

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

About this document

Scope and purpose

This user guide describes the function, circuitry, and performance of the XENSIV™ BGT60UTR11AIP Wing board, part of Infineon's XENSIV™ BGT60UTR11AIP Connected Sensor Kit (KIT_CSK_BGT60UTR11AIP).

Intended audience

The intended audience for this document is design engineers, technicians, and developers of electronic systems, working with Infineon's XENSIV™ 60 GHz radar sensors.

Reference Board/Kit

Product(s) embedded on a PCB with a focus on specific applications and defined use cases that may include software. PCB and auxiliary circuits are optimized for the requirements of the target application.

Note: Boards do not necessarily meet safety, EMI, quality standards (for example UL, CE) requirements.

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

Important notice

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

Safety precautions

Safety precautions

Note: Please note the following warnings regarding the hazards associated with development systems.

Table 1 **Safety precautions**

Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

Table of contents

Table of contents

Abou	t this document	1
Impo	ortant notice	2
Safet	ty precautions	3
Table	e of contents	4
1	The board at a glance	5
- 1.1	Scope of supply	
1.2	Block diagram	
1.3	Main features	
1.4	Board parameters and technical data	
2	System and functional description	9
2.1	Getting started	9
2.2	Quick loT experience	9
2.2.1	Signup and login	9
2.2.2	Add your device	10
2.2.3	Application	10
2.2.4	Configure Wi-Fi network	11
2.2.5	Submit your device configurations	11
2.2.6	Download the zip package	12
2.2.7	Program the KIT_CSK_BGT60UTR11AIP	13
2.2.8	Device management	14
2.2.9	Select desired application	
2.2.10	Selected application attributes	15
2.2.11		
2.3	Code examples in ModusToolbox™	
2.3.1	PSOC™ 6 MCU: XENSIV™ 60 GHz radar presence detection	
2.3.2		
3	System design	18
3.1	Schematics	
3.2	Layout	21
3.3	Bill of materials	21
3.4	Connector details	24
Refer	rences	26
Gloss	sary	27
Revis	sion history	28
Discla	aimer	29

1 The board at a glance

1 The board at a glance

The XENSIV™ BGT60UTR11AIP Connected Sensor Kit supports customers in testing sensor-driven IoT products and radar use cases as well as in prototyping. It offers a real-time sensor evaluation with custom configurations and cloud- and radar-based solution output visualization. The KIT_CSK_BGT60UTR11AIP (Figure 1) comes with:

- Rapid IoT Connect Developer Kit (CYSBSYSKIT-DEV-01)
- XENSIV[™] BGT60UTR11AIP Wing (EVAL_60UTR11_WING)

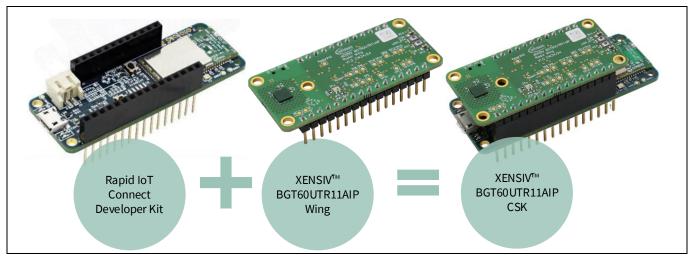


Figure 1 XENSIV™ BGT60UTR11AIP Connected Sensor Kit

The Rapid IoT Connect Developer Kit (CYSBSYSKIT-DEV-01) shown in Figure 2 allows the evaluation of the Rapid IoT Connect module (CYSBSYS-RP01) on a standard Feather form-factor. The CYSBSYS-RP01 Rapid IoT Connect module is a turnkey module that enables secure, scalable, and reliable compute and connect.

The Rapid IoT Connect Developer Kit carries a CYSBSYS-RP01 Rapid IoT connect system-on-module (SoM), which includes a PSOC™ 6 MCU, an AIROC™ CYW43012 single-chip radio, onboard crystals, oscillators, chip antenna, and passive components.



Figure 2 Rapid IoT Connect Developer Kit

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

1 The board at a glance

The XENSIV™ BGT60UTR11AIP Wing board shown in Figure 3 is based on the XENSIV™ BGT60UTR11AIP 60 GHz radar sensor MMIC with one transmitting and one receiving antenna integrated. The XENSIV™ BGT60UTR11AIP MMIC enables ultra-wide bandwidth FMCW operation. It is equipped with an integrated finite state machine (FSM). With the aid of the FSM, the XENSIV™ BGT60UTR11AIP can perform frequency modulated continuous wave (FMCW) frequency sweeps (chirps), acquire data, and store samples into the internal first-in, first-out (FIFO) memory autonomously.

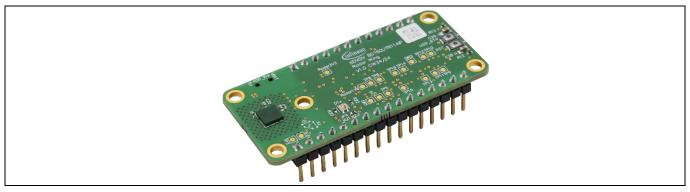


Figure 3 XENSIV™ BGT60UTR11AIP Wing board

1.1 Scope of supply

The kit can be powered from a 3.7 V LiPo battery or via a USB cable from an external 5 V power supply. The battery is automatically charged when the system is connected to an external power supply.

