

6ED003L02-F2 and 6ED003L06-F2 family

200 V and 600 V three-phase gate driver with Over Current Protection (OCP), Enable (EN) and Fault

Features

- Infineon thin-film-SOI-technology
- Maximum blocking voltage +600 V
- Output source/sink current +0.165 A/-0.375 A
- Insensitivity of the bridge output to negative transient voltages up to -50 V given by SOItechnology
- Separate control circuits for all six drivers
- Detection of over current and under voltage supply
- Externally programmable delay for fault clear after over current detection
- 'Shut down' of all switches during error conditions
- Signal interlocking of every phase to prevent crossconduction

Product summary

V_{OFFSET} (6ED003L06-F2) = 620 V max. V_{OFFSET} (6ED003L02-F2) = 200 V max.

= +0.165 A / -0.375 A $I_{O^{+/-}}$ (typ.) $t_{\rm on}/t_{\rm off}$ = 530ns / 490 ns t_f/t_r (typ. C_L=1 nF) = 60 ns / 26 ns

Package

DSO-28

TSSOP-28

Potential applications

- Home appliance, refrigeration compressors, air-conditioning
- Fans, pumps
- Motor drives, general purpose inverters
- Power tools, light electric vehicles

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Description

The devices are full bridge drivers to control power devices like MOSFET or IGBTs in 3-phase systems with a maximum blocking voltage of +600 V. Based on the used SOI-technology there is an excellent ruggedness on transient voltages. No parasitic thyristor structures are present in the device. Hence, no parasitic latch-up may occur at all temperatures and voltage conditions.

The six independent drivers are controlled at the low-side using CMOS resp. LSTTL compatible signals, down to 3.3 V logic. The device includes an under-voltage detection unit with hysteresis characteristic and an overcurrent detection. The over-current level is adjusted by choosing the resistor value and the threshold level at pin ITRIP. Both error conditions (under-voltage and over-current) lead to a definite shut down of all six switches. An error signal is provided at the FAULT open drain output pin. The blocking time after over-current can be adjusted with an RC-network at pin RCIN. The input RCIN owns an internal current source of 2.8 μA. Therefore, the resistor R_{RCIN} is optional. The typical output current can be given with 165 mA for pull-up and 375 mA for pull down. Because of system safety reasons a 310 ns interlocking time has been realised. The function of input EN can optionally be extended with an over-temperature detection, using an external NTC-resistor (see Figure 1).

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not recommended for new designs. For new designs we recommend 6EDL04I065NT **Ordering information**

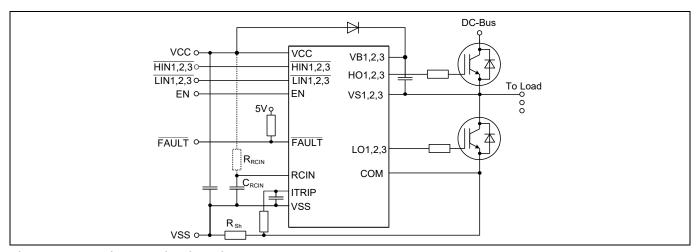


Figure 1 Typical application diagram

Ordering information

Table 1 Members of 6ED003-F2 family – 2nd generation

	High side control input HIN1,2,3 and LIN1,2,3		Bootstrap diode	Package	
6ED003L06-F2 / 6ED003L02-F2	Negative logic	11.7 V / 9.8 V	No	DSO28 / TSSOP28	

Table of contents

Feat	tures	1
Prod	duct summaryduct summary	1
Pack	kage	1
Pote	ential applications	
	duct validation	
	cription	
	· ering information	
	le of contents	
1	Block diagram	
2	Lead definitions	
3	Functional description	
3.1	Low Side and High Side Control Pins (Pin 2, 3, 4, 5, 6, 7)	
3.2	EN (Gate Driver Enable, Pin 10)	
3.3	/FAULT (Fault Feedback, Pin 8)	6
3.4	ITRIP and RCIN (Over-Current Detection Function, Pin 9, 11)	6
3.5	VCC, VSS and COM (Low Side Supply, Pin 1, 12, 13)	6
3.6	VB1, 2, 3 and VS1, 2, 3 (High Side Supplies, Pin 18, 20, 22, 24, 26, 28)	6
3.7	LO1,2,3 and HO1,2,3 (Low and High Side Outputs, Pin 14, 15, 16, 19, 23, 27)	7
4	Electrical parameters	8
4.1	Absolute maximum ratings	
4.2	Required operation conditions	
4.3	Operating Range	9

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not recommended for new designs. For new designs we recommend 6EDL04l065NT $\,$

Table of contents

/ision history	
Related products	10
-	
PG-TSSOP-28 (according to PCN 2018-165-A)	16
PG-TSSOP-28	16
PG-DSO-28	
Package information	15
Timing diagrams	13
, ,	
Static logic function table	10
	PG-DSO-28

