\ t_{\text{AA}} \; (\text{Flash}) < (93.75\text{ns} + 31.25\text{ns} + 8.625\text{ns} - 5\text{ns} - 20\text{ns}) - 11\text{ns} = 97.625\text{ns} \end{array}
```

Which can be met by either 80ns or 90ns Flash.

 t_{OE} , this parameter represents the time required for the chip to activate its outputs from a disabled state, should be less than t_{RLDV} (RDX low to valid data in)

```
\begin{array}{l} t_{OE}(\text{Flash}) < t_{\text{RLDV}} \ (\text{MCU}) \\ t_{OE}(\text{Flash}) < ((\text{Nbr}_{\text{Wait Cycles}}^* \ t_{\text{CYC}}) + \ t_{\text{CYC}} + \ t_{\text{CHRHmin}} - t_{\text{DSRHmin}}) - \ t_{\text{CHRLmax}} \\ t_{OE} \ (\text{Flash}) < ((3*31.25\text{ns}) + 31.25\text{ns} + (-5\text{ns}) - 20\text{ns}) - 2\text{ns} \\ t_{OE} \ (\text{Flash}) < (93.75\text{ns} + 31.25\text{ns} - 5\text{ns} - 20\text{ns}) - 2\text{ns} = 98\text{ns} \end{array}
```

Which can be met by either 80ns or 90ns Flash.

 t_{OH} , this parameter represents the amount of time that the memory device will continue to drive the bus after the output enable signal has been de-asserted The Flash t_{OH} spec is 0ns. On the MCU side, the corresponding spec is t_{RHDX} (RDX high to Data hold time) which is also 0ns. This spec is also met as per the requirement because MCU will see RDX going high before the Flash and also in fact Flash will take some time to clear its output.

5.8.3 RAM Timing Analysis

The process of evaluating SRAM interface is similar to that for the Flash

Lets us for the calculation assume that External bus frequency is 32Mhz i.e. t_{CYC} is equal to 31.25ns and there number of wait cycles are one.

For a data read, the SRAM t_{AA} is compared with the MCU t_{ADVDV} (address to valid data in).

```
\begin{array}{l} t_{\text{AA}} \; (\text{RAM}) < t_{\text{ADVDV}} \; (\text{MCU}) \\ t_{\text{AA}} \; (\text{RAM}) < ((\text{Nbr}_{\text{Wait Cycles}}^* \; t_{\text{CYC}} \;) + t_{\text{CYC}} + t_{\text{CLCHmin}} + t_{\text{CHRHmin}} - t_{\text{DSRHmin}}) \; - \; t_{\text{CLAVmax}} \\ t_{\text{AA}} (\text{RAM}) < ((1^*31.25\text{ns}) + 31.25\text{ns} + (\frac{1}{2}(\; t_{\text{CYC}}) \; -7) \; + (-5\text{ns}) - (20\text{ns})) - 11\text{ns} \\ t_{\text{AA}} (\text{RAM}) < (31.25\text{ns} + 31.25\text{ns} + 8.625\text{ns} \; -5\text{ns} - 20\text{ns}) - 11\text{ns} = 35.125\text{ns} \end{array}
```

Which is met by either 15ns or 20ns SRAM

t_{OE}, should be less than t_{RLDV} (RDX low to valid data in)

```
\begin{array}{l} t_{OE}({\sf RAM}) < t_{\sf RLDV} \; ({\sf MCU}) \\ t_{OE}({\sf RAM}) < (({\sf Nbr_{Wait}} \; {\sf Cycles}^* \; t_{\sf CYC} \;) + t_{\sf CYC} + t_{\sf CHRHmin} - t_{\sf DSRHmin}) - t_{\sf CHRLmax} \\ t_{\sf OE} \; ({\sf RAM}) < ((1^*31.25 ns) + 31.25 ns + (-5 ns) - 20 ns) - 2 ns \\ t_{\sf OE} \; ({\sf RAM}) < (62.5 ns - 5 ns - 20 ns) - 2 ns = 35.5 ns \end{array}
```

Which is met by either 15ns or 20ns SRAM

t_{OHZ}, should be less than t_{RHDX} (RDX high to data hold time)

$$t_{OHZ}(RAM) < t_{RHDX}$$

 $t_{OHZ}(RAM) < 0$

Unfortunately, either SRAM can not meet this spec. We need to use faster RAM. However we can use 15ns or 20ns SRAM ignoring this problem because this situation will arise quite rarely. In real life application this problem will be taken care by the processing time required by application in between two transfers.

twp. This parameter represents the amount of time that the active-low RD and active-low WR strobes are asserted.

