

PD-91699C

Repetitive Avalanche and dv/dt Rated Power MOSFET Surface Mount (LCC-18) 100V, 3.5A, N-channel

Features

- Surface mount
- Small footprint
- Alternative to TO-39 Package
- Hermetically sealed
- Dynamic dv/dt rating
- Avalanche energy rating
- Simple drive requirements
- Light weight
- ESD rating: Class 1A per MIL-STD-750, Method 1020

Potential Applications

- DC-DC converter
- Motor drives

Product Summary

BV_{DSS}: 100V

• I_D: 3.5A

• $\mathbf{R}_{DS(on),max}$: 0.6Ω

• **Q**_{G, max}: 8.1nC

REF: MIL-PRF-19500/556

Product Validation

Qualified according to MIL-PRF-19500 for space applications

Description

The leadless chip carrier (LCC) package represents the logical next step in the continual evolution of surface mount technology. Desinged to be a close replacement for the TO-39 package, the LCC will give designers the extra flexibility they need to increase circuit board density. IR HiRel has engineered the LCC package to meet the specific needs of the power market by increasing the size of the bottom source pad, thereby enhancing the thermal and electrical performance. The lid of the package is grounded to the source to reduce RF interference.

Ordering Information

Table 1 Ordering options

Part number	Package	Screening Level
IRFE110	LCC-18	сотѕ
JANTX2N6782U	LCC-18	JANTX
JANTXV2N6782U	LCC-18	JANTXV

Power MOSFET Surface Mount (LCC-18)

Table of contents

Table of contents

Feat	tures	1
Pote	ential Applications	1
Proc	duct Validationduct	1
	cription	
	le of contents	
1	Absolute Maximum Ratings	3
2	Device Characteristics	4
2.1		
2.2	Source-Drain Diode Ratings and Characteristics	5
2.3	Thermal Characteristics	5
3	Electrical Characteristics Curves	6
4	Test Circuits	9
5	Package Outline	10
Revi	ision history	11

Absolute Maximum Ratings

Absolute Maximum Ratings 1

Table 2 **Absolute Maximum Ratings**

Symbol	Parameter	Value	Unit
I _{D1} @ V _{GS} = 10V, T _C = 25°C	Continuous Drain Current	3.5	А
I_{D2} @ $V_{GS} = 10V$, $T_{C} = 100$ °C	Continuous Drain Current	2.25	А
I _{DM} @ T _C = 25°C	Pulsed Drain Current ¹	14	А
P _D @ T _C = 25°C	Maximum Power Dissipation	15	W
	Linear Derating Factor	0.12	W/°C
V_{GS}	Gate-to-Source Voltage	± 20	V
E _{AS}	Single Pulse Avalanche Energy ²	7.0	mJ
I _{AR}	Avalanche Current ¹	3.5	А
E _{AR} Repetitive Avalanche Energy ¹		1.5	mJ
dv/dt	Peak Diode Reverse Recovery ³	9.0	V/ns
T _J T _{STG}	Operating Junction and Storage Temperature Range	-55 to +150	°C
	Lead Temperature	300 (for 5s)	
	Weight	0.42 (Typical)	g

¹ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ V_{DD} = 25V, starting T_J = 25°C, L = 1.15mH, Peak I_L = 3.5A

 $^{^3}$ I_{SD} \leq 3.5A, di/dt \leq 75A/ $\mu s,\,V_{DD}$ \leq 100 V, T_J \leq 150°C

