

High power density design with multilevel topology

About this document

Scope and purpose

This document describes the use and operation of the EVAL_10KW_3LANPC_SIC Evaluation Kit. The evaluation kit is designed to evaluate and test the three-level active neutral-point-clamped (3L-ANPC) topology.

The kit aims to provide engineers and researchers with a platform to experiment, validate, and optimize 3L-ANPC power conversion systems in different applications such as solar, drives, and others with an input DC bus voltage, ideally of 500–600 V DC depending on the desired margin.

Intended audience

This document is intended for design engineers, technicians, and developers of electronic systems.

CoolSiC™

Infineon's 400 V CoolSiC™ MOSFETs offer exceptional performance in switching behavior and causes low conduction losses. These devices are designed to offer high efficiency and reliability, while maintaining low onstate resistance at low as well as high MOSFET junction temperatures. Its ability to turn off the device with zero gate bias makes the 400 V CoolSiC™ MOSFETs true "normally-off" devices.

The CoolSiC[™] family supports applications such as the following:

- Energy Storage Systems
- Industrial drives
- Motor control and drives
- Renewables
- UPS

High power density design with multilevel topology

infineon

Important notice

Important notice

"Evaluation Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Evaluation Boards and Reference Boards provided by Infineon Technologies. The design of the Evaluation Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The Evaluation Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation Boards and Reference Boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The Evaluation Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Evaluation Boards and Reference Boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The Evaluation Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Evaluation Board or Reference Board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the Evaluation Boards and Reference Boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Evaluation Boards and Reference Boards does not cause any harm to persons or third party property.

The Evaluation Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Evaluation Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

High power density design with multilevel topology

Safety precautions

Safety precautions

Please note the following warnings regarding the hazards associated with development systems. Note:

Table 1	Safety precautions
---------	--------------------

Warning: The DC link potential of this board is up to 1000 VDC. When measuring voltage waveforms by oscilloscope, high voltage differential probes must be used. Failure to do so may result in personal injury or death.

Warning: The evaluation or reference board contains DC bus capacitors which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.

Warning: The evaluation or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.

Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.

Caution: The heat sink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.

Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.

Caution: The evaluation or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.

Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

Table of contents

Table of contents

4.1.3.1 XENSIV™TLI4971-A120T5-U-E0001 settings and programming 13 4.1.4 CUR SENSOR PROGRAMMER board 14 4.1.5 Isolated power supply board 16 4.2 XMC™ XMC4400 Drive Card 16 4.3 XMC™ Link (KIT_XMC_LINK_SEGGER_V1) 16 5 Schematics 17 5.1 Power board 15 5.2 Isolated power supply board 26 6.1 Power board 26 6.2 Isolated power supply board 26 7.1 Power board 26 7.2 Isolated power supply 36 7.1 Power board 30 7.2 Isolated power supply 36 8 Test results 43 8.1 Power board turn ON and turn OFF waveforms 45	Abou	ut this document	1
Safety precautions	mpo	ortant notice	2
Table of contents 4 Introduction 9 Hardware description 6 3.1 EVAL_10KW_3LANPC_SIC firmware 8 3.2 Isolated power supply firmware 8 4.2 EVAL_10KW_3LANPC_SIC Evaluation Kit 9 4.1 Power board 9 4.1.1 Headers and connectors 10 4.1.2 Heatsink 11 4.1.3 XENSIV***TLI4971 current sensor 12 4.1.4 CUR SENSOR PROGRAMMER board 12 4.1.5 Isolated power supply board 14 4.2 XMC™** XMC4400 Drive Card 16 4.2 XMC™** XMC4400 Drive Card 16 4.3 XMC™** XMC4400 Drive Card 16 4.2 XMC™** XMC4400 Drive Card 17 5.1 Power board 12 5.2 Isolated power supply board 21 5.1 Power board 22 5.2 Isolated power supply board 22 5.1 Power board 23 5.2 Isolated power supply board 24 6	•		
1 Introduction			
2 Hardware description 6 3 Software setup 8 3.1 EVAL_10KW_3LANPC_SIC firmware 8 3.2 Isolated power supply firmware 8 4 EVAL_10KW_3LANPC_SIC Evaluation Kit 9 4.1 Power board 9 4.1.1 Headers and connectors 11 4.1.2 Heatsink 1 4.1.3 XENSIV™TLI4971 current sensor 12 4.1.3.1 XENSIV™TLI4971-A120T5-U-E0001 settings and programming 12 4.1.4 CUR SENSOR PROGRAMMER board 1 4.1.5 Isolated power supply board 14 4.2 XMC™XMC4400 Drive Card 16 4.2 XMC™MC4400 Drive Card 16 4.3 XMC™LINK (KIT_XMC_LINK_SEGGER_V1) 16 5 Schematics 17 5.1 Power board 12 5.2 Isolated power supply board 22 6.1 Power board 23 6.2 Isolated power supply board 24 6.1 Power board 33 7.2 Isolat	_		
3 Software setup 3.1 EVAL_10KW_3LANPC_SIC firmware 3.2 Isolated power supply firmware 4 EVAL_10KW_3LANPC_SIC Evaluation Kit 4.1 Power board 5.1 Headers and connectors 5.1 Headers and connectors 6.1.3 XENSIV™TLI4971 current sensor 7.1 Isolated power supply board 7.1 Power board 7.2 Isolated power supply board 7.3 Isolated power supply board 7.4 Power board 7.5 PCB layout 7.7 Bill of materials 7.7 Bill of materials 7.8 Test results 7.8 References 7.8 Revision history. 7.8 Isolated power supply 7.8 Revision history. 7.8 Revision history. 7.8 Revision history. 7.8 Isolated power supply board 7.9 Revision history. 7.9 Isolated power supply board 7.1 Power board 7.2 Isolated power supply board 7.3 Isolated power supply board 7.4 Power board 7.5 Isolated power supply board 7.6 Isolated power supply board 7.7 Bill of materials 7.8 Isolated power supply board 7.9 Isolated power supply 7.9 Isolated			
3.1 EVAL_10KW_3LANPC_SIC firmware		•	
Solated power supply firmware			
4 EVAL_10KW_3LANPC_SIC Evaluation Kit 9.4.1 4.1.1 Power board 9.4.1.1 4.1.2 Heatsink 1.2 4.1.3 XENSIV™TLI4971 current sensor 1.7 4.1.3.1 XENSIV™TLI4971-A120T5-U-E0001 settings and programming 1.2 4.1.3.1 XENSIN™TLI4971-A120T5-U-E0001 settings and programming 1.2 4.1.4 CUR SENSOR PROGRAMMER board 1.2 4.1.5 Isolated power supply board 1.4 4.2 XMC™ XMC4400 Drive Card 1.6 4.3 XMC™ AMC4400 Drive Card 1.6 4.3 XMC™ Link (KIT_XMC_LINK_SEGGER_V1) 1.6 5 Schematics 1.7 5.1 Power board 1.7 5.2 Isolated power supply board 2.2 5.2 Isolated power supply board 2.6 5.2 Isolated power supply 3.6 6.1 </th <th></th> <th></th> <th></th>			
4.1. Power board			
4.1.1 Headers and connectors	-		
4.1.2 Heatsink			
4.1.3 XENSIV™TLI4971 current sensor. 12 4.1.3.1 XENSIV™TLI4971-A120T5-U-E0001 settings and programming 13 4.1.4 CUR SENSOR PROGRAMMER board 14 4.1.5 Isolated power supply board 16 4.2 XMC™ XMC4400 Drive Card 16 4.3 XMC™ Link (KIT_XMC_LINK_SEGGER_V1) 16 5 Schematics 17 5.1 Power board 15 5.2 Isolated power supply board 25 6 PCB layout 26 5.1 Power board 26 5.2 Isolated power supply board 26 5.2 Isolated power supply board 26 6.2 Isolated power supply 36 7 Bill of materials 36 7.1 Power board 36 8 Test results 41 3.1 Power board turn ON and turn OFF waveforms 42 3.2 Thermal tests 42 References 43 Revision history 44			
4.1.3.1 XENSIV™ TLI4971-A120T5-U-E0001 settings and programming 13 4.1.4 CUR SENSOR PROGRAMMER board 14 4.1.5 Isolated power supply board 16 4.2 XMC™ XMC4400 Drive Card 16 4.3 XMC™ Link (KIT_XMC_LINK_SEGGER_V1) 16 5 Schematics 17 5.1 Power board 17 5.2 Isolated power supply board 22 6 PCB layout 26 6.1 Power board 26 6.2 Isolated power supply board 26 6.2 Isolated power supply board 27 6.3 Bill of materials 36 6.1 Power board 37 6.2 Isolated power supply board 38 6.3 Test results 36 6 Test results 37 7 Test results 36 7 Test results 37 8 Test re	4.1.3		
4.1.4 CUR SENSOR PROGRAMMER board	4.1.3.		
4.2 XMC™ XMC4400 Drive Card	4.1.4		
4.3 XMC™ Link (KIT_XMC_LINK_SEGGER_V1) 16 5 Schematics 17 5.1 Power board 15 5.2 Isolated power supply board 26 6.1 Power board 26 6.2 Isolated power supply board 26 7 Bill of materials 36 7.1 Power board 36 7.2 Isolated power supply 36 8 Test results 43 8.1 Power board turn ON and turn OFF waveforms 45 8.2 Thermal tests 45 References 45 Revision history 46	4.1.5	Isolated power supply board	14
5 Schematics 17 5.1 Power board 15 5.2 Isolated power supply board 26 6.1 Power board 26 6.2 Isolated power supply board 28 7 Bill of materials 30 7.1 Power board 30 7.2 Isolated power supply 30 8 Test results 43 8.1 Power board turn ON and turn OFF waveforms 42 8.2 Thermal tests 43 References 43 Revision history 44	4.2	XMC™ XMC4400 Drive Card	16
5.1 Power board 15 5.2 Isolated power supply board 26 6.1 Power board 26 6.2 Isolated power supply board 26 7 Bill of materials 30 7.1 Power board 36 7.2 Isolated power supply 36 8 Test results 43 8.1 Power board turn ON and turn OFF waveforms 42 8.2 Thermal tests 44 References 42 Revision history 44	4.3	XMC™ Link (KIT_XMC_LINK_SEGGER_V1)	16
5.2 Isolated power supply board 23 6.1 Power board 26 5.2 Isolated power supply board 28 7.1 Power board 30 7.2 Isolated power supply 36 8. Test results 43 8.1 Power board turn ON and turn OFF waveforms 45 8.2 Thermal tests 4 References 43	5	Schematics	17
6.1 Power board 26 6.2 Isolated power supply board 26 7. Bill of materials 30 7.1 Power board 30 7.2 Isolated power supply 36 8. Test results 41 8.1 Power board turn ON and turn OFF waveforms 42 8.2 Thermal tests 42 References 43 Revision history 44	5.1	Power board	17
5.1 Power board 26 5.2 Isolated power supply board 28 7 Bill of materials 30 7.1 Power board 30 7.2 Isolated power supply 36 8 Test results 41 8.1 Power board turn ON and turn OFF waveforms 42 8.2 Thermal tests 43 References 43 Revision history 44	5.2	Isolated power supply board	23
5.2 Isolated power supply board 28 7 Bill of materials 30 7.1 Power board 30 7.2 Isolated power supply 36 8 Test results 41 8.1 Power board turn ON and turn OFF waveforms 42 8.2 Thermal tests 42 References 43 Revision history 44	6	PCB layout	26
7 Bill of materials 30 7.1 Power board 30 7.2 Isolated power supply 36 8 Test results 41 8.1 Power board turn ON and turn OFF waveforms 42 8.2 Thermal tests 43 References 43 Revision history 44	5.1	Power board	26
7.1 Power board 30 7.2 Isolated power supply 36 8 Test results 41 3.1 Power board turn ON and turn OFF waveforms 42 3.2 Thermal tests 43 References 43 Revision history 44	5.2	Isolated power supply board	28
7.2 Isolated power supply	7	Bill of materials	30
Test results	7.1	Power board	30
8.1 Power board turn ON and turn OFF waveforms 4: 8.2 Thermal tests 4: References 4: Revision history 4:	7.2	Isolated power supply	36
8.2 Thermal tests 4: References 4: Revision history 4:	8	Test results	41
References43 Revision history44	3.1	Power board turn ON and turn OFF waveforms	41
Revision history44	3.2	Thermal tests	41
•	Refe	rences	43
•	Revis	sion history	44
		•	

