

XENSIV™ inductive position sensors

Features

- Inductive based measurement principle
- Angle measurements and computed torque information from 2 internally processed angles
- Intrinsic stray field robust according to ISO 11452-8:2015
- ISO 26262:2018 Safety Element out of Context for safety requirements up to ASIL D
- SENT (based on SAE J2716-2016) and SPC interfaces
- PG-TSSOP-16 SMD package, Grade 0: -40°C to 150°C (ambient temperature)
- · Overvoltage and reverse polarity protection
- Integrated memory for calibration & configuration
- · RoHS compliant and halogen-free package

Potential applications

The TLE4801 is an inductive sensor IC designed for angular position sensing in the automotive field. Its target applications are steering torque sensor and steering angle sensor.

- Electric power steering (torque & angle steering sensor)
- Pedal sensing
- · Chassis height
- · Active suspension

Product validation

Product validation according to AEC-Q100, Grade 0. Qualified for automotive applications.

Description

The TLE4801 is an inductive sensor IC for angular position sensing in automotive applications. It uses the eddy current method to sense the position of a metallic target placed above a set of PCB printed coils. The TLE4801 includes a digital signal processing unit (DSP) for signal compensation, angle, and torque calculation. The TLE4801 is offered as derivatives with SENT or SPC interface in order to enable for a broad variety of use case in a flexible way.

Product type	Package	Marking	Ordering code
TLE4801S16-S0000	PG-TSSOP-16	4801S	SP006068552
TLE4801C16-S0000	PG-TSSOP-16	4801C	SP006068554

TLE4801 Datasheet

Table of contents

Table of contents

	Table of contents	2
1	Block diagram	4
2	Pin configuration	5
3	General product characteristics	6
3.1	Absolute maximum ratings	6
3.2	ESD Immunity	7
3.3	Stray field robustness	7
3.4	Lifetime & Ignition cycles	7
3.5	Functional range	7
3.5.1	Recovery outside functional range	8
3.6	Thermal resistance	9
3.7	Current consumption	9
4	Product features	10
4.1	Functional description	10
4.1.1	ADC accuracy	10
4.2	Electrical characteristics	10
4.2.1	Input / output characteristics	10
4.2.2	Coils characteristics	10
4.2.3	Undervoltage and overvoltage conditions	11
4.2.4	External circuitry	12
4.2.4.1	LC oscillator	12
4.3	Interfaces	13
4.3.1	SENT	13
4.3.1.1	Parameters	13
4.3.1.1.1	Definition of tlow	13
4.3.1.1.2	Status Nibble	14
4.3.1.1.3	Frame format	15
4.3.1.1.4	Data selection	15
4.3.1.2	Error indication	15
4.3.1.3	CRC	16
4.3.2	SPC	16
4.3.2.1	Parameter	16
4.3.2.1.1	Definition of tlow	17
4.3.2.1.2	Status Nibble	17
4.3.2.1.3	Frame format	18
4.3.2.1.4	Data selection	19
4.3.2.1.5	Trigger nibble	19
4.3.2.1.6	Bus mode / Synchronization mode	20

TLE4801

Datasheet

Table of contents

4.3.2.2	Error indication	20
4.3.2.3	CRC	21
4.3.3	SICI	21
4.4	Lookup table	24
5	Application information	25
5.1	SENT	25
5.2	SPC	25
6	Package	27
7	Revision history	30
	Disclaimer	31

1 Block diagram

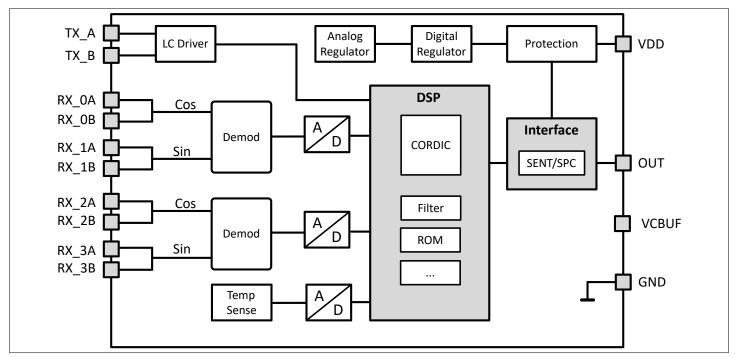


Figure 1 Functional block diagram

2 Pin configuration

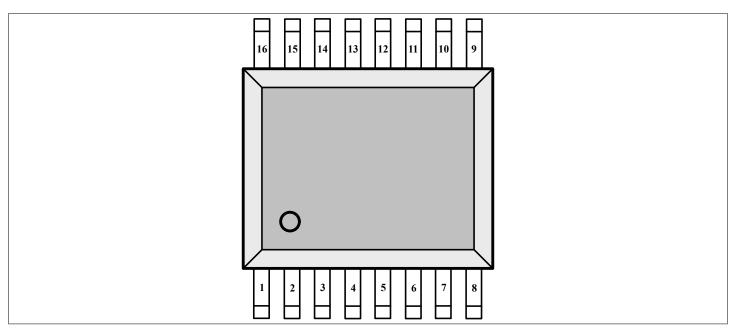


Figure 2 Pin-out package

Table 1 Pin configuration

PIN number	Symbol	Description	
1	RX_0A	Receiver coil 0, pin A	
2	RX_1A	Receiver coil 1, pin A	
3	RX_0B	Receiver coil 0, pin B	
4	RX_1B	Receiver coil 1, pin B	
5	RX_2A	Receiver coil 2, pin A	
6	RX_3A	Receiver coil 3, pin A	
7	RX_2B	Receiver coil 2, pin B	
8	RX_3B	Receiver coil 3, pin B	
9	TX_A	Transmitter pin A, oscillator out	
10	TST2	Test 2 out	
11	TX_B	Transmitter pin B, oscillator out	
12	VDD	Supply voltage	
13	VCBUF	Buffer capacitor pin	
14	OUT	SENT / SPC / SICI	
15	TST1	Test 1 out	
16	GND	Ground	

5

3 General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Attention:

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the section "functional range" of this data sheet is not implied. Furthermore, only single error cases are assumed. More than one stress/error case may also damage the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions the voltage on VDD pins with respect to ground (GND) must not exceed the values defined by the absolute maximum ratings. Lifetime statements are an anticipation based on an extrapolation of Infineon's qualification test results. The actual lifetime of a component depends on its form of application and type of use etc. and may deviate from such statement. Lifetime statements shall in no event extend the agreed warranty period.

