

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2

#### **About this document**

#### **Scope and purpose**

This document describes the use and operation of the EVAL\_10KW\_B6\_SIC400V Evaluation Kit. The evaluation kit is designed to evaluate and test the three-phase half-bridge (B6) topology.

The kit aims to provide engineers and researchers with a platform to experiment, validate, and optimize the B6 power conversion systems for different applications, such as solar, drives, and others with input DC bus voltage, ideally of 288–320 V DC depending on the desired margin.

#### Intended audience

This document is intended for design engineers, technicians, and developers of electronic systems.

#### CoolSiC™

Infineon's 400 V CoolSiC™ MOSFETs offer exceptional performance in switching behavior but also low conduction losses. These devices are designed to offer high efficiency and reliability, while maintaining low onstate resistance at low as well as high MOSFET junction temperatures. Its ability to turn off the device with zero gate bias makes the 400 V CoolSiC™ MOSFETs a true "normally-off" devices.

The CoolSiC<sup>™</sup> family supports but is not limited to applications such as:

- Energy Storage Systems
- Industrial drives
- Motor control and drives
- Renewables
- UPS

Leverage the expertise of Infineon's Ecosystem Partners to deliver robust and reliable solutions.

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2



#### **Important notice**

#### **Important notice**

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2



Safety precautions

#### **Safety precautions**

Note: Please note the following warnings regarding the hazards associated with development systems.

| Table 1 | Safety precautions |
|---------|--------------------|
|---------|--------------------|

| 7 |  |
|---|--|

**Warning:** The DC link potential of this board is up to 1000 VDC. When measuring voltage waveforms by oscilloscope, high voltage differential probes must be used. Failure to do so may result in personal injury or death.



**Warning**: The evaluation or reference board contains DC bus capacitors which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.



**Warning:** The evaluation or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.



**Warning:** Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.



**Caution:** The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.



**Caution:** Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.



**Caution:** The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.



**Caution:** A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.



**Caution:** The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.





## Table of contents

## **Table of contents**

| Abou  | rt this document                           | 1  |
|-------|--------------------------------------------|----|
| Impo  | ortant notice                              | 2  |
| Safet | ty precautions                             | 3  |
| Table | e of contents                              | 4  |
| 1     | Introduction                               | 5  |
| 2     | Hardware description                       | 6  |
| 3     | EVAL 10KW B6 SIC400V Evaluation Kit        | 7  |
| 3.1   | Power board                                |    |
| 3.1.1 | Headers and connectors                     | 8  |
| 3.1.2 | Board specifications                       | 8  |
| 3.1.3 | Heatsink                                   |    |
| 3.1.4 | Current feedback                           | 9  |
| 3.2   | Gate driver board                          | 10 |
| 3.2.1 | Current feedback                           | 11 |
| 3.3   | Capacitor board                            | 11 |
| 3.4   | XMC™ XMC4400 Drive Card                    | 12 |
| 4     | Schematics                                 | 13 |
| 4.1   | Power board                                | 13 |
| 4.2   | Gate driver board                          | 14 |
| 4.3   | Capacitor board                            | 17 |
| 5     | PCB layout                                 | 18 |
| 5.1   | Power board                                | 18 |
| 5.2   | Gate driver board                          | 19 |
| 5.3   | Capacitor board                            | 20 |
| 6     | Bill of materials                          | 22 |
| 6.1   | Power board                                | 22 |
| 6.2   | Gate driver board                          | 24 |
| 6.3   | Capacitor board                            | 34 |
| 7     | System performance                         | 35 |
| 7.1   | Power board turn-on and turn-off waveforms | 35 |
| 7.2   | Thermal tests                              | 36 |
| Refer | rences                                     | 37 |
| Revis | sion history                               | 38 |
|       | aimer                                      |    |

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2

#### Introduction

#### Introduction 1

EVAL\_10KW\_B6\_SIC400V Evaluation Kit uses a three-phase half-bridge, also known as a B6 topology, commonly used for driving motors. The EVAL\_10KW\_B6\_SIC400V Evaluation Kit design can be used to drive the three-phase alternating current induction motor (ACIM) or permanent magnet synchronous motor (PMSM) with power levels up to 10 kW and the ability to fine-tune the power level using Infineon's CoolSiC™ G2 400 V packages.

The EVAL\_10KW\_B6\_SIC400V Evaluation Kit design, as depicted in Figure 1, comprises three boards:

- Power board, which is implemented with an insulated metal substrate (IMS) PCB
- Capacitor board that keeps the circulating current within the inverter and prevents it from flowing back to the source
- Gate driver board

The capacitor board and the gate driver board are implemented on the FR4 PCB.

This design utilizes the following blocks:

- Power stage with CoolSiC<sup>™</sup> G2 IMT40R011M2H 11.3 mΩ, max/400 V MOSFET
- Galvanically isolated single-channel gate driver (4 A/3.5 A) EiceDRIVER™ 1EDI20H12AH
- Quasi-Resonant (QR) Flyback Controller ICE5QSAG
- QR Flyback MOSFET with CoolSiC™ IMBG120R350M1H
- High-speed self-oscillating half-bridge driver IC with 50% duty cycle − EiceDRIVER™ IR2085S
- N-channel small signal 30 V MOSFET in TSOP-6 package OptiMOS™ BSL302SN
- XMC<sup>™</sup> XMC1000/4000 microcontroller drive card interface

In this evaluation kit design example, a single MOSFET is implemented in B6 configuration. All components typically used for trimming performance are located on FR4-based modules, such as gate resistors, while the power stage is implemented on the IMS PCB due to its good thermal properties. Additional heatsinks are used to cool the power PCB and allow for longer continuous running time.

The following sections describe the individual functional blocks and their interconnections. The aim is to enable the user to utilize these components in a working setup and adapt the circuits as per their own requirements.

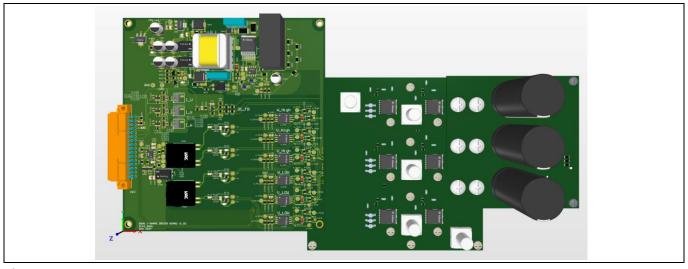



Figure 1 EVAL\_10KW\_B6\_SIC400V assembly

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2



**Hardware description** 

# 2 Hardware description

EVAL\_10KW\_B6\_SIC400V comprises the following hardware components:

- The power board is an IMS board mounted on top of an air-cooled aluminum heatsink
- The **gate driver board** provides the power management and interconnections to peripheral subsystems to functionally drive the half-bridges of the B6 power inverter
- The **capacitor board** facilitates the flow of reactive current within the inverter, preventing it from traveling back to the source
- XMC<sup>™</sup> XMC4400 Drive Card (KIT\_XMC4400\_DC\_V1) to provide the control signals

Figure 2 shows the building blocks from the top-level perspective.

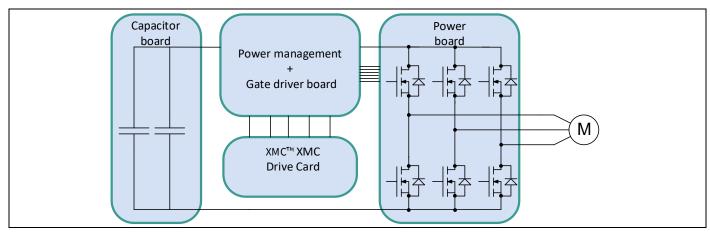



Figure 2 Top-level system overview

#### **Power board**

B6 topology on two-layer IMS board

#### **Gate driver board**

- High-voltage (HV) side:
  - Interconnection to power board
  - Quasi-resonant flyback for isolation
- Signal side:
  - Gate drivers (input signals from control board, outputs to power board)
  - Sensor signal processing (buffers and filters for current and temperature sensing)
- Supply modules:
  - QR flyback HV to 18 V
  - QR flyback HV to 5 V
  - Linear regulator (3.3 V)

#### **Capacitor board**

• Capacitor bank (electrolytic capacitors and ceramic capacitors)

#### **Control board**

• XMC<sup>™</sup> XMC4400 Drive Card

V 1.0

Three-phase half-bridge topology with 400 V CoolSiC™ G2

EVAL\_10KW\_B6\_SIC400V Evaluation Kit



## 3 EVAL\_10KW\_B6\_SIC400V Evaluation Kit

The following sections describe the EVAL\_10KW\_B6\_SIC400V Evaluation Kit highlighting its specifications, schematics, and layout.

#### 3.1 Power board

The power board comprises six IMT40R011M2H CoolSiC™ G2 MOSFETs (available in a TOLL package), which are mounted on two-layer IMS PCB. The layout has been optimized to mimic applications where the capacitor board can be placed on top of the IMS board. However, in that configuration, thermal cameras cannot be used to measure the temperature. The proposed solution was to design the IMS board in two layers, where the second layer is dedicated for a ground plane (return path). Additional bypass capacitors are also added to the power board for a better loop compensation.