High power density design with multilevel topology

Introduction

1 Introduction

EVAL_10KW_3LANPC_SIC Evaluation Kit uses the three-level active neutral-point-clamped (3L-ANPC) topology and presents a distinct advantage over the commonly used two-level topologies. By employing series-connected capacitors, the 3L-ANPC topology effectively divides the DC link voltage into two equal halves thereby ensuring that each switch within the system is exposed to only half of the DC link voltage. This results in reduction of the switching losses by up to 50%.

Note:

The DC bus capacitors should be minimized and voltage balancing scheme must be implemented in the optimization and commercialization phase of this converter. The DC bus capacitor values are oversized on this evaluation board because this is not included in the demo firmware.

EVAL_10KW_3LANPC_SIC Evaluation Board design can be used to drive any three-phase alternating current induction motor (ACIM) or permanent magnet synchronous motor (PMSM). This design comprises two boards:

- **Power board** which is a three-phase, three-level active neutral-point-clamp inverter.
- **Isolated power supply board** that generates isolated voltages for 18 different MOSFETs.

Both these boards are implemented on the FR4 PCB. See Figure 1 to see the assembled boards.

This design utilizes the following blocks:

- Power stage with CoolSiC[™] G2 IMT40R011M2H 11.3 mΩ, max/400 V MOSFET
- Fast dual-channel isolated gate driver (4 A/8 A) EiceDRIVER™ 2EDF7275F
- High-precision coreless current sensor XENSIV™ TLI4971-A120T5-U-E0001 programmable current range
- XMC[™] XMC4400 microcontroller drive card interface
- Isolated voltage generation with OptiMOS™ 5 power transistor BSZ099N06LS5 9.9 mΩ, max/60 V

The power stage is implemented on a four-layer FR4 PCB with an option to mount additional heatsinks on the back of the board to extend the power range of the inverter.

The following sections describe the individual functional blocks, their interconnection, and the supporting firmware. These components can be utilized in a working setup and the circuits can be adapted as per the requirements.

Figure 1 EVAL_10KW_3LANPC_SIC assembly

High power density design with multilevel topology

Hardware description

2 Hardware description

EVAL_10KW_3LANPC_SIC comprises the following hardware components:

- **Power board:** The power board provides the interconnections and the peripheral subsystems to functionally drive the half-bridges of the 3L-ANPC power inverter.
- **Isolated power supply board:** The isolated power supply board generates the gate driver supply voltages.
- Auxiliary power supply (18 V/1 A)
- Auxiliary power supply (5 V/1 A) optional, but if not used, a small heatsink should be mounted on linear regulator G1
- XMC[™] XMC4400 Drive Card (KIT_XMC4400_DC_V1): XMC[™] XMC4400 Drive Card provides the control signals.

Figure 2 shows the building blocks from the top-level perspective.

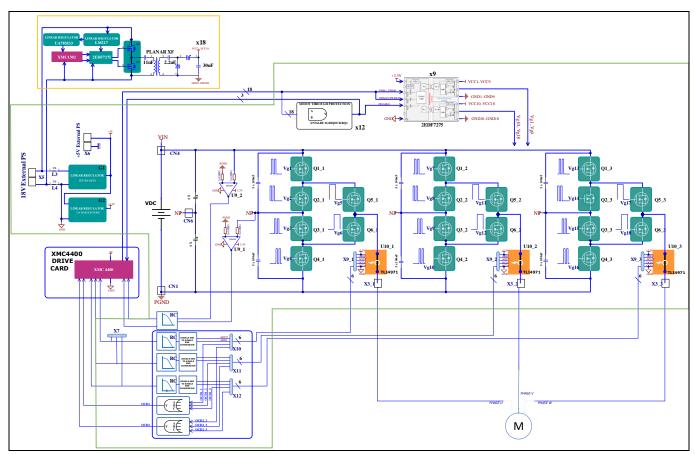


Figure 2 Top-level system overview

Power board

- High-voltage (HV)s side:
 - Interface to the HV supply
 - HV DC capacitor bank (electrolytic capacitors)
 - Three-phase MOSFET power stage
- Signal side:
 - Gate drivers