1 Block diagram

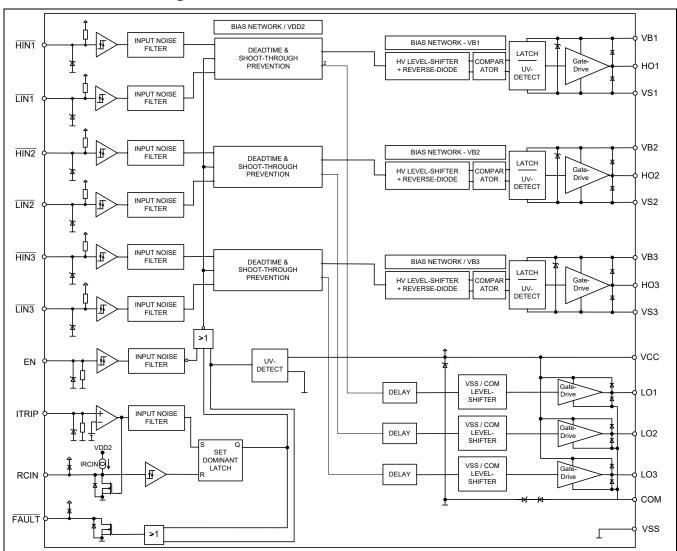


Figure 2 Functional block diagram for 6ED003L06-F2 / 6ED003L02-F2

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

2 Lead definitions

Table 2 6ED003-F2 family lead definitions

Pin no.	Name	Function
1	VCC	Low side power supply
2,3,4	/HIN1,2,3	High side logic input
5,6,7	/LIN1,2,3	Low side logic input
8	/FAULT	Indicates over-current and under-voltage (negative logic, open-drain output)
9	ITRIP	Analog input for over-current shut down, activates FAULT and RCIN to VSS
10	EN	Enable I/O functionality (positive logic)
11	RCIN	External RC-network to define FAULT clear delay after FAULT-Signal (T _{FLTCLR})
12	VSS	Logic ground
13	СОМ	Low side gate driver reference
28,24,20	VB1,2,3	High side positive power supply
27,23,19	HO1,2,3	High side gate driver output
26,22,18	VS1,2,3	High side negative power supply
16,15,14	LO1,2,3	Low side gate driver output
21,25	nc	Not connected

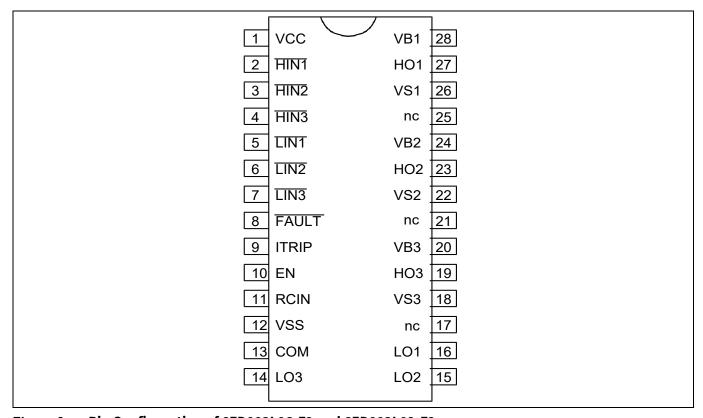


Figure 3 Pin Configuration of 6ED003L06-F2 and 6ED003L02-F2

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

3 Functional description

3.1 Low Side and High Side Control Pins (Pin 2, 3, 4, 5, 6, 7)

The Schmitt trigger input threshold of them are such to guarantee LSTTL and CMOS compatibility down to 3.3 V controller outputs. Input Schmitt trigger and noise filter provide beneficial noise rejection to short input pulses according to Figure 4 and Figure 5.

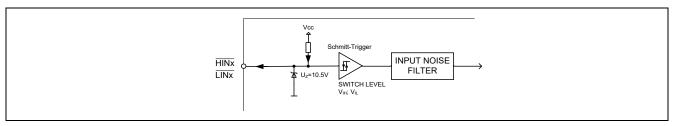


Figure 4 Input pin structure

An internal pull-up of about 75 k Ω (negative logic) pre-biases the input during supply start-up and a ESD zener clamp is provided for pin protection purposes. The zener diodes are therefore designed for single pulse stress only and not for continuous voltage stress over 10 V.

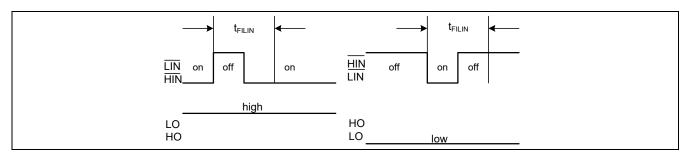


Figure 5 Input filter timing diagram

It is anyway recommended for proper work of the driver not to provide input pulse-width lower than 1 μs.

The 6ED-F2 driver IC provide additionally a shoot through prevention capability which avoids the simultaneous on-state of two channels of the same leg (i.e. HO1 and LO1, HO2 and LO2, HO3 and LO3). When two inputs of a same leg are activated, only one leg output is activated, so that the leg is kept steadily in a safe state.