Note:

It is recommended to desolder the ceramic capacitors on the capacitor board to prevent oscillations between the two boards.

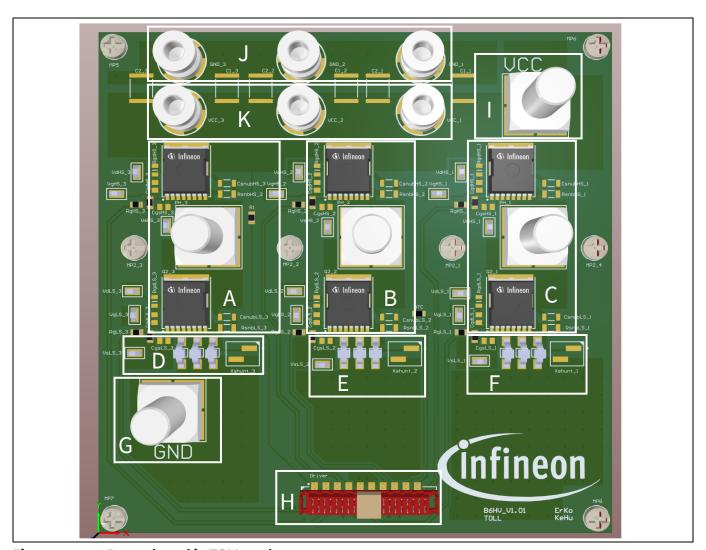



Figure 3 Power board in TOLL package

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2

# infineon

#### EVAL\_10KW\_B6\_SIC400V Evaluation Kit

- A: MOSFETs and connector for Phase W
- **B:** MOSFETs and connector for Phase V
- C: MOSFETs and connector for Phase U
- D: Jumper and current feedback for Phase W
- E: Jumper and current feedback for Phase V
- F: Jumper and current feedback for Phase U
- G: Input DC bus power supply connector ground
- **H:** Gate driver connector
- I: Input DC bus power supply connector positive
- J: Capacitor board connector ground
- K: Capacitor board connector positive

#### 3.1.1 Headers and connectors

Table 2 lists the headers and connectors of EVAL\_10KW\_B6\_SIC400V.

Table 2 EVAL\_400VSiC\_ANPC headers and connectors

| Name                    | Description                                | Comment                                      |
|-------------------------|--------------------------------------------|----------------------------------------------|
| VCC                     | Power connector – Input voltage positive   | Nominal: 288 V, Max: 320 V                   |
| GND                     | Power connector – Input voltage negative   | -                                            |
| VCC_1<br>VCC_2<br>VCC_3 | Power connector – Capacitor board positive | 3 x M5 x 6 mm lens head screw<br>RS 908-7693 |
| GND_1<br>GND_2<br>GND_3 | Power connector – Capacitor board negative | 3 x M5 x 6 mm lens head screw<br>RS 908-7693 |
| PH_3                    | Power connector - Phase W                  | Max: 40 Arms                                 |
| PH_2                    | Power connector - Phase V                  | Max: 40 Arms                                 |
| PH_1                    | Power connector - Phase U                  | Max: 40 Arms                                 |
| Xshunt_3                | Current sensor feedback connector Phase W  | 1x2 100 mil flat cable                       |
| Xshunt_2                | Current sensor feedback connector Phase V  | 1x2 100 mil flat cable                       |
| Xshunt_1                | Current sensor feedback connector Phase U  | 1x2 100 mil flat cable                       |

#### 3.1.2 Board specifications

The power boards use the Ventec VT-4B7 IMS type. Table 2 lists some of the main properties.

Table 3 IMS board details

| Description                                        | Dimension |
|----------------------------------------------------|-----------|
| Substrate thickness                                | 1.5 mm    |
| Dielectric thickness                               | 105 μm    |
| Copper thickness top and bottom each               | 35 μm     |
| Overall board thickness                            | 2 mm      |
| Dielectric specific thermal conductivity λ [W/m*K] | 7 W/(m*K) |

Three-phase half-bridge topology with 400 V CoolSiC™ G2



EVAL\_10KW\_B6\_SIC400V Evaluation Kit

#### 3.1.3 Heatsink

To extend the power range of the inverter, attach the IMS board (43 mm x 240 mm) to the heatsink via 13 M3 screws.

To prepare the threaded holes in the heatsink, consider the dimensions in Figure 4.

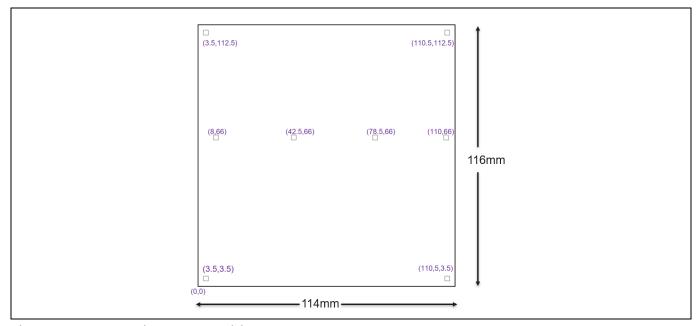



Figure 4 Heatsink screw positions

#### 3.1.4 Current feedback

The current feedback can be taken from all three phases by desoldering the jumpers and soldering the shunt resistors. The connectors next to resistors (Xshunt\_1, Xshunt2, and Xshunt\_3) are standard 100 mil surface mount headers and can be used to take the feedback to the gate driver board.

Pin1 (dotted) is the positive signal whereas Pin2 is ground. Figure 5 shows the current feedback block on the PCB.

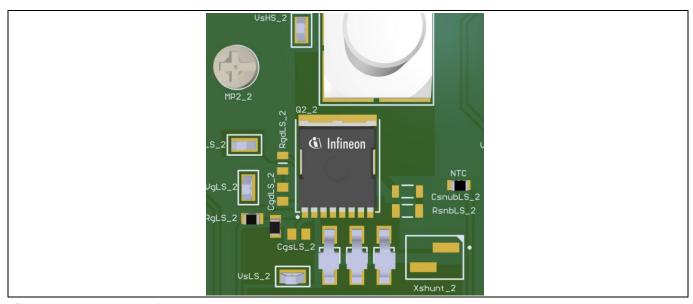



Figure 5 Current feedback

V 1.0

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2



EVAL\_10KW\_B6\_SIC400V Evaluation Kit

#### 3.2 Gate driver board

The gate driver board shown in Figure 6 is composed of several blocks:

- The QR flyback converter converts the high voltage to isolated 18 V and 5 V for logic level operations and gate driver supplies
- 6x1EDI20H12AH 1200 V single-channel gate driver IC with galvanic isolation
- Forward Converter stage for isolated voltage creation for gate drivers. This block creates four galvanically isolated 18 V; three of them are used for high-side MOSFETs and one of them is common for all low-side MOSFETs
- Current and voltage feedback amplification stage for phase current and supply voltage measurements
- Connection interface to XMC<sup>™</sup> XMC4400 Driver Card

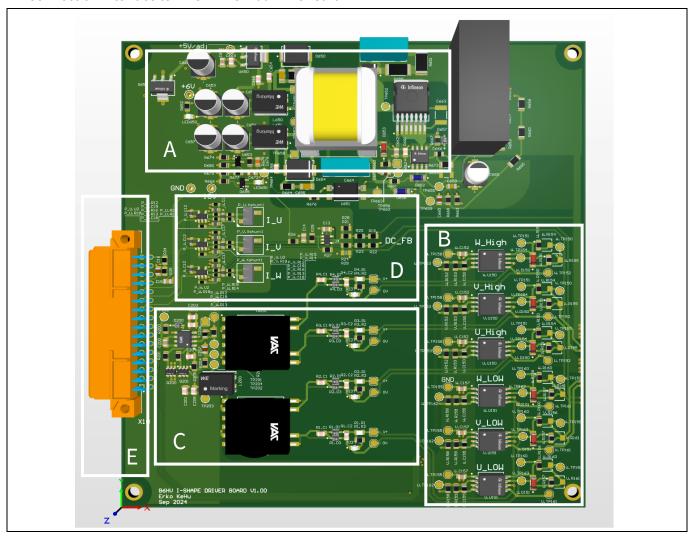



Figure 6 Gate driver board

- A: QR flyback converter
- B: Gate drivers
- **C:** Forward converter for isolated gate driver voltage creation
- D: Current and voltage feedback amplification stage
- E: XMC™ XMC4400 Drive Card interface

Three-phase half-bridge topology with 400 V CoolSiC™ G2





#### 3.2.1 Current feedback

Three-phase current feedback is taken from the power board connectors (Xshunt\_1, Xshunt\_2, and Xshunt\_3) through 1x2 flat cable and carried to the gate driver board. Pin1 (dotted) is positive feedback and Pin2 is ground for the current feedback.