High power density design with multilevel topology

infineon

Hardware description

- Sensor signal processing (buffers and filters for current and temperature sensing)
- Connector for current sensor programmer
- Voltage supply:
 - 18 V to 5 V linear regulator
 - 5 V to 3.3 V linear regulator

Isolated power supply board

- Signal side:
 - Gate drivers
 - XMC™ XMC1300 to drive the forward converter
- Voltage supply:
 - 18 V to 5 V linear regulator
 - 5 V to 3.3 V linear regulator

High power density design with multilevel topology

3 Software setup

Prerequisites:

- EVAL_10KW_3LANPC_SIC power board
- Isolated power supply board
- XMC™ XMC4400 Drive Card
- 31 x 6 flat cable for current sensors
- KIT_XMC_LINK_SEGGER_V1

Additional equipment required for operation and evaluation:

- High-voltage power supply (600 V, 20 A)
- Auxiliary power supply (18 V, 1 A)
- Load

3.1 EVAL 10KW 3LANPC SIC firmware

The firmware for power stage is an open-loop SINPWM modulator for three-phase systems. Default switching frequency is 10 kHz with 500 ns dead-time and 50 Hz line frequency. The $600\,V_{DC}$ input would create ~212 V_{AC-RMS} at the phase with respect to the neutral point.

The 3L_ANPC_Application_Kit.hex file is flashed to the drive card via XMCFlasher. Connecting the USB cable to the board will only power up the debugger part because the XMC4400 Drive Card is isolated from the debugger. An additional supply of 5 V to the XMC4400 Drive Card is required to flash the MCU. The firmware is self-starting after the powerup and does not need any control input signal.

3.2 Isolated power supply firmware

The firmware for isolated power supply is an open-loop controller, which sends complementary PWM signals to a half bridge. Default switching frequency is 100 kHz with 100 ns dead-time and 20% duty cycle.

The ForwardConverter18Output.hex file is flashed to the isolated power supply board via XMCFlasher using KIT_XMC_LINK_SEGGER_V1. The firmware is self-starting after power-up and does not need any control.

High power density design with multilevel topology

EVAL_10KW_3LANPC_SIC Evaluation Kit

4 EVAL_10KW_3LANPC_SIC Evaluation Kit

The following sections describe the EVAL_10KW_3LANPC_SIC Evaluation Kit highlighting its specifications, schematics, and layout.

4.1 Power board

The power board comprises 18 CoolSiC[™] G2 IMT40R011M2H MOSFETs available in a TOLL package. The layout is optimized for switching behavior by minimizing and compensating the commutation loop inductance. This commutation loop ensures low switching losses and low voltage overshoot during transients.

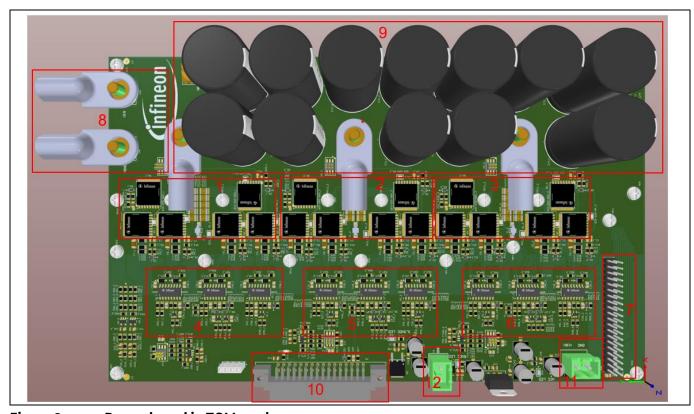


Figure 3 Power board in TOLL package

The following sections can be identified on the board:

- 1: MOSFETs and connector for Phase A
- 2: MOSFETs and connector for Phase B
- 3: MOSFETs and connector for Phase C
- 4: Gate driver and short-circuit protection for Phase A
- 5: Gate driver and short-circuit protection for Phase B
- 6: Gate driver and short-circuit protection for Phase C
- 7: Connector for Isolated Power Supply Board
- 8: Input DC bus power supply connectors
- 9: DC link capacitors
- **10:** XMC[™] XMC4400 Drive Card interface
- 11: Connector for the auxiliary power supply (recommended voltage is 18 V)
- 12: Connector for the auxiliary power supply 5 V/1AXMC4400 Drive Card power supply (5 V)

High power density design with multilevel topology

EVAL 10KW 3LANPC SIC Evaluation Kit

The proximity of the ceramic capacitors to the fast-switching loop ensures the DC bus stability and low-voltage overshoots during transients, which reduces the switching losses.

RC snubber footprints are added for each MOSFET, but not populated because of the clean switching behavior of the CoolSiC™ MOSFETs. The output signal from the current sensor is routed to the connectors (X9_1, X9_2, and X9_3) from which it is transmitted via a flat wire to the low-voltage section of the PCB.

Headers and connectors 4.1.1

See Table 2 for a list of headers and connectors of EVAL_10KW_3LANPC_SIC.

