

Scope and purpose

Setup and evaluation of XP710 printed circuit board assembly (PCBA).

Intended audience

Test engineers.

Table of contents

Table	of contents	1
1	Introduction	2
2	Hardware and software requirements	2
3	XDP710 evaluation platform	3
3.1	Electrical specifications	3
3.2	Block diagram	3
3.3	XDP710 evaluation board schematics	5
3.4	XDP710 evaluation board layout	7
3.5	XDP710 evaluation board bill of materials	12
3.6	XDP710 evaluation board default settings	14
3.7	R _{sns}	16
3.8	FET board	16
3.8.1	Different FET footprint options on FET board	
3.9	USB007A dongle schematics	18
4	Programming, setup, and turn-on instructions	18
4.1	XDP Designer communication setup	
4.1.1	Check the dongle connection in XDP Designer	
4.1.2	Detecting XDP710-002	20
4.1.3	Reading and writing registers	22
4.1.4	Program FET	23
4.1.5	Program R _{sns}	24
4.1.6	Watchdog timer selection	24
4.1.7	Program current sense range (CS_RNG) and start-up current limit (IST)	25
4.1.8	Program VIN_UV_FAULT_LIMIT	25
4.1.9	Program VIN_OV_FAULT_LIMIT	26
4.1.10	Program VOUT_UV_FAULT_LIMIT	26
4.2	XDP710 programming under different modes	27
4.2.1	FDM	27
4.2.1.	(- /	27
4.2.1.2	2 FDM (ACM)	28
4.2.2	AADM	28
5	Loading configuration file	30
6	Hands-on	32
6.1	Example test: UV fault	32
6.2	Programming SOA, OTP, and MTP	33
Revis	ion history	35

1 Introduction

Infineon's XDP700 family (XDP700, XDP710) are highly integrated wide-input voltage system monitoring and protection devices, which are digitally configurable and use a PMBus communication interface to access their register map in order to configure all of their features. The USB007A series dongle is a PC-USB COM port to PMBus bridge dongle that allows access to the XDP710 registers from the PC software configurator. This user guide describes how to set up the evaluation board and configure the internal registers to evaluate the performance of XDP710-002 to limit inrush current (regulation on programmed FET SOA) during startup, telemetry and fault control.

2 Hardware and software requirements

The following hardware and software are required for the set-up:

- XDP710 evaluation board V 2.0
- XDP710 USB dongle USB007 or higher
- XDP Designer graphical user interface (GUI)

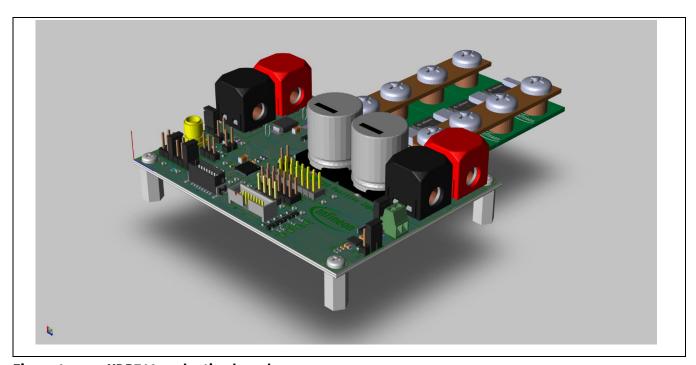


Figure 1 XDP710 evaluation board

Figure 2 USB007A1 dongle

XDP710 evaluation platform

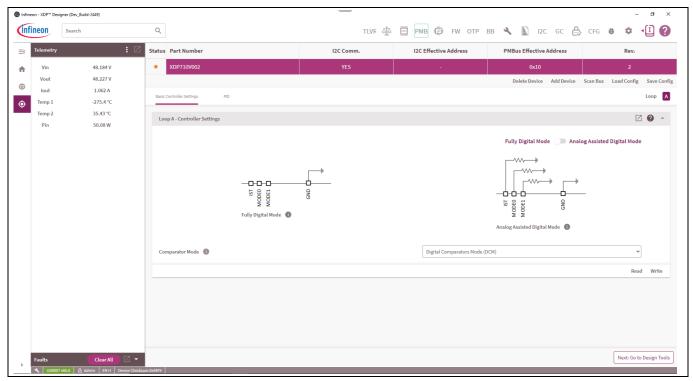


Figure 3 XDP Designer GUI

3 XDP710 evaluation platform

The following is a description of the XDP710 evaluation board.

3.1 Electrical specifications

- Input and output voltage range is 12 V DC to 80 V DC.
- The input current range is up to 50 A but can be varied by the number of paralleled MOSFET adapter boards. The MOSFET adapter boards can be removed and added to the evaluation board based on the required current level.

3.2 Block diagram

The XDP710 evaluation platform consists of:

- XDP710 evaluation board: Positive input hot-swap controller and e-fuse circuitry designed to run a single channel controller including its corresponding FET. Communication, control and protection circuitry is also included.
- USB007A1 dongle: Interface between the computer, which communicates via USB the commands sent by the XDP Designer GUI, and XDP710, which receives PMBus communication. The USB007A1 dongle translates from USB to PMBus, as well as enabling the XDP710.
- XDP Designer GUI: Software tool for XDP710 PMBus commands configuration and general control.