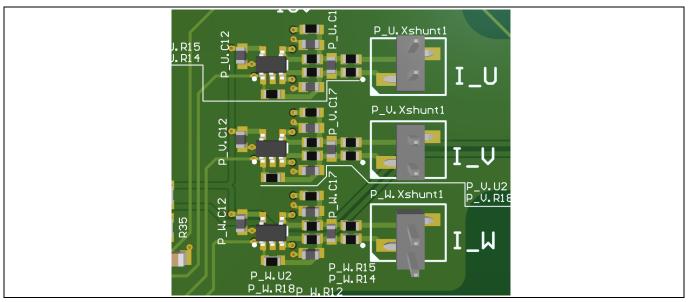



Figure 7 Current feedback

#### 3.3 Capacitor board

The capacitor board keeps the circulating current within the inverter and prevents it from flowing back to the source. The bypass capacitors control the overshoot during switching transitions. The board is mechanically fastened the to the power board with six standard M5 x 6 mm screws. These RS 908-7693 screws are recommended to connect the power board and the capacitor board.



Figure 8 Capacitor board

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2



EVAL\_10KW\_B6\_SIC400V Evaluation Kit

#### 3.4 XMC<sup>™</sup> XMC4400 Drive Card

XMC<sup>™</sup> XMC4400 Drive Card (KIT\_XMC4400\_DC\_V1) control card is intended to interface the power board. The X4 connector in the power board is connected to X302 (MAB32B2) on XMC<sup>™</sup> XMC4400 Drive Card.