Table 2 Absolute maximum ratings

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Maximum supply voltage	V _{DD_max}	-18	-	18	V	max. 40 h
Maximum voltage OUT	V _{OUT_max}	-18	-	18	V	max. 40 h
Maximum voltage on Rx & Tx	V _{RxTx_max}	-0.3	-	5.5	V	max. 40 h
Maximum voltage VCBuf	V _{CBuf_max}	-0.3	-	18	V	max. 40 h
Maximum pin-to- pin voltage difference	V _{PP_max}	-	-	18	V	for global pins
Voltage peaks VDD	V _{DD_peak}	-	-	28	V	max. 50 μs, no current limitation
Voltage peaks OUT	V _{OUT_peak}	-	-	28	V	max. 50 μs, no current limitation
Maximum current OUT pin	I _{OUT_max}	-80	-	80	mA	max. 1 h; current > 0 means short to GND, current < 0 means short to V _{DD}
Maximum junction temperature	$T_{ m J_max}$	-40	-	175	°C	max. 1000 h at T _J = 175°C (not additive); maximum exposure time at other junction temperatures shall be calculated using the Arrhenius-model
Storage & shipment temperature	$T_{ m storage}$	5	-	40	°C	Relative humidity < 90%, storage time < 3 a; see Infineon Application Note: "Storage of Products Supplied by Infineon Technologies"

3 General product characteristics

3.2 ESD Immunity

Table 3 ESD immunity

Parameter Sym	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
HBM ESD Immunity	V_{HBM}	-	-	±4	kV	Electro-Static-Discharge voltage (HBM) according to AEC-Q100-002; for pins VDD, GND, OUT
HBM ESD immunity		-	-	±2	kV	Electro-Static-Discharge voltage (HBM) according to AEC-Q100-002; for all pins except VDD, GND, OUT
CDM ESD immunity	V_{CDM}	-	-	±0.5	kV	The product withstands the specified minimum Electro-Static-Discharge voltage (CDM) according to AEC-Q100-011; for all pins except corner pins
		-	-	±0.75	kV	The product withstands the specified minimum Electro-Static-Discharge voltage (CDM) according to AEC-Q100-011; for corner pins only

3.3 Stray field robustness

Table 4 Stray field robustness

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Stray field robustness DC	H _{EXT_DC}	-	-	5000	A/m	According ISO 11452-8:2015
Stray field robustness AC	H _{EXT_AC}	-	-	1000	A/m	According ISO 11452-8:2015

3.4 Lifetime & Ignition cycles

Table 5 Lifetime & ignition cycles

Parameter	Symbol	Values		Unit	Note or condition	
		Min.	Тур.	Max.		
Operating lifetime	t _{op_life}	17000	-	-	h	max 1000 h at T _{J_max} = 175°C (not additive)
Total lifetime	t _{tot_life}	15	-	-	а	additional 3 a storage time
Ignition cycles	N _{ignition}	200	-	-	1000x	during operating lifetime t _{op_life}

3.5 Functional range

The following operating conditions must not be exceeded in order to ensure correct operation of the device. All parameters specified in the following sections refer to these operating conditions, unless otherwise noted.

3 General product characteristics

Table 6 Functional range

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Operating supply voltage	V_{DD}	4.4	5	6	V	-
Programming supply voltage	V _{PROG}	15.5	-	18	V	Only required to perform a write-cycle
Supply voltage slew rate	V _{DD_slew}	0.1	-	108	V/s	If the sensor needs longer than $t_{\rm PON}$ to reach the operating voltage the SSM bits are suppressed by the undervoltage condition in the sensor. No SENT/SPC message including the SSM is sent to the ECU.
Operating ambient temperature	T _A	-40	-	150	°C	max. 1000 h at T _A = 150°C (not additive); Grade 0 qualification
Internal angular resolution	RES	-	-	16	bit	-
Power-on time	t _{PON}	-	-	5	ms	Time until the sensor is ready for operation after start-up or reset
Angle range	α	0	-	360	°elec	Electrical angle range from one sin/cos coil period.
Differential angle range	$\it \Delta_{ m angle}$	-	-	360	0	Uniqueness depends on wings setup
Internal clock tolerance	$\Delta f_{ m clock}$	-	-	±3.5	%	including temperature and lifetime

3.5.1 Recovery outside functional range

In redundant operation an error on TX (open, short, amplitude/frequency mismatch) at one of the two ICs can cause a downtime. The TX amplitude is affected.

Not all faults can be restored. Faults affecting the external coupled LC components lead to faults where the TX driver can not do anything against it.

The restore time specifies the recovery time of the first IC in case of power loss/power down of the second IC or a short term disturbance on the shared TX amplitude.

In this requirement the maximum time until the TX amplitude is restored is specified.

This requirement allows in redundant operation the ECU to shut down in fail operational mode the malfunctioning sensor.

Table 7

Parameter	Symbol		Values			Note or condition
		Min.	Тур.	Max.		
Max time to restore TX amplitude	$t_{ m restore}$	-	-	5	ms	Only valid for redundant operation under the assumption that the faulty device is powered down.

TLE4801

Datasheet

3 General product characteristics

3.6 Thermal resistance

Table 8 Thermal resistance

Parameter	Symbol	Values		Unit	Note or condition	
		Min.	Тур.	Max.		
Thermal resistance	R_{thJA}	-	-	150	K/W	Junction to ambient; measured on 2s2p PCB board

3.7 Current consumption

Table 9 Current consumption

Parameter	Symbol	Values		Unit	Note or condition	
		Min.	Тур.	Max.		
LC driver current	I _{LC}	-	-	9.6	mA	
Operating supply current	I _{DD}	-	-	20	mA	Excluding LC coil driver current and output driver current.