Table 2 EVAL_10KW_3LANPC_SIC headers and Connectors

Name	Description	Comment		
X1	Power connector – Input voltage positive	Nominal: 600 V, Max: 640 V		
X2	Power connector – Input voltage negative	-		
X3 Power connector – Input voltage neutral point		Use only if two series battery power sources are available Max: 320 V		
X3_1	Power connector – Phase A	Max: 20 arms		
X3_2	Power connector – Phase B	Max: 20 arms		
X3_3	Power connector – Phase C	Max: 20 arms		
X4	XMC Drive Card connector	XMC4400 Drive Card (KIT_XMC4400_DC_V1)		
X5	+18V Auxiliary supply connector	+18 V/0 V. Follow the marking on the PCB for correct polarity		
X6	+5V Auxiliary supply connector	+5 V/0 V. Follow the marking on the PCB for correct polarity		
X7	External current sensor feedback	Current sensor output test points		
X8	Isolated power supply board connector	See Figure 1 for connection direction		
X9_1	Current sensor feedback connector Phase A	1x6 flat cables		
X9_2	Current sensor feedback connector Phase B	1x6 flat cables		
X9_3	Current sensor feedback connector Phase C	1x6 flat cables		
X10	Current sensor feedback connector Phase A	1x6 flat cables		
X11	Current sensor feedback connector Phase B	1x6 flat cables		
X12	Current sensor feedback connector Phase C	1x6 flat cables		

High power density design with multilevel topology

EVAL_10KW_3LANPC_SIC Evaluation Kit

4.1.2 Heatsink

To extend the power range of the inverter, attach the FR4 board (43 mm x 240 mm) to the heatsink via the 14 M3 screws.

Place a sufficiently thick thermal interface material (TIM) between the PCB and the heatsink.

Note: WE-TGF-40006010 is recommended for high thermal conductivity (6W/m*K) and 1 mm thickness.

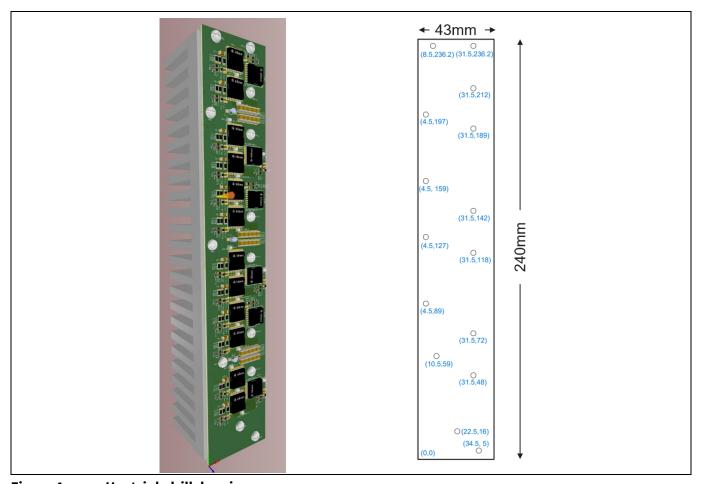


Figure 4 Heatsink drill drawing

High power density design with multilevel topology

XENSIV[™]TLI4971 current sensor 4.1.3

The current sensor (Figure 5) uses the XENSIV™ TLI4971-A120T5-U-E0001 high-precision miniature coreless magnetic current sensor for AC and DC measurements with analog interface and dual fast overcurrent detection outputs. Infineon's well-established and robust Hall technology enables accurate and highly linear measurement of currents with a full measurement range up to ±120 A. The sensor's internal self-diagnostic feature avoids all negative effects (saturation, hysteresis), commonly known from the sensors using flux concentration techniques.

Features:

- Integrated current rail with typical 225 $\mu\Omega$ insertion resistance enables ultra-low power loss
- SMD package with small form factor (8x8 mm²) for easy integration and board area saving
- Single supply voltage (3.1–3.5 V)
- Highly accurate, scalable, DC and AC current sensing
- Typical bandwidth of 240 kHz
- Very low sensitivity error overtemperature (max. 2.5%)
- Excellent stability of offset overtemperature and lifetime
- High robustness to voltage slew rates up to 10 V/ns
- Galvanic functional isolation up to 1150 V peak VIORM. Partial discharge capability of at least 1200 V (4 mm clearance and creepage)
- Differential sensor principle ensures superior magnetic stray field suppression for better immunity
- Two independent fast overcurrent detection (OCD) pins with configurable thresholds enable protection mechanisms for power circuitry (typical: 0.7 μs and max: 1 μs)
- Ts: -40 ...+105°C
- Precalibrated sensor

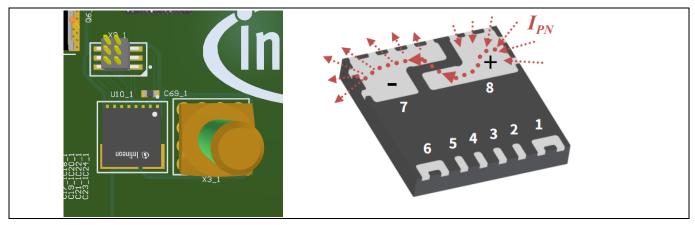


Figure 5 **Current sensor PCB**

High power density design with multilevel topology

EVAL_10KW_3LANPC_SIC Evaluation Kit

Table 3 Current sensor connector pin description

Pin No.	Symbol	Function
1	V_{DD}	Supply voltage
2	G _{ND}	Ground
3	V_{REF}	Reference voltage I/O, analog signal output in fully differential mode
4	Аоит	Analog signal output
5	O _{CD1}	Overcurrent detection output 1 (open drain output)
6	O _{CD2}	Overcurrent detection output 2 (open drain output)
7	IP-	Negative current terminal pin (current-out)
8	IP+	Positive current terminal pin (current-in)

4.1.3.1 XENSIV™ TLI4971-A120T5-U-E0001 settings and programming

XENSIV™ TLI4971-A120T5-U-E0001 has a sensitivity setting that can be set via the programming interface. The current sensor can be programmed in two ways:

- Individually before system insertion
- Programmed "in-system" by providing the appropriate interconnection between the sensor and the microprocessor.