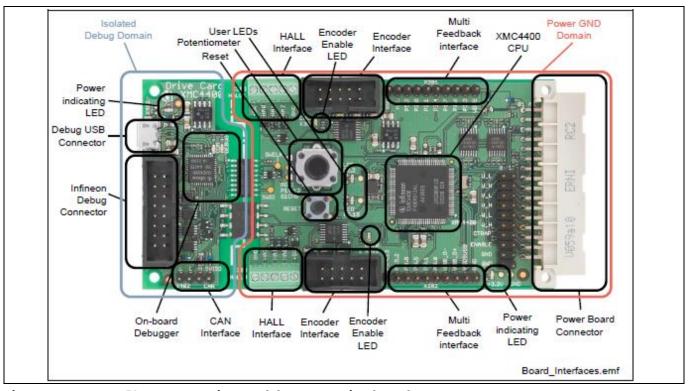



Figure 9 XMC™ XMC4400 Drive Card demonstration board



**Schematics** 

# 4 Schematics

#### 4.1 Power board

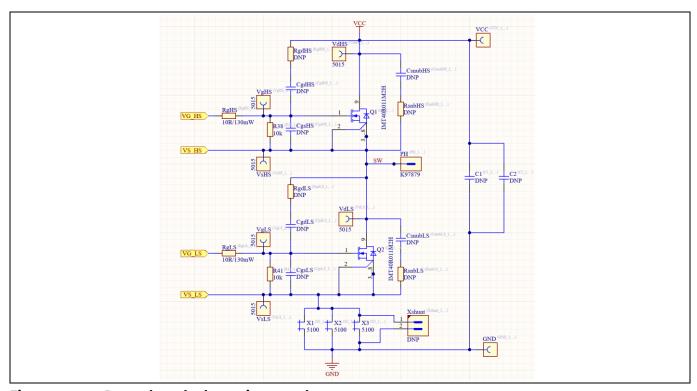



Figure 10 Power board schematic - one phase

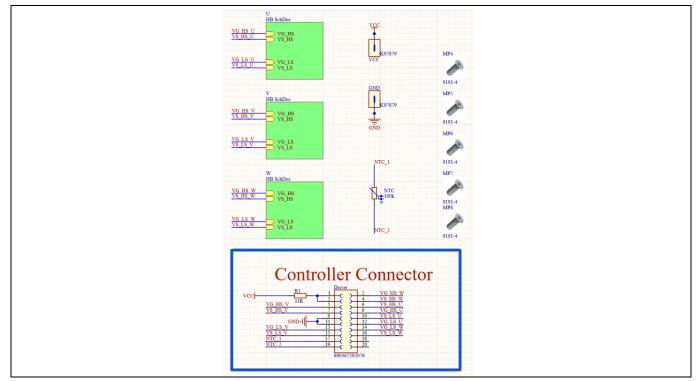



Figure 11 Power board schematic



**Schematics** 

#### 4.2 Gate driver board

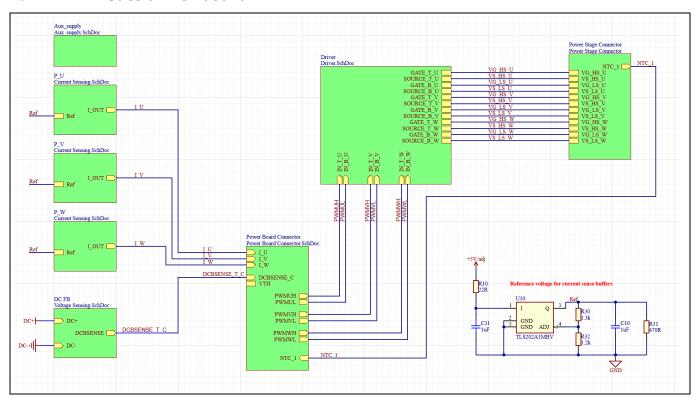



Figure 12 Gate driver board – overview

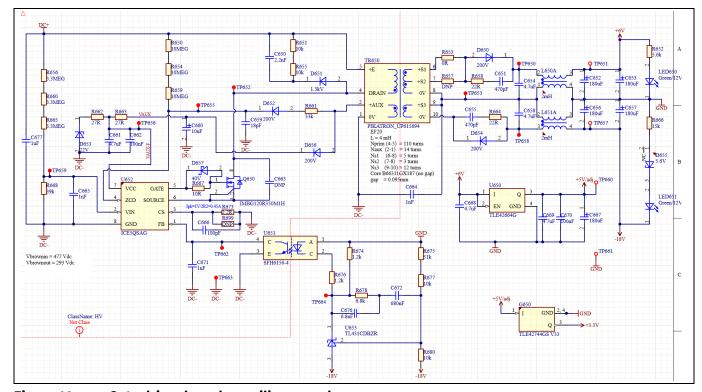



Figure 13 Gate driver board – auxiliary supply

## Three-phase half-bridge topology with 400 V CoolSiC™ G2



#### **Schematics**

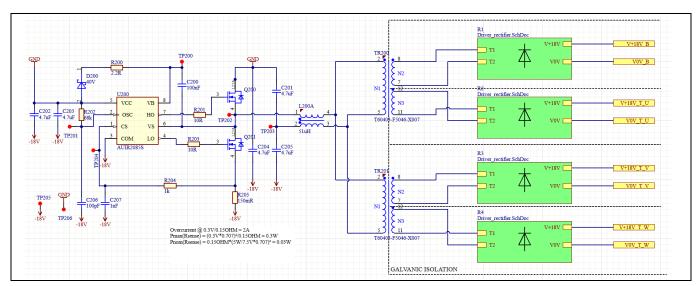



Figure 14 Gate driver board – isolated power supply

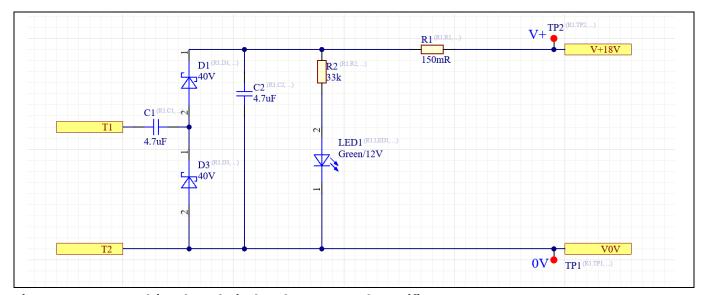



Figure 15 Gate driver board – isolated power supply rectifier

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2



#### **Schematics**

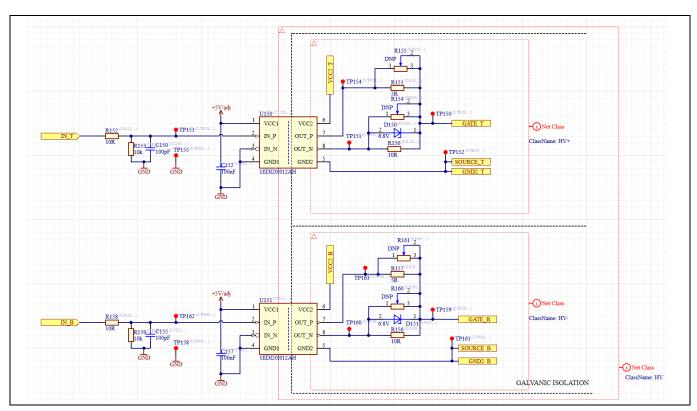



Figure 16 Gate driver board - gate driver single leg

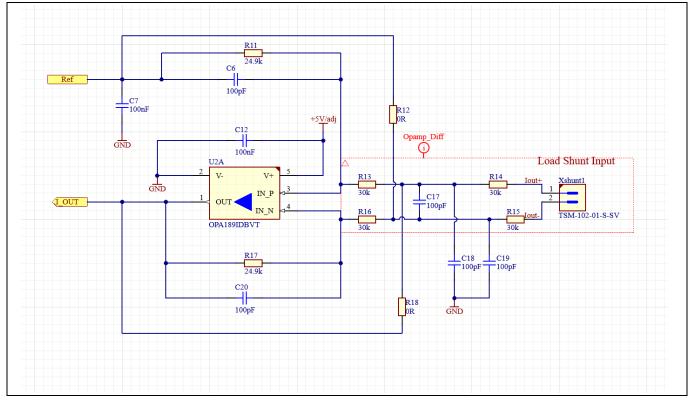



Figure 17 Gate driver board - current sensing

#### Three-phase half-bridge topology with 400 V CoolSiC™ G2



#### **Schematics**

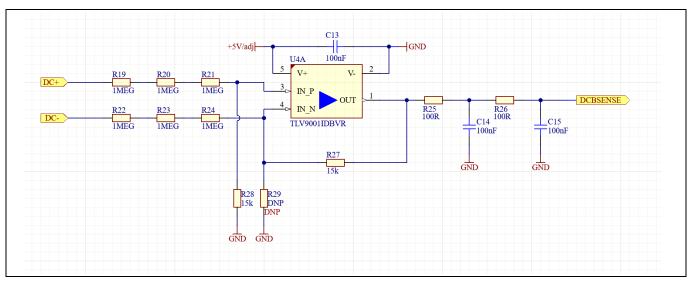



Figure 18 Gate driver board - voltage sensing

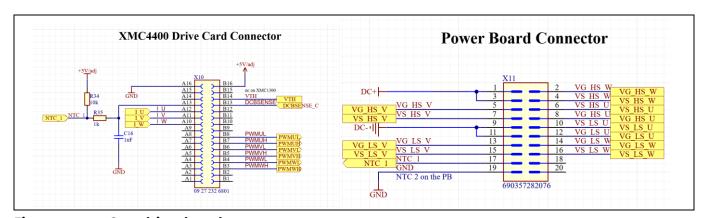



Figure 19 Gate driver board – connectors

## 4.3 Capacitor board

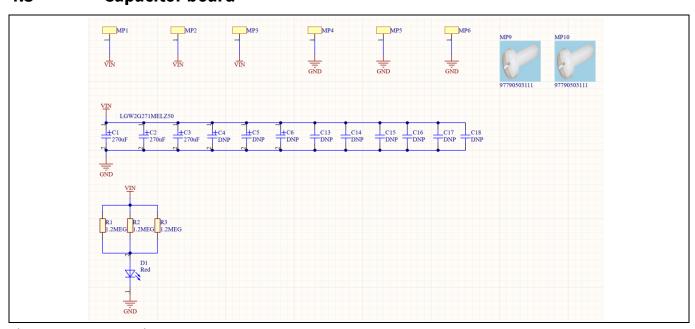



Figure 20 Capacitor board

V 1.0

Three-phase half-bridge topology with 400 V CoolSiC™ G2



**PCB** layout

# 5 PCB layout

#### 5.1 Power board

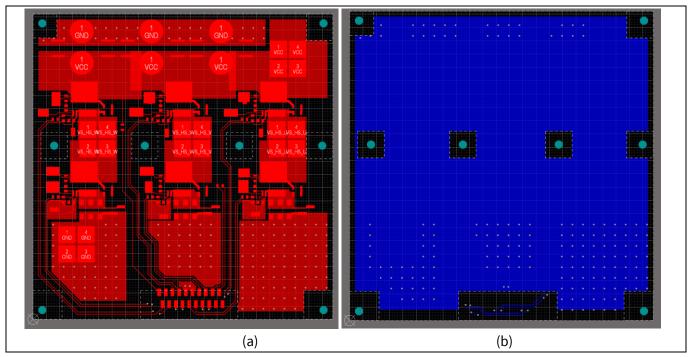
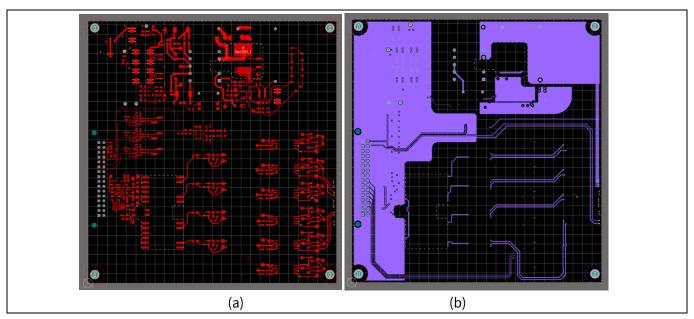
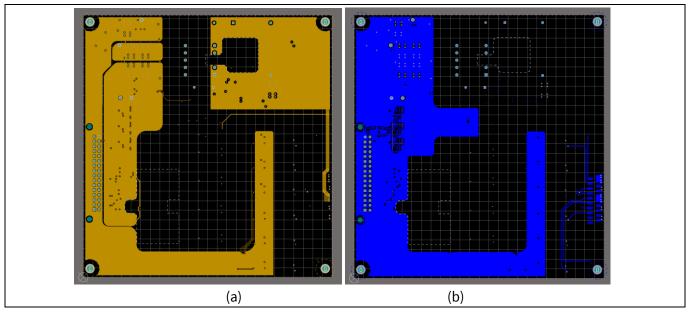



Figure 21 (a) Layer 1 (Top); (b) Layer 2 (Bottom)

| Stack up |                   | Layer st     | Layer stack   |           |          |  |  |  |
|----------|-------------------|--------------|---------------|-----------|----------|--|--|--|
| Layer    | Board layer stack | Name         | Material      | Thickness | Constant |  |  |  |
| 1        |                   | Top Paste    | _             | _         | _        |  |  |  |
| 2        |                   | Top Overlay  | _             | _         | _        |  |  |  |
| 3        |                   | Top Solder   | Solder Resist | 0.025 mm  | 3.5      |  |  |  |
| 4        |                   | Layer 1      | Copper        | 0.035 mm  | _        |  |  |  |
| 5        |                   | Dielectric 1 | S1000H        | 0.105 mm  | 4.6      |  |  |  |
| 6        |                   | Layer 2      | Copper        | 0.107 mm  | _        |  |  |  |
| 7        |                   | Dielectric 2 | VT-4B7        | 0.035 mm  | _        |  |  |  |
| 8        |                   | Alu Core     | Aluminum      | 1.5 mm    | _        |  |  |  |


Figure 22 Power board stack up

Three-phase half-bridge topology with 400 V CoolSiC™ G2




**PCB** layout

#### **Gate driver board 5.2**



(a) Layer 1 (Top); (b) Layer 2 Figure 23



(a) Layer 3; (b) Layer 4 (Bottom) Figure 24





#### **PCB** layout

|       | Stack up          |                | Layers stack  |           |          |  |  |  |
|-------|-------------------|----------------|---------------|-----------|----------|--|--|--|
| Layer | Board layer stack | Name           | Material      | Thickness | Constant |  |  |  |
| 1     |                   | Top Paste      | _             | -         | -        |  |  |  |
| 2     |                   | Top Overlay    | _             | -         | -        |  |  |  |
| 3     |                   | Top Solder     | Solder Resist | 0.020 mm  | 3.5      |  |  |  |
| 4     | 1                 | Layer 1        | Copper        | 0.035 mm  | -        |  |  |  |
| 5     |                   | Dielectric 1   | FR-4          | 0.140 mm  | 4.2      |  |  |  |
| 6     |                   | Layer 2        | Copper        | 0.035 mm  | _        |  |  |  |
| 7     |                   | Core           | FR-4          | 1.200 mm  | 4.2      |  |  |  |
| 8     |                   | Layer 3        | Copper        | 0.035 mm  | -        |  |  |  |
| 9     |                   | Dielectric 2   | FR-4          | 0.140 mm  | 4.2      |  |  |  |
| 10    |                   | Layer 4        | Copper        | 0.035 mm  | -        |  |  |  |
| 11    |                   | Bottom Solder  | Solder Resist | 0.020 mm  | 3.5      |  |  |  |
| 12    |                   | Bottom Overlay | ottom Overlay |           |          |  |  |  |
| 13    |                   | Bottom Paste   | _             | -         | _        |  |  |  |