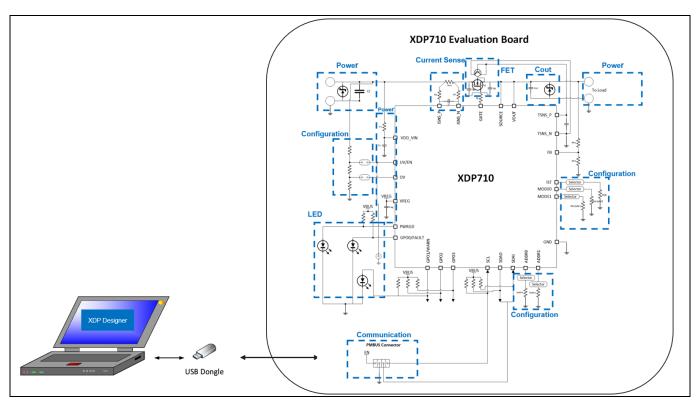


Figure 4 XDP710 evaluation platform block diagram

3.3 XDP710 evaluation board schematics

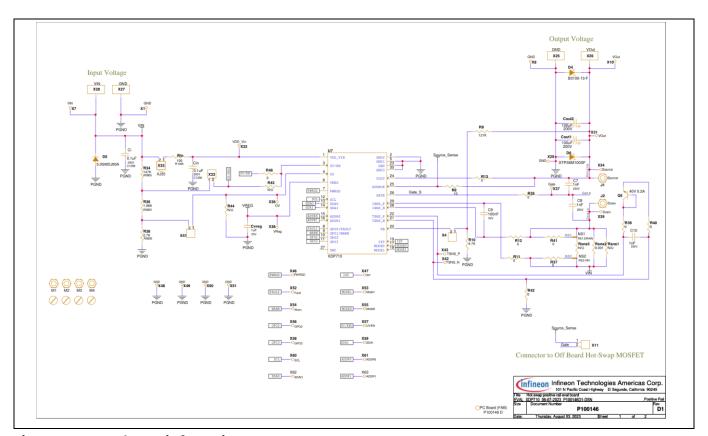


Figure 5 Schematic for main IC

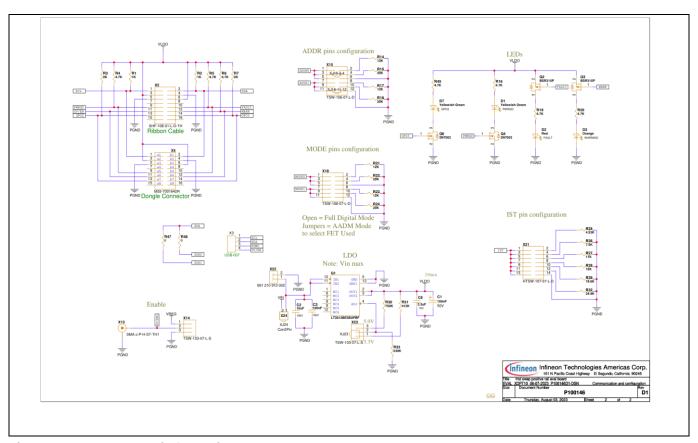


Figure 6 Schematic for main PCBA ports

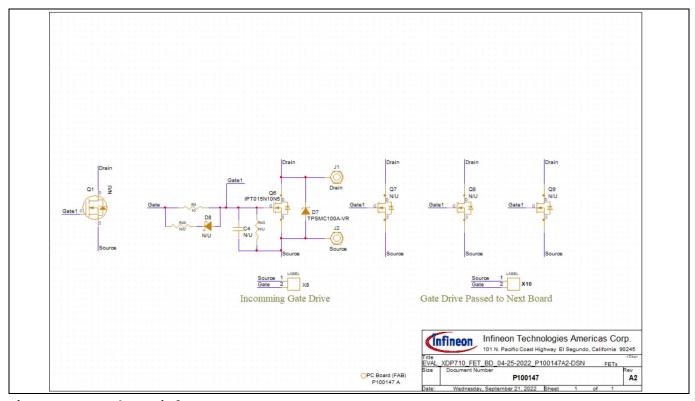
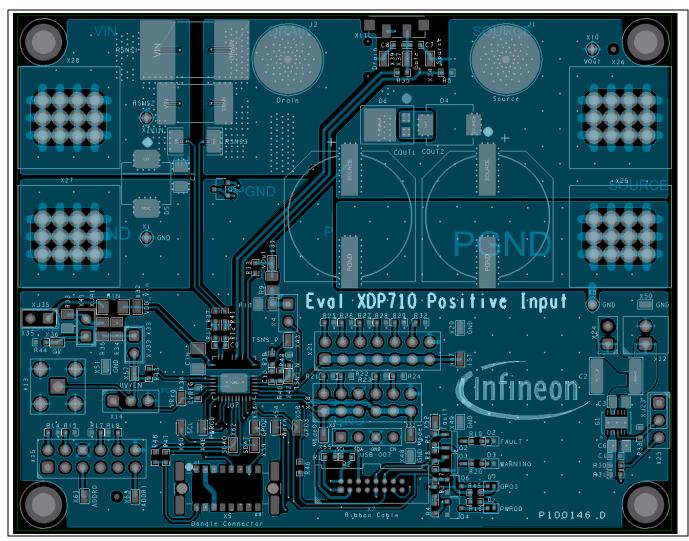



Figure 7 Schematic for MOSFET PCBA

XDP710 evaluation board layout 3.4

Top layer layout of main PCB Figure 8

infineon

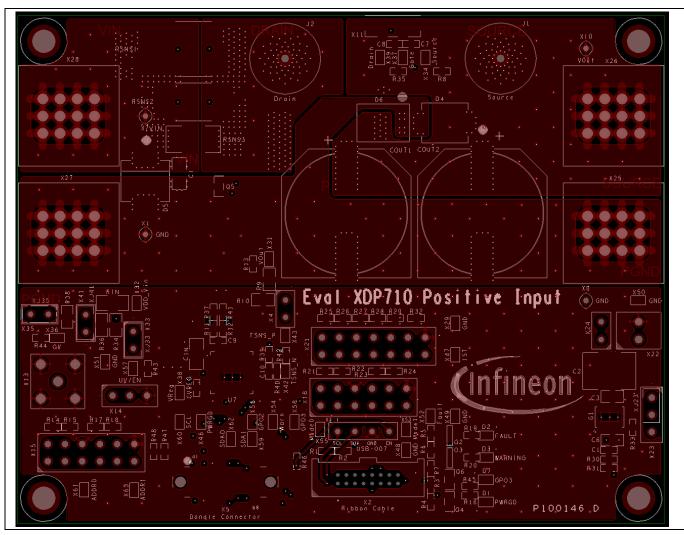


Figure 9 Mid 1 layer layout of main PCB

(infineon

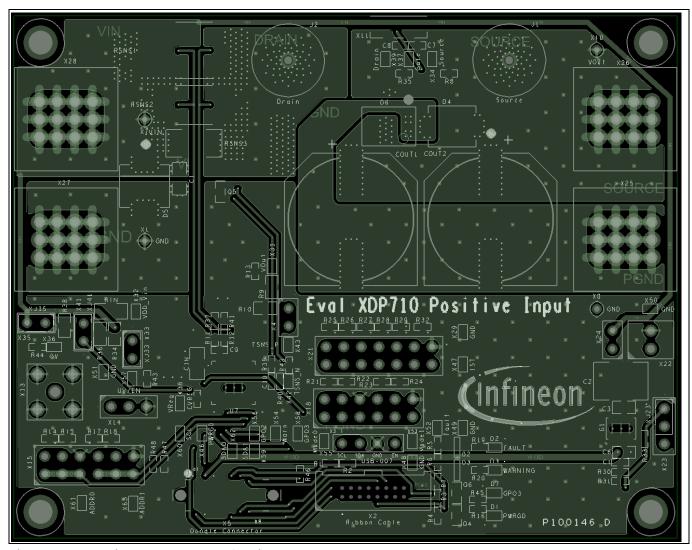
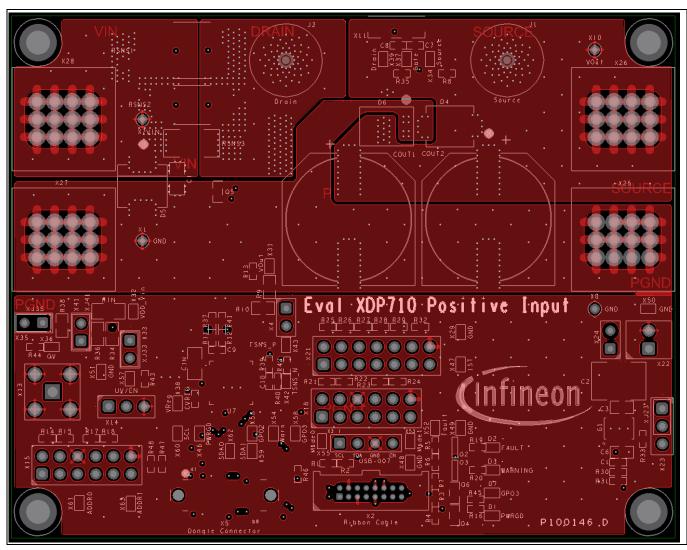



Figure 10 Mid 2 layer layout of main PCB

Bottom layer layout of main PCB Figure 11

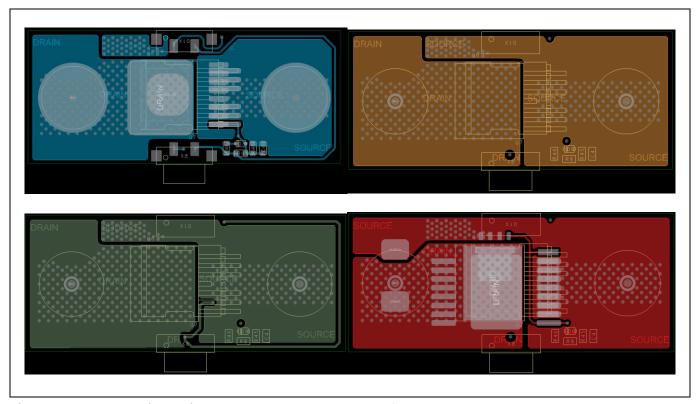
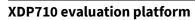



