

About this document

Scope and purpose

This document provides solution demo, features of single-port EZ-PD™ CCG7S automotive USB Type-C Power Delivery (PD) and buck-boost controller in the automotive rear seat charger (RSC) solution demo kit (REF_CCG7S_60W).

Intended audience

This document is primarily intended for automotive rear seat charger (RSC) solution designers using EZ-PD™ CCG7S automotive USB Type-C PD and buck-boost controller.

Table of contents

Table of contents

Abo	out this document	
Tab	le of contents	
1		
2	REF_CCG7S_60W kit specifications	
3	RSC solution demo (REF_CCG7S_60W) kit board overview	7
4	Test setup	8
4.1	-	8
4.2	Power adapter tester (PAT)	
5	Quick steps for demo	10
Refe	erences	11
Revi	ision history	12
	claimer	

Introduction

1 Introduction

The USB Power Delivery (USB PD) automotive rear seat charger needs to deliver a wide range of configured positive output voltage and power from an automotive battery input (5.5 V – 18 V). A four-switch buck-boost converter (FSBBC) is the suitable topology, which can support variable input voltages and configurable output voltage applications such as USB PD where high efficiency and power density are also required. The FSBBC configuration can act as buck, boost, or buck-boost converter to provide the output voltage with the same polarity of the input voltage. Improved efficiency of the FSBBC is observed due to synchronous rectification. In similar lines, buck-only and boost-only operations can be achieved.

Constant-frequency peak current-mode control (PCMC) is a popular control technique for switched-mode power converters. PCMC offers built-in overcurrent protection, robust dynamic responses, simplified voltage-loop compensator design, and rejection of input voltage disturbances.

EZ-PD™ CCG7S automotive, single-port USB Type-C power delivery controller with integrated buck-boost DC-DC controller is a single-chip controller used for the automotive rear seat charger solution demo board.

EZ-PD™ CCG7S automotive controller is highly integrated single-port USB Type-C PD solution with integrated buck-boost controllers. It complies to the latest USB Type-C and PD specifications, and is targeted for automotive rear seat charger applications. Integration offered by EZ-PD™ CCG7S not only reduces the bill of materials (BOM) but also provides a footprint-optimized solution for power adapter charging needs. EZ-PD™ CCG7S has integrated gate drivers for VBUS NFET on the provider path. It also includes hardware-controlled protection features on the VBUS. EZ-PD™ CCG7S supports a wide input voltage range (4–24 V with 40-V tolerance) and programmable switching frequency (150–600 kHz) in an integrated PD solution. EZ-PD™ CCG7S automotive has capability of in-system firmware upgrade through the Type-C interface.

A high-level block diagram of the EZ-PD™ automotive-based single-output USB PD rear seat charger solution is shown in Figure 1.