4 Product features

4.1 Functional description

4.1.1 ADC accuracy

Table 10 ADC accuracy

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
ADC Integral non- linearity	INL	-	10	200	LSB ₁₆	-
ADC Noise (RMS)	Noise	-	-	1	LSB ₁₆	standard deviation: 1σ
ADC Bandwidth	Bandwidth	600	-	-	Hz	-

4.2 Electrical characteristics

4.2.1 Input / output characteristics

Table 11 Input / output characteristics

Parameter	Symbol		Values	Values		Note or condition	
		Min.	Тур.	Max.			
Output low level	V _{OL}	-	-	0.2*V _{DD}	V	Isink = 4mA	
Output high level	V _{OH}	0.8*V _{DD}	-	-	V	Isource = 4 mA	
Input low level	V _{IL}	-	-	0.3*V _{DD}	V	valid in normal operating range	
Input high level	V _{IH}	0.7*V _{DD}	-	-	٧	valid in normal operating range	
Leakage current	I _{leak}	-40	-	40	μΑ	-	

4.2.2 Coils characteristics

Table 12 Coils characteristics

Parameter	Symbol		Values		Unit	Note or condition			
		Min.	Тур.	Max.					
Resonance admittance	G_{RLC}	0	-	6	mA/V	when G _{RLC} maximum is reached, A _{Tx} is allowed to drop below minimum value			
Inductance transmitter coil	L _{Tx}	1	6	10	μН	-			
Capacitance transmitter coil	C _{Tx}		0.5	2.8	nF	Depending on used frequency and inductance			
Frequency transmitter coil	f_{Tx}	3	4	5.5	MHz	Excitation frequency resulting from inductance and capacitance			

Table 12 (continued) Coils characteristics

Parameter	Symbol		Values		Unit	Note or condition		
		Min.	Тур.	Max.				
Operating amplitude transmitter coil	A _{Tx}	2.0	2.4	3	Vpp	Peak-to-peak; differential.		
Relative amplitude transmitter coil	$A_{TX_relative}$	1.14	1.225	1.31	V	Relative amplitude; differential.		
Q factor transmitter coil	Q_{Tx}	10	20	-	-	Temperature depending		
Frequency receiver coil	f_{Rx}	3	4	5.5	MHz	-		
Amplitude receiver coil	A_{Rx}	5		100	mVpp	Peak-to-peak; differential		
Asymmetry caused by receiver	A _{Asym}	-	-	2	mV	Measured in absence of rotor		
LC driver current range	I _{LC}	0.2		6	mA			

4.2.3 Undervoltage and overvoltage conditions

Table 13 Undervoltage and overvoltage conditions

Parameter	rameter Symbol Values Unit Min. Typ. Max.		Note or condition			
Undervoltage detection on VDD	V _{UV}	3.8	-	4.4	V	in case of an undervoltage the device disables the output
Overvoltage detection on VDD	V _{OV}	6	-	7.5	V	in an overvoltage condition the device disables the output
Overvoltage detection on OUT	V _{OV_OUT}	6	-	10	V	in an overvoltage condition the output switches to High-Z.
Undervoltage reset time	t _{UV}	-	-	50	μs	Time below threshold for the sensor to initiate a safe reaction
Overvoltage recovery time	t _{OV}	-	-	50	μs	Time after overvoltage condition to enable protocol output
Microbreak immunity	t_{MB}	5	-	-	μs	Min. value is only applicable if no boundary conditions (L_min,Q_min,U_low,Cbuf_low) are applied.

The device behaves in the Extended range same as in the Operating range. However depending on the actual UV/OV thresholds, the device can switch to no output mode.

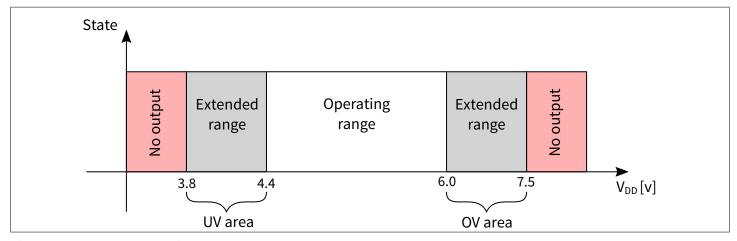


Figure 3 Operating range

Note: In the extended range, the sensor fulfills the full specification.

4.2.4 External circuitry

Table 14 External circuitry

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Line capacitor	C _L	1	-	3.9	nF	Including external circuit and cable
Supply capacitance	C _S	70	100	150	nF	Related to EMC requirements
Buffer capacitance	C_{Buf}	70	100	150	nF	Related to EMC requirements
Pull-Up resistor SENT	R _P	10	-	55	kΩ	-
Pull-Up resistor SPC		1.45	2.2	10	kΩ	-
EMC Filter on Rx pins	CO _A to C3 _B	-	-	250	pF	Depending on application EMC requirements we recommend filter capacitors on each Rx-pin to improve EMC behaviour. To maintain a symmetry of the capacitors used on corresponding RX-pins it is recommended to use capacitors with tolerance window typical < 20%.
Tank capacitor	C_{L1}, C_{L2}	-	1	5.6	nF	Related to C _{Tx}

4.2.4.1 LC oscillator

The LC oscillator driver excites the external resonance LC circuit. The excitation frequency f_{Tx} is defined by the external inductance L_{Tx} and the tank capacitor C_{Tx} . Ohmic resistances are neglected in frequency calculation below.

$$f_{Tx} = \sqrt{\frac{1}{4\pi^2 L_{Tx} C_{Tx}}} = \sqrt{\frac{1}{4\pi^2 L_{Tx} \frac{C_{L1} * C_{L2}}{C_{L1} + C_{L2}}}}$$
(1)

4.3 Interfaces

4.3.1 SENT

This chapter describes the SENT Interface of the device. It contains the following section:

- Parameters
- Frame format
- Serial message description
- Error indication
- CRC

4.3.1.1 Parameters

The parameters below can be modified according to the application requirements. Some parameters (e.g. UT = 1 μ s or t_{low} = 3 UT) are not compliant with the SENT standard: SAE J2716.