A minimum dead time insertion of typ. 310 ns is also provided, in order to reduce cross-conduction of the external power switches.

3.2 EN (Gate Driver Enable, Pin 10)

The signal applied to pin EN controls directly the output stages. All outputs are set to LOW, if EN is at LOW logic level. The internal structure of the pin is given in Figure 6. The switching levels of the Schmitt-Trigger are here $V_{\text{EN,TH-}} = 2.1 \text{ V}$ and $V_{\text{EN,TH-}} = 1.3 \text{ V}$. The typical propagation delay time is $t_{\text{EN}} = 780 \text{ ns}$. There is an internal pull down resistor (75 k Ω), which keeps the gate outputs off in case of broken PCB connection.

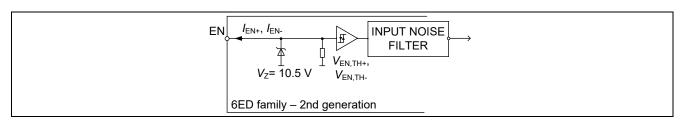


Figure 6 EN pin structures

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

3.3 /FAULT (Fault Feedback, Pin 8)

/Fault pin is an active low open-drain output indicating the status of the gate driver (see **Error! Reference s ource not found.**). The pin is active (i.e. forces LOW voltage level) when one of the following conditions occur:

- Under-voltage condition of VCC supply: In this case the fault condition is released as soon as the supply
 voltage condition returns in the normal operation range (please refer to VCC pin description for more
 details).
- Over-current detection (ITRIP): The fault condition is latched until current trip condition is finished and RCIN input is released (please refer to ITRIP pin).

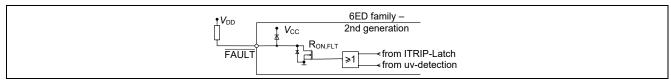


Figure 7 /FAULT pin structures

3.4 ITRIP and RCIN (Over-Current Detection Function, Pin 9, 11)

The 6ED family – 2^{nd} generation provides an over-current detection function by connecting the ITRIP input with the motor current feedback. The ITRIP comparator threshold (typ 0.44 V) is referenced to VSS ground. A input noise filter (typ. t_{ITRIPMIN} = 230 ns) prevents the driver to detect false over-current events.

Over-current detection generates a hard shut down of all outputs of the gate driver and provides a latched fault feedback at /FAULT pin. RCIN input/output pin is used to determine the reset time of the fault condition. As soon as ITRIP threshold is exceeded the external capacitor connected to RCIN is fully discharged. The capacitor is then recharged by the RCIN current generator when the over-current condition is finished. As soon as RCIN voltage exceeds the rising threshold of typ $V_{\text{RCIN,TH}} = 5.2 \text{ V}$, the fault condition releases and the driver returns operational following the ontrol input pins according to section 3.1.

3.5 VCC, VSS and COM (Low Side Supply, Pin 1, 12, 13)

VCC is the low side supply and it provides power both to input logic and to low side output power stage. Input logic is referenced to VSS ground as well as the under-voltage detection circuit. Output power stage is referenced to COM ground. COM ground is floating respect to VSS ground with a maximum range of operation of +/-5.7 V. A back-to-back zener structure protects grounds from noise spikes.

The under-voltage circuit enables the device to operate at power on when a typical supply voltage higher than V_{CCUV+} is present.

The IC shuts down all the gate drivers power outputs, when the VCC supply voltage is below $V_{\text{CCUV}} = 9.8 \text{ V}$. This prevents the external power switches from critically low gate voltage levels during on-state and therefore from excessive power dissipation. Please consult the individual output characteristic of the driven transistor.

3.6 VB1, 2, 3 and VS1, 2, 3 (High Side Supplies, Pin 18, 20, 22, 24, 26, 28)

VB to VS is the high side supply voltage. The high side circuit can float with respect to VSS following the external high side power device emitter/source voltage. Due to the low power consumption, the floating driver stage can be supplied by bootstrap topology connected to VCC. The device operating area as a function of the supply voltage is given in Figure 12.

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

3.7 LO1,2,3 and HO1,2,3 (Low and High Side Outputs, Pin 14, 15, 16, 19, 23, 27)

Low side and high side power outputs are specifically designed for pulse operation such as gate drive of IGBT and MOSFET devices. Low side outputs (i.e. LO1,2,3) are state triggered by the respective inputs, while high side outputs (i.e. HO1,2,3) are edge triggered by the respective inputs. In particular, after an under voltage condition of the VBS supply, a new turn-on signal (edge) is necessary to activate the respective high side output, while after a under voltage condition of the VCC supply, the low side outputs switch to the state of their respective inputs.

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

4 Electrical parameters

4.1 Absolute maximum ratings

All voltages are absolute voltages referenced to $V_{\rm SS}$ -potential unless otherwise specified. All parameters are valid for T_a =25 °C.