By default, XENSIV™ TLI4971-A120T5-U-E0001 comes pre-configured to 120 A. Other pre-configured parameters are:

- Output mode is set to semi-differential mode.
- The quiescent voltage is set to 1.65 V.
- The OCD threshold of channel 1 is set to the factor 1.25 of the full-scale range.
- The OCD threshold of channel 2 is set to the factor 0.82 of the full-scale range.
- The pre-defined setting of the OCD deglitching filter time is set to 0 μs.
- The sensor is pre-configured to work in the non-ratiometric mode.
- The sensitivity and the derived measurement range (full scale) can be reprogrammed with The Infineon CUR SENSOR PROGRAMMER board according to the sensitivity ranges listed in Table 4.

Table 4 Sensitivity setting parameters

Sensitivity	Value	Maximum current for FS [A]	
range	[mV/A]		
S1	10	120	
S2	12	100	
S3	16	75	
S4	24	50	
S5	32	37.5	
S6	48	25	

High power density design with multilevel topology

EVAL_10KW_3LANPC_SIC Evaluation Kit

4.1.4 CUR SENSOR PROGRAMMER board

The Infineon CUR SENSOR PROGRAMMER board is a utility board specially designed for interfacing TLI4971 and XENSIV™ TLE4972 Hall current sensors operating at 3.3 V supply levels. This board is compatible with all XENSIV™ TLI4971/TLE4972 three-phase evaluation boards and is used to performing live current level readouts, diagnostic checks (e.g., OCD check), EEPROM configuration, and calibration.

Figure 6 Current sensor programmer

Table 5 lists the pin description of the power board and is used to connect the CUR SENSOR PROGRAMMER board to program the TLI4971-A120T5-U-E0001 current sensor.

Table 5 Current sensor connector pin description – Power board

Pin no.	Symbol	Function
1	V_{REF}	Reference voltage I/O, analog signal output in fully differential mode
2	Аоит	Analog signal output
3	G _{ND}	Ground
4	O _{CD1}	Overcurrent detection output 1 (open drain output)
5	V_{DD}	Supply voltage
6	O _{CD2}	Overcurrent detection output 2 (open drain output)

4.1.5 Isolated power supply board

The isolated power supply board generates 18 isolated output voltages, each equal to the input voltage. The board operates in an open-loop mode and utilizes a planar transformer with windings integrated on the PCB, and employs a forward converter driven by a half-bridge configuration. The transformer includes a series capacitor that plays a crucial role in resetting the transformer.

The functioning principle of the isolated output voltage is as follows:

- Pin1 (dotted) is the positive input for the isolated power supply board; Pin2 is the return.
- Pin3 and Pin4 are empty.
- Pin5(+) with Pin7(-) and Pin6 (+) with Pin8(+) construct the isolated voltages for the gate driver network.

The other 16 isolated voltages are constructed with the same principle as described.

High power density design with multilevel topology

EVAL_10KW_3LANPC_SIC Evaluation Kit

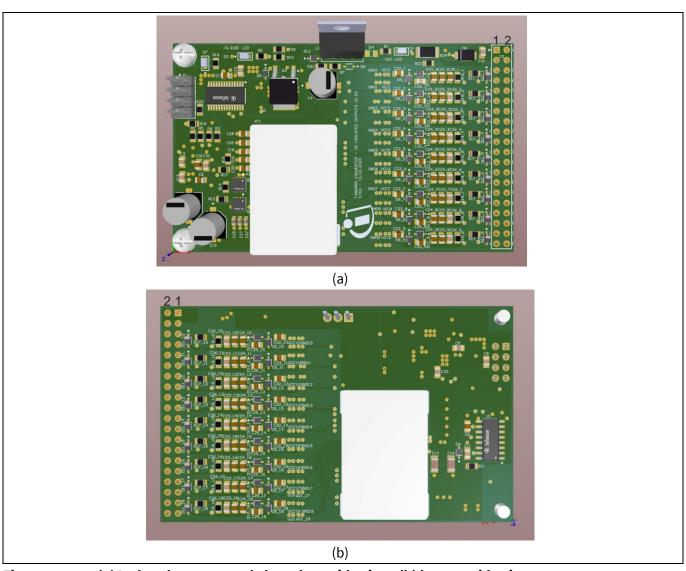


Figure 7 (a) Isolated power supply board top side view; (b) bottom side view

High power density design with multilevel topology

4.2 XMC[™] XMC4400 Drive Card

XMC[™] XMC4400 Drive Card (KIT_XMC4400_DC_V1) interfaces the power board. The X4 connector on the power board is connected to X302 (MAB32B2) on the drive card.

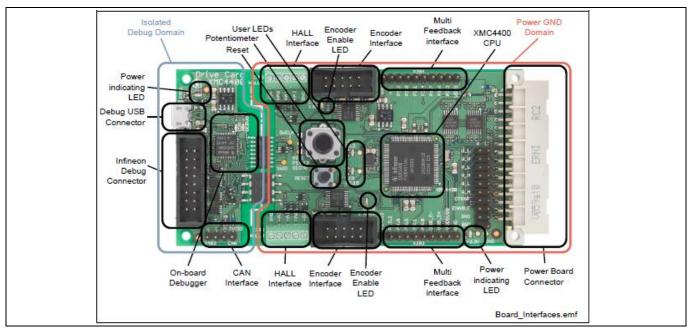


Figure 8 KIT_XMC4400_DC_V1 Drive Card

4.3 XMC™ Link (KIT_XMC_LINK_SEGGER_V1)

XMC[™] Link (KIT_XMC_LINK_SEGGER_V1) is an isolated debug probe for all XMC[™] microcontrollers. The debug probe is based on the SEGGER J-Link debug firmware, which enables the use with DAVE[™] and all common third-party compiler/IDEs (Altium Limited, Atollic, ARM/KEIL, IAR Systems, iSystem, and Rowley Associates) known from the wide Arm[®] ecosystem. See Figure 21 for connection to the isolated power supply board.

