Integrated Thermal Conductivity Gas Sensor

Data Sheet

XENSIV™ TCI Integrated Thermal Conductivity Gas Sensor

Features

- Thermal Conductivity Sensing Principle
- · Insensitive to Sensor Poisoning
- Low Lifetime Offset Drift of maximal ±0.1vol%H₂
- Fully factory calibrated sensor, no need for further recalibration in the field
- Firmware compensates Temperature, Humidity and Pressure Effects*
- Hydrogen Measurement Range 0 to 16 vol%
- Fast Response Time < 100ms
- Measurement Accuracy up to ±0.12vol%H₂
- Ultra-low Power Consumption: typ. 112µA @1 meas./sec
- 1Mbit/s I2C Interface and 3.3V Supply Voltage
- 15 Years Lifetime

(*External humidity and pressure information required)

Potential Applications

- Automotive Fuel Cell Hydrogen Leakage Measurement
- Automotive Battery Monitoring Systems (Thermal Runaway Detection)
- General Industrial Hydrogen Leakage Measurement

Product Validation

- · Qualified for automotive applications according to AEC-Q100, grade 2
- Qualified for industrial applications according to the relevant tests of JEDEC JESD47L, JESD22, and J-STD-020

Description

The product is designed for measuring the thermal conductivity of gases, e.g. hydrogen in air. It comprises a resistive full sensor bridge and an ASIC which provides a calibrated and temperature compensated digital output signal.

Table 1 Ordering Information

Product Name	Marking	Ordering Code	Package
TCI	see chapter "Package Marking"	SP006004240	PG-DSOSP-14-84

Table of contents

Table of contents

	Table of contents	2
1	Absolute Maximum Rating	3
2	Operating Range	4
3	TC Sensor Characteristics	5
3.1	General TC Sensor Characteristics	5
3.2	Total Measurement Error	5
3.2.1	Total Measurement Error with Pressure Compensation	5
3.2.2	Total Measurement Error w/o Pressure Compensation	7
4	Temperature Sensor	9
5	General Purpose I/O Pins	10
6	Supply Currents	
7	Timing	12
8	Block Diagram	13
9	Pin Description	14
10	Firmware	15
10.1	Sensor Operating Concept	15
10.1.1	I2C Operation	15
10.1.2	Stand-by Control	15
10.1.3	Invalid I2C Commands	15
10.2	Trigger Concentration Measurement Command	15
10.3	Trigger Temperature Measurement Command	17
10.4	Configuration Command	18
10.5	Stand-By Command	19
10.6	Read ID Command	19
11	Temperature Mission Profile	21
12	Package Outline	22
13	Package Marking	23
14	User Instructions	24
14.1	Device Contamination	24
14.2	Device Communication	24
15	Revision History	26
	Disclaimer	27

2

1 Absolute Maximum Rating

1 Absolute Maximum Rating

Table 2 MAXIMUM RATINGS

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
DC Current	I _{DC}	-10		10	mA	Maximum Input/Output Current at any Pin
Transient Latch-up Current	I _{LU}	±100			mA	Maximum transient current at any pin according JEDEC78 class II level A
ESD robustness HBM	V_{HBM}	±2000			V	All pins tested according to AEC-Q100-002
ESD robustness CDM, Corner Pins	V _{CDM C}	±750			V	Corner pins tested according to AEC-Q100-011
ESD robustness CDM	V _{CDM}	±500			V	Non-corner pins tested according to AEC-Q100-011
Storage temperature	T _{STORAGE}	-50		150	°C	Maximal 1000 hours accumulated over lifetime between 125°C and 150°C.
						Maximum 1000 hours between -40°C and -50°C.
						Device not powered.
						Temperature cycling only allowed between -40°C and 125°C.
Maximum Pressure	p_{MAX}			600	kPa	Static
Max. Supply voltage	V_{DD_MAX}	-0.3		3.8	V	Voltage at VDDBAT pin
Input voltage at PPx	V _{IN_PPx}	-0.3		VDD+0.3	V	
Mechanical shock	а _{SHOCK}			6000	g	0.3 ms half sine pulses. 5 shocks in ±x, ±y, and ±z direction (30 shocks in total) Device unpowered.

2 Operating Range

2 Operating Range

Table 3 Operating Range

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Operating Ambient Temperature	T_{amb}	-40		105	°C	
Flash Programming Temperature Range	T _{FLASH}	-20		90	°C	Temperature range for flash erasing/programming.
Analysis Gas Pressure	p_{GAS}	50		130	kPa	Absolute Pressure
Supply Voltage Range	V_{DD}	3.3 - 5%	3.3	3.3 + 5%	V	Target supply voltage is 3.3V
External Capacitor at VDDREG	$C_{\text{VDD_REG}}$	7	10	13	nF	
Relative Humidity	RH	0		100	%	no condensation
Hydrogen Measurement Range	C _{H2}	0		4	vol%	Without external ignition protection
Extended Hydrogen Measurement Range	c_ext _{H2}	4		16	vol%	External ignition protection in place
Operating Hours	t _{op}			15	у	Valid for the specified temperature mission profile.