Table 3 Absolute maximum ratings

Parameter		Symbol	Min.	Max.	Unit
High side offset voltage ¹	DSO28 TSSOP28	V _s	V _{CC} -V _{BS} -6	600 180	V
High side offset voltage (t_p <500 ns) ¹			$V_{\rm CC}$ - $V_{\rm BS}$ – 50	_	
High side offset voltage ¹	DSO28 TSSOP28	V _B	<i>V</i> _{cc} – 6	620 200	
High side offset voltage (t_p <500 ns) ¹			V _{cc} – 50	-	
High side floating supply voltage (V _B vs. I	/s) (internally clamped)	V_{BS}	-1	20	
High side output voltage (V_{HO} vs. V_{S})		V _{HO}	-0.5	$V_{\rm B}$ + 0.5	
Low side supply voltage (internally clam	ped)	V _{cc}	-1	20	
Low side supply voltage (V_{CC} vs. V_{COM})		V_{CCOM}	-0.5	25	
Gate driver ground		V_{COM}	-5.7	5.7	
Low side output voltage (V_{LO} vs. V_{COM})		V_{LO}	-0.5	$V_{\text{CCOM}} + 0.5$	
Input voltage LIN,HIN,EN,ITRIP		V_{IN}	-1	10	
FAULT output voltage		V_{FLT}	-0.5	$V_{\rm CC}$ + 0.5	
RCIN output voltage		V_{RCIN}	-0.5	V _{cc} + 0.5	
Power dissipation (to package) ²	DSO28 TSSOP28	P _D	-	1.3 0.6	W
Thermal resistance (junction to ambient, see section Error! ound.) TSSOP28	DSO28 Reference source not f	R _{th(j-a)}	-	75 165	K/W °C
Junction temperature		T _J	-	125	1
Storage temperature			- 40	150	
offset voltage slew rate ³		dV _s /dt		50	V/ns

Note: The minimum value for ESD immunity in PG-DSO-28 is 2.0 kV (Human Body Model). ESD immunity inside pins connected to the low side (VCC, HINx, LINx, FAULT, EN, RCIN, ITRIP, VSS, COM, LOx) and pins connected inside each high side itself (VBx, HOx, VSx) is guaranteed up to 2.0 kV (Human Body Model). See <u>section 7</u>.

The minimum value for ESD immunity in PG-TSSOP-28 is 1.0 kV (Human Body Model). ESD immunity inside pins connected to the low side (VCC, HINx, LINx, FAULT, EN, RCIN, ITRIP, VSS, COM, LOx) and pins connected inside each high side itself (VBx, HOx, VSx) is guaranteed up to 1.5 kV (Human Body Model). See <u>section 7.</u>

¹ Insensitivity of bridge output to negative transient voltage up to −50 V is not subject to production test – verified by design / characterization.

² Consistent power dissipation of all outputs. All parameters inside operating range.

 $^{^{\}rm 3}$ Not subject of production test, verified by characterisation

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

4.2 Required operation conditions

All voltages are absolute voltages referenced to $V_{\rm SS}$ -potential unless otherwise specified. All parameters are valid for $T_{\rm a}$ =25 °C.

Table 4 Required Operation Conditions

Parameter		Symbol	Min.	Max.	Unit
High side offset voltage ¹	DSO28 TSSOP28	V _B	7	620 200	V
Low side supply voltage (V_{CC} vs. V_{COM})	DSO28 TSSOP28	V_{CCOM}	10	25	

4.3 Operating Range

All voltages are absolute voltages referenced to $V_{\rm SS}$ -potential unless otherwise specified. All parameters are valid for $T_{\rm a}$ =25 °C.

Table 5 Operating range

Parameter	Symbol	Min.	Max.	Unit
High side floating supply offset voltage	Vs	V _{cc} -		V
		V_{BS} -1	500	
High side floating supply offset voltage (V_B vs. V_{CC} , statically)	$V_{ exttt{BCC}}$	-1.0	500	
High side floating supply voltage (V _B vs. V _S , Note 1)	V_{BS}	13	17.5	
High side output voltage (V_{HO} vs. V_{S})	V_{HO}	0	V_{BS}	
Low side output voltage (V_{LO} vs. V_{COM})	V_{LO}	0	V_{cc}	
Low side supply voltage	V_{cc}	13	17.5	
Low side ground voltage	V_{COM}	-2.5	2.5	
Logic input voltages /LIN, /HIN, EN, ITRIP ²	V_{IN}	0	5	
FAULT output voltage	V_{FLT}	0	V_{cc}	
RCIN input voltage	V_{RCIN}	0	V_{cc}	
Pulse width for ON or OFF ³	t _{IN}	1	-	μs
Ambient temperature	Ta	-40	105	°C

Version 3.0 2025-07-07

 $^{^{1}}$ Logic operational for V_{B} (V_{B} vs. V_{S}) > 7.0 V

 $^{^{2}}$ All input pins (/HINx, /LINx) and EN, ITRIP pin are internally clamped (see abs. maximum ratings)