Note: KIT_XMC_LINK_SEGGER_V1 is required to program isolated power supply board.

Figure 9 XMC[™] Link – functional isolated debug probe

Schematics

Schematics 5

5.1 **Power board**

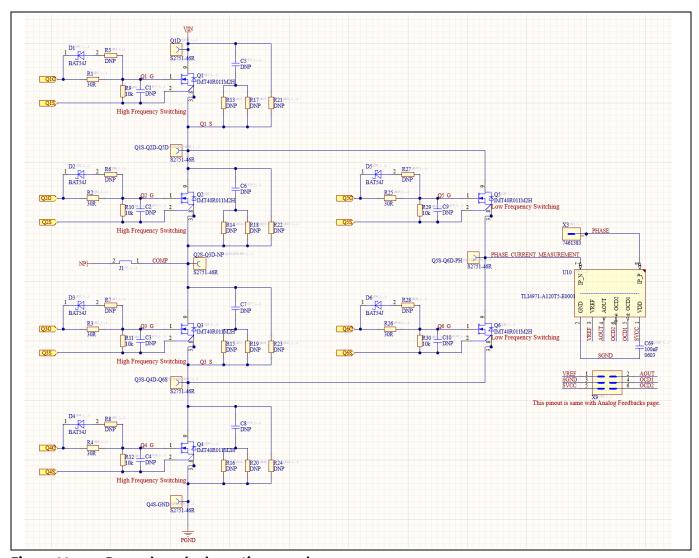


Figure 10 Power board schematic - one phase

The "DNP" markings indicated next to component in the schematic are optional. On default, they Note: are not populated on the board.

High power density design with multilevel topology

Schematics

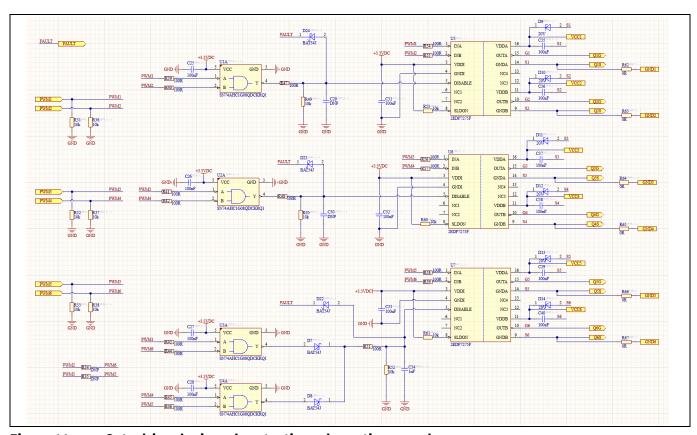


Figure 11 Gate driver logic and protection schematic – one phase

- Logic gates U1A, U2A, and U4A (AND gates) are implemented as a shoot-through protection for the half bridges.
- EiceDRIVER™ 2EDF7275 isolated gate drivers are used to isolate the power stage from the controller stage.
- The Zener diodes D9, D10, D11, D12, D13, and D14 protect the gate drivers from the overshoots that might occur from the isolated power supply board.

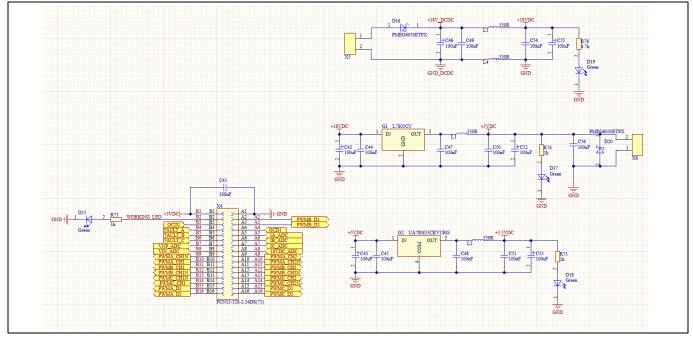


Figure 12 Linear voltage regulators and controller connector

Schematics

- Diode D16 is used for reverse voltage protection.
- The voltage used at connector X5 is used to create the isolated voltages for the gate drivers. The driving voltage of the MOSFETs can be adjusted through the voltage used here.
- For the CoolSiC[™] MOSFETs, the recommended driving voltage is +18 V/0 V.
- The 5 V G1 linear regulator requires a heatsink to control the temperature but it also can be bypassed by applying 5.1 V to the X6 connector. See Figure 13 for auxiliary supply connections.