Table 15 Interface Configuration Parameters

Configuration Parameter	Symbol	Nominal Range	Unit	Step width	Default	Note
Unit time	UT	1.0* to 3.0	μs	0.5	3.0	Tolerance given by clock tolerance.
Unit time	UT	1.0* to 3.0	μs	0.5	3.0	Tolerance given by clock tolerance.
Low time	t _{low}	3 to 5	UT	1	5	Including the fall time of the edge.
Pause pulse		0 to 1		1	0	0: Disable, 1: Enable
Status nibble in CRC		0 to 1		1	1	0: Disable, 1: Enable
Rolling counter		0 to 1		1	1	0: Disable, 1: Enable

4.3.1.1.1 Definition of tlow

The parameter t_{low} can be configured. Because it includes the fall time of the edge, it has to be ensured that the fall of the edge is fast enough to reach the low level within the configured low time.

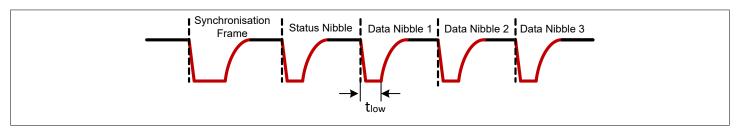


Figure 4 Definition of t_{low}

4.3.1.1.2 Status Nibble

The Status nibble transmits extra serial data such as part numbers or diagnostic information. Data bits from this nibble are constructed across multiple SENT frames to form a Short Serial Message. The 1-bit rolling counter automatically toggles after each transmitted frame. It is used for verification purposes (e.g. missing frame). After start-up or a reset, the next transmitted status nibble indicates the reset via the reset flag. When the reset flag is set, valid angle and torque values are transmitted.

Table 16 Status nibble description

Bits	Description
Status[3]	SSM (bit #3)
Status[2]	SSM (bit #2)
Status[1]	Rolling counter or '0' if disable
Status[0]	Reset flag or error indication

Short Serial Message

The Short Serial Message (SSM) is using the Enhanced Serial Message standard defined in the SAE J2716. It is using the configuration 16-bit data and 4-bit message ID (configuration bit = 1).

Serial communication	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Serial Data (bit #3)	1	1	1	1	1	1	0	1	2	I-bit I	D (3-0)	0	4-l	oit da	ta (15	5-12)	0
Serial Data (bit #2)			6-bit	CRC							1	2-bit	data (11-0)				

Figure 5 Short Serial Message bit mapping

The following table describes the message-ID and the associated data. Data are transmitted with the convention: MSB first. ID8 to ID15 contains the data of ID0 to ID7.

Table 17 Message-ID Overview

Message-ID	Data
0	Sensor ID[47:32]
1	Sensor ID[31:16]
2	Sensor ID[15:0]
3	0x0000 Temp[7:0]
4	Customer register 1[15:0]
5	Customer register 2[15:0]
6	Customer register 3[15:0]
7	Vector length RX_2/3 [15:8] Vector length RX_0/1 [7:0]
8-15	ID0 to ID7

4.3.1.1.3 Frame format

Table 18 Frame format

Frame format	Channel 1	Channel 2	CRC	SAE J2716 Compliant
A (Default)	12-bit value	12-bit value	8-bit	No
В	12-bit value	10-bit value	6-bit	No
С	12-bit value	12-bit value	4-bit	Yes

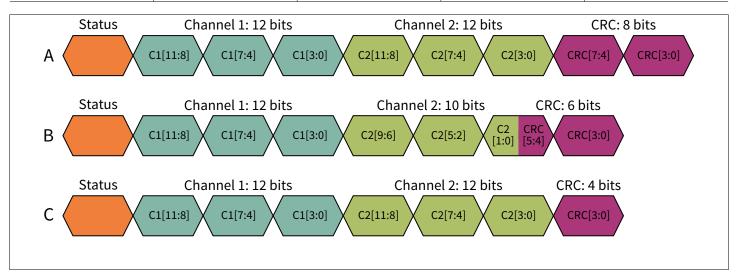


Figure 6 Different frame formats

4.3.1.1.4 Data selection

Table 19 Data selection

Frame format	Channel 1	Channel 2		
A,B or C (Default)	Torque	Angle 1 / Angle 2		
A,B or C	Torque	Angle 1		
A,B or C	Torque	Angle 2		

The data selection Channel 1: Torque and Channel 2: Angle 1 / Angle 2 corresponds to a mode where channel 2 is alternating between two different data (resp. Angle 1 and Angle 2). The rolling counter bit located in the status nibble is used to identify the channel 2 data:

- Rolling counter = 0; Channel 2 = Angle 1.
- Rolling counter = 1; Channel 2 = Angle 2.

When using this data selection, the rolling counter bit shall be enabled.

4.3.1.2 Error indication

The angle and torque values are mapped within the range 1 .. 4088 (12 bit). In case of an internal sensor error or start-up error (BIST error), the status nibble (status[0]) is set to one and the following messages are transmitted:

- Supply/temperature monitoring raises an error
 - "4089" is transmitted in the 12 bit channel.

TLE4801

Datasheet

(infineon

4 Product features

- <u>Transceiver coils monitoring (open, short and resistance measurement), Transceiver coils external parameters monitoring (frequency)</u>
 - "4090" is transmitted in the 12 bit channel.
- Transceiver coils amplitude cross check: amplitude measurement
 - "4091" is transmitted in the 12 bit channel.
- Receiver coils monitoring (open, short, resistance measurement)
 - "4092 is transmitted in the 12 bit channel.
- Receiver coils contact monitoring (vector length)
 - "4093" is transmitted in the 12 bit channel.
- ADC/angle/torque crosscheck
 - "4094" is transmitted in the 12 bit channel.

In a 10 bit channel no error codes are transmitted.

In the case of a reset the value "0" is transmitted in the 12 bit channels. The value "0" is sent after the reset instead of an angle value or error code in all 12 bit channels of a frame.

4.3.1.3 CRC

4-bit CRC

The 4-bit CRC is calculated using the polynomial $x^4 + x^3 + x^2 + 1$ with a seed value of 0101B (5) but also augments the message data with an extra 4 zero bits in the CRC calculation. It corresponds to the Recommended Implementation defined in the SENT standard.