The radar wing board must be manually switched to either battery or external 5 V supply (switch Note:

S3 in Figure 24).

1.2 **Block diagram**

A block diagram of the wing board is shown in Figure 4. The wing board comprises the XENSIV™ BGT60UTR11AIP radar sensor and the required power supply components. Power lines are highlighted in red. It is also equipped with push buttons and LEDs.

1 The board at a glance

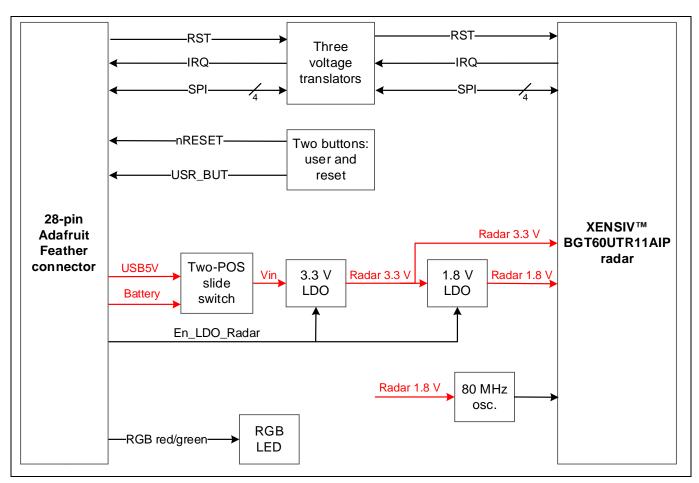


Figure 4 XENSIV™ BGT60UTR11AIP Wing board block diagram

A system block diagram showing the shield connected to the CSK rapid IoT baseboard is shown in Figure 4. The interface from the shield to the rapid IoT baseboard includes I2C, digital signals, analog signals and power lines. The baseboard can interact with the outside world using Wi-Fi, Bluetooth®, USB, or a combination of them depending on the firmware/software (FW/SW) installed on the baseboard. The kit can be powered from an external power supply or from a LiPo battery.

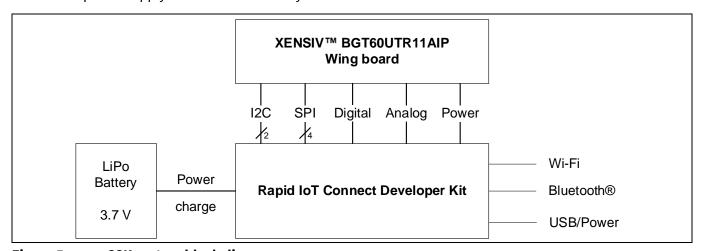


Figure 5 CSK system block diagram

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

1 The board at a glance

1.3 Main features

- XENSIV™ BGT60UTR11AIP MMIC
 - 4.05 mm x 4.05 mm x 0.86 mm package size
 - 1Tx 1Rx Antennas in Package (AIP) with 90°x120° field of view (FoV) of 3 dB HPBW)
 - Real time data acquisition without interaction with the processor
 - Three different power modes provide the user full flexibility between performance and power consumption optimizations
- XENSIV™ BGT60UTR11AIP Wing board
 - 50.8 mm x 22.9 mm size on standard FR4 laminate
 - 1 RGB LED and 2 configurable user buttons
 - Form-factor compatibility with Adafruit
 - Electromagnetic Band-Gap (EBG) structure [4], to reduce the impact of neighboring components, resulting in a homogeneous FoV.
- CYSBSYSKIT-DEV-01 Rapid IoT Connect Developer Kit (MCU board)
 - Operates with ModusToolbox™ and Infineon Rapid IoT Connect cloud platform

1.4 Board parameters and technical data

Table 2 Parameters

Parameter	Symbol	Conditions	Value	Unit
Supply voltage	-	-	3.3 (wing board) 1.8 (MMIC)	V
MMIC power consumption	_	10 Hz duty cycle	1	mW
Operating frequency	_	-	57.4 to 63	GHz
EIRP	_	-	+9	dBm
Antenna in Package FoV	_	-	90° x 120° (3 dB HPBW)	degree

2 System and functional description

2.1 Getting started

The Connected Sensor Kit is a cutting-edge IoT development platform that empowers engineers to swiftly design, test, and refine innovative IoT devices. By providing pre-configured sensor scenarios and real-time data visualization, this kit enables developers to achieve the 10-minute IoT experience, allowing them to rapidly evaluate and validate their ideas.

To further accelerate development, a comprehensive suite of code examples is available within ModusToolbox™, see Section 2.3, offering a one-stop-shop for developers to kick-start their IoT projects with ease.