Gate driver board stack up Figure 25

#### **Capacitor board 5.3**

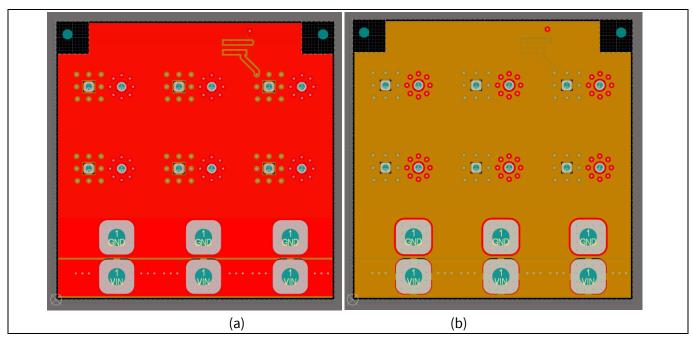



Figure 26 (a) Layer 1 (Top); (b) Layer 2





## **PCB** layout

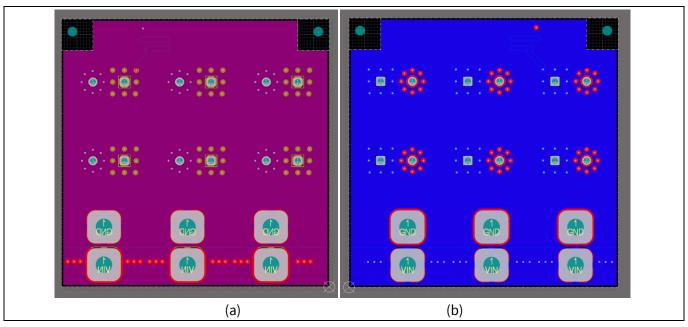



Figure 27 (a) Layer 3; (b) Layer 4 (Bottom)

|       | Stack up          |                | Layer stack    |           |          |  |  |
|-------|-------------------|----------------|----------------|-----------|----------|--|--|
| Layer | Board layer stack | Name           | Material       | Thickness | Constant |  |  |
| 1     |                   | Top Paste      | _              | _         | _        |  |  |
| 2     |                   | Top Overlay    | _              | _         | _        |  |  |
| 3     |                   | Top Solder     | Solder Resist  | 0.020 mm  | 3.5      |  |  |
| 4     |                   | Layer 1        | Copper         | 0.035 mm  | -        |  |  |
| 5     |                   | Dielectric 1   | FR-4           | 0.140 mm  | 4.2      |  |  |
| 6     |                   | Layer 2        | Copper         | 0.035 mm  | _        |  |  |
| 7     |                   | Core           | FR-4           | 1.200 mm  | 4.2      |  |  |
| 8     |                   | Layer 3        | Copper         | 0.035 mm  | _        |  |  |
| 9     |                   | Dielectric 2   | FR-4           | 0.140 mm  | 4.2      |  |  |
| 10    |                   | Layer 4        | Copper         | 0.035 mm  | _        |  |  |
| 11    |                   | Bottom Solder  | Solder Resist  | 0.020 mm  | 3.5      |  |  |
| 12    |                   | Bottom Overlay | Bottom Overlay |           |          |  |  |
| 13    |                   | Bottom Paste   |                |           |          |  |  |

Figure 28 Capacitor board stack up

## Three-phase half-bridge topology with 400 V CoolSiC™ G2



Bill of materials

# 6 Bill of materials

## 6.1 Power board

#### Table 1 Bill of materials

| Designator                                                              | Description                                                                                       | Qty | Value        | Manufacturer                     | Manufacturer order number |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----|--------------|----------------------------------|---------------------------|
| Driver                                                                  | Connector, 2.54 mm<br>pitch, 20 Pins, Female,<br>SMT                                              | 1   | 690367292076 | Würth<br>Elektronik              | 690367292076              |
| GND, PH_1,<br>PH_2, PH_3,<br>VCC                                        | PowerOne Element<br>SMD Bolt M8                                                                   | 5   | K97879       | Würth<br>Elektronik              | K97879                    |
| GND_1, GND_2,<br>GND_3, VCC_1,<br>VCC_2, VCC_3                          | BCS Powerelement<br>Buchse M5, SMD                                                                | 6   | 225858       | ERNI                             | 225858                    |
| MP2_1, MP2_2,<br>MP2_3, MP2_4,<br>MP5, MP6, MP7,<br>MP8                 | Pan Head Screw,<br>M3X0.5                                                                         | 8   | 9191-4       | Keystone<br>Electronics<br>Corp. | 9191-4                    |
| NTC                                                                     | RES / NTC / 100k /<br>210mW / 1% / - / -<br>40°C to 150°C /<br>0805(2012) / SMD / -               | 1   | 100k         | Vishay                           | NTCS0805E3104FMT          |
| Q1_1, Q1_2,<br>Q1_3, Q2_1,<br>Q2_2, Q2_3                                | 400V CoolSiC G2 MOSFET, Ideal for High Frequency Switching and Synchronous Rectification          | 6   | IMT40R011M2H | Infineon<br>Technologies         | IMT40R011M2H              |
| R1, RgdHS_1,<br>RgdHS_2,<br>RgdHS_3,<br>RgdLS_1,<br>RgdLS_2,<br>RgdLS_3 | RES / STD / 33R /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805 / SMD / -                | 7   | 33R, DNP     | Vishay                           | CRCW080533R0FK            |
| R38_1, R38_2,<br>R38_3, R41_1,<br>R41_2, R41_3                          | RES / STD / 10k /<br>500mW / 5% /<br>200ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -       | 6   | 10k          | Panasonic                        | ERJP06J103V               |
| RgHS_1,<br>RgHS_2,<br>RgHS_3,<br>RgLS_1,<br>RgLS_2, RgLS_3              | RES / STD /<br>10R/130mW / 130mW /<br>1% / 200ppm/K / -55°C<br>to 155°C / 0805(2012) /<br>SMD / - | 6   | 10R/130mW    | Yageo                            | RC0805FR-0710RL           |

V 1.0

# Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator                                                                                                                                                                                       | Description                                                                        | Qty | Value | Manufacturer                     | Manufacturer order number |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----|-------|----------------------------------|---------------------------|
| RsnbHS_1,<br>RsnbHS_2,<br>RsnbHS_3,<br>RsnbLS_1,<br>RsnbLS_2,<br>RsnbLS_3                                                                                                                        | RES / STD / 33R /<br>250mW / 5% /<br>100ppm/K / -55°C to<br>155°C / 1206 / SMD / - | 6   | DNP   | Yageo                            | AC1206JR-0733RL           |
| VdHS_1,<br>VdHS_2,<br>VdHS_3,<br>VdLS_1,<br>VdLS_2,<br>VdLS_3,<br>VgHS_1,<br>VgHS_2,<br>VgHS_3,<br>VgLS_1, VgLS_2,<br>VgLS_3, VsHS_1,<br>VsHS_2,<br>VsHS_2,<br>VsHS_3, VsLS_1,<br>VsLS_2, VsLS_3 | Test Point, Miniature,<br>Surface Mount, Finish-<br>Silver Plate                   | 18  | 5015  | Keystone<br>Electronics<br>Corp. | 5015                      |
| X1_1, X1_2,<br>X1_3, X2_1,<br>X2_2, X2_3,<br>X3_1, X3_2,<br>X3_3                                                                                                                                 | Jumper-0.64mm Thick<br>Copper                                                      | 9   | 5100  | Keystone<br>Electronics<br>Corp. | 5100                      |
| Xshunt_1,<br>Xshunt_2,<br>Xshunt_3                                                                                                                                                               | SMT .025 SQ Post<br>Header, 2.54mm<br>pitch, 2 pin, vertical,<br>single row        | 3   | DNP   | Samtec                           | TSM-102-01-S-SV           |

## Three-phase half-bridge topology with 400 V CoolSiC™ G2



Bill of materials

## 6.2 Gate driver board

Table 2 Bill of materials

| Designator                                                                                                                                 | Description                                                                                                                            | Qty | Value | Manufacturer     | Manufacturer order number |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------------------|---------------------------|
| C10, C11                                                                                                                                   | CAP / CERA / 1uF /<br>25V / 10% / X7R (EIA) /<br>-55°C to 125°C /<br>0805(2012) / SMD / -                                              | 2   | 1uF   | AVX              | 08053C105K4Z2<br>A        |
| C13, C14, C15,<br>C200, C662,<br>C670, U.C152,<br>U.C157,<br>V.C152,<br>V.C157,<br>W.C152,<br>W.C157                                       | CAP / CERA / 100nF /<br>50V / 5% / X7R (EIA) /<br>-55°C to 125°C /<br>0805(2012) / SMD / -                                             | 12  | 100nF | Kemet            | C0805C104J5R<br>ACAUTO    |
| C16, C207,<br>C665, C671                                                                                                                   | CAP / CERA / 1nF /<br>50V / 10% / X7R (EIA) /<br>-55°C to 125°C /<br>0805(2012) / SMD / -                                              | 4   | 1nF   | Kyocera          | 08055C102KAT<br>2A        |
| C201, C202,<br>C203, C204,<br>C205, C654,<br>C658, C661,<br>C668, C669,<br>R1.C1, R1.C2,<br>R2.C1, R2.C2,<br>R3.C1, R3.C2,<br>R4.C1, R4.C2 | CAP / CERA / 4.7uF /<br>50V / 10% / X5R (EIA) /<br>-55°C to 85°C /<br>0805(2012) / SMD / -                                             | 18  | 4.7uF | Samsung          | CL21A475KBQN<br>NNE       |
| C206, C666,<br>U.C150,<br>U.C155,<br>V.C150,<br>V.C155,<br>W.C155,<br>W.C155                                                               | CAP / CERA / 100pF /<br>50V / 5% / COG (EIA) /<br>NP0 / -55°C to<br>125°C / 0805(2012) /<br>SMD / -                                    | 8   | 100pF | Würth Elektronik | 885012007057              |
| C650                                                                                                                                       | CAP / FILM / 2.2nF / 1.5kV / 20% / MKP (Metallized Polypropylene) / - / 10.00mm C X 0.60mm W 13.00mm L X 4.00mm T X 9.00mm H / THT / - | 1   | 2.2nF | TDK Corporation  | B32021A3222M<br>289       |
| C651, C655                                                                                                                                 | CAP / CERA / 470pF /<br>200V / 5% / COG (EIA)                                                                                          | 2   | 470pF | Kemet            | C1206C471J2G<br>AC7800    |

# Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator                         | Description                                                                                                                                                                 | Qty | Value | Manufacturer            | Manufacturer order number   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|-------------------------|-----------------------------|
|                                    | / NP0 / -55°C to 125°C<br>/ 1206(3216) / SMD / -                                                                                                                            |     |       |                         |                             |
| C652, C653,<br>C656, C657,<br>C667 | CAP / ELCO / 180uF /<br>16V / 20% /<br>Aluminium<br>electrolytic / -55°C to<br>105°C / 6.60mm L X<br>6.60mm W X 6.00mm<br>H / SMD / -                                       | 5   | 180uF | Panasonic               | 16SVPF180M                  |
| C659                               | CAP / CERA / 18pF /<br>50V / 10% / COG (EIA)<br>/ NP0 / -55°C to 125°C<br>/ 0805(2012) / SMD / -                                                                            | 1   | 18pF  | Kemet                   | C0805C180K5G<br>AC7800      |
| C660                               | CAP / ELCO / 10uF /<br>50V / 20% /<br>Aluminiumelectrolyti<br>c / -55°C to 105°C /<br>6.60mm L X 6.60mm<br>W X 6.30mm H / SMD<br>/ -                                        | 1   | 10uF  | NIC Components<br>Corp. | NACZ100M50V6<br>.3X6.3TR15F |
| C664                               | CAP / FILM / 1nF /<br>1.5kV / 10% / MKP<br>(Metallized<br>Polypropylene) / - /<br>10.00mm C X 0.60mm<br>W 13.00mm L X<br>4.00mm T X 9.00mm<br>H / THT / -                   | 1   | 1nF   | TDK Corporation         | B32021A3102K0<br>00         |
| C672                               | CAP / CERA / 680nF /<br>50V / 10% / X7R (EIA) /<br>-55°C to 125°C /<br>0805(2012) / SMD / -                                                                                 | 1   | 680nF | Kemet                   | C0805X684K5R<br>ECAUTO      |
| C676                               | CAP / CERA / 6.8nF /<br>50V / 5% / COG (EIA) /<br>NPO / -55°C to<br>150°C / 0805(2012) /<br>SMD / -                                                                         | 1   | 6.8nF | TDK Corporation         | CGA4C2NP01H6<br>82J060AA    |
| C677                               | CAP / FILM / 1uF /<br>750V / 10% / MKP<br>(Metallized<br>Polypropylene) / -<br>40°C to 105°C /<br>27.50mm C X 0.80mm<br>W 31.50mm L X<br>12.50mm T X<br>21.50mm H / THT / - | 1   | 1uF   | TDK Corporation         | B32674D1105K<br>000         |

# Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator                                                                                                                                              | D200, D657,<br>R1.D1, R1.D3,<br>R2.D1, R2.D3,<br>R3.D1, R3.D3,                                                                                                                                                     |   | Value          | Manufacturer                     | Manufacturer order number |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|----------------------------------|---------------------------|
| D200, D657,<br>R1.D1, R1.D3,<br>R2.D1, R2.D3,<br>R3.D1, R3.D3,<br>R4.D1, R4.D3                                                                          |                                                                                                                                                                                                                    |   | 40V            | Infineon<br>Technologies         | BAT165                    |
| D650, D654                                                                                                                                              | Surface Mount<br>Ultrafast Power<br>Rectifier                                                                                                                                                                      | 2 | 200V           | ON<br>Semiconductor              | MURS320T3G                |
| D651                                                                                                                                                    | Highly reliable 1.0<br>Amp silicon Ultra Fast<br>Recovery rectifier                                                                                                                                                | 1 | 1.3kV          | Central<br>Semiconductor<br>Corp | CMR1U-13M<br>TR13         |
| D652, D656                                                                                                                                              | Surface Mount Glass<br>Passivated Ultrafast<br>Rectifier                                                                                                                                                           | 2 | 200V           | Vishay                           | EGL34D-E3/98              |
| D653                                                                                                                                                    | Voltage Regulator<br>Diode                                                                                                                                                                                         | 1 | 22V            | Nexperia                         | BZV55-C22,115             |
| D655                                                                                                                                                    | Zener Voltage<br>Regulator, 5.6V/5mA                                                                                                                                                                               | 1 | 5.6V           | ON BZX84C5<br>Semiconductor G    |                           |
| G650                                                                                                                                                    | Monolithic integrated low dropout voltage regulator, device is designed for the harsh environment of automotive applications, Very Low Current Consumption, Output Current Limitation, Reverse Polarity Protection | 1 | TLE42744GS V33 | Infineon<br>Technologies         | TLE42744GS<br>V33         |
| IND / STD / 51uH / 1A<br>/ 30% / -40°C to<br>125°C / 160mR /<br>SMD / Inductor, SMD;<br>4-Leads, 9.20 mm W X<br>6.00 mm L X 5.30 mm<br>H body / SMD / - |                                                                                                                                                                                                                    | 1 | 51uH           | Würth Elektronik                 | 744227                    |
| L650, L651 IND / STD / 2mH / 600mA / 50% / -40°C to 125°C / 420mR / SMD / Inductor, SMD; 4-Leads, 9.20 mm W X 6.00 mm L X 5.30 mm H body / SMD / -      |                                                                                                                                                                                                                    | 2 | 2mH            | Würth Elektronik                 | 744221                    |

# Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator                                                                                                                                                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Description Qty Value |           | Manufacturer                 | Manufacturer order number |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|------------------------------|---------------------------|--|
| LED650,<br>LED651,<br>R1.LED1,<br>R2.LED1,<br>R3.LED1,<br>R4.LED1                                                                                             | ED651, Colour, 570nm  1.LED1, 2.LED1, 3.LED1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | Green/12V | OSRAM Opto<br>Semiconductors | LG R971-KN-1              |  |
| P_U.C6, P_U.C17, P_U.C18, P_U.C19, P_U.C20, P_V.C6, P_V.C17, P_V.C18, P_V.C19, P_V.C20, P_W.C6, P_W.C6, P_W.C17, P_W.C17, P_W.C18, P_W.C19, P_W.C19, P_W.C19, | J.C17, 50V / 1% / C0G (EIA) / NP0 / -55°C to 125°C / 0603(1608) / SMD / - J.C20, J.C20, J.C18, J.C18, J.C19, J.C20, J.C20, J.C20, J.C19, J.C20, J.C218, |                       | 100pF     | Kemet                        | C0603C101F5G<br>AC        |  |
| P_U.C7,<br>P_U.C12,<br>P_V.C7,<br>P_V.C12,<br>P_W.C7,<br>P_W.C12                                                                                              | CAP / CERA / 100nF /<br>25V / 5% / X7R (EIA) /<br>-55°C to 125°C /<br>0603(1608) / SMD / -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                     | 100nF     | Kemet                        | C0603C104J3R<br>AC        |  |
| P_U.R11,<br>P_U.R17,<br>P_V.R11,<br>P_V.R17,<br>P_W.R11,<br>P_W.R17                                                                                           | RES / STD / 24.9k /<br>100mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0603(1608) /<br>SMD / -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                     | 24.9k     | Vishay                       | CRCW060324K9<br>FK        |  |
| P_U.R12,<br>P_U.R18,<br>P_V.R12,<br>P_V.R18,<br>P_W.R12,<br>P_W.R18                                                                                           | P_U.R12, Thick Film Resistors - SMD 0 Ohms 100mW 0603 1% AEC-Q200 P_V.R18, P_W.R12,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | OR        | Yageo                        | AC0603FR-<br>070RL        |  |
| P_U.R13,<br>P_U.R14,<br>P_U.R15,<br>P_U.R16,<br>P_V.R13,<br>P_V.R14,<br>P_V.R15,                                                                              | RES / STD / 30k /<br>100mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0603(1608) /<br>SMD / -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                    | 30k       | Vishay                       | CRCW060330K0<br>FK        |  |

## Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator                                              | Description                                                                                                                 | Qty | Value           | Manufacturer             | Manufacturer order number |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----|-----------------|--------------------------|---------------------------|
| P_V.R16,<br>P_W.R13,<br>P_W.R14,<br>P_W.R15,<br>P_W.R16 |                                                                                                                             |     |                 |                          |                           |
| P_U.U2,<br>P_V.U2,<br>P_W.U2                            | Precision, Lowest-<br>Noise 36-V, Zero-<br>Drift, 14-MHz MUX-<br>Friendly, Rail-to-Rail<br>Output, Operational<br>Amplifier | 3   | OPA189IDBVT     | Texas<br>Instruments     | OPA189IDBVT               |
| P_U.Xshunt1,<br>P_V.Xshunt1,<br>P_W.Xshunt1             | SMT .025 SQ Post<br>Header, 2.54mm<br>pitch, 2 pin, vertical,<br>single row                                                 | 3   | TSM-102-01-S-SV | Samtec                   | TSM-102-01-S-<br>SV       |
| Q200, Q201                                              | HEXFET Power<br>MOSFET                                                                                                      | 2   | IRFTS8342       | Infineon<br>Technologies | IRFTS8342                 |
| Q650                                                    |                                                                                                                             |     | IMBG120R350M1H  | Infineon<br>Technologies | IMBG120R350M<br>1H        |
| R1.R1, R2.R1,<br>R3.R1, R4.R1                           | I, RES / - / 150mR / 4 150mR                                                                                                |     | 150mR           | Susumu                   | KRL1220E-M-<br>R150-F-T5  |
| R1.R2, R2.R2,<br>R3.R2, R4.R2,<br>R661                  | R2.R2, RES / STD / 33k /                                                                                                    |     | 33k             | Vishay                   | CRCW080533K0<br>FK        |
| R10                                                     | 0 RES / STD / 22R /<br>100mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0603(1608) /<br>SMD / -                               |     | 22R             | Vishay                   | CRCW060322R0<br>FK        |
| R19, R20, R21,<br>R22, R23, R24                         | RES / - / 1MEG /<br>125mW / 1% /<br>100ppm/K / - / 0805 /<br>SMD / -                                                        | 6   | 1MEG            | Multicomp                | MCMR08X1004F<br>TL        |

# Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator                                                                          | Description                                                                                  | Qty | Value | Manufacturer | Manufacturer order number |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----|-------|--------------|---------------------------|--|
| R25, R26                                                                            | 25, R26 RES / STD / 100R /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805 / SMD / -  |     | 100R  | Vishay       | CRCW0805100R<br>FK        |  |
| R27, R28                                                                            | RES / STD / 15k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805 / SMD / -           | 2   | 15k   | Vishay       | CRCW080515K0<br>FK        |  |
| R30                                                                                 | RES / STD / 1.3k /<br>100mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0603(1608) /<br>SMD / - | 1   | 1.3k  | Vishay       | CRCW06031K30<br>FK        |  |
| R31                                                                                 | RES / STD / 470R /<br>100mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0603(1608) /<br>SMD / - | 1   | 470R  | Vishay       | CRCW0603470R<br>FK        |  |
| R32                                                                                 | RES / STD / 1.2k /<br>100mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0603(1608) /<br>SMD / - | 1   | 1.2k  | Yageo        | RC0603FR-<br>071K2L       |  |
| R34                                                                                 | RES / STD / 10k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -  | 1   | 10k   | Yageo        | RC0805FR-<br>0710KL       |  |
| R35                                                                                 | RES / STD / 1k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -   | 1   | 1k    | Yageo        | AC0805FR-<br>071KL        |  |
| R200                                                                                | · · · · · · · · · · · · · · · · · · ·                                                        |     | 2.2R  | Vishay       | CRCW08052R20<br>FK        |  |
| R201, R203,<br>R667, U.R152,<br>U.R158,<br>V.R152,<br>V.R158,<br>W.R152,<br>W.R152, | RES / STD / 10R /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -  | 9   | 10R   | Vishay       | CRCW080510R0<br>FK        |  |

# Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator          | Description Qty Value                                                                             |   | Value  | Manufacturer | Manufacturer order number |  |
|---------------------|---------------------------------------------------------------------------------------------------|---|--------|--------------|---------------------------|--|
| R202                | RES / STD / 68k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -       | 1 | 68k    | Vishay       | CRCW080568K0<br>FK        |  |
| R204                | RES / STD / 1k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -        | 1 | 1k     | Vishay       | CRCW08051K00<br>FK        |  |
| R205                | RES / STD / 150mR /<br>125mW / 1% /<br>250ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -     | 1 | 150mR  | Panasonic    | ERJ-6RSFR15V              |  |
| R650, R654,<br>R659 | RES / STD / 10MEG /<br>250mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 1206(3216) /<br>SMD / -     | 3 | 10MEG  | Vishay       | CRCW120610M<br>0FK        |  |
| R651, R655          | RES / STD / 10k / 1W /<br>1% / 100ppm/K / -<br>55°C to 155°C /<br>2512(6332) / SMD / -            | 2 | 10k    | Vishay       | CRCW251210K0<br>FK        |  |
| R652                | RES / STD / 5.6k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -      | 1 | 5.6k   | Vishay       | CRCW08055K60<br>FK        |  |
| R653                | RES / STD / 0R /<br>125mW / - / - / -55°C<br>to 155°C /<br>0805(2012) / SMD / -                   | 1 | OR     | Vishay       | CRCW08050000<br>Z         |  |
| R656, R660,<br>R665 |                                                                                                   |   | 3.3MEG | Vishay       | CRCW12063M3<br>0FKEA      |  |
| R658, R664          | RES / STD / 22R / 2 22R<br>250mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 1206(3216) /<br>SMD / - |   | 22R    | Vishay       | CRCW120622R0<br>FK        |  |
| R662, R663          | RES / STD / 27R /<br>125mW / 1% /                                                                 | 2 | 27R    | Vishay       | CRCW080527R0<br>FK        |  |

## Three-phase half-bridge topology with 400 V CoolSiC™ G2



| Designator                                                                            | gnator Description                                                                            |   | Value | Manufacturer | Manufacturer order number |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---|-------|--------------|---------------------------|
|                                                                                       | 100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -                                        |   |       |              |                           |
| R666                                                                                  | RES / STD / 15k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -   |   | 15k   | Vishay       | CRCW080515K0<br>FK        |
| R668                                                                                  | RES / STD / 39k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -   | 1 | 39k   | Vishay       | CRCW080539K0<br>FK        |
| R673                                                                                  | RES / STD / 2.2R /<br>250mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 1206(3216) /<br>SMD / -  | 1 | 2.2R  | Vishay       | CRCW12062R20<br>FK        |
| R674, R676                                                                            | RES / STD / 1.2k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -  | 2 | 1.2k  | Vishay       | CRCW08051K20<br>FK        |
| R675                                                                                  | RES / STD / 51k /<br>125mW / 1% /<br>100ppm/K / -55¡ãC to<br>155¡ãC / 0805(2012) /<br>SMD / - | 1 | 51k   | Vishay       | CRCW080551K0<br>FK        |
| R677                                                                                  | RES / STD / 10k /<br>125mW / 1% /<br>100ppm/K / -55¡ãC to<br>155¡ãC / 0805(2012) /<br>SMD / - |   | 10k   | Yageo        | RC0805FR-<br>0710KL       |
| R678 RES / STD / 6.8k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805(2012) / SMD / - |                                                                                               | 1 | 6.8k  | Vishay       | CRCW08056K80<br>FK        |
| R680, U.R153,<br>U.R159,<br>V.R153,<br>V.R159,<br>W.R153,<br>W.R159                   | RES / STD / 10k /<br>125mW / 1% /<br>100ppm/K / -55°C to<br>155°C / 0805(2012) /<br>SMD / -   | 7 | 10k   | Vishay       | CRCW080510K0<br>FK        |

# Three-phase half-bridge topology with 400 V CoolSiC $^{\text{TM}}$ G2



#### **Bill of materials**

| Designator                                                    | Description                                                                                          | Description Qty Value |                       | Manufacturer             | Manufacturer order number |  |
|---------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--------------------------|---------------------------|--|
| TR200, TR201                                                  | Pulse transformers<br>GateDrive Transf SMD<br>1: 1: 1 85uVs 850V                                     | 2                     | T60403-F5046-X007     | Vacuumschmelze           | T60403-F5046-<br>X007     |  |
| TR650                                                         | Flyback Transformer                                                                                  | 1                     |                       | Pikatron                 | ÜP615694                  |  |
| U4                                                            | Low-Power, RRIO, 1-<br>MHz Operational<br>Amplifier for Cost-<br>Sensitive Systems                   | 1                     | TLV9001IDBVR          | Texas<br>Instruments     | TLV9001IDBVR              |  |
| U10                                                           | Adjustable Linear<br>Voltage Post<br>Regulator, Adjustable<br>Output Voltage from<br>1.2 V to 5.25 V | 1                     | TLS202A1MBV           | Infineon<br>Technologies | TLS202A1MBV               |  |
| U200                                                          | High Speed, 100V,<br>Self-Oscillating 50%<br>Duty Cycle, Half-<br>Bridge Driver                      | 1                     | AUIR2085S¹            | Infineon<br>Technologies | AUIR2085S                 |  |
| U650                                                          |                                                                                                      |                       | TLE42664G             | Infineon<br>Technologies | TLE42664G                 |  |
| U651                                                          | · ·                                                                                                  |                       | SFH6156-4             | Vishay                   | SFH6156-4                 |  |
| U652                                                          | Quasi-Resonant PWM<br>Controller                                                                     | 1                     | ICE5QSAG <sup>2</sup> | Infineon<br>Technologies | ICE5QSAG                  |  |
| U653                                                          |                                                                                                      |                       | TL431CDBZR            | Texas<br>Instruments     | TL431CDBZR                |  |
| U.D150,<br>U.D151,<br>V.D150,<br>V.D151,<br>W.D150,<br>W.D151 | D151, Diode/6.8V<br>D150, D151, D150,                                                                |                       | 6.8V                  | Nexperia                 | BZV55-<br>C6V8,115        |  |
| U.R150,<br>U.R156,<br>V.R150,                                 | RES / STD / 10R /<br>125mW / 1% /<br>100ppm/K / -55°C to                                             | 6                     | 10R                   | Vishay                   | CRCW080510R0<br>FK        |  |