6-bit CRC (Fast channel & SSM)

The 6-bit CRC is calculated using the polynomial $x^6 + x^4 + x^3 + 1$ with a seed value of 010101B (21) but also augments the message data with an extra 6 zero bits in the CRC calculation. It corresponds to the implementation defined in the SENT standard.

8-bit CRC

The 8-bit CRC is calculated using the polynomial $x^8 + x^5 + x^3 + x^2 + x + 1$ with a seed value of 01010101B (85) but also augments the message data with an extra 8 zero bits in the CRC calculation.

4.3.2 SPC

The device supports the Short PWM Code (SPC) interface.

The Short PWM Code (SPC) is a synchronized data transmission based on the SENT protocol (Single Edge Nibble Transmission) defined by SAE J2716. As opposed to SENT, which implies a continuous transmission of data, the SPC protocol transmits data only after receiving a specific trigger pulse also called trigger nibble from the MCU. The required length of the trigger pulse depends on an address, which is configurable. Up to four addresses are available. In bus mode configuration, these addresses allow the operation of up to four sensors on one bus line. In synchronous mode, these addresses transmit different kinds of data.

4.3.2.1 Parameter

The parameters below can be modified according to the application requirements.

Table 20 Interface Configuration Parameters

Configuration Parameter	Symbol	Nominal Range	Unit	Step width	Default	Note
Unit time	UT	1.0* to 3.0	μs	0.5	3.0	Tolerance given by clock tolerance.
Low time	t_{low}	3 to 5	UT	1	5	Including the fall time of the edge.

(table continues...)

Table 20 (continued) Interface Configuration Parameters

Configuration Parameter	Symbol	Nominal Range	Unit	Step width	Default	Note
Rolling counter		0 to 1		1	1	0: Disable, 1: Enable
Bus mode		0 to 1		1	1	0: Disable, 1: Enable
Variable trigger length		0 to 1		1	0	0: Disable, 1: Enable

4.3.2.1.1 Definition of tlow

The parameter t_{low} can be configured. Because it includes the fall time of the edge, it has to be ensured that the fall of the edge is fast enough to reach the low level within the configured low time.

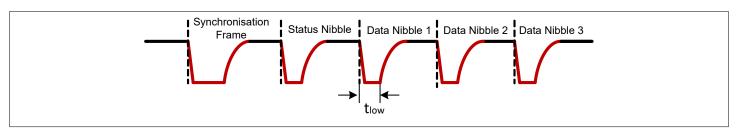


Figure 7 Definition of t_{low}

4.3.2.1.2 Status Nibble

The Status nibble transmits extra serial data such as part numbers or diagnostic information. Data bits from this nibble are constructed across multiple SPC frames to form a Short Serial Message. The 1-bit rolling counter automatically toggles after each transmitted frame. It is used for verification purposes (e.g. missing frame). After startup or a reset, the next transmitted status nibble indicates the reset via the reset flag. When the reset flag is set, valid angle and torque values are transmitted.

Table 21 Status nibble description (SENT implementation)

Bits	Description
Status[3]	SSM (bit #3)
Status[2]	SSM (bit #2)
Status[1]	Rolling counter or '0' if disable
Status[0]	Reset flag or error indication

Table 22 Another bit mapping is available to comply with the SPC standard. Status nibble description (SPC implementation)

Bits	Description
Status[3]	Reset flag or error indication
Status[2]	Rolling counter or '0' if disable
Status[1]	SSM (bit #3)
Status[0]	SSM (bit #2)

Short Serial Message

The Short Serial Message (SSM) is using the Enhanced Serial Message standard defined in the SAE J2716. It is using the configuration 16-bit data and 4-bit message ID (configuration bit = 1).

Serial communication	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Serial Data (bit #3)	1	1	1	1	1	1	0	1	4	1-bit I	D (3-0))	0	4-l	bit da	ta (15	-12)	0
Serial Data (bit #2)			6-bit	CRC							1	2-bit	data (11-0)				

Figure 8 Short Serial Message bit mapping

The following table describes the message-ID and the associated data. Data are transmitted with the convention: MSB first. ID8 to ID15 contains the data of ID0 to ID7.

Table 23 Message-ID Overview

Message-ID	Data
0	Sensor ID[47:32]
1	Sensor ID[31:16]
2	Sensor ID[15:0]
3	0x0000 Temp[7:0]
4	Customer register 1[15:0]
5	Customer register 2[15:0]
6	Customer register 3[15:0]
7	Vector length RX_2/3 [15:8] Vector length RX_0/1 [7:0]
8-15	ID0 to ID7

4.3.2.1.3 Frame format

Table 24 Frame format

Frame format	Channel 1	Channel 2	CRC	SAE J2716 Compliant
A (Default)	12-bit value	12-bit value	8-bit	No
В	12-bit value	10-bit value	6-bit	No
С	12-bit value	12-bit value	4-bit	Yes

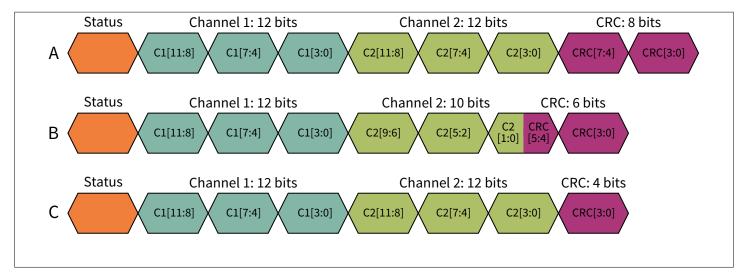


Figure 9 Different frame formats

4.3.2.1.4 Data selection

Table 25 Data selection

Frame format	Channel 1	Channel 2
A,B or C (Default)	Torque	Angle 1 / Angle 2
A,B or C	Torque	Angle 1
A,B or C	Torque	Angle 2

The data selection Channel 1: Torque and Channel 2: Angle 1 / Angle 2 corresponds to a mode where channel 2 is alternating between two different data (resp. Angle 1 and Angle 2). The rolling counter bit located in the status nibble is used to identify the channel 2 data:

- Rolling counter = 0; Channel 2 = Angle 1.
- Rolling counter = 1; Channel 2 = Angle 2.