3 TC Sensor Characteristics

3 TC Sensor Characteristics

3.1 General TC Sensor Characteristics

Table 4 TC Sensor Characteristics

Parameter	Symbol	Symbol Values				Note or condition
		Min.	Тур.	Max.		
Response/ Recovery Time (t90, t10)	t _{90,10}			100	ms	Analysis-gas present at device gas-inlet at start of measurement.
Digital Resolution	Sens _{H2}		0.01		vol%H2/ LSB	
RMS Noise Level	$\sigma_{\! ext{H2}}$		0.015	0.02	vol%H2	

3.2 Total Measurement Error

Notes:

- 1. The following accuracy values are valid if the external humidity sensor used for compensation does not exceed a tolerance of $\pm 1.5\%$ RH and ± 1 °C. For the accuracy values with pressure compensation, the external pressure sensor must not exceed a tolerance of ± 2 kPa.
- **2.** %RD stands for percent of concentration reading.
- Note that for fulfilling the total measurement error specification at $c_{\rm H2} > 5\%$ the following output signal correction is required:

 $c_{\text{H2_corrected}} = 1.15 * c_{\text{H2_uncorrected}} - 0.75 \text{ vol}\%\text{H2}$

This correction must be done on system level, it is not performed in the TCI.

3.2.1 Total Measurement Error with Pressure Compensation

Table 5 Total Thermal Conductivity Measurement Error With Pressure Compensation

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Total Measurement Error	TME	-0.12		0.12	vol%H2	$0 \text{ vol.}\% \le c_{\text{H2}} \le 1 \text{ vol.}\%$ $80 \text{kPa} \le p_{\text{GAS}} \le 120 \text{kPa}$ $0\% \le \text{RH} \le 100\%$ $-5^{\circ}\text{C} \le T_{\text{amb}} \le 35\text{C}$

3 TC Sensor Characteristics

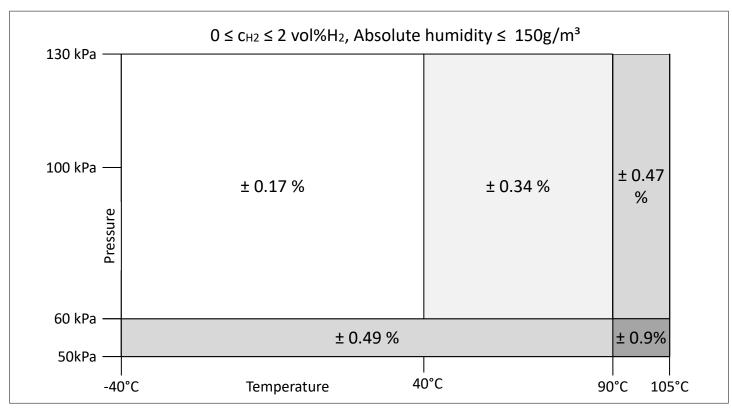


Figure 1 Total measurement error with p-compensation, low concentration range



Figure 2 Total measurement error with p-compensation, high concentration range

3 TC Sensor Characteristics

3.2.2 Total Measurement Error w/o Pressure Compensation

Table 6 Total Thermal Conductivity Measurement Error Without Pressure Compensation

Parameter	Symbol		Values			Note or condition
		Min.	Тур.	Max.		
Total Measurement Error w/o p- compensation	TME _{no_p_comp}	-0.2		0.2	vol%H2	$0 \text{ vol.}\% \le c_{\text{H2}} \le 1 \text{ vol.}\%$ $80\text{kPa} \le p_{\text{GAS}} \le 120\text{kPa}$ $0\% \le \text{RH} \le 100\%$ $-5^{\circ}\text{C} \le T_{\text{amb}} \le 35^{\circ}\text{C}$