Figure 12 Top, Mid 1, Mid 2 and bottom layer layouts of MOSFET PCB

3.5 XDP710 evaluation board bill of materials

Table 1 Bill of materials (BOM) for the main PCBA

Item	Otv	Reference designator	Value	Characteristics	Manufacturer	Part number
1	2	Cin, Ci	0.1 μF	200 V X7R	Murata	GRM31CR72D104K
-	_		0.1 μι	200 7 7717	Marata	W03L
2	2	Cout1, Cout2	100 μF	200 V Elect.	Panasonic	EEVEB2D101M
3	1	Cvreg	1 μF	25 V X7R	Murata	GRM188R71E105K
		o o	'			A12
4	2	C1, C9	100 nF	50 V X7R	Murata	GRM188R71H104J
						A93
5	1	C2	10 μF	100 V X7S	TDK	C5750X7S2A106M
						230KB
6	1	C3	100 nF	100 V X7R	Kemet	C0805X104K1RAC
						TU
7	1	C6	3.3 μF	16 V X7R	Murata	GRM21BR71C335K
	_	a- a a a	<u> </u>	0-01/1/-5		A99
8	3	C7, C8, C10	1 nF	250 V X7R	Murata	GRM188R72E102K
	2	D1 D7	Vallaudala		Dahas	W07
9	2	D1, D7	Yellowish		Rohm	SML-P11MTT86R
10	1	D2	green Red		Semiconductors Rohm	SML-P11UTT86R
10	1	DZ	Reu		Semiconductors	SML-PIIUTTOOK
11	1	D3	Orange		Rohm	SML-P11DTT86R
11	_		Orange		Semiconductors	SME I IIDI I IOOK
12	1	D4	B3100-13-		Diodes	B3100-13-F
	_		F		Incorporated	
13	1	D5	5.0SMDJ9		Bourns	5.0SMDJ90A
			0A			
14	1	D6	STPS6M10		STMicroelectronics	STPS6M100SF
			0SF			
15	1	G1	LT3012BE		Analog Devices	LT3012BEDE#PBF
			DE#PBF			
16	2	J1, J2	SO-M5		Würth Elektronik	7466105R
17	4	M1, M2, M3, M4	MTG		Keystone	2203
			_Standoff			
18	4	M5, M6, M7, M8	Screw		Keystone	9900
			PHMS 4-40			
10	2	02.02	x 1/4 BSR315P		lustina a a ra	DCD21ED
19	2	Q2, Q3			Infineon	BSR315P
20	2	Q4, Q6	2N7002		Infineon	2N7002
21	1	Q5	40 V 0.2 A	10/	Nexperia	MMBT3904,215
22	1	Rin	100	1%	Panasonic	ERJ-8ENF1000V
23	1	Rsns1	N/A	9 W 1%	Bourns	Not used
24	1	Rsns2	0.001	8 W 1%	Bourns	CSS2H-3920R-
		B 2	N1 / A	CW40/		1L00F
25	1	Rsns3	N/A	6 W 1%	Bourns	Not used

Item	Qty	Reference designator	Value	Characteristics	Manufacturer	Part number
26	2	R1, R2	1k	1%	Panasonic	ERJ-3EKF1001V
27	2	R3, R7	2k	1%	Panasonic	ERJ-3EKF2001V
28	7	R4, R5, R6, R16, R19, R20, R45	4.7k	1%	Panasonic	ERJ-3EKF4701V
29	1	R8	10	1%	Panasonic	ERJ-3EKF10R0V
30	1	R9	121k	1%	Vishay	CRCW0805121KFK
31	1	R10	4.71k	1%	Yageo	RC0603FR-074K7L
32	12	R11, R12, R13, R35, R37, R39, R40, R41, R42, R46, R47, R48	0	1%	Panasonic	ERJ-3GEY0R00V
33	4	R14, R17, R21, R23	12k	1%	Panasonic	ERJ-3EKF1202V
34	4	R15, R18, R22, R24	20k	1%	Panasonic	ERJ-3EKF2002V
35	1	R25	4.53k	1%	Panasonic	ERJ-3EKF4531V
36	1	R26	7.5k	1%	Panasonic	ERJ-3EKF7501V
37	1	R27	11k	1%	Panasonic	ERJ-3EKF1102V
38	1	R28	15k	1%	Panasonic	ERJ-3EKF1502V
39	1	R29	19.6k	1%	Panasonic	ERJ-3EKF1962V
40	1	R30	750k	1%	Panasonic	ERJ-3EKF7503V
41	1	R31	412k	1%	Panasonic	ERJ-3EKF4123V
42	1	R32	24.9k	1%	Panasonic	ERJ-3EKF2492V
43	1	R33	249k	1%	Panasonic	ERJ-3EKF2493V
44	1	R34	147k	1%	Vishay	CRCW0805147KFK
45	1	R36	1.96k	1%	Vishay	CRCW08051K96FK
46	1	R38	2.7k	1%	Vishay	CRCW08052K70FK
47	1	R43	N/A	1%		Not used
48	1	R44	N/A	1%		Not used
49	1	U7	XDP710- 002		Infineon Technologies	XDP710
50	4	XJ23, XJ33, XJ35, XJ41	CON2_Ju mper		Sullins	SPC02SYAN
51	4	X1, X7, X8, X10	Loop		Keystone	5020
52	1	X2	SHF-108- 01-L-D-TH		Samtec	SHF-108-01-L-D- TH
53	1	Х3	Con4		Würth Elektronik	61300411121
54	5	X4, X24, X33, X35, X41	Con2Pin		Harwin	M20-9770246
55	1	X5	M55- 7001642R		Harwin	M55-7001642R
56	1	X11	SOC2		AVX	209159002101916
57	1	X13	SMA-J-P- H-ST-TH1		Samtec	SMA-J-P-H-ST- TH1
58	2	X14, X23	TSW-103- 07-L-S		Samtec	TSW-103-07-L-S
59	2	X15, X18	TSW-106- 07-L-D		Samtec	TSW-106-07-L-D

XDP710 evaluation platform

Item	Qty	Reference designator	Value	Characteristics	Manufacturer	Part number
60	1	X21	HTSW-		Samtec	HTSW-107-07-L-D
			107-07-L-			
			D			
61	1	X22	691 210		Würth Elektronik	6.91211E+11
			910 002			
62	2	X25, X27	Con1Pin-		Würth Elektronik	7464100
			BLK			
63	2	X26, X28	Con1Pin-		Würth Elektronik	7464000
			RED			
64	28	X29, X31, X32, X34, X36,	SMD loop		Harwin	S2761-46R
		X37, X38, X39, X42, X43,				
		X46, X47, X48, X49, X50,				
		X51, X52, X53, X54, X55,				
		X56, X57, X58, X59, X60,				
		X61, X62, X63				

Table 2 BOM for MOSFET PCBA

Item	Qty	Reference designator	Value	Voltage	Manufacturer	Part number
1	1	BRD1	PC board (FAB)			P100147 A
2	1	C4	N/A	X7R	Murata	Not used
3	1	D7	TPSMC100A-VR		Littelfuse	TPSMC100A-VR
4	1	D8	N/A			Not used
5	1	Q1	N/A	100 V 147 A	Infineon	Not used
6	1	Q6	IPT015N10N5	100 V 300 A	Infineon	IPT015N10N5ATMA1
7	1	Q7	N/A	100 V 300 A	Infineon	Not used
8	1	Q8	N/A	100 V 300 A	Infineon	Not used
9	1	Q9	N/A	100 V 354 A	Infineon	Not used
10	1	R8	10	1%	Panasonic	ERJ-3EKF10R0V
11	1	R45	N/A	1%		Not used
12	1	R46	N/A	1%		Not used
13	1	X8	PLUG2		AVX	109159002101916
14	1	X10	SOCK2		AVX	209159002101916

3.6 XDP710 evaluation board default settings

The jumpers can be found on the board as noted by Table 3.