When using this data selection, the rolling counter bit shall be enabled.

4.3.2.1.5 Trigger nibble

The transmission is initiated by a master trigger nibble on the output pin. To detect a low level, the voltage must be below the threshold V_{IL} . The sensor detects that the output line has been released as soon as V_{IH} is crossed. The total trigger time, t_{mtr} , depends on the address triggered and the selected configuration between constant trigger length or variable trigger length.

19

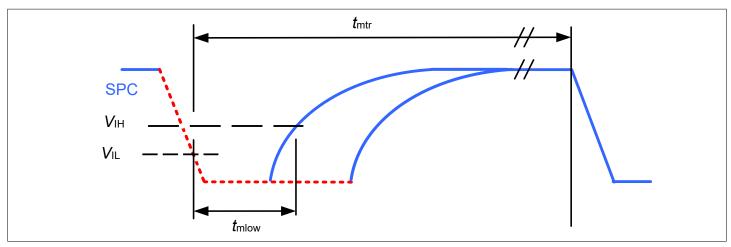


Figure 10 Definition of t_{mlow}

Table 26 Master pulse parameters

Parameter	Symbol	Values			Unit	Note or condition	
		Min.	Тур.	Max.			
Total trigger time (constant)	t _{mtr}	85.5	90	94.5	UT	for constant trigger length 1)	
Total trigger time (variable)	t _{mt}	t _{mlow} + 11.4	t _{mlow} +	t _{mlow} + 12.6	UT	for variable trigger length ¹⁾	

¹⁾ Trigger time in the sensor is fixed to the number of units specified in the "typ." column, but the effective trigger time varies due to the sensor's clock variation.

4.3.2.1.6 Bus mode / Synchronization mode

Based on the application requirements, it is possible to configure the sensor in bus mode or synchronous mode. The configuration bit is stored in the NVM. In bus mode, each sensor connected to the bus needs a unique and individual address. The microcontroller can trigger on-request any sensor based on the addressing scheme. In synchronous mode, only one sensor can be connected to the line, in this case, the master pulse is shortened.

Table 27 Sensor SPC trigger parameters

Parameter	Symbol	Values		Unit	Note or condition	
		Min.	Тур.	Max.		
Master nibble low	t _{mlow}	2	-	7	UT	Sync. mode enabled
time		8	-	15	UT	addr./ID = 0
		16	-	28	UT	addr./ID = 1
		29	-	49	UT	addr./ID = 2
		50	-	82	UT	addr./ID = 3

4.3.2.2 Error indication

The angle and torque values are mapped within the range 1 .. 4088 (12 bit). In case of an internal sensor error or start-up error (BIST error), the status nibble (status[0]) is set to one and the following messages are transmitted:

TLE4801

Datasheet

(infineon

4 Product features

- Supply/temperature monitoring raises an error
 - "4089" is transmitted in the 12 bit channel.
- Transceiver coils monitoring (open, short and resistance measurement), Transceiver coils external parameters monitoring (frequency)
 - "4090" is transmitted in the 12 bit channel.
- Transceiver coils amplitude cross check: amplitude measurement
 - "4091" is transmitted in the 12 bit channel.
- Receiver coils monitoring (open, short, resistance measurement)
 - "4092 is transmitted in the 12 bit channel.
- Receiver coils contact monitoring (vector length)
 - "4093" is transmitted in the 12 bit channel.
- ADC/angle/torque crosscheck
 - "4094" is transmitted in the 12 bit channel.

In a 10 bit channel no error codes are transmitted.

In the case of a reset the value "0" is transmitted in the 12 bit channels. The value "0" is sent after the reset instead of an angle value or error code in all 12 bit channels of a frame.

4.3.2.3 CRC

4-bit CRC

The 4-bit CRC is calculated using the polynomial $x^4 + x^3 + x^2 + 1$ with a seed value of 0101B (5) but also augments the message data with an extra 4 zero bits in the CRC calculation. It corresponds to the Recommended Implementation defined in the SENT standard.

6-bit CRC (Fast channel & SSM)

The 6-bit CRC is calculated using the polynomial $x^6 + x^4 + x^3 + 1$ with a seed value of 010101B (21) but also augments the message data with an extra 6 zero bits in the CRC calculation. It corresponds to the implementation defined in the SENT standard.

8-bit CRC

The 8-bit CRC is calculated using the polynomial $x^8 + x^5 + x^3 + x^2 + x + 1$ with a seed value of 01010101B (85) but also augments the message data with an extra 8 zero bits in the CRC calculation.

4.3.3 SICI

The Serial Inspection and Configuration Interface (SICI) enables the programming of the device internal memory. Customer and application-specific parameters such as calibration, interface settings, and customer area can be modified according to the application requirements. SICI is available on the OUT pin. Further details about SICI can be found in the corresponding user manual.

The device supports the Serial Inspection and Configuration Interface (SICI) to program/communicate with the internal memory.

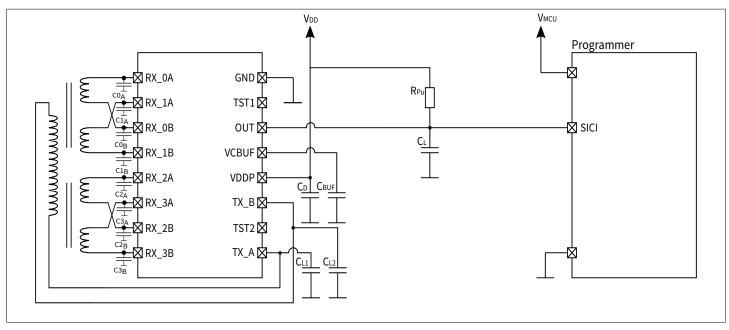


Figure 11 Application circuit for SICI (SICI line on V_{PROG})

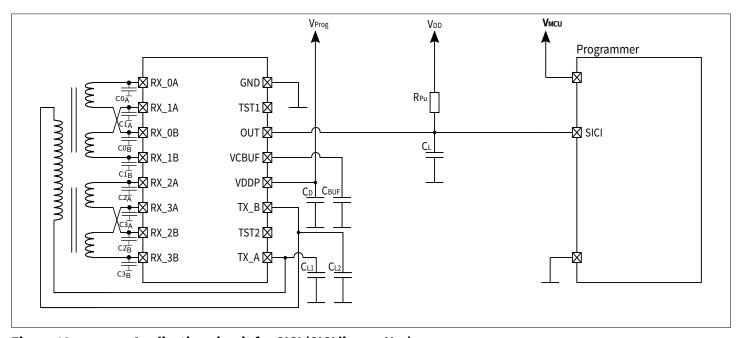


Figure 12 Application circuit for SICI (SICI line on V_{DD})

Table 28 SICI electrical and timing characteristics

Parameter	Symbol	nbol Values		Values		Note or condition	
		Min.	Тур.	Max.			
Programmer PWM period	T	40	-	120	μs	Determines interface transmission rate, minimum PWM periode rate of 2 µs might be achievable if lines with low parasitic capacities can be used.	