2.2 Quick IoT experience

2.2.1 Signup and login

1. Create an account with the Infineon Rapid IoT Connect Platform by signing up with your email address and other required details as shown Figure 6

Figure 6 Rapid IoT Connect Platform signup

- 2. You will receive a password via email, which you will be prompted to change upon your first login to one of your choosing
- 3. Enter the credentials to login as shown in Figure 7

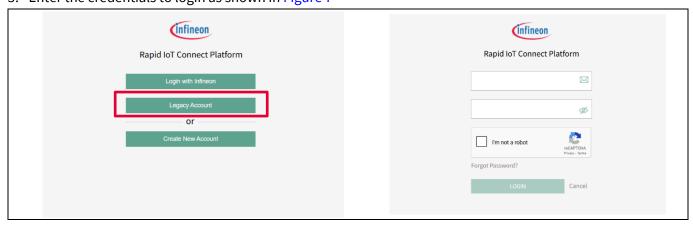


Figure 7 Rapid IoT Connect Cloud Platform login

2.2.2 Add your device

1. Click on the **Add device** button to start the process of adding your new KIT CSK BGT60UTR11AIP device. A pop-up wizard appears to guide you through the process

Figure 8 Add your device

2. On the **Device Details**, provide a name for your device, and enter the development kit serial number as shown Figure 9. Click the **Next** button to proceed further

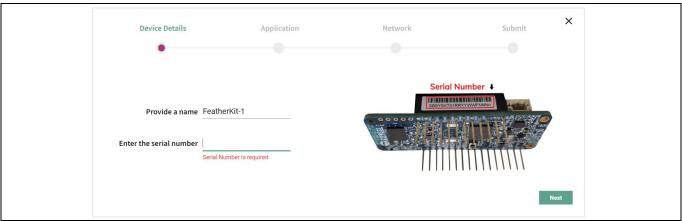


Figure 9 Add device wizard

2.2.3 Application

- With the Quick IoT Experience in **Application**, you can complete an IoT sensor experience that includes telemetry and fleet monitoring, in less than ten minutes
- After you complete the setup wizard, download and program your development kit with a built-in *hex* file. This *hex* file prepares and configures your development kit with the latest Wi-Fi firmware, an example application, and all the credentials required to securely connect to the cloud
- Note that the example application automatically uses the integrated temperature sensor. Ensure to select
 your desired application based on the XENSIV™ wing board you have, in this case it is XENSIV™
 BGT60UTR11AIP wing

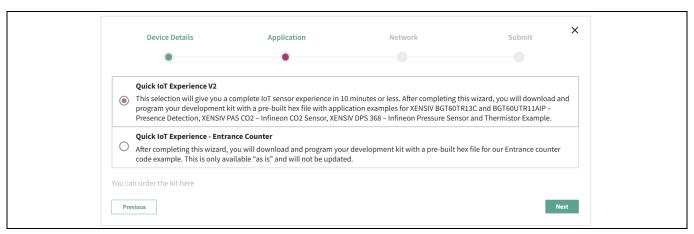


Figure 10 Select application

2.2.4 Configure Wi-Fi network

You can connect to your preferred WPA2 network by providing the Wi-Fi SSID and password by selecting **Create New Network**, or set up an access point/hotspot with WPA2-PSK security by using the following credentials:

SSID: IFX_Sensor

Security: WPA2-PSK

Password: S66M14022021

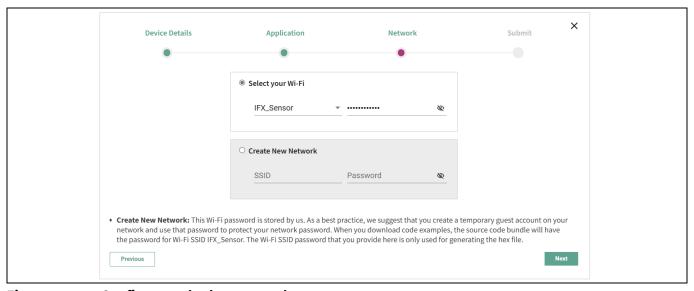


Figure 11 Configure and select network

2.2.5 Submit your device configurations

- Ensure all the information that you have entered is accurate before clicking the **Submit** button
- If you need to make changes, you can go back to earlier screens by pressing the **Previous** button
- After you click **Submit**, a custom hex file will be built for your device, and a software bundle will be generated for programming your development kit, as shown in Figure 13

Figure 12 Device management dashboard

Note: You can add/register a maximum of five devices with the Rapid IoT Connect Cloud Platform account.

2.2.6 Download the zip package

Depending on your laptop or PC's operating system (Windows/Linux/Mac), you will receive a downloadable package that includes a *hex* file firmware image and a programming tool for your KIT_CSK_BGT60UTR11AIP kit. The package will be in the form of a zip file. To view the detailed device status, click on the \oplus (expand) button. To download the zip package, click $\stackrel{\smile}{\smile}$ (download) next to **Success** on the application as shown in Figure 13.

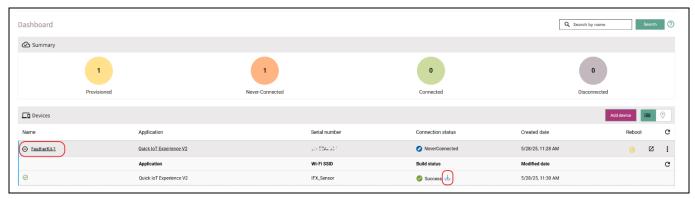


Figure 13 Device management dashboard

2.2.7 Program the KIT_CSK_BGT60UTR11AIP

- Use a Micro-USB cable to connect your development kit to your PC or laptop
- Extract the zip file and run the *program_kit* script