Table 3 Jumper settings:

Reference designator	Default configuration	Usage
X4	Open	Shorted: Connects FB to voltage divider for over/undervoltage sensing.

XDP710 evaluation platform

		Open: This header can be left open for digital comparator mode (DCM)
X14	Open	Shorted 1 to 2: Connects UV/EN to VREG Shorted 2 to 3: Connects UV/EN to GND Open: UV/EN can be driven by SMA connector or dongle
X15	Between Pin 5 and 6 and in between Pins 11 and 12	ADDRx pins configuration to 0x10. Move the jumpers to change the PMBus address.
X18	Open	MODEx pins configuration. Leave them open for fully digital mode (FDM).
X21	Open	IST pin configuration
X23	Shorted 1 to 2	Shorted 1 to 2: VLDO = 3.3 V Shorted 2 to 3: VLDO = 5 V This header must not be left open
X24	Shorted	Shorted: LDO is supplied by VIN Open: LDO is supplied by external source connected to X22
X33	Open	Shorted: Connects UV/EN to voltage divider Open: UV/EN can be driven by SMA or dongle
X35	Shorted 1 to 2	Shorted: VDD_VIN is connected to input voltage Open: A current meter can be connected to this header
X40	Open	R _{sns} voltage drop sense
X41	Open	Shorted: Connects OV to voltage divider Open: This header can be left open for DCM

Table 4 Resistors and capacitors

Reference designator	Default configuration	Notes		
R8, R35	Check depending on FET	R8 = D ² PAK or TOLL R35 = SSO8		
C7, C8	DNF (remove if populated on board)	C _{gd} and C _{gs} of FET		
R37, R41, R12, R11	Check depending on sense resistor	Can be always populated: 0 Ω		
C9	DNF	R _{sns} filter		
R39, R40	Shorted 0 Ω	Temperature sensor filter		
C10 1 nF Temperature sensor filter		Temperature sensor filter		
R46	0 Ω	Populate: If EN is driven by dongle DNF: If EN is driven by header or SMA		
R43	DNF	Populate: If EN is driven by header or SMA DNF: If EN is driven by dongle		
Rin	100 Ω	Or lower depending on test slew rate requirements		
R30, R31, R33	820 k, 470 k, 270 k, respectively	LDO feedback voltage dividers		

The rest of the components are populated as specified in the schematic.

V 1.1

XDP710 evaluation platform

3.7 R_{sns}

Three different footprints are provided to support different resistor sizes. The current onboard resistor is 1 m Ω . There are optional footprints that are optimized for resistor packages on board:

R_{sns1}: 5930, 5931

R_{sns2}: 3920, 3921, 2818

R_{sns3}: 2512

3.8 FET board

The evaluation board comes with an option to parallel upto three FET boards to increase the current-carrying capability for testing heavy loads, and also shows the capability of driving multiple parallel N-channel MOSEFTs. Necessary heatsinking is provided via a copper bus bar but forced cooling is needed if operating at currents greater than 50 A.

3.8.1 Different FET footprint options on FET board

The FET footprint supports D²PAK, TOLL, and SS08 packages in the following positions:

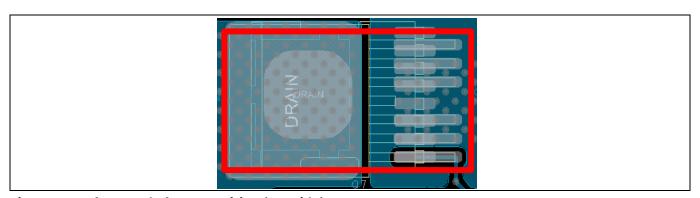


Figure 13 D²PAK and D²PAK7 position (top side)

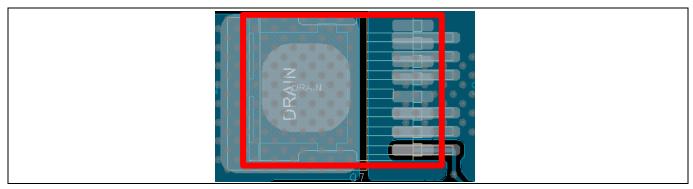


Figure 14 TOLL position (top side)

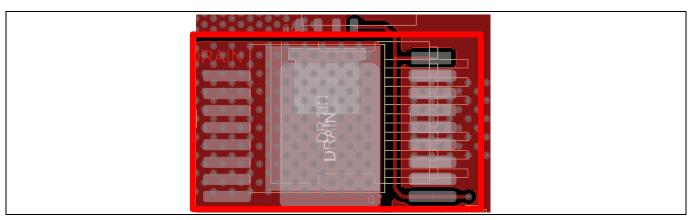
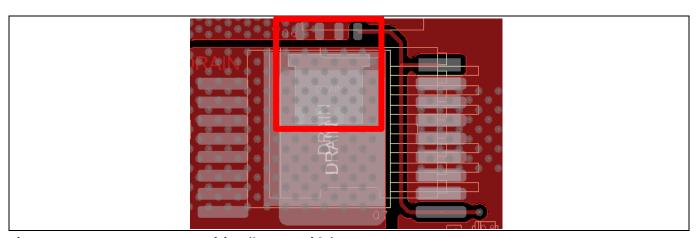



Figure 15 SS08 position (bottom side)

PG-TSON-8-3 position (bottom side) Figure 16

3.9 USB007A dongle schematics

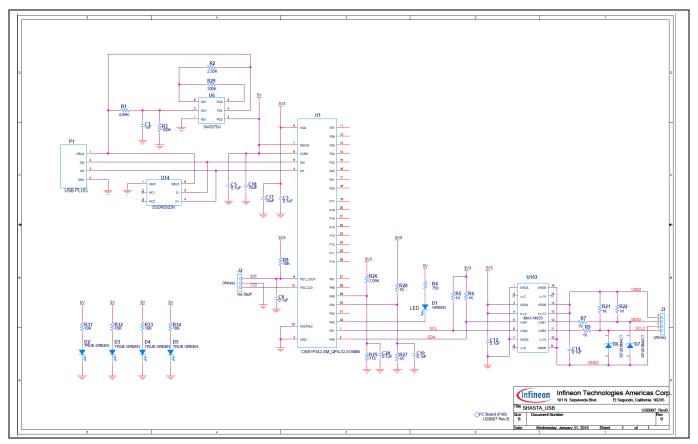


Figure 17 USB007A1 dongle schematics

4 Programming, setup, and turn-on instructions

In order to set up the system:

- Connect the USB007 dongle to the XDP710 evaluation board X3 as shown in Figure 18.
- Connect the USB007 dongle to a computer USB port.
- Make sure the jumpers are connected properly.
- Connect 48 V from VDD_VIN (X28 connector) to GND (X27) on the left side of the board.

XDP710 powers up as soon as VDD_VIN is equal to or greater than 5.5 V. At this point, communication and programming is possible, but the FET will still be off. To turn on the FET, a minimum of 9 V is required, then the following registers must be programmed at a minimum to turn on the device:

- FET select
- Rene

UV/EN is controlled by a dongle; it will hold the signal down until it is toggled manually or can be controlled by UV/EN1, which is controlled by the X14 header. It must be held low until the necessary registers are written. Only one signal should be used at time.

