


# **Current Sensor TLE4971**

# 50A three-phase measurement board



# **About this document**

- TLE4971 EVAL 50A board description (Three-Phase Current Sensor board)
- Thermal behavior
- High Voltage disclaimer and safety precaution

### **Scope and purpose**

Describing the setup and behavior of the three-phase evaluation board

#### **Intended audience**

Users who are intending to use magnetic current sensors for high voltage applications.

### **Table of contents**

| Abo | ut this documentut this document | <b>1</b> |
|-----|----------------------------------|----------|
| Tab | ole of contents                  |          |
| 1   | Introduction                     | 2        |
|     | Three Phase Evaluation Board     |          |
|     | Order Information                |          |
| 2   | Board description                | 3        |
|     | Layer Stack                      |          |
| 2.2 | Pin description                  |          |
| 3   | Thermal performance              | 6        |
|     | Thermal evaluation               |          |
| 4   | Disclaimer                       | 7        |



# 1 Introduction

### 1.1 Three Phase Evaluation Board

- The TLE4971 EVAL 50A board is a three-phase measurement board developed for design in support and evaluation purpose.
- To connect the senor PCB with the generic Infineon evaluation board (CUR SENSOR PROGRAMMER) a
  connector is installed on the measurement board.
- A detailed description of the generic programmer board and the interface GUI is described in the "Programmer User Manual" Application note.
- Using this link you may find the software package for the related XENSIV™ TLx4971 TLE4972 Current Sensor Programmer interfacing the Three Phase Evaluation Board: https://softwaretools.infineon.com/tools/com.ifx.tb.tool.xensivcurrentsensorevaluationsoftware
- Please be also aware further technical data to this board is available on <a href="www.infineon.com">www.infineon.com</a> in section "myInfineon". Please register your new Three Phase Evaluation Board!

### 1.2 Order Information

#### **Table 1 Order Information**

| Producte Name        | Description                                  | Order ing Number |
|----------------------|----------------------------------------------|------------------|
| TLE4971 EVAL 50A     | Three-Phase Current Sensor Measurement Board | SP006187479      |
| CUR SENSOR PROGRAMER | Generic Interface and Programmer Board       | SP004441438      |



# 2 Board description

- The TLE4971 EVAL 50A is a three-phase current sensor board equipped with TLE4971 current sensor.
- The current rail distance to secondary voltage is 4.2 mm and does not meet the full potential of the 8.2mm clearance/creepage distance of the DSO-16 package between the high voltage current rails and the low voltage signal pins. In the testing please be aware only high voltage according to the board-layout (4.2mm) may be applied!
- The PCB is equipped with an EEPROM in order to store for each board individual settings and ID.
- A connector is installed to supply and interface the sensor.



Figure 1 TLE4971 EVAL 50A, three phase measurement board



# 2.1 Layer Stack

- The TLE4971 EVAL 50A board consist of four layer described in the below Figure 2.
- The two outer layer consists of 140μm metallization.
- The inner layer consists of 35μm metallization.
- Table 2 gives a detailed description of the board setup

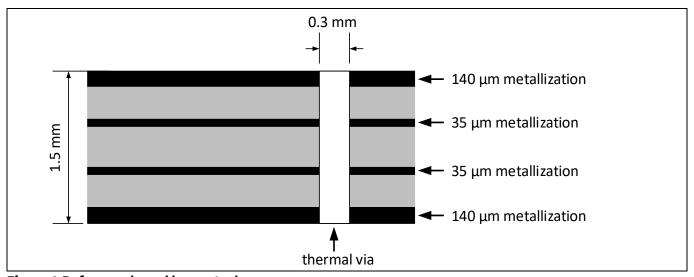



Figure 2 Reference board layer stack

Table 2 Single-phase reference board specification

| Position              | Description               |
|-----------------------|---------------------------|
| PCB Material          | FR4                       |
| Copper metallization  | 4 layers 140/35/35/140 μm |
| Thermal Vias          | Ø = 0.3 mm;               |
| Package Attach [50μm] | solder                    |
| Surface finish        | ENIG                      |



# 2.2 Pin description

Figure 3 shows the header detail of the measurement board.

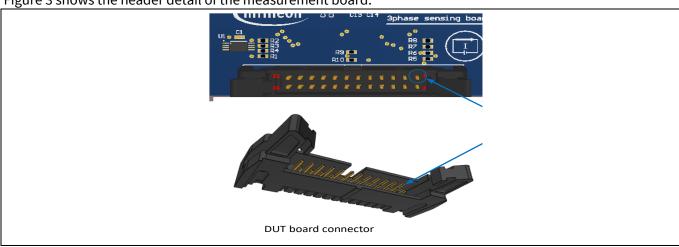



Figure 3 DUT board connector

Table 3 is describing the pin connector in detail.