(table continues...)

Table 28 (continued) SICI electrical and timing characteristics

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Programmer low time to transmit "0"	t _{1_0}	0.28*T	0.33*T	0.38*T	μs	$t_{2_0} = T - t_{1_0}$
Programmer low time to transmit "1"	t_{1_1}	0.62*T	0.67*T	0.72*T		t _{2_1} = T - t _{1_1}
Time difference between Programmer low and high level	t ₄	0.48*T	0.66*T	0.88*T	μs	$t_4 = 2 * t_{1_X} - t_{2_X} $
Programmer- Sensor response time	t _r	50	-	80	% of t ₄	
Programmer low pulse after PWM bit	t ₃	0.07*T	-	0.2*T	μs	
Interface reset time	T_{Res}	1.7	-	5	ms	
Input signal low level	V _{low_in}		-	0.3*V _{DD}	V	
Input signal high level	V _{high_in}	0.7*V _{DD}	-		V	
Output signal low level	V _{low_out} =V _O		-	0.2*V _{DD}	V	Isink = 4 mA
SICI line pull-up resistor	R _{pu}	1.45	-	2	kΩ	Limited due to SPC/SENT input

Table 29 Timing specification for frame pause and programming mode activation

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Pause between frames	t _{pause}	5	-	-	μs	time between frames to ensure correct processing
Time window for activation of programming interface	t _{activate}	-	-	4500	μs	time after power-up of the sensor to enter the programming mode with the command.
Duration of the CMTP programming pulse	t _{prog_pause}	1	-	-	ms	

4.4 Lookup table

The device embeds a linearization block to compensate for non-linearity behavior (e.g. coils/rotor misalignment). Two options are possible:

- An 8-point look-up table using a 2D implementation where the x and y values can be written independently. This implementation allows the use of non-equidistant points to optimize the linearization process only where it is required.
- Two 8-point look-up tables using a 1D implementation where the x values are equidistant.

With both options, between the pivot points P_n (n_x , y_n), a piece-wise linear interpolation is performed. More details about the look-up table can be found in the user manual.

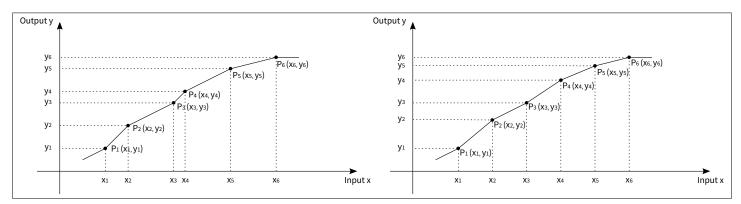


Figure 13 2D look-up table (left) and 1D look-up table (right)

5 Application information

5 Application information

5.1 SENT

Interfaces overview:

- SENT: Angle information and diagnostic interface.
- SICI: Programming interface.

External components:

- A decoupling capacitor C_S of 100nF must be located as close as possible to the sensor supply pin.
- A buffer capacitor C_{BUF} of typ. 100nF must be located as close as possible to the VCBUF pin.
- C₁ represents the maximum capacitance of the line (e.g. 50pF/meter)
- A pull-up resistor R_P. The maximum value is determined by the unit time and the total capacitance of the line. The minimum value is determined by the V_{OL} specification.
- Values in the application circuit are typical values from SAE J2716 SENT Filter.
- C_{L1} and C_{L2} capacitors depend on the T_X coil excitation frequency.
- Depending on application EMC requirements we recommend filter capacitors (CO_A to C3_B) on each Rx-pin to improve EMC behaviour.

Coils:

- For applications using two sets of receiving coils (2x SIN, 2x COS). The application diagram below applies.
- For applications using only one set of receiving coils (1x SIN, 1x COS). The remaining pins have to be shorted.

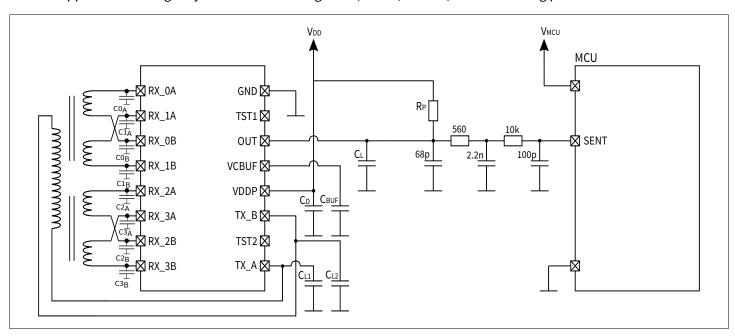


Figure 14 Application circuit for SENT interface

5.2 SPC

Interfaces overview:

- SPC: Angle information and diagnostic interface.
- SICI: Programming interface.

External components:

Datasheet

• A decoupling capacitor C_S of 100nF must be located as close as possible to the sensor supply pin.

25

• A buffer capacitor C_{BUF} of typ. 100nF must be located as close as possible to the VCBUF pin.

TLE4801

Datasheet

infineon

5 Application information

- C₁ represents the maximum capacitance of the line (e.g. 50pF/meter)
- A pull-up resistor R_P. The maximum value is determined by the unit time and the total capacitance of the line. The minimum value is determined by the V_{OL} specification.
- C_{L1} and C_{L2} capacitors depend on the T_X coil excitation frequency.
- Depending on application EMC requirements we recommend filter capacitors (CO_A to C3_B) on each Rx-pin to improve EMC behaviour.