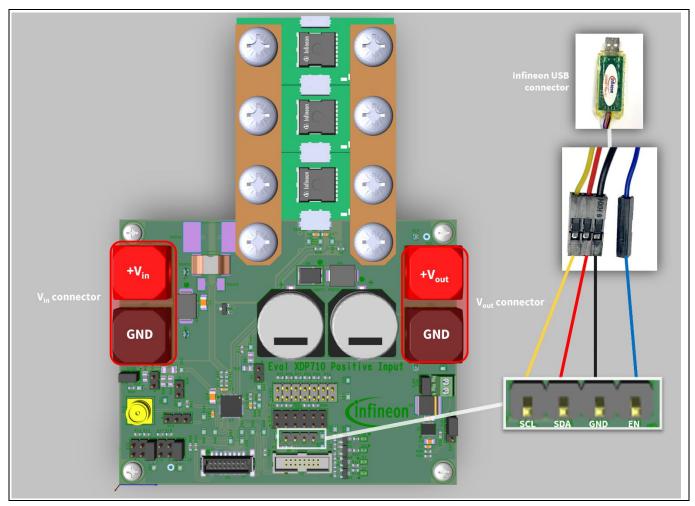
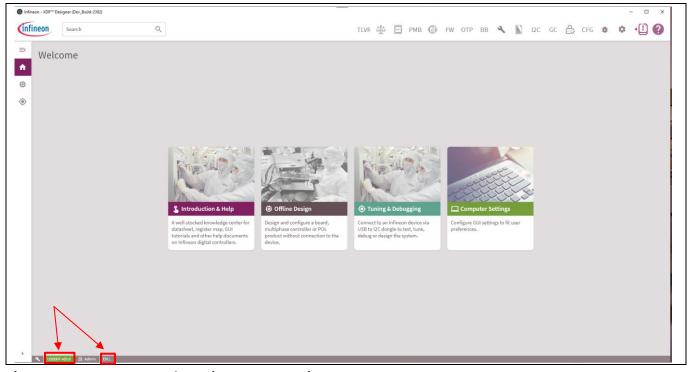


Figure 18 XDP710 evaluation board and dongle setup

4.1 XDP Designer communication setup


The following steps explain how to configure and test the evaluation board and dongle using the XDP Designer software.

4.1.1 Check the dongle connection in XDP Designer

Open XDP Designer GUI and then wait for few moments and check the bottom bar for the dongle connection. If the area highlighted in the red box in Figure 19 turns green and shows "USB007", then the dongle has been successfully detected by the GUI. Also make sure the enable signal is low (EN L); if not not then click on it to toggle to EN L from EN H.

Programming, setup, and turn-on instructions

USB007A1 detection on XDP Designer Figure 19

Detecting XDP710-002 4.1.2

Click on the button shown in the red box in Figure 20 and then wait for few seconds; the device should be detected by the GUI automatically. If the device is not detected on its own, then click on "Scan For Devices", as shown in Figure 21.

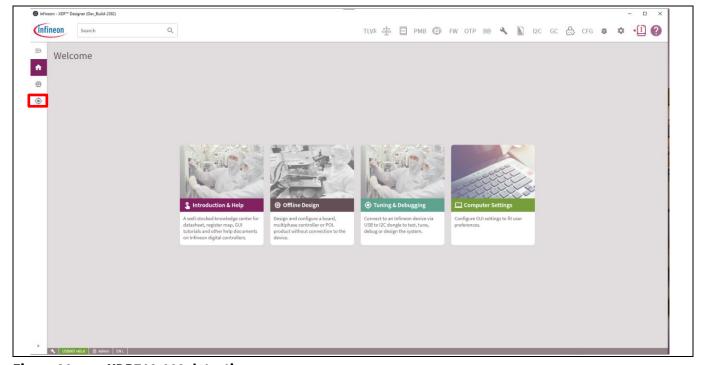


Figure 20 XDP710-002 detection

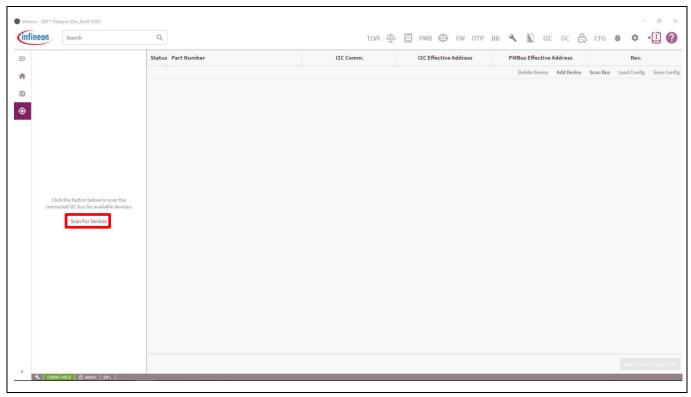


Figure 21 "Scan For Devices" to find XDP710-002

The detected device will be XDP710V002, with the telemetry displayed on the left side as shown in Figure 22.

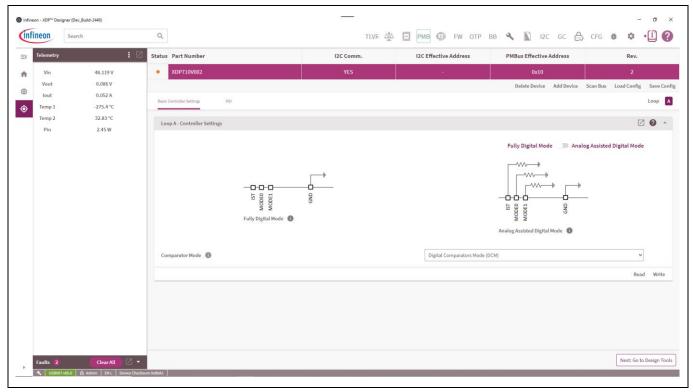


Figure 22 Live telemetry of connected XDP710-002

Programming, setup, and turn-on instructions

The register values currently stored on the device can be seen by clicking on the "PMB" button on the top to see all the PMBus registers and the stored values in it, as shown in Figure 23.

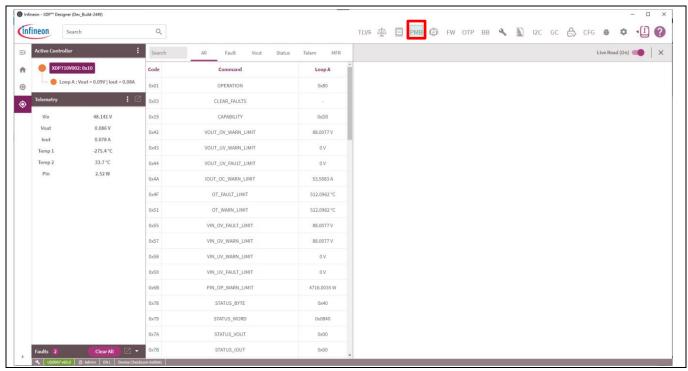


Figure 23 XDP Designer showing all the PMBus registers of connected XDP710-002

4.1.3 Reading and writing registers

For editing any register individually, click on the corresponding PMBus register, make the necessary changes and then click on "Write" at the bottom-right corner of the window, as shown in Figure 24.