For Windows users, the script will be a .cmd file, while Linux and Mac users will see a .sh and .command files, respectively. If you are using Linux or Mac, ensure to run the script from a terminal with the necessary permissions. For detailed instructions, see the README.md file as shown in Figure 14

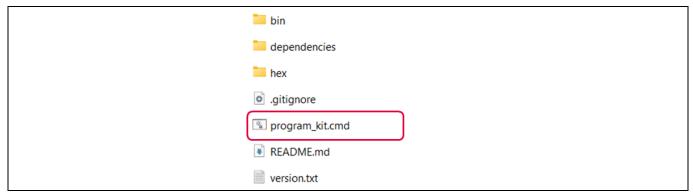


Figure 14 Package content

The successful kit programming command line logs are illustrated in Figure 15.

```
Logs are saved into logs/log-2025-05-28-13-46-40-74.txt
[INFO] Erasing Device Flash
[INFO] Device Flash erase: Success
[INFO] Device Flash erase: Success
[INFO] Programming CM0p and CM4 images
[INFO] Drogramming file "cm0p.1_2.8.hex"
[INFO] This might take up to a minute, please wait...
[INFO] OM0p finware flash: Success
[INFO] Drogramming file "cm4_quick-iot-experience_1_3_1.hex"
[INFO] CM4 finware flash: Success
[INFO] Kit Programming Complete.

Press any key to continue . . . |
```

Figure 15 Kit programming complete

2.2.8 Device management

Manage your device (s) and their configurations in the device management tab. To view the details of a particular device, click on the expand icon are next to the **Created date** to view the respective device details.

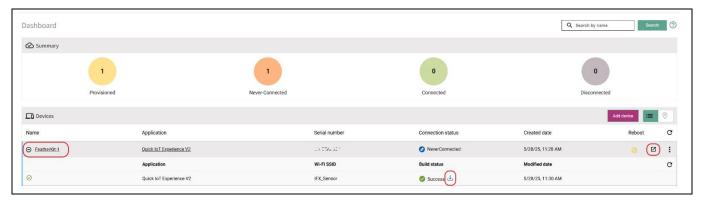


Figure 16 Device connection status

2.2.9 Select desired application

- To select the desired application for your connected Infineon sensor wing board (in this case, XENSIV™ BGT60UTR11AIP), go to the **Attributes** tab in the device details
- Click on the dropdown menu for **Sensors** and select "**XENSIV BGT60UTR11AIP**"
- After you select the application, the attributes will be pushed to the device, and it will reboot to the desired application

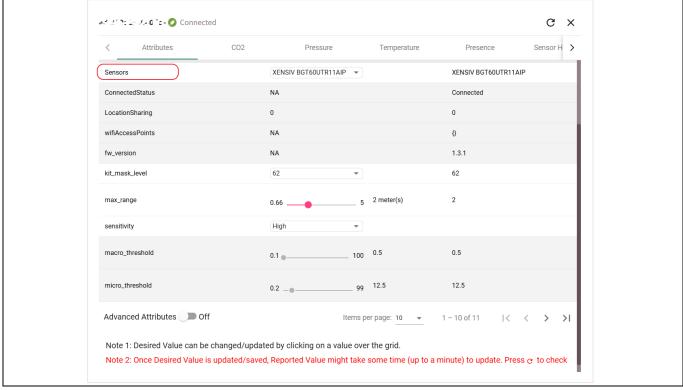


Figure 17 Attributes tab for connected device

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

2 System and functional description

Note:

Selecting a new application can cause the connectivity to temporarily disconnect and reconnect from the Rapid IoT Connect Cloud Platform.

2.2.10 Selected application attributes

- To view all attributes on one page, click on the **Items per page** dropdown menu at the bottom of the **Attributes** tab and adjust the number of items accordingly
- For the Presence Detection use case, see the list of attributes as shown in Table 3

Presence detection application attributes Table 3

Attribute	Description
kit_mask_level	Disable logs, enable minimal logs or full logs to cloud
	60: WARN, MINOR, MAJOR, FATAL all to UART terminal
	62: INFO, WARN, MINOR, MAJOR, FATAL all to UART terminal
	124: WARN, MINOR, MAJOR, FATAL all to Cloud UI as well as UART terminal
max_range	0.66 – 5.0
	Maximum detectable range for presence in meters
	Default is 2.0
sensitivity	High:
	macro_threshold: 0.5, micro_threshold: 12.5
	Medium:
	macro_threshold: 1.0, micro_threshold: 25.0
	Low:
	macro_threshold: 2.0, micro_threshold: 50.0
	Adjust the macro and micro threshold parameters to achieve different level of sensitivity. The higher the threshold, the lower the sensitivity
	Default is High
macro_threshold	0.1 – 100.0
	Threshold value used in macro-movement detection. After changing this value, the sensitivity would be customized. The higher the threshold, the lower the sensitivity
	Default is 0.5
micro_threshold	0.2 – 99.0
	Threshold value used in micro-movement detection. After changing this value, the
	sensitivity would be customized. The higher the threshold, the lower the sensitivity
	Default is 12.5

View sensor data 2.2.11

- To view your sensor data on the cloud, click on the desired tab at the top of the device details window
- By default, your application will be set to Thermistor. Click on the **Presence** tab to view the data represented as a graph for easy viewing. You can also download the raw data in .CSV format by clicking the **Download** button in the top-right corner

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

2 System and functional description

Note:

As a standard user, your data is retained for 14 days. After this period, the data will no longer be available for retrieval. If you require a longer data retention period, contact Infineon Support to discuss upgrading your account.