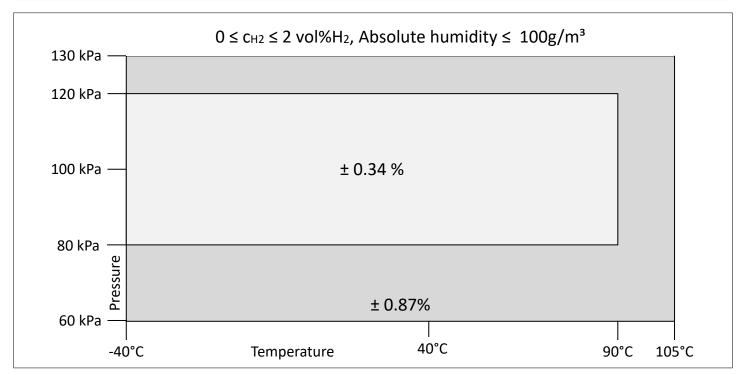


Figure 3 Total measurement error w/o p-compensation, low concentration range

3 TC Sensor Characteristics

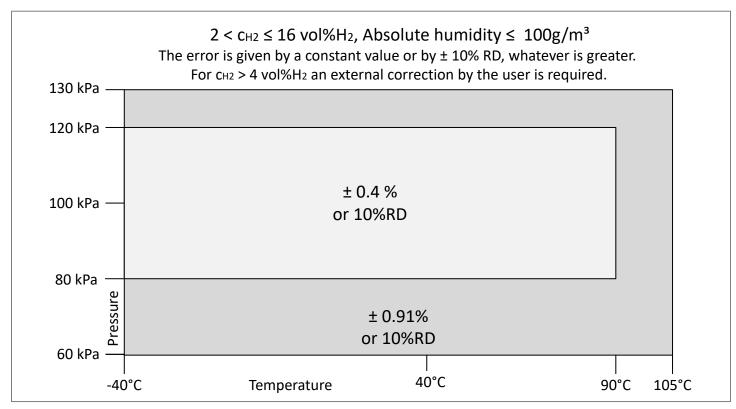


Figure 4 Total measurement error w/o p-compensation, high concentration range

4 Temperature Sensor

4 Temperature Sensor

Table 7 Temperature Sensor

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Temperature Measurement Range	T _{MEAS_RANGE}	-40		125	°C	
Temperature Sensor Physical Resolution	T_{RES}		0.2	1	°C	
Temperature Sensor Total Error	T_{ERR}	-5		5	°C	The measurement error is understood as total error, including random error (noise)
Temperature Sensor Total Error, RT	T _{ERR_RT}	-3		3	°C	$T_{\rm OP}$ = -20°C to +90°C

5 General Purpose I/O Pins

5 General Purpose I/O Pins

Table 8 General Purpose I/O Pins

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Output High Voltage	V _{OH}	V _{DD} -0.3			V	I _{load} = 1mA
Output Low Voltage	V _{OL}			0.3	V	I _{load} = -1mA
I2C Low Datarate	DR _{I2C_low}		100		kbit/s	
I2C Medium Datarate	DR _{I2C_med}		400		kbit/s	
I2C High Datarate	DR _{I2C_HIGH}			1000	kbit/s	maximal load capacitance at either pins is 80pF
PPx Pin Input Capacitance	C _{IN}			10	pF	
Input High Voltage	V _{IH}	0.8V _{DD}			V	
Input Low Voltage	V_{IL}			0.2V _{DD}	V	
PPx Leakage Current	I _{IN_PPx}	-2		2	μΑ	
Equivalent pull resistor	R _{PULL}	10		70	kΩ	V _{IN_PPx} = 1.5V, VDD=3.3V; Valid for pull-down at PP0, PP1, PP2, PP3. Valid for pull-up at PP2, PP3
Equivalent pull-up resistor at PP0/PP1	R _{PULL_up_pp0}	5.9	8.4	11	kΩ	$V_{\text{IN_PPx}}$ = 1.5V, VDD=3V; Valid for pull-up at PP0, PP1

6 Supply Currents

6 Supply Currents

Table 9 Supply Currents

Parameter	Symbol	Values			Unit	Note or condition
		Min.	Тур.	Max.		
Stand-by Current, RT	I _{STDBY_RT}		2.3	6	μΑ	T _{OP} = 25°C
Sensor Peak Current at RT	I _{Peak_RT}		5	7	mA	

7 Timing

7 **Timing**

Timing Table 10

Parameter	Symbol		Values		Unit	Note or condition
		Min.	Тур.	Max.		
Stand-By Resume Time	t _{RES_STBY}			500	μs	1)
Concentration Measurement Time	t _{conc}			30	ms	
Concentration Measurement Interval	t _{conc_int}	50			ms	Time between two consecutive concentration measurement commands.
Temperature Measurement Time	t _T			1	ms	
Read ID Time	t_{read_ID}			100	μs	
Configuration Command Time	t _{CFG_CMG}			100	μs	
Power on time	t _{INI}			20	ms	Time from $V_{\rm DD}$ exceeding $V_{\rm THR}$ until serial interface ready.
VDD rise time	t _{RISE_VDD}	-		1	S	Linear rise to V _{DD} = 2.2V

Time from change of level at wake-up pin until device ready for receiving a new I2C command.