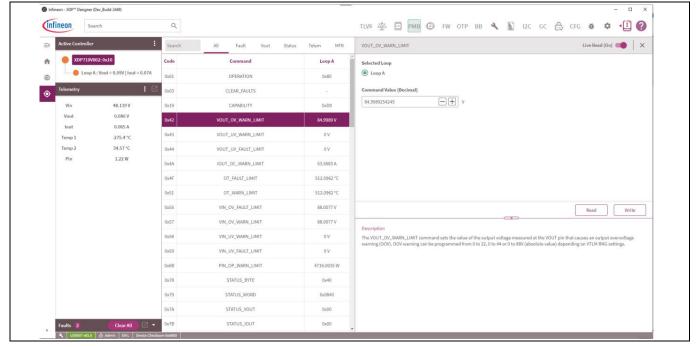


Figure 24 Editing VOUT_OV_WARN_LIMIT

V 1.1

Programming, setup, and turn-on instructions

Most of the registers are updated automatically, but to read the latest values click on "Read" to read the corresponding register, as shown in Figure 25.

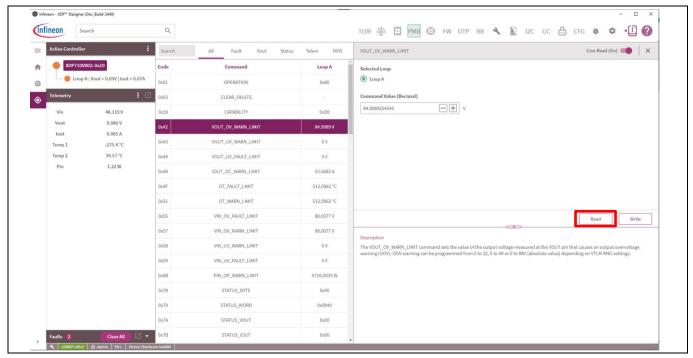


Figure 25 Reading VOUT_OV_WARN_LIMIT

4.1.4 Program FET

If using analog-assisted digital mode (AADM), the FET will be pre-programmed, and this step can be skipped. If using FDM, the FET must be programmed in the FET_SELECT bits of the MODE register (0xD1) according to the one populated on the board. The board has FET "IPT015N10N5" populated and to select this FET, the FET_SELECT bit should be modified to 0xA, then click on "Write", as shown in Figure 26.

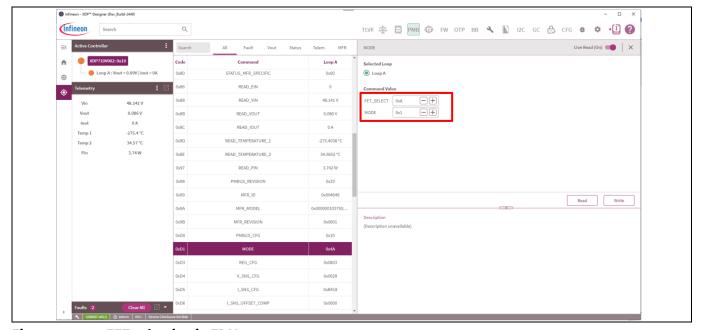


Figure 26 FET selection in FDM

4.1.5 Program R_{sns}

The sense resistor value must be programmed in the R_{sns} bits of the REG_CFG register according to the one populated on the board. The board has R_{sns} " $1m\Omega$ " populated and, to select this resistor, the R_{sns} bit should be modified to 0xD, then click on "Write", as shown in Figure 27.

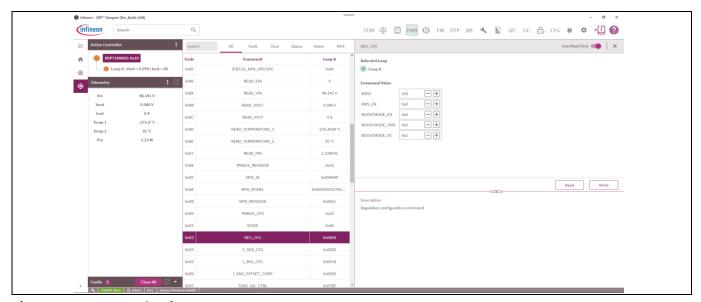


Figure 27 R_{sns} selection

4.1.6 Watchdog timer selection

The watchdog timer needs to be set higher than the turn on-time to ensure the watchdog timer doesn't expire before the turn-on, and should also not be set much longer than turn-on time to prevent damage to the FET in the event of short-circuit at turn-on. The watchdog can be left at the default value of 500 ms, as shown in Figure 28.

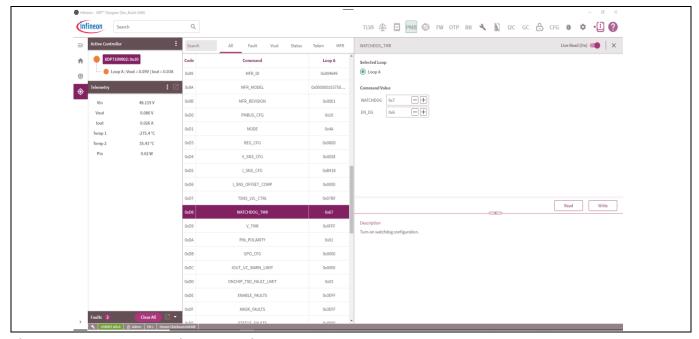


Figure 28 Watchdog timer selection

V 1.1

4.1.7 Program current sense range (CS_RNG) and start-up current limit (IST)

If using AADM, this step can be skipped, as the resistor on the IST pin selects the start-up current limit and current sense range. In FDM, program the desired current sense range and start-up current limit in the I_SNS_CFG register (0x59), as shown in Figure 29.

Note:

Do not set the current sense range as 100 mv with 1 m Ω sense resistor. The SOA regulation loop does not work when the (Current Sense Range/ $R(m\Omega)$) > 83.33 A

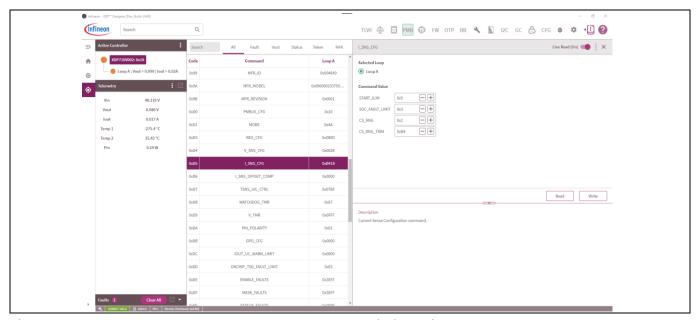
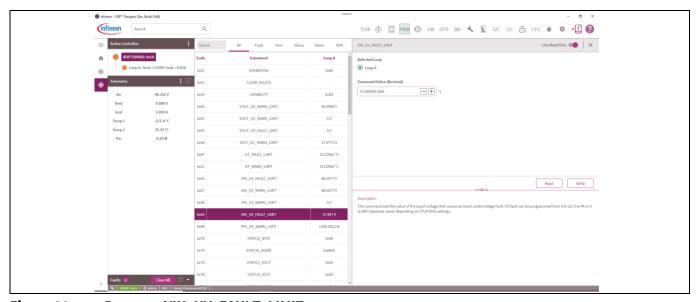



Figure 29 Current sense range and start-up current limit setting

4.1.8 Program VIN_UV_FAULT_LIMIT

If using AADM or ACM, this step can be skipped, as the input undervoltage (UV) fault limit is set by external resistors on the UV pin. In DCM, program the desired UV fault limit in the VIN_UV_FAULT_LIMIT register (0x59). If UV fault is not used, the register can be programmed to 0 V, or the fault can be disabled.

25

Figure 30 Program VIN_UV_FAULT_LIMIT

4.1.9 Program VIN_OV_FAULT_LIMIT

If using AADM or ACM, this step can be skipped, as the input overvoltage (OV) fault limit is set by external resistors on the OV pin. In DCM, program the desired OV fault limit in the VIN_OV_FAULT_LIMIT register (0x55). If OV fault is not used, the register can be programmed to 88 V, or the fault can be disabled.