Device Characteristics

2 Device Characteristics

2.1 Electrical Characteristics

Table 3 Static and Dynamic Electrical Characteristics @ T_j = 25°C (Unless Otherwise Specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions		
BV _{DSS}	Drain-to-Source Breakdown Voltage	100	_	_	V	$V_{GS} = 0V$, $I_D = 1.0$ mA		
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient	_	0.12	_	V/°C	Reference to 25°C, I _D = 1.0mA		
D	Static Drain-to-Source On-State	_	1	0.60		$V_{GS} = 10 \text{ V}, I_{D2} = 2.25 \text{A}^{-1}$		
$R_{DS(on)}$	Resistance	_	-	0.61	Ω	$V_{GS} = 10V$, $I_{D2} = 3.5A^{1}$		
$V_{GS(th)}$	Gate Threshold Voltage	2.0	_	4.0	V	$V_{DS} = V_{GS}$, $I_{D} = 250 \mu A$		
Gfs	Forward Transconductance	0.8	_	_	S	$V_{DS} = 15V$, $I_{D2} = 2.25A^{1}$		
	Zama Cata Valta da Busin Commant	_	_	25	^	$V_{DS} = 80V, V_{GS} = 0V$		
I _{DSS}	Zero Gate Voltage Drain Current	_	_	250	μΑ	$V_{DS} = 80V, V_{GS} = 0V, T_{J} = 125^{\circ}C$		
I _{GSS}	Gate-to-Source Leakage Forward	_	_	100	^	V _{GS} = 20V		
	Gate-to-Source Leakage Reverse	_	_	-100	nA	V _{GS} = -20V		
Q _G	Total Gate Charge		_	8.1		I _{D1} = 3.5A		
Q _{GS}	Gate-to-Source Charge		_	1.7	nC	$V_{DS} = 50V$		
Q_{GD}	Gate-to-Drain ('Miller') Charge		_	4.5		V _{GS} = 10V		
t _{d(on)}	Turn-On Delay Time	_	_	15		I _{D1} = 3.5A **		
t _r	Rise Time	_	_	25		$V_{DD} = 50V$		
t _{d(off)}	Turn-Off Delay Time	_	_	25	ns	$R_G = 7.5\Omega$		
t _f	Fall Time	_	_	20		$V_{GS} = 10V$		
L _s +L _D	Total Inductance	_	6.1	_	nH	Measured from the center of drain pad to center of source pad		
C _{iss}	Input Capacitance	_	190			$V_{GS} = 0V$		
C _{oss}	Output Capacitance	_	86	_	рF	$V_{DS} = 25V$		
C _{rss}	Reverse Transfer Capacitance	_	13	_		f = 1.0 MHz		

^{**} Switching speed maximum limits are based on manufacturing test equipment and capability.

 $^{^{1}}$ Pulse width \leq 300 $\mu s;$ Duty Cycle \leq 2%

Power MOSFET Surface Mount (LCC-18)

Device Characteristics

Source-Drain Diode Ratings and Characteristics 2.2

Source-Drain Diode Characteristics Table 4

Symbol	Parameter	Min.	Тур.	Max.	Unit	Test Conditions	
Is	Continuous Source Current (Body Diode)	_	_	3.5	Α		
I _{SM}	Pulsed Source Current (Body Diode) ¹	_	_	14	Α		
V_{SD}	Diode Forward Voltage	_	_	1.5	V	$T_J = 25$ °C, $I_S = 3.5$ A, $V_{GS} = 0$ V ²	
t _{rr}	Reverse Recovery Time	_	_	180	ns	$T_J = 25$ °C, $I_F = 3.5$ A, $V_{DD} \le 50$ V	
Q _{rr}	Reverse Recovery Charge		1.3	_	μC	di/dt = 100A/μs	
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated b			ible (turn-on is dominated by L _S +L _D)		

Thermal Characteristics 2.3

Table 5 **Thermal Resistance**

Symbol	Parameter	Min.	Тур.	Max.	Unit
$R_{\theta JC}$	Junction-to-Case	_	_	8.33	°C /\\
$R_{\theta J\text{-PCB}}$	Junction-to-PC Board (Soldered to a copper clad PC board)	_	_	27	°C/W

 $^{^{\}rm 1}$ Repetitive Rating; Pulse width limited by maximum junction temperature.