Figure 18 Presence detection data visualization

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

2 System and functional description

2.3 Code examples in ModusToolbox™

The XENSIV™ BGT60UTR11AIP CSK offers seamless integration with ModusToolbox™, with complete application code examples and sensor drivers for faster go-to-market.

2.3.1 PSOC™ 6 MCU: XENSIV™ 60 GHz radar presence detection

This code example (mtb-example-ce241611-xensiv-60ghz-radar-presence-detection) demonstrates Infineon's radar presence detection application to detect human presence within a configurable distance. Powered by the XENSIV[™] 60 GHz radar, this application provides extremely high accuracy in detecting both micro and macro motions. The ability to detect micro motion offers unique benefits over conventional technologies deployed to detect human presence, therefore, making it an ideal for user interaction with devices.

This code example is based on the xensiv-radar-presence library source code, which provides APIs that enable to utilize existing radar applications, such as presence detection, or build applications on top. It detects both macro and micro movements in a configurable range using the data acquired by XENSIV™ FMCW radar sensor. It also uses:

- The sensor-dsp library that provides signal processing functions for sensor applications. It uses the ModusToolbox™ Hardware Abstraction Library (HAL) interface
- The sensor-xensiv-bgt60trxx driver library to interface with the XENSIV™ BGT60TRxx 60 GHz FMCW radar sensors

2.3.2 PSOC™ 6 MCU: XENSIV™ 60 GHz radar static distance measurement

This code example (mtb-example-ce241721-xensiv-60ghz-static-distance) provides a ModusToolbox™ application for static distance measurement using Infineon's XENSIV™ 60 GHz radar. The application processes radar raw data to calculate the distance to a static target, leveraging zero-padding, range FFT, and coherent integration for high accuracy. The algorithm returns static distance to the strongest reflected target, i.e., the target with the highest radar cross-section (RCS) within the set range and field of view (FoV).

3 System design

This section introduces you to the various features of the XENSIV™ BGT60UTR11AIP Radar Wing board. Apart from the headers, all components are mounted on the top side of the Wing board, which has male headers facing downwards to either plug the board directly on the Rapid IoT baseboard or on top of another Wing board such as the Infineon XENSIV™ PAS CO2 Wing board.

Figure 19 and Table 4 provide a description of the components mounted on the XENSIV™ BGT60UTR11AIP Radar Wing board.

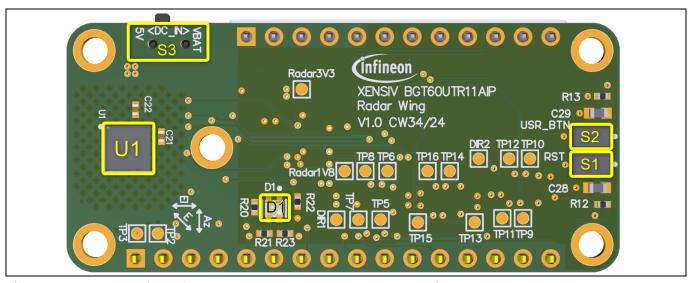


Figure 19 Front view of the XENSIV™ BGT60UTR11AIP Radar Wing board

Table 4 Onboard hardware

Ref designator	Function
U1	XENSIV™ BGT60UTR11AIP device
X1	80 MHz CMOS oscillator
D1	Tri-color LED
S1	System reset button; active LOW
S2	User button; active LOW
S 3	To select the board power supply from CYCBSYSKIT-DEV-01 Rapid IoT baseboard: USB5V or from LiPo battery supply of the kit
J1, J2	Adafruit headers