 $^{^3}$ In case of input pulse width at /LINx and /HINx below 1 μs the input pulse may not be transmitted properly

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

4.4 Static logic function table

VCC	VBS	RCIN	ITRIP	ENABLE	FAULT	L01,2,3	HO1,2,3
<v<sub>CCUV-</v<sub>	Х	Х	Х	Х	0	0	0
15V	<v<sub>BSUV-</v<sub>	Х	0	3.3 V	High imp	/LIN1,2,3	0
15V	15V	<3.2 V ↓	0	3.3 V	0	0	0
15V	15V	Х	> V _{IT,TH+}	3.3 V	0	0	0
15V	15V	> V _{RCIN,TH}	0	3.3 V	High imp	/LIN1,2,3	/HIN1,2,3
15V	15V	> V _{RCIN,TH}	0	0	High imp	0	0

4.5 Static parameters

 $V_{\rm CC}$ = $V_{\rm BS}$ = 15 V unless otherwise specified. All parameters are valid for $T_{\rm a}$ =25 °C.

 Table 6
 Static parameters

Parameter		Symbol		Values		Unit	Test condition
			Min.	Тур.	Max.		
High level input voltage		V _{IH}	1.7	2.1	2.4	V	
Low level input voltage		V _{IL}	0.7	0.9	1.1		
EN positive going threshold		V _{EN,TH+}	1.9	2.1	2.3		
EN negative going threshold		$V_{EN,TH}$	1.1	1.3	1.5		
ITRIP positive going threshold		$V_{\rm IT,TH+}$	380	445	510	mV	
ITRIP input hysteresis		$V_{\rm IT,HYS}$	45	70			
RCIN positive going threshold		$V_{RCIN,TH}$	-	5.2	6.4	V	
RCIN input hysteresis		V _{RCIN,HYS}	-	2.0	-		
Input clamp voltage		$V_{IN,CLMAP}$	9	10.3	12		I _{IN} = 4mA
(/HIN, /LIN, EN, ITRIP)							
Input clamp voltage at high in (/HIN, /LIN)	npedance	$V_{\text{IN,FLOAT}}$	-	5.3	5.8		controller output pin floating
High level output voltage	LO1,2,3	V _{он}	-	V _{CC} -0.7	V _{CC} -1.4		I ₀ = 20mA
	HO1,2,3		-	V _B -0.7	V _B -1.4		
Low level output voltage	L01,2,3	V _{OL}	-	V _{COM} + 0.2	V _{COM} + 0.6		I ₀ = -20mA
	HO1,2,3		-	V _S + 0.2	V _s + 0.6		
$V_{\rm CC}$ and $V_{\rm BS}$ supply undervoltage going threshold	ge positive	V _{CCUV+} V _{BSUV+}	11	11.7	12.5		
V_{CC} and V_{BS} supply undervoltage going threshold	ge negative	V _{CCUV-} V _{BSUV-}	9.5	9.8	10.8	V	
$V_{\rm CC}$ and $V_{\rm BS}$ supply undervoltage lockout hysteresis		$V_{CCUVH} \ V_{BSUVH}$	1.2	1.9	-		
High side leakage current betw VSS	w. VS and	I _{LVS+}	-	1	12.5	μΑ	V _S = 600V

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

 Table 6
 Static parameters

Parameter	Symbol		Value	/alues Unit		Test condition	
		Min. Typ. Max.		Max.			
High side leakage current betw. VS and VSS	I _{LVS+} 1	-	10	-		$T_{\rm J} = 125^{\circ}{\rm C},$ $V_{\rm S} = 600{\rm V}$	
High side leakage current between VSx and VSy (x=1,2,3 and y=1,2,3)	I _{LVS-} 1	-	10	-		$T_{\rm J} = 125^{\circ}{\rm C}$ $V_{\rm Sx} - V_{\rm Sy} = 600{\rm V}$	
Quiescent current V _{BS} supply (VB only)	I_{QBS1}	-	210	400	μΑ	HO=low	
Quiescent current V _{BS} supply (VB only)	I_{QBS2}	-	210	400		HO=high	
Quiescent current V_{CC} supply (VCC only)	I_{QCC1}	-	1.1	1.8	mA	V _{LIN} =float.	
Quiescent current V_{CC} supply (VCC only)	I_{QCC2}	-	1.3	2		V_{LIN} =0, V_{HIN} =3.3 V	
Input bias current	I _{LIN+}	-	70	100	μΑ	V _{LIN} =3.3 V	
Input bias current	I _{LIN-}	-	110	200	μΑ	V _{LIN} =0	
Input bias current	I _{HIN+}	-	70	100		V _{HIN} =3.3 V	
Input bias current	I _{HIN-}	-	110	200		V _{HIN} =0	
Input bias current (ITRIP=high)	I _{ITRIP+}		45	120		<i>V</i> _{ITRIP} =3.3 V	
Input bias current (EN=high)	I _{EN+}	-	45	120		V _{ENABLE} =3.3 V	
Input bias current RCIN (internal current source)	I _{RCIN}		2.8			$V_{\text{RCIN}} = 2 \text{ V}$	
Mean output current for load capacity charging in range from 3 V (20%) to 6 V (40%)	I _{O+}	120	165	-	mA	C _L =10 nF	
Peak output current turn on (single pulse)	I _{Opk+} ¹		240			$R_L = 0 \boxtimes, t_p < 10 \ \mu s$	
Mean output current for load capacity discharging in range from 12 V (80%) to 9 V (60%)	I _{O-}	250	375	-		C _L =10 nF	
Peak output current turn off (single pulse)	I _{Opk-} 1		420			$R_L = 0 \boxtimes, t_p < 10 \ \mu s$	
RCIN low on resistance of the pull down transistor	R _{on,RCIN}	-	40	100		V _{RCIN} =0.5 V	
FAULT low on resistance of the pull down transistor	$R_{on,FLT}$	-	45	100		V _{FAULT} =0.5 V	