```
t_{WP}(RAM) < t_{WLWH}(MCU)

t_{WP}(RAM) < t_{CYC} - 2

t_{WP}(RAM) < 29.25 ns
```

Which is met by either 15ns or 20ns SRAM

t_{DH}, This parameter represents the amount of time that the memory device will continue to drive the bus after the output enable signal has been de-asserted.

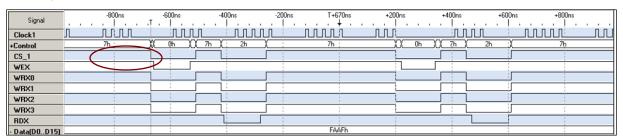
```
t_{DH}(RAM) < t_{WHDH}(MCU)

t_{DH}(RAM) < \frac{1}{2} t_{CYC} - 10

t_{DH}(RAM) < 5.625ns
```

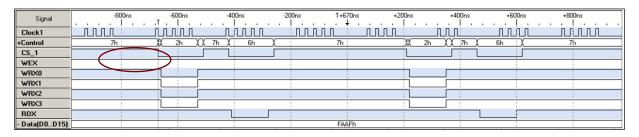
Which is met by either 15ns or 20ns SRAM

6 Appendix

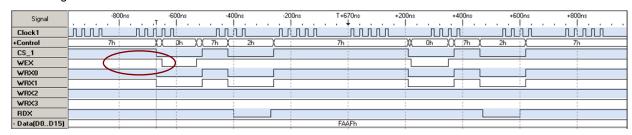

Miscellaneous information

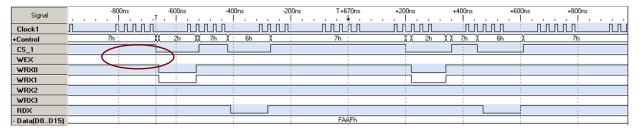
Following sections 6.1 to 6.3 depicts timing diagram of external bus interface showing the behaviour of WRX and WRnX control signal for different settings of bits TYP3:0[ACRn].

Further note that when TYP3:0 [ACRn] is set as B' 0X0X WEX output is not strobe and hence WRX pin of external memory device should be connected to available WRnX pin of MCU.


6.1 32-bit Write- and Read Access to External Asynchronous SRAM

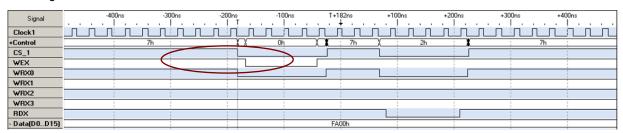
Setting: The WEX pin is used as write strobe; WRnX can be used for byte-selection Setting: ACR1 = B' 0110100000100010


Setting: The WR0X pin to WR3X pin is used as write strobe
 Setting: ACR1 = B'0110100000100000

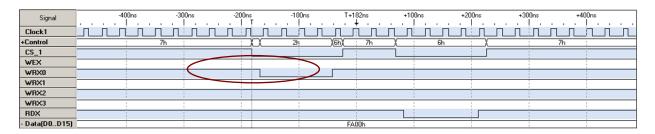


6.2 16-bit Write- and Read Access is tested on External Asynchronous SRAM

■ Setting: The WEX pin is used as write strobe; WRnX can be used for byte-selection Setting: ACR1 = B' 0110010000100010



Setting: The WR0X pin to WR3X pin is used as write strobe Setting: ACR1 = B' 0110010000100000


6.3 8-bit Write- and Read Access is tested on External Asynchronous SRAM

Setting: The WEX pin is used as write strobe Setting: ACR1 = B' 011000000100010

Setting: The WR0X pin to WR3X pin is used as write strobe
 Setting: ACR1 = B' 0110000000100000

7 Additional information

Information about CYPRESS Microcontrollers can be found on the following Internet page:

http://www.cypress.com/cypress-microcontrollers

Document History

Document Title: AN205260 - FR, MB91460, EXTERNAL BUS INTERFACE

Document Number:002-05260

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	NOFL	01/15/2008	V1.0
				First Version; HPi
*A	5083955	NOFL	01/14/2016	Converted Spansion Application Note "MCU-AN-300051-E-V10" to Cypress format
*B	5843432	AESATP12	08/03/2017	Updated logo and copyright.

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2008-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.