3.1 Schematics

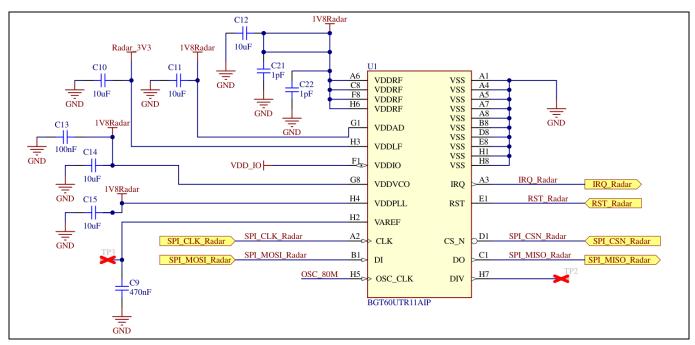


Figure 20 XENSIV™ BGT60UTR11AIP Radar MMIC schematic

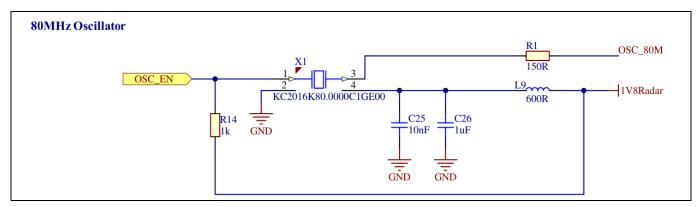


Figure 21 Oscillator circuit on the XENSIV™ BGT60UTR11AIP Wing board

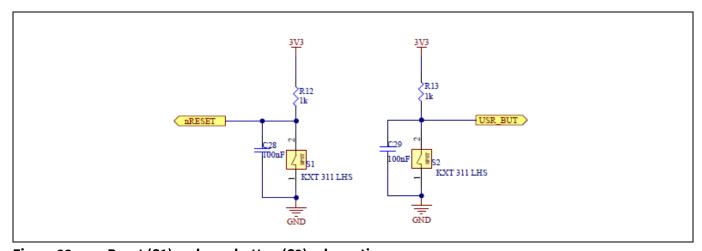


Figure 22 Reset (S1) and user button (S2) schematic

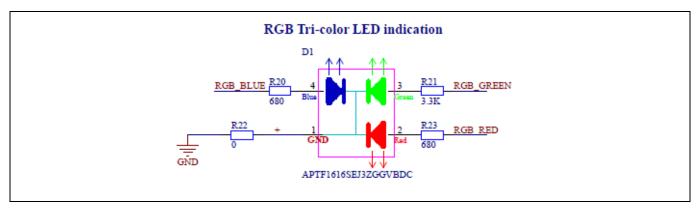


Figure 23 LED schematic

Figure 24 shows the board power selection schematic.

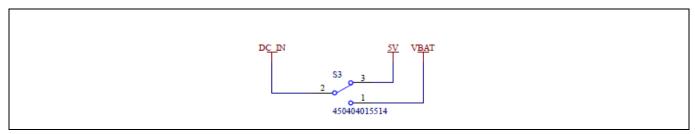


Figure 24 Board power selection (S3) schematic

Figure 25 shows the voltage regulator circuit to provide stable power supply to the radar sensor.

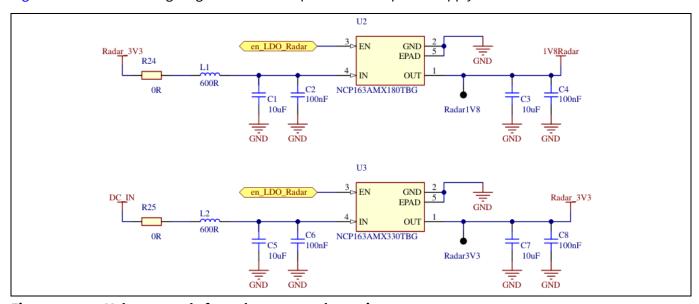


Figure 25 Voltage supply for radar sensor schematic

Figure 26 shows the pin assignment of J1 and J2 on the XENSIV™ BGT60UTR11AIP Radar Wing board. The Adafruit feather-compatible header is used to plug into the CYCBSYSKIT-DEV-01 Rapid IoT Connect Developer Kit.

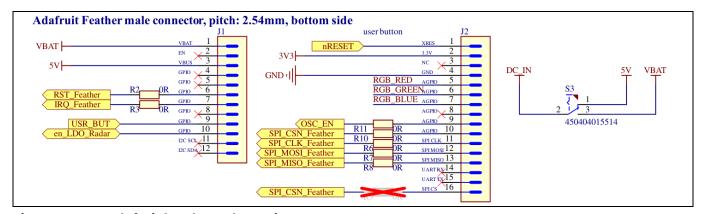


Figure 26 Adafruit headers schematic

3.2 Layout

The size of the XENSIV™ BGT60UTR11AIP Radar Wing board is 43 mm (L) x 23 mm (W), as shown in Figure 27.

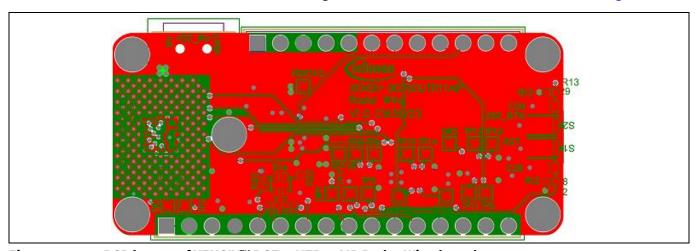


Figure 27 PCB layout of XENSIV™ BGT60UTR11AIP Radar Wing board

3.3 Bill of materials

Table 5 lists the bill of materials (BOM) of the XENSIV™ BGT60UTR11AIP Radar Wing board.

Table 5 BOM of the most important/critical parts of the evaluation

Ref designator	Description	Manufacturer	Manufacturer P/N	Footprint	Qty
C1, C3, C5, C7, C10, C11, C12, C14, C15	10 μF ±20% 6.3 V Ceramic Capacitor X6S 0402 (1005 Metric)	Murata	GRM155C80J106 ME11D	CAPC1005X70 N	9
C2, C4, C6, C8, C13, C30, C31, C32, C33, C34, C35	0.1 μF ±20% 10 V Ceramic Capacitor X5R 0201 (0603 Metric) 0.1 μF 10 V Ceramic Capacitor X7R 0201	Murata	GRM033R61A104 ME15D, GRM033Z71A104 KE14D	CAPC0603X33 N	11
C9	0.47 μF 10 V Ceramic Capacitor X6S 0201	Taiyo Yuden	LMK063BC6474K PLF	CAPC0603X39 N	1