 $^{^2}$ Pulse width \leq 300 μ s; Duty Cycle \leq 2%

Electrical Characteristics Curves

3 Electrical Characteristics Curves

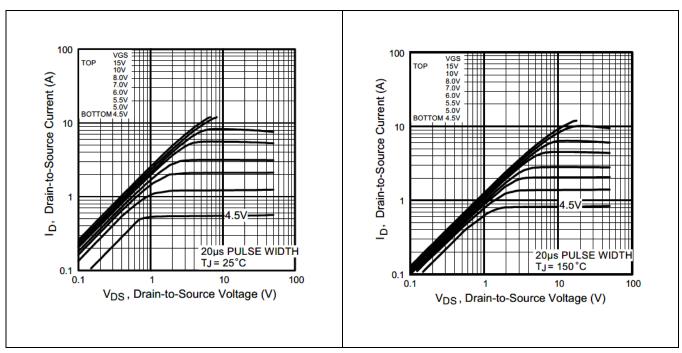


Figure 1 Typical Output Characteristics

Figure 2 Typical Output Characteristics

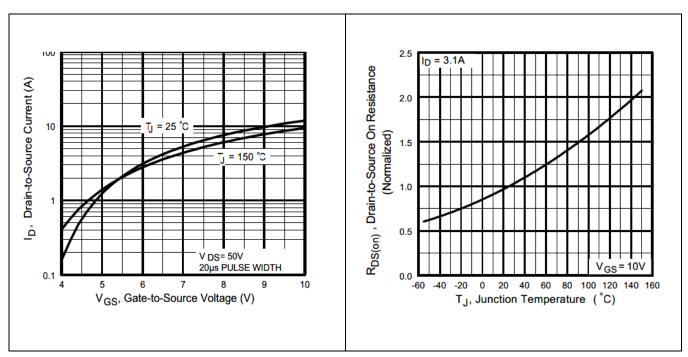


Figure 3 Typical Transfer Characteristics

Figure 4 Normalized On-Resistance Vs.
Temperature

IOR HiRe

Electrical Characteristics Curves

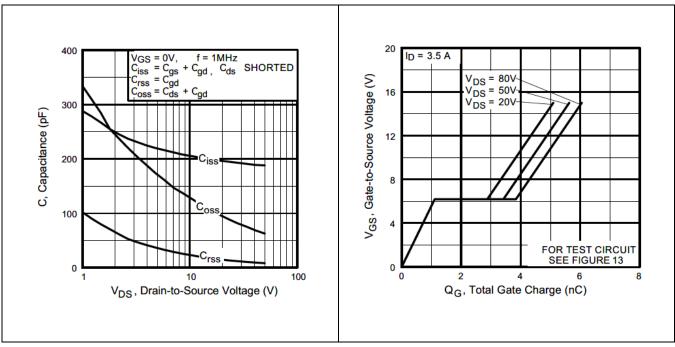


Figure 5 Typical Capacitance Vs.

Drain-to-Source Voltage

Figure 6 Typical Gate Charge Vs.
Gate-to-Source Voltage

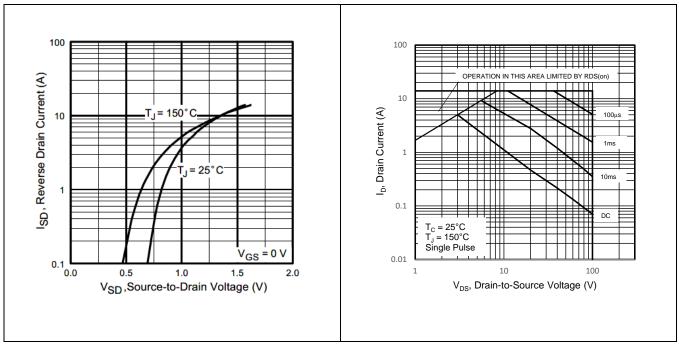


Figure 7 Typical Source-Drain Diode Forward Voltage

Figure 8 Maximum Safe Operating Area

IR HiRe

Electrical Characteristics Curves

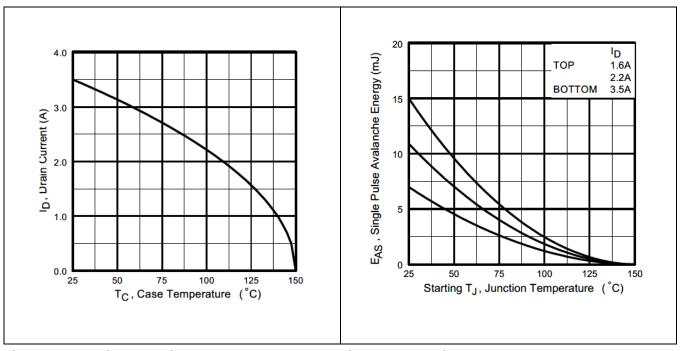


Figure 9 Maximum Drain Current Vs.