¹⁾ 2) The power on time is only valid if at least one of the 2 GPIO pins PPO and PP1 is either not connected or connected to high level. If both GPIOs are actively connected to ground the power on time will prolong to approx. 3 seconds.

8 Block Diagram

8 Block Diagram

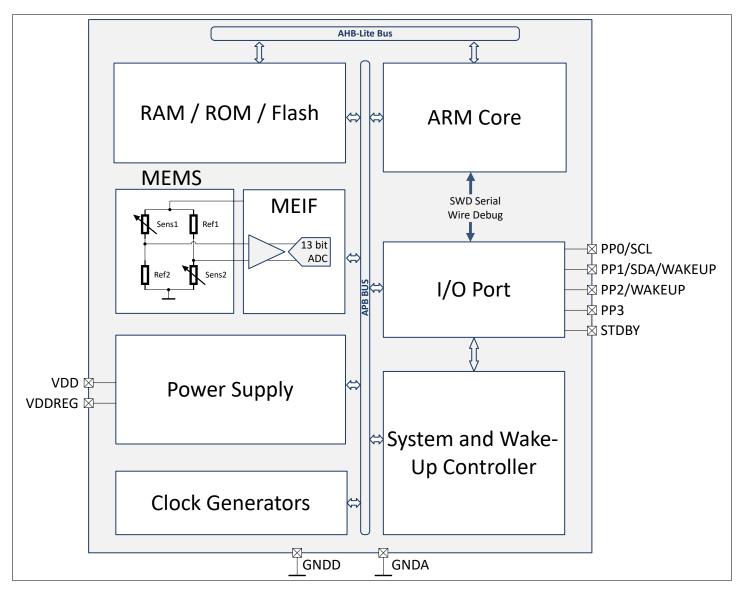


Figure 5 Block Diagram

9 Pin Description

9 Pin Description

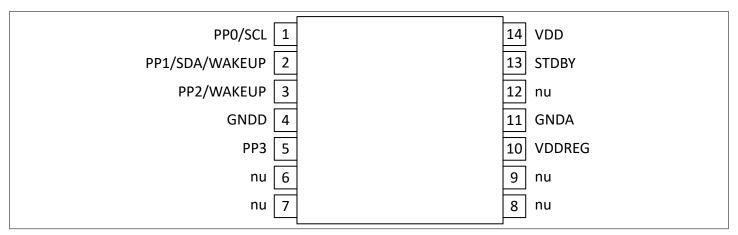


Figure 6 TCI Pinout

Table 11 Pin Description

Pin	Name	Description
1	PPO/SCL	General Purpose IO / I2C-SCL
2	PP1/SDA/WAKEUP	General Purpose IO / I2C-SDA / External Wakeup ¹⁾
3	PP2/SWDCLK/WAKEUP	General Purpose IO / Serial Wire Debug Interface Clock/ External Wakeup ¹⁾ / device busy
4	GNDD	Digital Ground
5	PP3 / SWDIO	General Purpose IO / Serial Wire Debug Interface Input Output
6	nu	not used, do not connect
7	nu	not used, do not connect
8	nu	not used, do not connect
9	nu	not used, do not connect
10	VDDREG	Internal power supply stabilization, connect via 10nF±10% capacitor to ground.
11	GNDA	Analog and Power amplifier Ground
12	nu	not used, do not connect
13	STDBY	Output pin for indicating Stand-by or "device busy" condition.
14	VDD	Power Supply

 $^{^{1)}}$ only one PP can be configured as external wake-up source at a time.

10 Firmware

10 Firmware

10.1 Sensor Operating Concept

10.1.1 I2C Operation

I2C operating concept

- The device is implemented as I2C slave. The 7 bit slave address is 0x36.
- The device also acknowledges the address byte with the reserved I2C address 0x2E. However, full I2C commands send to this address are not acknowledged and not executed.
- The master triggers a measurement by I2C command, then waits for a defined processing time and finally reads the measurement result from the slave.
- The device provides an output pin that indicates that the processing is ongoing.
- The I2C commands as well as the I2C reply are secured by a 16 bit CRC value. The CRC is calculated according to CRC-16/CCITT-FALSE standard with initialization value = 0xFFFF.
- Commands are not executed in case of an erroneous CRC value.
- In the I2C protocol all values (including the CRC) are transmitted with highest byte first.
- The specified processing times in section "Timing" do not include the I2C command execution times.

10.1.2 Stand-by Control

- The device may be configured such that it goes automatically into stand-by after the measurement result has been read. The automatic stand-by functionality is disabled by default.
- Alternatively the device may be put into stand-by via a dedicated I2C command.
- The device provides an output pin that indicates the device is in stand-by.
- If the device is in stand-by and before sending the actual measurement triggering command, the master needs to wake-up the slave.
- Wake-up can be either accomplished via a separate pin or by pulling SDA low for t_{pull} . The time between the wake-up and the following I2C command must be greater than the stand-by resume time $t_{\text{RES_STBY}}$.
- The wake-up method (via dedicated pin or via SDA line) is configurable by the user.