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

3 System design

Ref designator	Description	Manufacturer	Manufacturer P/N	Footprint	Qty
C16, C18, C26	1 μF ±20% 6.3 V Ceramic Capacitor X7T 0201 (0603 Metric)	Murata	CAPC0603X35N	GRM033D70J1 05ME01D	3
C25	10000 pF ±10% 10 V Ceramic Capacitor X7R 0201 (0603 Metric)	Murata	CAPC0603X33N	GCM033R71A1 03KA03D	1
C28, 29	0.1 μF 6.3 V Ceramic Capacitor X7R 0603	KEMET	CAPC1608X87N	C0603C104K5R ACTU	2
-	Full-Color Surface Mount LED, 520nm, Green, Low power consumption	KINGBRIGHT	LED-SMD- APTF1616SEJ3Z GGVBDC	APTF1616SEJ3 ZGGVBDC	1
· · · · · ·		N.A	TP	TP SMD	18
J1 Header, 12-pin, pitch 2.54 mm, vertical, single row		Molex	HDRV12W64P25 4_1X12_3048X25 4X898B	TSW-112-07-L- S	1
J2	2 Header, 16-pin, pitch 2.54 mm, vertical, single row		HDRV16W64P25 4_1X16_4070X25 4X838B	TSW-116-07-L- S	1
L1, L2 Ferrite bead 600Ω at 100 MHz ferrite bead $0201 (0603$ metric) $250 \text{ mA } 850 \text{ m}\Omega$		Murata	INDC0603X33N	BLM03AX601S N1D	2
L9 Ferrite bead 600 Ω at 100 MHz signal line ferrite bead 0402 (1005 metric) 200 mA 850 mΩ		TDK	INDC1005X55N_ MMZ1005	MMZ1005B601 CT000	1
R1	Resistor SMD 150 Ω 1% 1/20 W 0201	Yageo	RESC0603X26N	AC0201FR- 07150RL	1
R2, R3, R4, R6, R7, R8, R10, R11, R22, R24, R25		TE Connectivity Passive Product	RESC1005X03N	CRG0402ZR	11
R12, R13	Resistor SMD 1 kΩ 5% 1/10 W 0402		RESC1005X40N	ERJ-2GEJ102X	2
R14, R18, R19	Resistor SMD 1 kΩ 1% 1/20 W 0201	Panasonic Electronic Components	RESC0603X26N	ERJ- 1GNF1001C	3

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

3 System design

Ref designator	Description	Manufacturer	Manufacturer P/N	Footprint	Qty
R16	Resistor SMD 0 Ω jumper 1/20 W 0201	Vishay Dale	RESC1005X03N	CRCW0201000 0Z0ED	1
R20, R23	Resistor SMD 680 Ω 5% 1/16 W 0402	Yageo	RESC1005X40N	CRCW0402680 RFK	2
R21	$3.3 \text{ k}\Omega \pm 1\% 0.1\text{W}, 1/10\text{W Chip}$ Resistor 0402 (1005 Metric)	Panasonic Electronic Components	RESC1005X40N	ERJ- 2RKF3301X	1
S1, S2	KXT 311 LHS, tactile switch SPST-NO 0.02 A 15 V, KXT3 Series ultra-low profile top actuated, 100 g, SPST Slide switch SPDT surface		SW-SMD- KXT311LHS	KXT311LHS	2
S3	Slide switch SPDT surface mount	Würth Elektronik	SW-SMD- 450404015514	450404015514	1
U1	60 GHz Radar Sensor with Antennas in Package	Infineon	BGT60UTR11AIP XUMA1	BGT60UTR11AI P	1
U2	LDO Regulator, Ultra-Low Noise, High PSRR, RF and Analog Circuits	ON Semi	ONSEMI-SMD- CASE 711AJ	NCP163AMX18 0TBG	1
U3	LDO Regulator Ultra-Low Noise, High PSRR, RF and Analog Circuits		ONSEMI-SMD- CASE 711AJ	NCP163AMX33 0TBG	1
U4	LDO Regulator, Ultra-Low Noise, High PSRR, RF and Analog Circuits		ONSEMI-SMD- CASE 711AJ	NCP163AMX12 0TBG	1
U5, U6, U7	Dual Bit, Dual Supply Voltage Level Translator and Transceiver	Nexperia USA Inc.	NXP-SMD- SOT833-1-1-V	74AVCH2T45G T	3
X1 Clock Oscillator, 80 MHz		Kyocera International Inc.	XTAL-SMD- KC2016K	KC2016K80.00 00C1GE00	1

3.4 Connector details

Figure 28 highlights the 28-pin Adafruit Feather-compatible headers. The function of the respective header pins is described in . The image also shows the test points which were used for testing the boards in the lab or production.