Case Temperature

Figure 10 Maximum Avalanche Energy Vs.
Junction Temperature

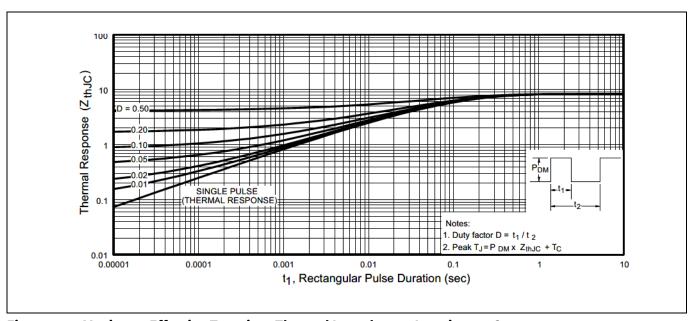


Figure 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case

Test Circuits

4 Test Circuits

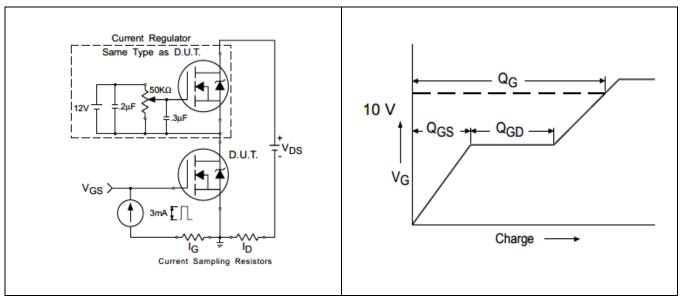


Figure 12 Gate Charge Test Circuit

Figure 13 Gate Charge Waveform

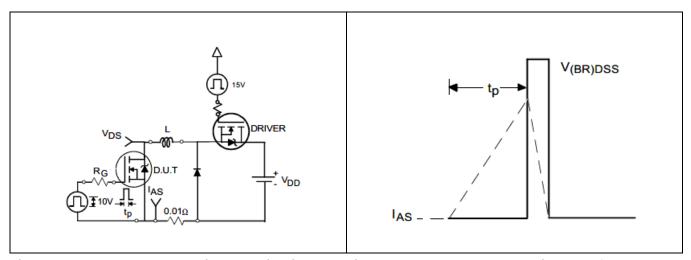


Figure 14 Unclamped Inductive Test Circuit

Figure 15 Unclamped Inductive Waveform

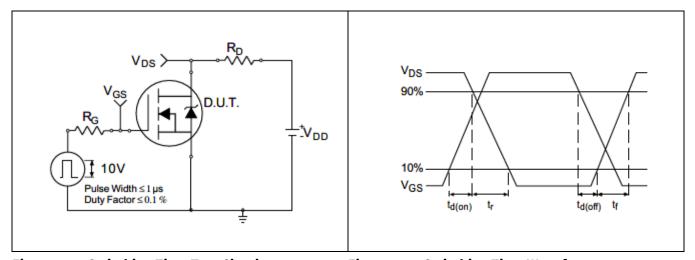
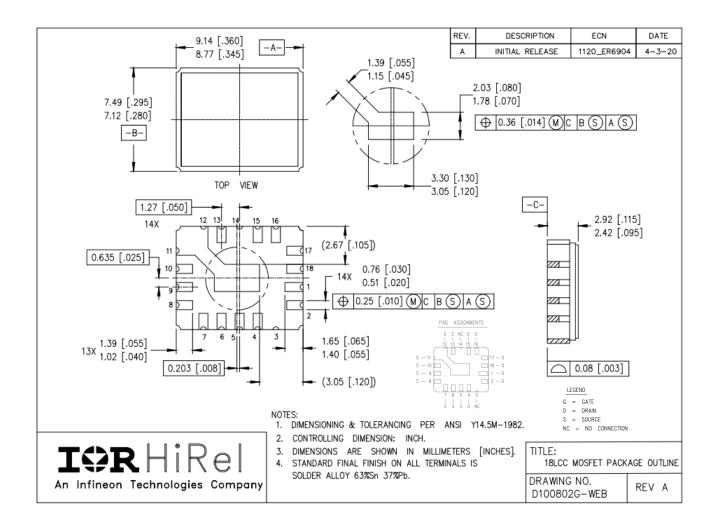


Figure 16 Switching Time Test Circuit


Figure 17 Switching Time Waveforms

Package Outline

5 Package Outline

Note: For the most updated package outline, please see the website: LCC-18

Power MOSFET Surface Mount (LCC-18)

Revision history

Revision history

Document version	Date of release	Description of changes
	01/25/2001	Datasheet (PD-91699B)
Rev C	12/08/2023	Updated based on ECN-1120_09755

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-12-08

Published by

International Rectifier HiRel Products, Inc.

An Infineon Technologies company El Segundo, California 90245 USA

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest International Rectifier HiRel Products, Inc., an Infineon Technologies company, office.

International Rectifier HiRel Components may only be used in life-support devices or systems with the expressed written approval of International Rectifier HiRel Products, Inc., an Infineon Technologies company, if failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety and effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.