Note: If the device is not periodically resumed from stand-by by the host-controller, it will resume automatically after typically 15.9 min. (This time has a tolerance, the minimum is 12.2 min, the maximum is 22.7 min.) In this situation the pin configured for stand-by indication (STDBY, PP2, or PP3) can be used to wake-up the host-controller.

10.1.3 Invalid I2C Commands

- If the device receives a command from the master during Stand-by, the command is not executed. In this case the status 0x20 is transmitted, followed by the CRC bytes 0xC5 and 0x92.
- If the device receives a command with invalid CRC it will reply with status 0x40, followed by the CRC bytes 0xA9 and 0x34
- In case of an invalid command the status 0x80 is transmitted, followed by the CRC bytes 0x70 and 0x78

10.2 Trigger Concentration Measurement Command

This command triggers a concentration measurement. For humidity compensation an external humidity and external temperature value may be provided via this command. This temperature is the temperature from the external humidity sensor and is only used for calculating the absolute humidity. For the actual temperature compensation an internal temperature sensor is used. Therefore, if the sensor is configured to perform only the temperature compensation this value is ignored. Further an external pressure value may be provided if pressure compensation is required. The command contains following fields:

10 Firmware

Address	dress 0xA8		Config	RH	Т	р	CRCH	CRCL		
Definition o	of the field	ds:								
Address		Bit <7	1>=7 bit slave a	ıddress						
		Bit <0> =	= 0							
0xA8		Comma	nd identifier							
Config		Bit <76	6>: RH resolution	on enhanceme	nt. 1LSB=0.25%	%, see note 1.				
O										
		Bit <5> =1: Field contamination check enabled, see note 2 Bit <5> =0: Field contamination check disabled								
		Bit <4> =1: EoL contamination check enabled, see note 2								
		Bit <4> =0: EoL contamination check disabled								
		Bit <3> =1: MEMS voltage regulator bypassed, see note 3								
		Bit <3> =0: MEMS voltage regulator not bypassed (recommended)								
		Bit <2> =1: R32 calibration selected								
		Bit <2> =0 : H2 calibration selected								
		Bit <10> =11 _b : The raw value is provided, no compensation								
		Bit <10> =10 _b : Only temperature and humidity compensation								
		Bit <10> =01 _b : Only temperature compensation								
		Bit <10> =00 _b : The fully compensated concentration is provided								
RH		RH (rela	tive humidity):	1%/LSB, range	e: 0 to 100, see	note 3.				
T		T (temperature at RH sensor): 1°C / LSB, range: -40 to 105 (signed), see note 3.								
		This value is used to calculate the absolute humidity. If this value is set to 0x7F the value is not used, but the on-chip temperature value instead.								
p		Ambient pressure used for compensation. 1kPa / LSB, range: 50 to 130. If no pressure value is available p=100 is recommended.								
		See also note 3.								
CRCH, CRCI	L	16 bit CI	RC value calcul	ated from 5 by	tes, 0xA8 to p					
Note 1: This	hi+ fiold	maybay	sod to increase	the recolution	of the innut n	aramatar DU b	vy two bits to a	shiovo a more		

Note 1: This bit field may be used to increase the resolution of the input parameter RH by two bits to achieve a more accurate humidity compensation. If the external humidity sensor does not provide this accuracy the bitfield should be set to zero. Config<7> represents 0.5%RH and Config<6> 0.25%RH.

Note 2: The End of Line (EoL) contamination check is more sensitiv than the field contamination check and should not be used in the field. If the EoL contamination check is enabled then Config<5> will be ignored, i.e. for Config<4>=Config<5> = 1 only the EoL check will be executed.

Note 3: Depending on the supply voltage, bypassing the MEMS regulator can increase the concentration measurement sensitivity. However, the concentration value will no longer be correctly calibrated and it is the users responsibility to do the calibration based on the raw value. Furthermore, bypassing the MEMS regulator requires a well regulated supply voltage.

Note 4: If the parameter is out of range the concentration measurement command is still executed and the corresponding status bit is set in the response.