Introduction

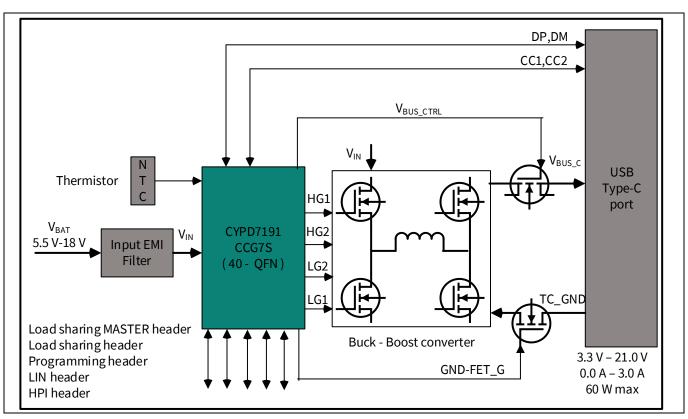


Figure 1 EZ-PD™ CCG7S automotive-based single-output USB PD rear seat charger

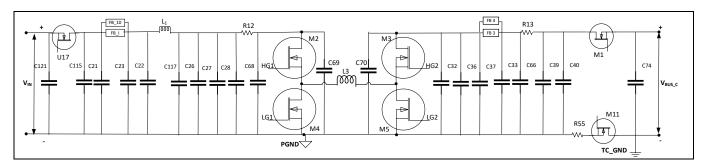


Figure 2 High-level block diagram of RSC solution board power stage

Table 1 Critical components BOM

Designator	Description	Part number	Manufacturer
U1	EZ-PD™ CCG7S automotive single-port USB Type-C PD and buck-boost controller 40-pin QFN	CYPD7191-40LDXS	Infineon Technologies
U17	MOSFET N-CH 60 V 120 A TDSON-8-43	IAUC120N06S5N017	Infineon Technologies
M2, M3, M4, M5	MOSFET N-CH 40 V 40 A 8TSDSON	IPZ40N04S5L4R8ATMA1	Infineon Technologies
M1	MOSFET N-CH 40 V 40 A 8TSDSON	IPZ40N04S53R1 ATMA1	Infineon Technologies
M11	MOSFET N-CH 40 V 40 A 8TSDSON	IPZ40N04S5L2R8ATMA1	Infineon Technologies
FB1, FB10	Powerline ferrite bead 1206, 12 A 1.6 m Ω	BLM31SN500SH1	Murata Electronics
FB3, FB4	Powerline ferrite bead 0805, 06 A 4.0 m Ω	BLM21SN300SH1	Murata Electronics
L1	Fixed inductors 220 nH Shld 20% 28.5 A 1.3 m Ω	XGL6060-221MEC	CoilCraft

Introduction

Designator	Description	Part number	Manufacturer
U1	EZ-PD™ CCG7S automotive single-port USB Type-C PD and buck-boost controller 40-pin QFN	CYPD7191-40LDXS	Infineon Technologies
L3	Fixed inductors 6.8 μ H 20% 18.5 A 8.9 m Ω	XAL1010-682	CoilCraft
C121	CAP CER 10 μF 50 V X7S 1210	GCM32EC71H106KA03K	Murata Electronics
C66, C115	CAP CER 10000 pF 50 V X7R 0603	GCD188R71H103KA01D	Murata Electronics
C21, C22, C23, C28, C32, C33, C36	CAP CER 10 μF 50 V X7R 1206	CGA5L1X7R1H106K160 AC	TDK Corporation
C117	CAP CER 1 μF 50 V X7R 0805	GCM21BR71H105KA03K	Murata Electronics
C26	CAP ALUM POLY 56 μF 20% 50 V SMD	GYC1J560MCQ1GS	Nichicon
C27	CAP CER 1 μF 50 V X7R 0805	GCM21BR71H105KA03K	Murata Electronics
C37	CAP ALUM POLY 220 μF 20% 25 V SMD	GYC1E221MCQ1GS	Nichicon
C68, C69, C70	CAP CER 4.7 μF 50 V X7R 0805	CGA4J1X7R1H475K125AE	TDK Corporation
C39	CAP CER 0.1 μF 50 V X7R 0603	GCM188R71H104KA57J	Murata Electronics
C40	CAP CER 1 μF 50 V X7R 0805	GCM21BR71H105KA03L	Murata Electronics
C74	CAP CER 4.7 μF 50 V X7R 1210	C1210C475K5RACAUTO	Kemet