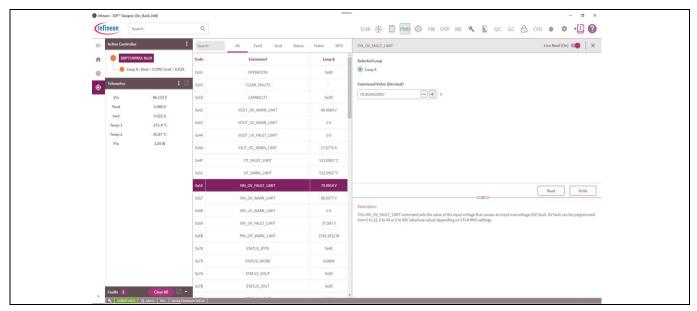


Figure 31 Program VIN_OV_FAULT_LIMIT

4.1.10 Program VOUT_UV_FAULT_LIMIT

If using AADM or ACM, this step can be skipped, as output UV fault limit is set by external resistors on the FB pin. In DCM, program the desired Output UV fault limit in the VOUT_UV_FAULT_LIMIT register (0x44). If UV fault is not used, the register can be programmed to 88 V, or the fault can be disabled.

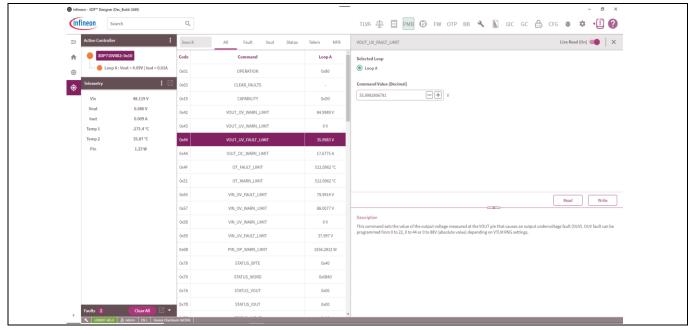


Figure 32 Program VOUT_UV_FAULT_LIMIT

Programming, setup, and turn-on instructions

4.2 XDP710 programming under different modes

There are two different modes in which the XDP710 can be operated, namely FDM and AADM. FDM has two selections: DCM and ACM. AADM or FDM can be selected based on the resistor connected on the Mode 0 and Mode 1 pins on the evaluation board. Based on the mode selected, different PMBus registers need to be configured.

4.2.1 **FDM**

FDM lets the user select the FET, start-up current limit and current sense range via PMBus registers. In DCM, the input and output voltage fault sensing are done via digital comparators and is based on the telemetry of the device, thus reducing the amount of analog circuitry needed while in ACM. External voltage dividers are needed on the UV, OV, and FB pins, and the voltage on the divider is compared with the internal threshold to detect the faults. Voltage warnings are still set internally. The following registers in the PMBus need to be programmed in FDM for both DCM and ACM:

- FET_SELECT: Refer to Section 4.1.4
- R_{sns}: Refer to Section 4.1.5
- Watchdog (optional): Refer to Section 4.1.6
- Current sense range (CS_RNG) and start-up current limit (IST): Refer to Section 4.1.7
- Telemetry enable
- Enabling warnings (if needed)
- Setting warnings (if needed)

4.2.1.1 FDM (DCM)

If the device is to be programmed using DCM, first DCM needs to be selected in register 0xD1, then modify Bit 7 to "1". Then the following register needs to be modified to detect the necessary faults if the corresponding fault bits are enabled in PMBus register (0xDE):

- VOUT_UV_FAULT_LIMIT (0x44): Refer to Section 4.1.10
- VIN_OV_FAULT_LIMIT (0x55): Refer to Section 4.1.9
- VIN_UV_FAULT_LIMIT (0x59): Refer to Section 4.1.8

In order to turn on the FET, toggle the enable signal to high on the GUI, as shown in Figure 33.

Programming, setup, and turn-on instructions

Figure 33 Enabling FET by toggling enable signal high

4.2.1.2 FDM (ACM)

If the device is to be programmed using ACM, first the ACM need to be selected in register 0xD1, then modify Bit 7 to "0". In this mode all the voltage faults are sensed using external resistors, so the following jumpers need to be placed on the evaluation board to detect necessary faults if the corresponding fault bits are enabled in the PMBus register (0xDE):

- VOUT_UV_FAULT_LIMIT (FB pin): Jumper is required on connector X4; the output UV fault limit can be modified by modifying R9 and R10.
- VIN_OV_FAULT_LIMIT (OV pin): Jumper is required on connector X41; the input OV fault limit can be modified by modifying R34, R36 and R38.
- VIN_UV_FAULT_LIMIT (UV pin): Jumper is required on connector X33. If UV_FAULT is disabled, then ensure that the UV pin gets the necessary enable signal voltage to turn on the FET.

4.2.2 AADM

AADM lets the user select the FET, start-up current limit and current sense range via external resistors connected on pins Mode 0, Mode 1, and IST. For the evaluation board, the settings are done as shown in Table 5.

Table 5 AADM selection resistors

Connector	Jumper position (resistor)	Function
X18 (mode pins)	Between 3 and 4 (Mode 0: 20 kΩ Selects the FET	
	(2.0 V))	"IPT015N10N5ATMA1"

Programming, setup, and turn-on instructions

Connector	Jumper position (resistor)	Function
	Between 9 and 10 (Mode 1: 20 kΩ (2.0 V))	
X21 (IST pins)	Between 7 and 8 recommended (IST: 15 k Ω (1.5 V))	25 mV current sense range is selected and 12.5 percent of overcurrent (OC) level is selected.

The following jumpers need to be placed on the evaluation board to detect necessary faults if the corresponding fault bits are enabled in PMBus register (0xDE):

- VOUT_UV_FAULT_LIMIT (FB pin): Jumper is required on connector X4; the output UV fault limit can be modified by modifying R9 and R10.
- VIN_OV_FAULT_LIMIT (OV pin): Jumper is required on connector X41; the input OV fault limit can be modified by modifying R34, R36, and R38.
- VIN_UV_FAULT_LIMIT (UV pin): Jumper is required on connector X33. If UV_FAULT is disabled, then ensure that the UV pin gets the necessary enable signal voltage to turn on the FET.

Modifying necessary PMBus registers for proper operation:

- R_{sns}: Refer to Section 4.1.5
- Watchdog: Refer to Section 4.1.6
- Telemetry enable
- Enabling warnings (if needed)
- Setting warnings (if needed)

Loading configuration file

5 Loading configuration file

This setion describes how the configuration file can be loaded directly into the device, eliminating the need to manually modify the required register. The configuration file can be loaded into the device as follows:

- Click on "Load Config", as shown in Figure 34.
- Click on "Browse" and then select the .txt file that needs to be loaded onto the device, as shown in Figure 35.
- Then click on "Load", and it will load the necessary configuration onto the device, as shown in Figure 36.