<sup>&</sup>lt;sup>1</sup>AUIR2085S is not recommended for new designs; instead, use IR2085S.

User guide

<sup>&</sup>lt;sup>2</sup>ICE5QSAG is not recommended for new designs; instead, use ICE5QSBG.





| Designator                                                                              | <b>Description</b>                                                                                         |   | Value                    | Manufacturer             | Manufacturer order number |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---|--------------------------|--------------------------|---------------------------|
| V.R156,<br>W.R150,<br>W.R156                                                            | 155°C / 0805(2012) /<br>SMD / -                                                                            |   |                          |                          |                           |
| U.R151,<br>U.R157,<br>V.R151,<br>V.R157,<br>W.R151,<br>W.R157                           | 157, 500mW / 1% /<br>151, 100ppm/K / - /<br>0805(2012) / SMD / -                                           |   | 5R                       | Vishay                   | CRCW08055R00<br>FKEAHP    |
| U.U150,<br>U.U151,<br>V.U150,<br>V.U151,<br>W.U150,<br>W.U151                           | Single Channel IGBT<br>Gate Driver IC,<br>Output Current<br>Configuration (±2.0 A<br>for High Speed IGBTs) |   | 1EDI20H12AH <sup>1</sup> | Infineon<br>Technologies | 1EDI20H12AH               |
| X10 DIN Signal Type 2Q Female Solder Angled 32 Pole, Connector, THT, 2.54 Pitch, 32 Pin |                                                                                                            | 1 | 09 27 232 6801           | Harting                  | 09 27 232 6801            |
| WR MM Male SMT<br>Connector, 20<br>Position, 2.54 Pitch,<br>1.5A, 250V                  |                                                                                                            | 1 | 690357282076             | Würth Elektronik         | 690357282076              |

## Three-phase half-bridge topology with 400 V CoolSiC™ G2



Bill of materials

# 6.3 Capacitor board

Table 3 Bill of materials

| Designator     | Description             | Qty | Value | Manufacturer   | Manufacturer order number |
|----------------|-------------------------|-----|-------|----------------|---------------------------|
|                | CAP / ELCO / 270uF /    |     |       |                |                           |
|                | 400V / 20% /            |     |       |                |                           |
|                | Aluminiumelectrolytic / |     |       |                |                           |
|                | -25°C to 105°C /        |     |       |                |                           |
|                | 10.00mm Pitch X         |     |       |                |                           |
|                | 23.50mm Dia X           |     |       |                |                           |
| 64 62 62       | 52.00mm H body / THT    |     |       | NI: 1:         | 1 CW2 C274 MEL 750        |
| C1, C2, C3     | /-                      | 3   | 3     | Nichicon       | LGW2G271MELZ50            |
|                |                         |     |       | OSRAM Opto     |                           |
| D1             | CHIP LED                | 1   | 1     | Semiconductors | LS R976-NR-1              |
| MP1, MP2, MP3, |                         |     |       |                |                           |
| MP4, MP5, MP6  | M5 Screw Footprint      | 6   | 6     | RS             | RS 908-7693               |
|                | Pan Head Screw, M3X5    |     |       | Würth          |                           |
| MP9, MP10      | mm                      | 2   | 2     | Elektronik     | 97790503111               |
|                | RES / STD / 1.2MEG /    |     |       |                |                           |
|                | 250mW / 1% /            |     |       |                |                           |
|                | 100ppm/K / -55°C to     |     |       |                |                           |
|                | 155°C / 1206(3216) /    |     |       |                |                           |
| R1, R2, R3     | SMD/-                   | 3   | 3     | Vishay         | CRCW12061M20FK            |



**System performance** 

## **7** System performance

#### 7.1 Power board turn-on and turn-off waveforms

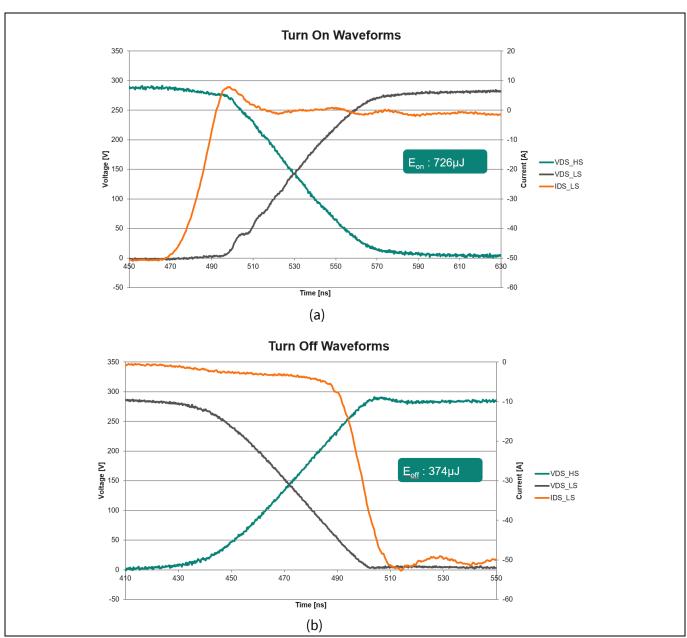



Figure 29 (a) Turn-on; (b) turn-off waveforms

Both turn-on and turn-off waveforms show clear transition with dv/dt lower than 5 V/ns. For this test, an 18 V gate driver voltage together with a 15  $\Omega$  turn-on gate resistor (gate driver board: 5  $\Omega$  + power board: 10  $\Omega$ ), and 20  $\Omega$  turn-off gate resistor (gate driver board: 10  $\Omega$  + power board: 10  $\Omega$ ) was used for a 300 V input voltage at a 50 A test current.

# Three-phase half-bridge topology with 400 V CoolSiC™ G2



**System performance** 

#### 7.2 Thermal tests

Four different thermal tests were conducted and the thermal tests conditions and results with a heatsink of a thermal resistance value of 1.5 K/W are depicted in Table 4.

Table 4 Thermal test results

| Test<br>no. | VDC<br>(V) | Iphs<br>(A) | Vphs<br>(V) | RG(on)<br>(Ω) | RG(oFF)<br>(Ω) | fsw<br>(kHz) | Dead-<br>time | Modulator | S<br>(VA) | P<br>(W) | Ploss<br>(W) | Tj,<br>max | Efficiency<br>(%) |
|-------------|------------|-------------|-------------|---------------|----------------|--------------|---------------|-----------|-----------|----------|--------------|------------|-------------------|
|             |            |             |             |               |                |              | (ns)          |           |           |          |              | (°C)       |                   |
| #1          | 300        | 31.5        | 101         | 15            | 20             | 10           | 150           | SinPWM    | 9435      | 7548     | 59.58        | 119        | 99.22             |
| #2          | 300        | 26.2        | 101         | 15            | 20             | 10           | 150           | SinPWM    | 7863      | 6290.4   | 42.579       | 92         | 99.33             |
| #3          | 300        | 20.9        | 101         | 15            | 20             | 10           | 150           | SinPWM    | 6270      | 5016     | 29.46        | 71         | 99.42             |
| #4          | 300        | 15.7        | 101         | 15            | 20             | 10           | 150           | SinPWM    | 4710      | 3768     | 18.834       | 55         | 99.50             |





#### References

#### **References**

- [1] Infineon Technologies AG: KIT\_XMC4400\_DC\_V1 webpage; Available online
- [2] Infineon Technologies AG: IMT40R011M2H webpage; Available online

Three-phase half-bridge topology with 400 V CoolSiC™ G2



**Revision history** 

# **Revision history**

| Document revision | Date       | Description of changes |
|-------------------|------------|------------------------|
| V 1.0             | 2025-02-26 | Initial release        |

#### Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-02-26 Published by

**Infineon Technologies AG** 81726 Munich, Germany

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

**Document reference** UG124541

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.