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

4.6 Dynamic parameters

 $V_{\rm CC} = V_{\rm BS} = 15 \, \rm V$, $V_{\rm S} = V_{\rm SS} = V_{\rm COM}$ unless otherwise specified. All parameters are valid for $T_{\rm a}$ =25 °C.

 Table 7
 Dynamic parameters

Parameter	Symbol		Values			Test condition
		Min.	Тур.	Max.		
Turn-on propagation delay	ton	400	530	800	ns	$V_{\text{LIN/HIN}} = 0 \text{ or } 3.3 \text{ V}$
Turn-off propagation delay	$t_{ m off}$	360	490	760		
Turn-on rise time	t _r	-	60	100		$V_{\text{LIN/HIN}} = 0 \text{ or } 3.3 \text{ V}$
Turn-off fall time	t_{f}	-	26	45		C _L = 1 nF
Shutdown propagation delay ENABLE	t_{EN}	-	780	1100		V _{EN} =0
Shutdown propagation delay ITRIP	t_{ITRIP}	400	670	1000		V _{ITRIP} =1 V
Input filter time ITRIP	$t_{ITRIPMIN}$	155	230	380		
Propagation delay ITRIP to FAULT	$t_{ t FLT}$	-	420	700		
Input filter time at LIN/HIN for turn on and off	t _{FILIN}	120	300	-		$V_{\text{LIN/HIN}} = 0 \& 3.3 \text{ V}$
Input filter time EN	$t_{\sf FILEN}$	300	600	-		
Fault clear time at RCIN after ITRIP-fault, (C _{RCin} =1nF)	$t_{ extsf{FLTCLR}}$	1.0	1.9	3.0	ms	$V_{\text{LIN/HIN}} = 0 \& 3.3 \text{ V}$ $V_{\text{ITRIP}} = 0$
Dead time	DT	150	310	-	ns	$V_{\text{LIN/HIN}} = 0 \& 3.3 \text{ V}$
Matching delay ON, max(ton)-min(ton), ton are applicable to all 6 driver outputs	MT _{ON}	-	20	100		external dead time > 500 ns
Matching delay OFF, max(toff)-min(toff), toff are applicable to all 6 driver outputs	MT _{OFF}	-	40	100		external dead time >500 ns
Output pulse width matching. Pw _{in} -PW _{out}	PM		40	100		PW _{in} > 1 μs