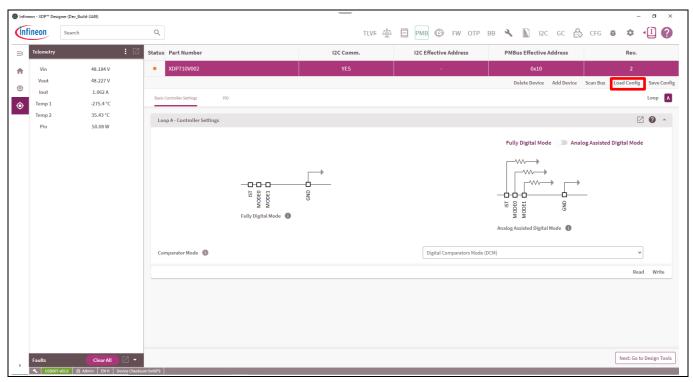


Figure 34 Select "Load Config" option

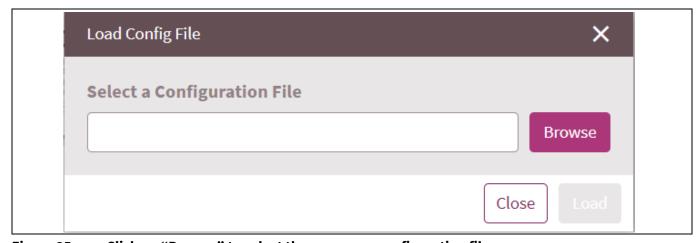


Figure 35 Click on "Browse" to select the necessary configuration file

Loading configuration file

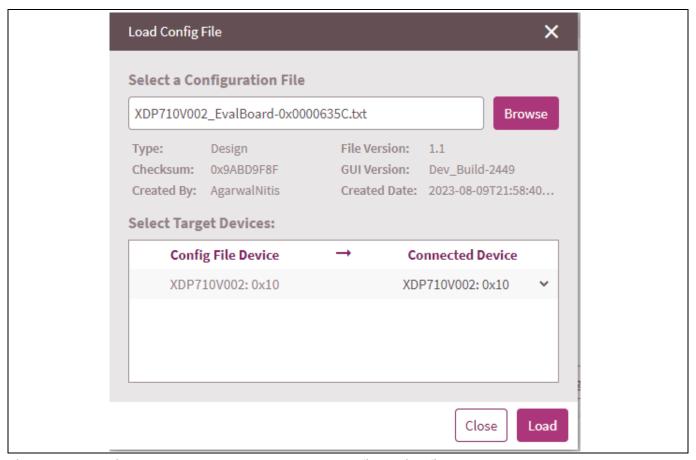


Figure 36 Click on "Load" to load the selected configuration file

An example configuration file in .txt format can be found on the XDP710 evaluation board page as "XDP710V002-EvalBoard-0x0000635C.txt". This configuration file is compatible with the evaluation board in the default configuration.

6 Hands-on

6.1 Example test: UV fault

- 1. Turn on XDP710 and FET as specified in the previous section for FDM (DCM).
- 2. Write 38 V to VIN_UV_FAULT_LIMIT register, as shown in Figure 37.

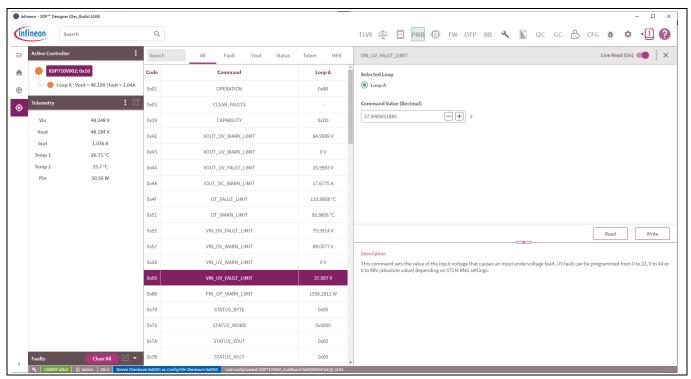


Figure 37 Write 38 V to VIN_UV_FAULT_LIMIT

3. Lower input voltage to ~34 V. At this point the FET must be turned off (the gate pin must go down to 0 V), PWRGD LED must be turned off and FAULT (red LED) must be turned on. Also, on the GUI under the "Faults" tab as shown in Figure 38 we can see "Input Undervoltage Fault", "Power Good Signal Negated" and "Unit is off".

Hands-on

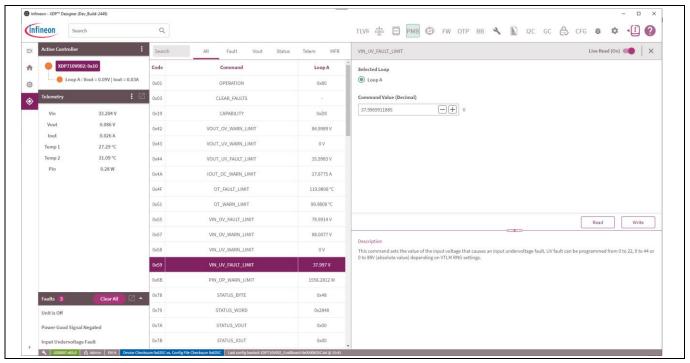


Figure 38 VIN_UV fault triggered

Set the input voltage back to 48 V. The fault must be cleared, the FET must be turned back on and the PWRGD LED must turn on again.

6.2 Programming SOA, OTP, and MTP

As specified in the XDP710 datasheet, to program the desired settings in internal commands or OTP at power-up, the following steps must be followed:

- Apply a voltage at the VDD_VIN and ISNS_P pin:
 - o At least 5.5 V to program commands
 - o At least 20 V to program OTP or MTP
- Keep the UV/EN pin at chip GND potential.
- Communication via PMBus is possible as soon as STANDBY state is entered. At this point, commands,
 OTP or MTP can be programmed.
- For a successful programming, the internal temperature of the device must stay below 125°C at all times.

To program OTP or MTP sections:

- 1. Program the commands in volatile memory as desired.
- 2. Click on the button highlighted in red in Figure 39.

Hands-on

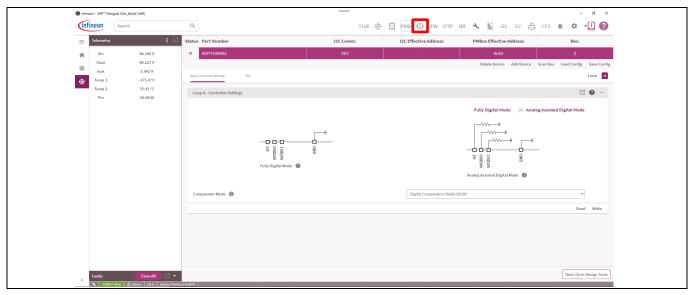


Figure 39 Programming tab

3. Set the program from "Registers", select the memory section that needs to be programmed and then click on "Program to OTP", as shown in Figure 40.

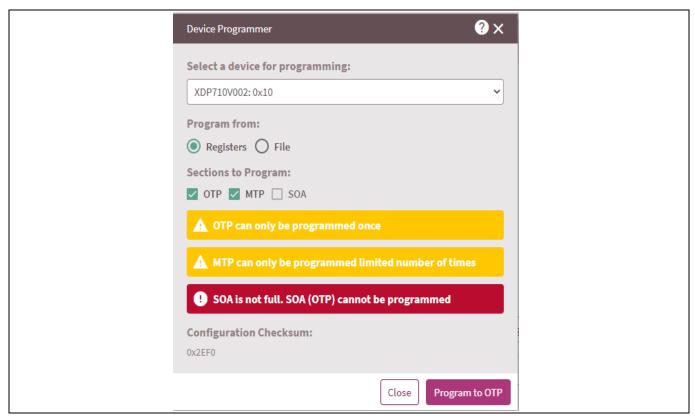


Figure 40 OTP and MTP programming

4. The command configuration will be automatically copied to the selected memory section.

Revision history

Revision history

Document version	Date of release	Description of changes
V 1.0	2023-08-11	Initial release
V 1.1	2023-11-30	Updated config file location, edited description

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-11-30 Published by Infineon Technologies AG 81726 München, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference UM_2307_PL88_2308_013018

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.