## **Table 3 Measurement board Pin description**

| Table 3 Measurement board Pin description |                                                                                                                                                  |  |  |  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Symbol                                    | Function                                                                                                                                         |  |  |  |
| AOUT1                                     | Analog output Voltage U-Phase                                                                                                                    |  |  |  |
| OCD_A1                                    | Over Current Detection Channel 1, U-Phase (open drain)                                                                                           |  |  |  |
| VREF1                                     | Analog voltage at reference output; U-Phase                                                                                                      |  |  |  |
| OCD_B1                                    | Over Current Detection Channel 2, U-Phase (open drain)                                                                                           |  |  |  |
| AOUT2                                     | Analog output Voltage V-Phase                                                                                                                    |  |  |  |
| OCD_A2                                    | Over Current Detection Channel 1, V-Phase (open drain)                                                                                           |  |  |  |
| VREF2                                     | Analog voltage at reference output; V-Phase                                                                                                      |  |  |  |
| OCD_B2                                    | Over Current Detection Channel 2, V-Phase (open drain)                                                                                           |  |  |  |
| AOUT3                                     | Analog output Voltage W-Phase                                                                                                                    |  |  |  |
| OCD_A3                                    | Over Current Detection Channel 1, W-Phase (open drain)                                                                                           |  |  |  |
| VREF3                                     | Analog voltage at reference output; W-Phase                                                                                                      |  |  |  |
| OCD_B3                                    | Over Current Detection Channel 2, W-Phase (open drain)                                                                                           |  |  |  |
| AOUT_comp1                                | Reserve, Additional ADC input on CUR SENSOR PROGRAMMER P14_7                                                                                     |  |  |  |
| VSENS                                     | Sensor supply voltage                                                                                                                            |  |  |  |
| AOUT_comp2                                | Reserve, Additional ADC input on CUR SENSOR PROGRAMMER P14_9                                                                                     |  |  |  |
| V5                                        | 5V supply voltage                                                                                                                                |  |  |  |
| TRIG                                      | External trigger input (connected to μC XMC4700 P4_0 on the CUR SESNOR                                                                           |  |  |  |
|                                           | PROGRAMMER board)                                                                                                                                |  |  |  |
| V_IO                                      | For controller supply                                                                                                                            |  |  |  |
| SCL                                       | Clock for PCB-EEPROM communication                                                                                                               |  |  |  |
| GND                                       |                                                                                                                                                  |  |  |  |
| SDA                                       | Data link for PCB-EEPROM communication                                                                                                           |  |  |  |
| GND                                       |                                                                                                                                                  |  |  |  |
| -                                         |                                                                                                                                                  |  |  |  |
| V33                                       | 3.3V supply                                                                                                                                      |  |  |  |
|                                           | Symbol AOUT1 OCD_A1 VREF1 OCD_B1 AOUT2 OCD_A2 VREF2 OCD_B2 AOUT3 OCD_A3 VREF3 OCD_B3 AOUT_comp1 VSENS AOUT_comp2 V5 TRIG  V_IO SCL GND SDA GND - |  |  |  |



# 3 Thermal performance

### 3.1 Thermal evaluation

To evaluate the thermal behavior the reference board shown in figure 1 is a possible approach.

This three phase board is also the suggested reference board by Infineon for high current and high voltage applications since the clearance and creepage constraints is met by the design.

The inner layer are only connected to the current rail in the area where the thermal vias are placed.

Derived from the board characterization an equivalent circuit diagram describing the thermal behavior of the sensor respectively the sensor soldered on the reference board is available.

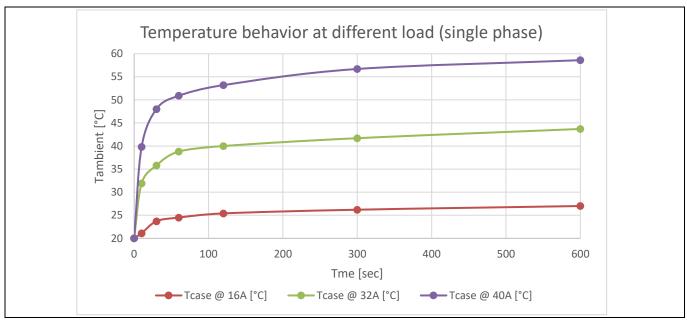



Figure 4 Heating curve



#### Disclaimer 4

#### Please read & understand the following safety precautions

The 3-Phase Sensing Board is a sample to be used by the customer solely for the purpose of evaluation and testing. See Legal Disclaimer and Warnings for further restrictions on Infineon Technologies warranty and liability.

# Safety precautions



#### **Attention:**

The customer assumes all responsibility and liability for its correct handling and/or use of the 3-Phase Sensor Board and undertakes to indemnify and hold Infineon Technologies harmless from any third party claim in connection with or arising out of the use and/or handling of the 3-Phase Sensor Board by the customer.



#### **Attention:**

Infineon do not provide any isolation to protect human live against high voltage on this sensor board. The responsibility is up to the user to install a proper isolation between the sensor board and the user interface. Failure to comply may result in personal injury or death.



#### Attention:

The design operates with unprotected high voltages. Therefore, only personnel familiar with power electronics high voltage applications and associated machinery should plan or implement the installation, start-up and subsequence maintenance of the senor board in a high voltage environment. Failure to comply may result in personal injury and/or equipment damage.



#### **Attention:**

The sensor on the 3-Phase Sensor Board may become hot during sensing operation. Hence, necessary precautions are required while handling the board, failure to comply may cause injury and / or equipment damage.



#### **Attention:**

A drive or load, incorrectly applied or installed, can result in component damage or reduction in production lifetime. Errors such as to high current or to high voltage or excessive ambient temperature may result in system malfunction.



#### **Attention:**

Sensing board using TLE4971 contains parts and assemblies sensitive to Electrostatic Discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing this assembly. Component damage may result if ESD control procedures are not followed.

#### Revision history

| Document version | Date of release | Description of changes                                                   |
|------------------|-----------------|--------------------------------------------------------------------------|
| V1.1             | 2025-07-16      | Update of SP-Number and renaming from Application Note to User<br>Manual |
| V1.0             | 2025-02-14      | Initial version                                                          |

#### Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-07-16
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference User Manual TLE4971 EVAL 50A

### IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

#### WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.