REF_CCG7S_60W kit specifications

2 REF_CCG7S_60W kit specifications

Table 2 Test specifications

Parameter	Value		
Input voltage	5.5 V _{DC} – 18 V _{DC}		
Max output power	60 W on port with a max load current of 3 A		
Output voltage	Fixed PDOs: 5 V / 3 A, 9 V / 3 A, 15 V / 3 A, 20 V / 3 A		
	PPS: 3.3 V – 11 V, 3 A; 3.3 V – 16 V, 3 A; 3.3 V – 21 V, 3 A with PPS power limit		
Peak efficiency	97%		
Protections	1. Input overvoltage protection		
	2. Input undervoltage protection		
	3. V _{BUS_C} overvoltage protection (OVP)		
	4. V _{BUS_C} undervoltage protection (UVP)		
	5. Overcurrent protection (OCP)		
	6. Short-circuit protection (SCP)		
	7. Over-temperature protection (OTP)		
	8. V _{BUS_C} to CC short protection		
	9. V _{BAT} to GND short protection		
Power throttling	Programmable input voltage throttling:		
	a) 18 VDC ≥ VIN ≥ 11 VDC 60 W		
	b) 11 VDC > VIN ≥ 09 VDC 45 W		
	c) $09 \text{ VDC} > V_{IN} \ge 5.5 \text{ V}_{DC}$ 30 W		
	2. Programmable thermal throttling:		
	a) -40°C ≤ T < 90°C 60 W		
	b) +90°C ≤ T < 105°C 30 W		
Charging standards	1. USB-C PD v2.0 including programmable power supply (PPS) mode		
supported	2. Apple Charging 2.4 A		
	3. Qualcomm QC 2.0, 3.0, 4.0		
	4. Samsung AFC		
	5. USB BC 1.2		

RSC solution demo (REF_CCG7S_60W) kit board overview

3 RSC solution demo (REF_CCG7S_60W) kit board overview

The EZ-PD™ CCG7S automotive RSC solution demo (REF_CCG7S_60W) kit is shown in Figure 3; this solution board is designed to meet the specifications shown in Table 2.

Figure 3 EZ-PD™ CCG7S automotive rear seat charger solution board

Test setup

4 Test setup

Measurement equipment connectivity is shown in Figure 4.

Figure 4 Test equipment connected to RSC solution demo (REF_CCG7S_60W) board

4.1 Test equipment

The test equipment shown in the Table 3 can be used to measure the performance parameters like efficiency, ripple, regulation, and transient response.

Table 3 Test equipment details

Test setup	Description
Programmable DC source	Chroma 62024P-80-60
Oscilloscope	Tektronix MDO 3034
Digital multimeter (Ι _{ουτ})	Keysight 34465A
Data logger (V _{BUS_C} , I _{IN} , V _{IN})	Keysight 34970 A
Electronic load	Chroma 63102A
Input current (I _{IN}) measurement shunt	Y14880R01000D5W

4.2 Power adapter tester (PAT)

The DUT is connected to a power adapter tester (PAT) (CCPROG PAT) using a USB Type-C cable. Once a successful connection is established, the PAT UI does a PDO discovery and displays the results. The RSC solution demo kit is pre-configured with 7 PDOs:

Fixed PDOs: 5 V / 3 A, 9 V / 3 A, 15 V / 3 A, 20 V / 3 A

PPS: 3.3 V - 11 V, 3 A; 3.3 V - 16 V, 3 A; 3.3 V - 21 V, 3 A (PPS power limited)

You can either choose the suitable pre-configured PDO or configure a new one using the EZ-PD™ Configuration Utility. Tests in the following sections use pre-configured PDOs.

To know more about PAT tester, see USBCEE.

Test setup

Figure 5 PAT tester and user interface

Quick steps for demo

5 Quick steps for demo

- 1. Connect 12-V input supply at J5 connector as shown in Test setup.
- 2. Connect a USB PD tester or a power adapter tester (PAT) to the port and make sure that the USB PD tester gets into a successful Power Delivery contract as shown in Power adapter tester (PAT).

References

References

Contact Infineon Support to obtain these documents.

- [1] Infineon Technologies AG: 002-33534: EZ-PD™ CCG7S automotive datasheet
- [2] Infineon Technologies AG: 002-34168: EZ-PD™ CCG7X RSC power stage design calculator
- [3] Infineon Technologies AG: 002-32985: Hardware design guidelines for EZ-PD™ CCG7D in automotive applications

Revision history

Revision history

Document revision	Date	Description of changes
**	2022-01-04	Initial release
*A	2024-09-17	Model number changed from SD2220 to REF_CCG7S_60W

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-09-17 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email:

erratum@infineon.com

Document reference 002-34438 Rev. *A

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.