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

5 Timing diagrams

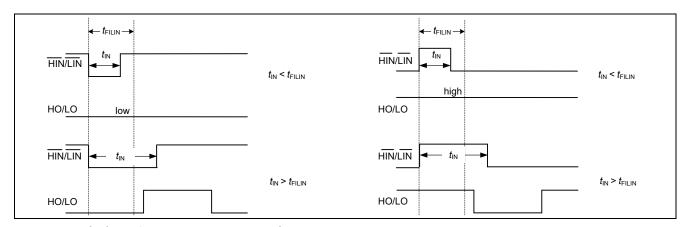


Figure 8 Timing of short pulse suppression

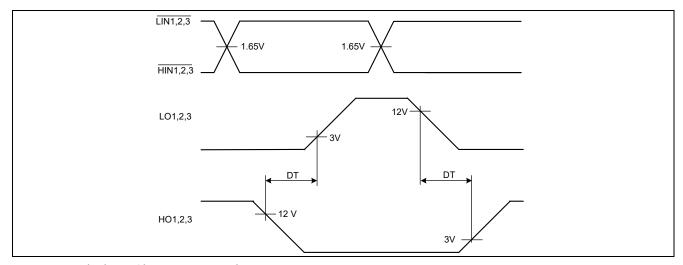


Figure 9 Timing of internal deadtime

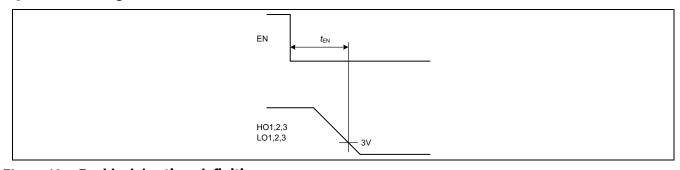


Figure 10 Enable delay time definition

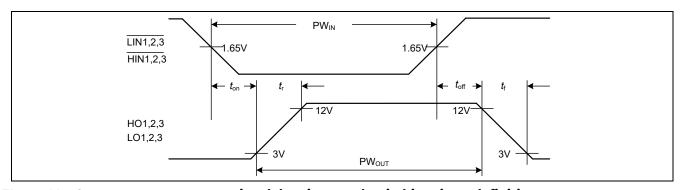


Figure 11 Input to output propagation delay times and switching times definition

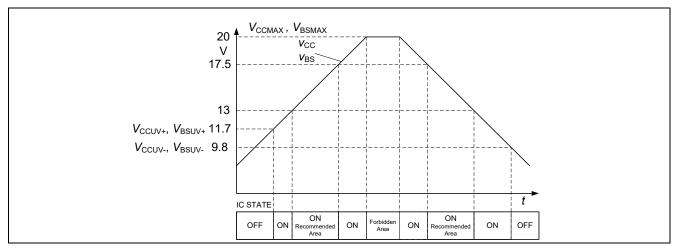


Figure 12 Operating areas

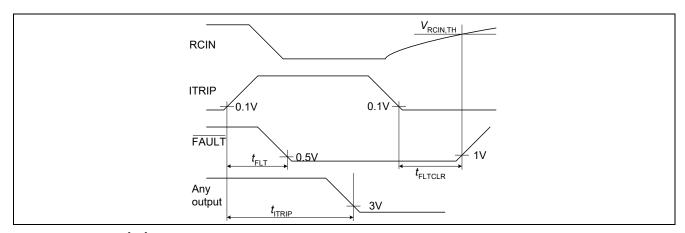


Figure 13 ITRIP-Timing

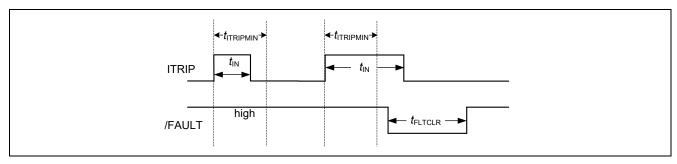


Figure 14 ITRIP input filter time

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

6 Package information

6.1 PG-DSO-28

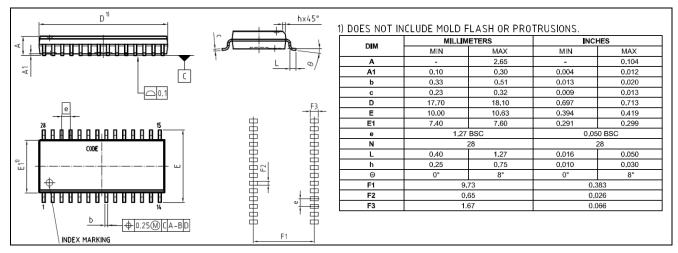


Figure 15 Package drawing

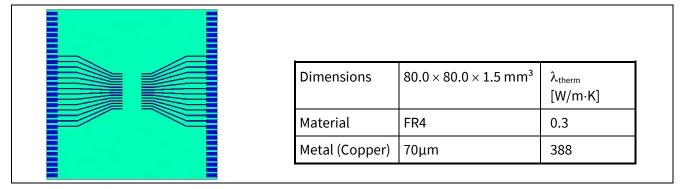


Figure 16 PCB reference layout

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

6.2 PG-TSSOP-28

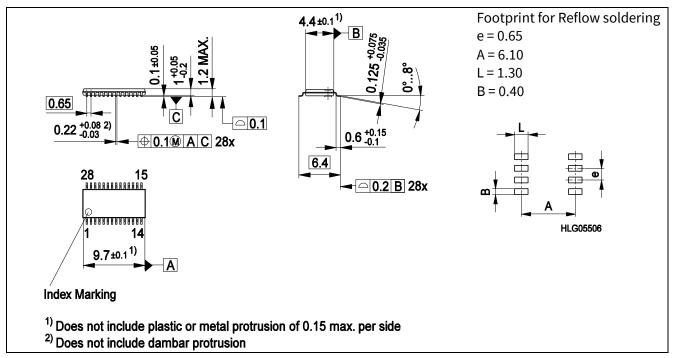


Figure 17 Package drawing

6.3 PG-TSSOP-28 (according to PCN 2018-165-A)

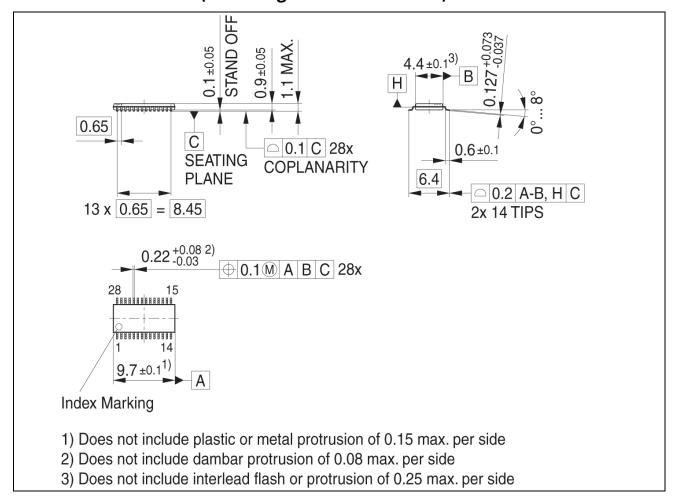


Figure 18 Package drawing

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

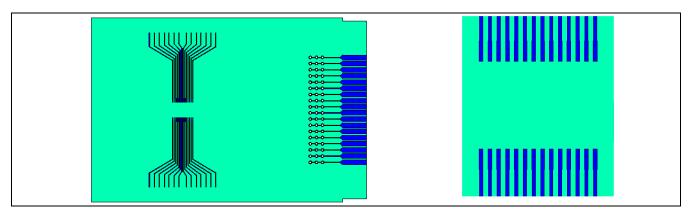


Figure 19 PCB reference layout (according to JEDEC 1s0P) left: Reference layout right: detail of footprint

Table 8 Data of reference layout

Dimensions	Material	Metal (Copper)
76.2 × 114.3 × 1.5 mm ³	FR4 (λ_{therm} = 0.3 W/mK)	70μm (λ _{therm} = 388 W/mK)

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Not Recommended for new designs. For new designs we recommend 6EDL04I065NT

7 Qualification information¹

Table 9 Qualification information

Qualification level		Industrial ²		
		Note: This family of ICs has passed JEDEC's Industrial		
		qualification. Consumer qualification level is granted by		
		extension of the higher Industrial level.		
Moisture sensitivity level		TSSOP-28/DSO-28		MSL3 ³ , 260°C
				(per IPC/JEDEC J-STD-020)
ESD	Charged device model	Class C3 (> 1.0 kV)		
		(per JESD22-C101)		
	Human body model	6ED003L06-F2	Class 2 (per JEDEC standard JESD22-A114)	
		6ED003L02-F2	Class 1C (per JEDEC standard JESD22-A114)	
RoHS compliant		Yes		

8 Related products

Table 10

Gate Driver ICs	