This read command is used to fetch the reply from the device after a processing time of $t_{conc. meas}$:

Address	Status	Conc_H	Conc_L	CRCH	CRCL

10 Firmware

Address	Bit <71>=7 bit slave address					
	Bit <0>=1					
Status	Status =0: measurement valid.					
	Bit<76> unused, always 0					
	Bit<5> previous command not executed due to stand-by					
	Bit<4> VDD out of range, concentration not in spec.					
	Bit<3> indicated a MEMS error or contamination check fail					
	Bit<2> indicates an "input parameter out of range" condition.					
	Bit<1> indicates an ADC overflow error					
	Bit<0> indicates an ADC underflow error					
Conc_H, Conc_L (see note 1)	Depending on "Config" a fully compensated, a partially compensated, or the ADC raw value is provided.					
CRCH, CRCL	16 bit CRC value calculated from 3 bytes, Status to Conc_L					

Note 1: The fully and partially compensated concentration values are 16 bit signed integer values with unit 0.01%H2 / LSB if H2 calibration is selected. If R32 calibration is selected the resolution is 0.01%R32/LSB. The sensitivity of the uncompensated concentration raw value is individual for each device.

10.3 Trigger Temperature Measurement Command

This command triggers a temperature measurement. The command contains following fields:

00									
Address		0xA9		CRCH		CRCL			
Definition of the	fields:								
Address	Bit <71>=7 bit slave address								
	Bit <0>	= 0							
0xA9	Comma	and identifier							
CRCH, CRCL	16 bit C	RC value calculate	ed from 1 by	te, 0xA9					
This read comma	and is used t	o fetch the reply fr us	om the devi	ce after a pr	ocessing time of <i>t</i>	T_meas:			
Definition of the			'		CICII	CRCL			
Address		Bit <71>=7 bit slave address							
		Bit <0>=1							
Status		Status =0: measurement valid.							
		Bit<76> unused, always 0							
		Bit<5> previous command not executed due to stand-by							
		Bit<42> always 0							
		Bit<1> indicates an ADC overflow error							
		Bit<0> indicates an ADC underflow error							

Signed 8 bit on-chip temperature 1°C / LSB

16 bit CRC value calculated from 2 bytes, Status and T

CRCH, CRCL

10 Firmware

10.4 Configuration Command

This command has several purposes:

- 1. disable / enable the Stand-By after reading the measurement result.
- **2.** select the wake-up pin.
- 3. configure the "Busy" pin
- **4.** configure the "Stand-by" pin

Address	0xC4	Cfg_1	Cfg_2		Cfg_3	CRCH	CRCL	
Definition of	f the fields:							
Address				Bit <7	1>=7 bit slav	e address		
					= 0			
0xC4				Comma	and identifier			
Cfg_1		Bit <7	4> don't care	e, should be 0				
				Bit <3>	=1: Spike filte	er enabled, see n	ote 1	
				Bit <3>	=0: Spike filte	er disabled		
				Bit <2>	=1: PP2 wake	e-up on high leve	.l	
				Bit <2>	=0: PP2 wake	e-up on low level		
				Bit <1>	=1: PP2 is use	ed as wake-up pi	n	
				Bit <1>	=0: PP1(SDA)	is used as wake	-up pin, see note 2	
					=1: Automati and 0xA8 or 0	•	reading result from	
				oled				
Cfg_2				Cfg_2=0	D: no "Busy" s	signal, see notes	3, 4, 5	
				Cfg_2=1	1: "Busy" sigr	nal on PP2		
				Cfg_2=2	2: "Busy" sigr	nal on PP3		
				Cfg_2=3: "Busy" signal on STDBY				
Cfg_3				Cfg_3=0	D: no "Stand-	by" signal, see n	otes 3, 4, 5	
U _				Cfg_3=1	1: "Stand-by"	signal on PP2		
				Cfg_3=2	2: "Stand-by"	signal on PP3		
				Cfg_3=3: "Stand-by" signal on STDBY				
CRCH, CRCL				16 bit CRC value calculated from 4 bytes, 0xC4 to Cfg_3				

Notes:

- 1. The spike filter is disabled by default after power on. It can be enabled if spikes on the I2C lines are expected. If the filter is enabled the I2C communication speed is limited to 800 kbit/s.
- **2.** For PP1 the wake-up is always triggered on low level.
- **3.** Busy and Stand-by signals are active high
- **4.** It is allowed to put Busy and Stand-by on the same pin
- **5.** The default setting after power on is PP2 = "Busy", STDBY= "Stand-by"

This read command is used to fetch the reply from the device after a processing time of $t_{STWU\ cfg}$:

Address	Status	CRCL

10 Firmware

Definition of the fields	Defin	ition	of the	fields:
--------------------------	-------	-------	--------	---------

Address	Bit <71>=7 bit slave address
	Bit <0>=1
Status	Status =0: measurement valid.
	Bit<76> unused, always 0
	Bit<5> previous command not executed due to stand-by
	Bit<40>: always 0
CRCH, CRCL	16 bit CRC value calculated from1 byte, Status

10.5 **Stand-By Command**

This command puts the sensor into Stand-by:

Address	0xC3	CRCH	CRCL			
Definition of the fields:						
Address		Bit <71>=7 bit slave address				
		Bit <0> = 0				
0xC3		Command identifier				
CRCH, CRCL		16 bit CRC value calculated from byte 0xC3				

Note 1: This command must not be followed by a read command if the SDA line is configured as wake-up line. Otherwise the device would immediately resume from Stand-by.