Coils:

- For applications using two sets of receiving coils (2x SIN, 2x COS). The application diagram below applies.
- For applications using only one set of receiving coils (1x SIN, 1x COS). The remaining pins have to be shorted.

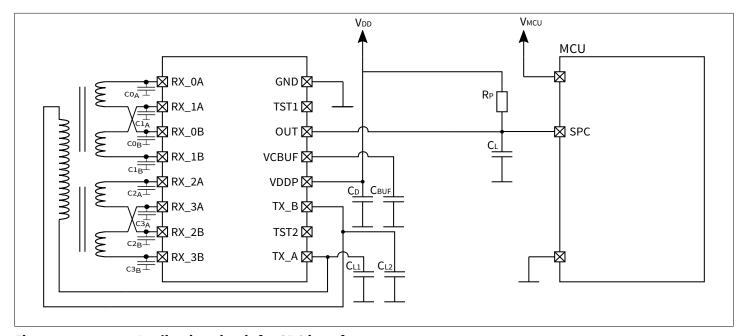
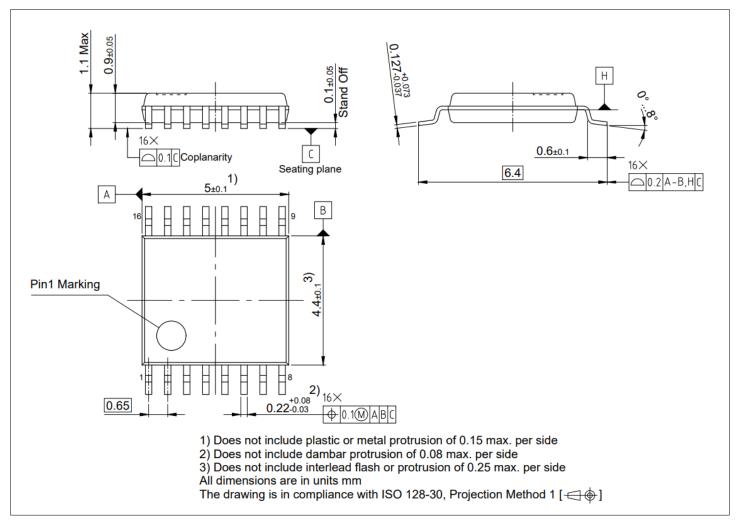



Figure 15 Application circuit for SPC interface

6 Package

27

Figure 16 TSSOP-16 package outline

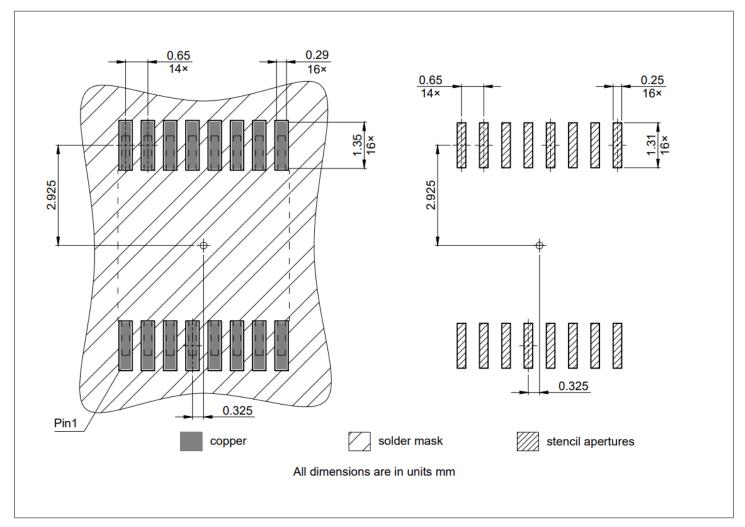


Figure 17 TSSOP-16 footprint

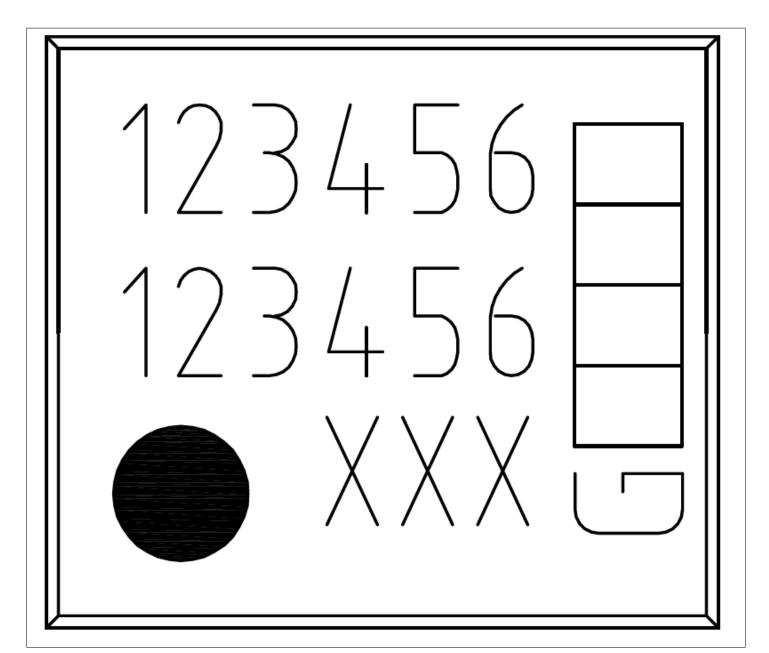


Figure 18 Package surface: Marking area

Position	Marking	Description
1 st Line	480xXX	Variant number and S for SENT, C for SPC
2 nd Line		
3 rd Line	xxx	Lot code
	Gxxxx	G: green, 4-digit date code: YYWW e.g. "2401": 1 st week in 2024

TLE4801 Datasheet

7 Revision history

7 Revision history

Revision	Date	Change description
1.0	2024-06-27	B11 product release
1.01	2024-12-02	B21 product release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-12-02 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-wwe1720529484515

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.