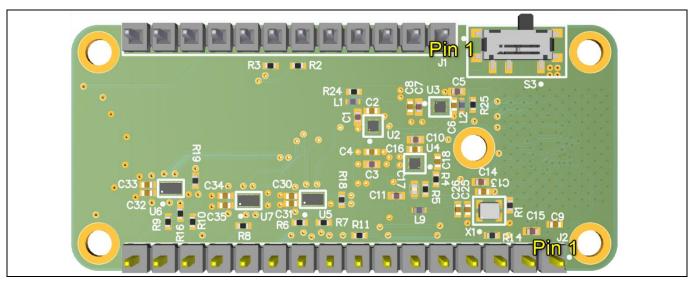


Figure 28 Adafruit headers and test points on bottom of the XENSIV™ BGT60UTR11AIP Radar Wing board

Table 6 Adafruit Feather-compatible pinout

Header mapping	Primary onboard function	PSOC™ 6 MCU pin (Rapid IoT baseboard)	Adafruit Feather- compatible mapping (Rapid IoT baseboard)	Adafruit Feather- compatible mapping (BGT60UTR11AIP Radar Wing board)	Details
J1.1	VBAT	_	_	VBAT	LiPo battery voltage
J1.2	EN	_	_	_	Not connected
J1.3	VBUS	_	_	5 V	USB power
J1.4	GPIO	P9_0	GPIO13	-	Not connected
J1.5	GPIO	P9_1	GPIO12	-	Not connected
J1.6	GPIO	P9_2	GPIO11	RST_Feather	RST
J1.7	GPIO	P9_3	GPIO10	IRQ_Feather	IRQ
J1.8	GPIO	P9_4	GPIO9	-	Not connected
J1.9	GPIO	P9_7	GPIO6	USR_BUT	User button
J1.10	GPIO	P8_4	GPIO5	en_LDO_Radar	Enable the LDOs (3.3 V and 1.8 V) on radar wing board for radar sensor
J1.11	I ² C SCL	P6_0	SCL	I2C_SCL_Feather	Connected to KitProg3. Note that this pin has a 4.7 kΩ pull-up for I ² C communication

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

3 System design

Header mapping	Primary onboard function	PSOC™ 6 MCU pin (Rapid IoT baseboard)	Adafruit Feather- compatible mapping (Rapid IoT baseboard)	Adafruit Feather- compatible mapping (BGT60UTR11AIP Radar Wing board)	Details
J1.12	I ² C SDA	P6_1	SDA	I2C_SDA_Feather	Connected to KitProg3. Note that this pin has a 4.7 kΩ pull-up for I ² C communication
J2.1	XRES	XRES	XRES	nRESET	Reset button
J2.2	3.3 V	VDDA, VDDIO	VCC	3V3	Analog voltage for PSOC™ 6 MCU
J2.3	NC	_	NC	_	Not connected
J2.4	GND	_	GND	GND	Ground
J2.5	Analog GPIO	P10_0	A0	RGB_RED	RGB red color
J2.6	Analog GPIO	P10_1	A1	RGB_GREEN	RGB green color
J2.7	Analog GPIO	P10_2	A2	RGB_BLUE	RGB blue color
J2.8	Analog GPIO	P10_3	A3	-	Not connected
J2.9	Analog GPIO	P10_4	A4	-	Not connected
J2.10	Analog GPIO	P10_5	A5	SPI_CSN_Feather	SPI Chip Select
J2.11	SPI Clock	P5_2	SCK	SPI_CLK_Feather	SPI clock
J2.12	SPI MOSI	P5_0	MOSI	SPI_MOSI_Feather	SPI Master Out/Slave IN (MOSI)
J2.13	SPI MISO	P5_1	MISO	SPI_MISO_Feather	SPI Master In/Slave OUT (MISO)
J2.14	UART RX	P6_4	RX	_	Not connected
J2.15	UART TX	P6_5	TX	_	Not connected
J2.16	SPICS	P5_3	GPIO	_	Not connected

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

References

References

- [1] Infineon Technologies AG. BGT60UTR11AIP MMIC datasheet; Available online
- [2] Infineon Technologies AG: Getting started with PSOC™ 6 MCU on ModusToolbox™ application note; Available online
- [3] Infineon Technologies AG: Code examples for ModusToolbox™; Available online
- [4] Infineon Technologies AG: AN155366: Electromagnetic band gap (EBG) structure application note; Available online

XENSIV[™] BGT60UTR11AIP Connected Sensor Kit

Glossary

Glossary

BSP

board support package (BSP)

CSK

connected sensor kit (CSK)

FMCW

frequency modulated continuous wave (FMCW)

FSM

finite state machine (FSM)

GPIO

general-purpose input/output (GPIO)

HW

hardware (HW)

I²C

inter-integrated circuit (I²C)

IoT

internet of things (IoT)

LED

light-emitting diode (LED)

PAS

photoacoustic spectroscopy (PAS)

PCB

printed circuit board (PCB)

SPI

serial peripheral interface (SPI)

UART

Universal asynchronous receiver transmitter (UART)

XENSIV™ BGT60UTR11AIP Connected Sensor Kit

Revision history

Revision history

Document revision	Date	Description of changes
1.00	2025-03-18	Initial release
1.10	2025-06-17	Added System and function description section
1.20	2025-07-21	Added Code examples in ModusToolbox™ section Updated Figure 6 and Figure 7

${\bf Trademarks}$

All referenced product or service names and trademarks are the property of their respective owners.

 $PSOC^{TM}$, formerly known as $PSoC^{TM}$, is a trademark of Infineon Technologies. Any references to $PSoC^{TM}$ in this document or others shall be deemed to refer to $PSOC^{TM}$.

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of such marks by Infineon is under license.

Edition 2025-07-21 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference UG143158

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.