6EDL04I06NT/	200 V & 600 V three-phase driver with OCP, Enable, Fault and integrated high speed, low R _{DS(ON)}
6EDL04I06PT	Bootstrap Diode, +0.165 A / -0.375 A source/sink current, for MOSFET or IGBT. Evaluation board
<u>6EDL04N06PT</u>	available.
6EDL04N02PR	
2EDL05I06 /	600 V, half-bridge thin-film SOI level shift gate driver with integrated high speed, low R _{DS(ON)}
2EDL05N06	bootstrap diode, 0.36/0.7 A source/sink current driver, 8pins/14pins package, for MOSFET or IGBT.
2EDL23I06/	600 V, half-bridge thin-film SOI gate driver with integrated high speed, low R _{DS(ON)} bootstrap diode,
2EDL23N06	OCP, 2.3/2.8 A source/sink current driver, and one pin Enable/Fault function for MOSFET or IGBT.
Power Switches	
IKD04N60R / RF	600 V TRENCHSTOP™ IGBT with integrated diode in PG-TO252-3 package
IKD06N65ET6	650 V TRENCHSTOP™ IGBT with integrated diode in DPAK
IPD65R950CFD	650 V CoolMOS CFD2 with integrated fast body diode in DPAK
IPN50R950CE	500 V CoolMOS CE Superjunction MOSFET in PG-SOT223 package
iMOTION™ Contro	llers
IRMCK099	iMOTION™ Motor control IC for variable speed drives utilizing sensor-less Field Oriented Control
	(FOC) for Permanent Magnet Synchronous Motors (PMSM).
IMC101T	High performance Motor Control IC for variable speed drives based on field oriented control (FOC)
	of permanent magnet synchronous motors (PMSM).

Revision history

Document version	Date of release	Description of changes	
2.8	2016-08-05	Increased the maximum operating ambient temperature to 105 °C	
		Updated disclaimer, Delete links to application note	
		Corrected parameter V_{HO}	
2.9	2019-01-11	Updated ESD HBM information, and add package drawing PG-TSSOP-28	

¹ Qualification standards can be found at Infineon's web site <u>www.infineon.com</u>

² Higher qualification ratings may be available should the user have such requirements. Please contact your Infineon sales representative for further information.

³ Higher MSL ratings may be available for the specific package types listed here. Please contact your Infineon sales representative for further information.

600 V Half Bridge Gate Driver with Integrated Bootstrap Diode

Document version	Date of release	Description of changes
3.0	2025-07-07	Added "Not recommended for new designs" header

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-07-07
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.