Note 2: The device will resume from Stand-by if any I2C read or write command is sent including the command 0xC3 itself. The command used for resuming the device will not be executed and not acknowledged.

10.6 **Read ID Command**

This command allows to read the following parameter from the sensor:

- Unique sensor ID.
- Product code
- FW revision number
- Manufacturer identifier

The command contains following fields:

Address	0xC2	CRCH CRCL			
Definition of the fields:					
Definition of the fields.		I			
Address		Bit <71>=7 bit slave address			
		Bit <0> = 0			
0xC2		Command identifier			
CRCH, CRCL		16 bit CRC value calculated from byte 0xC2			

10 Firmware

This read command is used to fetch the reply from the device after a processing time of t_{read_ID} :

				, ,				U	100	iu_iD		
Address	Status	ID3	ID2	ID1	ID0	PC_H	PC_L	FW_H	FW_L	MANU	CRCH	CRCL
Definition	n of the f	ields:						1				
Address						Bit <71>=7 bit slave address Bit <0>=1						
Status					Bit [.]	Status =0: measurement valid. Bit<76> unused, always 0 Bit<5> previous command not executed due to stand-by Bit<40>: unused, always 0					tand-by	
ID3, ID2, ID1, ID0					32	32 bit Sensor ID						
PC_H, PC_L						16	16 bit Product Code					
FW_H, FW_L					16	16 bit Firmware revision number						
MANU					8 b	8 bit Manufacturer Code						
CRCH, CRCL							16 bit CRC value calculated from 10 bytes, Status to MANU					to

11 Temperature Mission Profile

11 Temperature Mission Profile

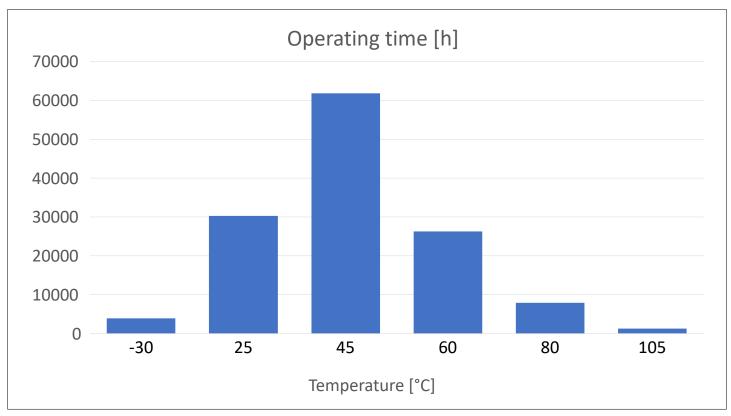


Figure 7 Temperature Mission Profile

Note: This is a typical temperature mission profile for which the lifetime of 15y is valid

21

12 Package Outline

12 Package Outline

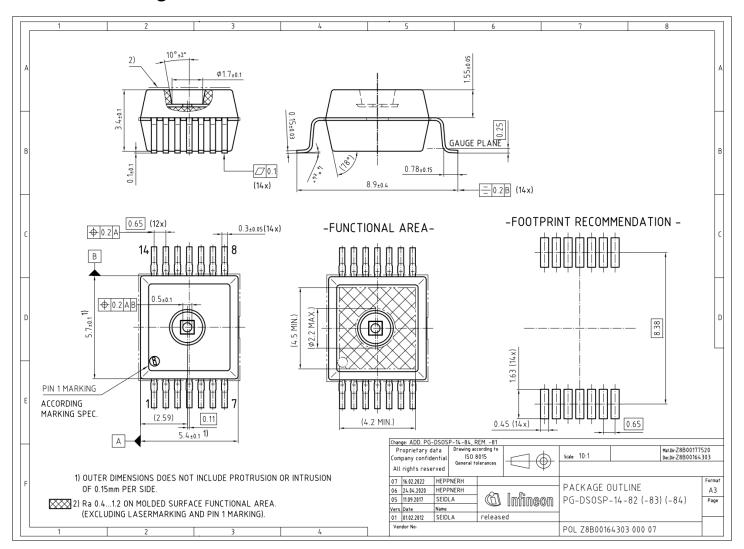


Figure 8 Package Outline

infineon

13 Package Marking

Package Marking 13

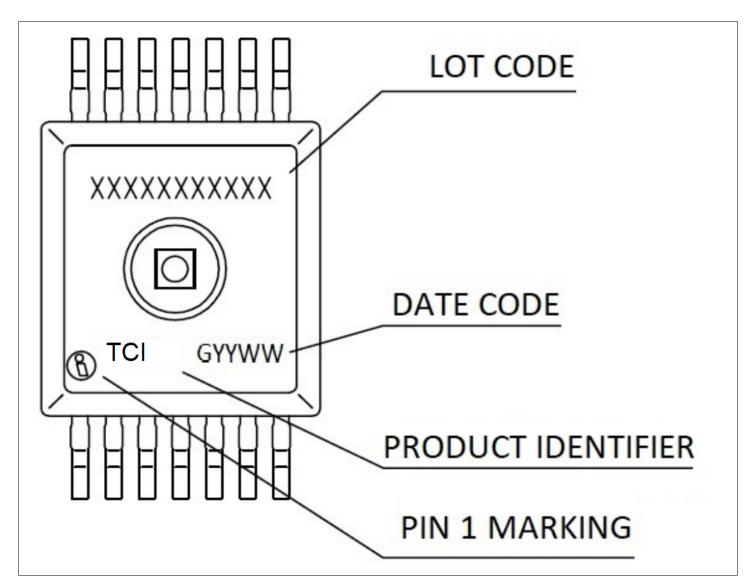


Figure 9 **Package Marking**

14 User Instructions

14 User Instructions

14.1 Device Contamination

The very fine gas-sensitive structures are nested inside the component and are therefore protected from direct contact. However, contaminants in the form of small particles can still reach these structures and alter the sensor properties. Therefore, depending on the environmental conditions, the sensor must be installed in a way that protects it from such particles.

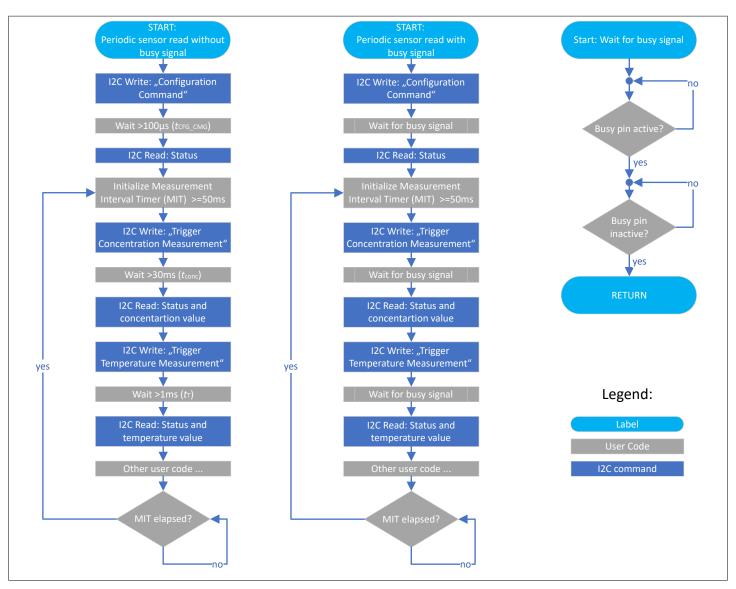
See the app note "Appnote_TCIx_Assembly&Testing" for more information.

14.2 Device Communication

There are certain restrictions when communicating with the TCI:

- During the busy phase the I2C interface is disabled. Commands will be ignored and will not be acknowledged.
- If the busy signal is not monitored then the minimum command execution time must be waited between write and read command.
- Commands cannot be executed in parallel. The sequence write wait read must be completed before the next command is sent.
- The minimal concentration measurement interval (t_{conc} int) must be considered.

Figure 10 shows examples how to communicate with the TCI. The flow on the left side is the most straight forward method where simply the specified command execution times are considered between each write and read command.


The flow in the middle waits for the busy signal between each write and read command rather than a fixed waiting time.

The flow on the right is a proposed flow to wait for the busy signal. However this flow if necessary must be modified depending on the speed of the host controller. For instance if the host controller is slow and the command execution time is short (< 100µs) there is some risk that the code is trapped in the "Busy pin active" loop.

In this case the better solution would be to implement the fixed wait time like in the flow on the left side.

14 User Instructions

25

Figure 10 User Instruction Flow Diagram

15 Revision History

15 Revision History

Table 12 Revision History

Document version	Date of release	Description of changes				
1.0	2025-03-25	Initial version				
1.1	2025-05-06	dded Chapter "Block Diagram" hanged chapter "User Instructions"				
1.2	2025-08-13	 Removed error bits Status<6> and Status<7> from the I2C read commands because there are dedicated I2C messages for these errors. Updated the Configuration Command with the spike filter feature. 				
1.2.1	2025-09-17	Changed the representation of the Total Measurement Error				

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-09-17 Published by Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFXjobid__20250917052322412_LastLe af2

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.