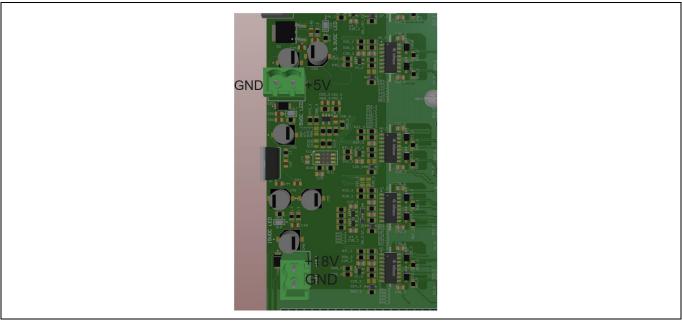


Figure 13 Auxiliary supply connections

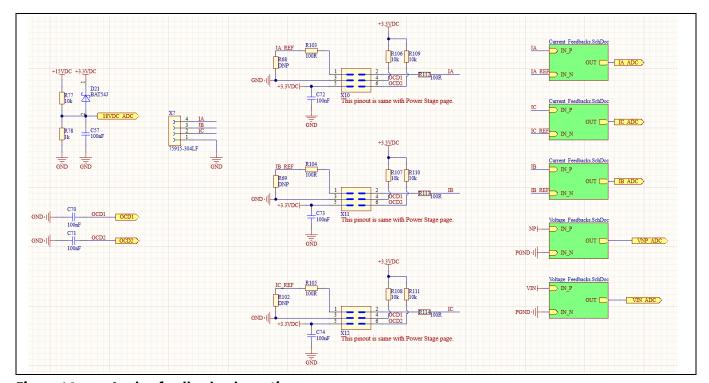


Figure 14 Analog feedback schematic

High power density design with multilevel topology

Schematics

The three-phase current sense signals are taken from X9_1, X9_2, X9_3 through 1 x 6 flat cable and carried to the signal processing section of the power board. See Figure 15 for the current sensor cable connection.

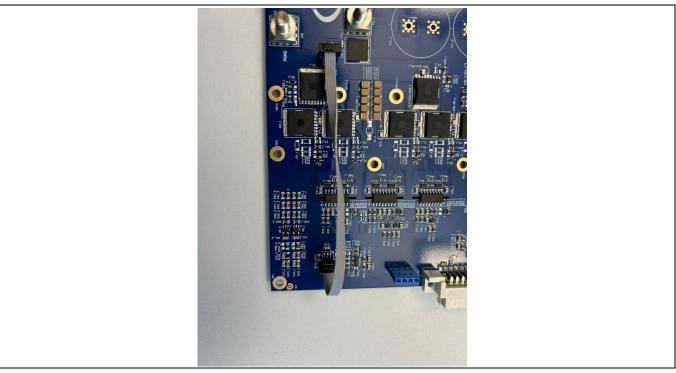


Figure 15 Current sensor cable connection

The connector X7 also has three-phase output current sense information and can be used either as test points or as connection to external ADC pins for processing and control. See Figure 16 for the pinout.

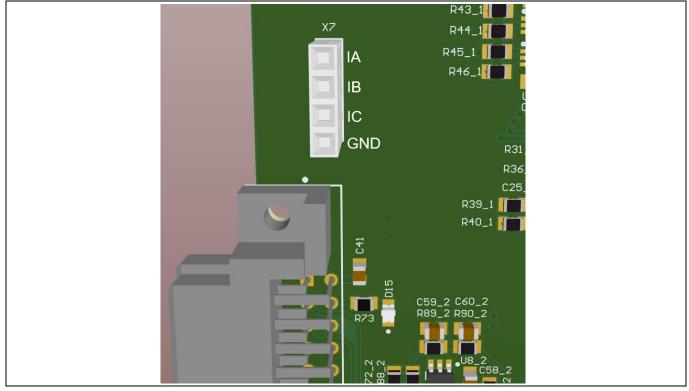


Figure 16 Current feedback test points

High power density design with multilevel topology

Schematics

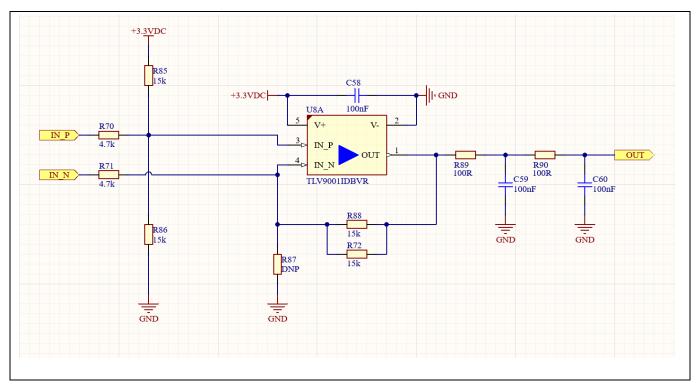


Figure 17 Current feedback schematic

The current feedback circuit in Figure 17 converts the double-ended current feedback signals to single-ended signals with a gain of 3.19 V and an offset of 1.65 V. The components R89, C59, R90, and C60 form a second-order low-pass filter with a cutoff frequency of 6 kHz.

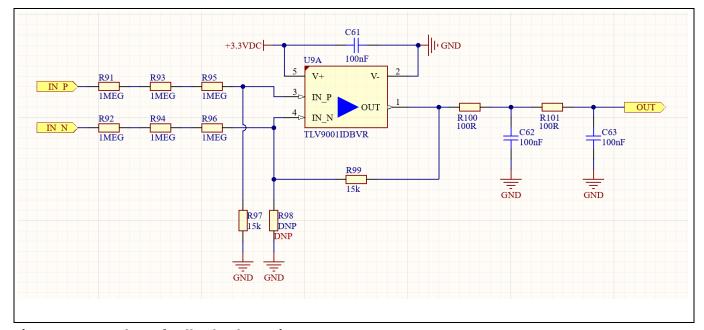


Figure 18 Voltage feedback schematic

The voltage feedback circuit in Figure 18 converts the high-voltage input to a low-voltage input for the microcontroller. The series connection of R91, R93, and R95 forms a voltage divider with R97, which has a ratio of 1/200. Input voltage of 600 V will be equal to 3 V at the input of the controller. There is no galvanic isolation

Schematics

but the isolation between the power and control grounds is 3 m Ω in this configuration. The components R100, C62, R101, and C63 form a second-order low-pass filter with cutoff frequency equal to 6 kHz.

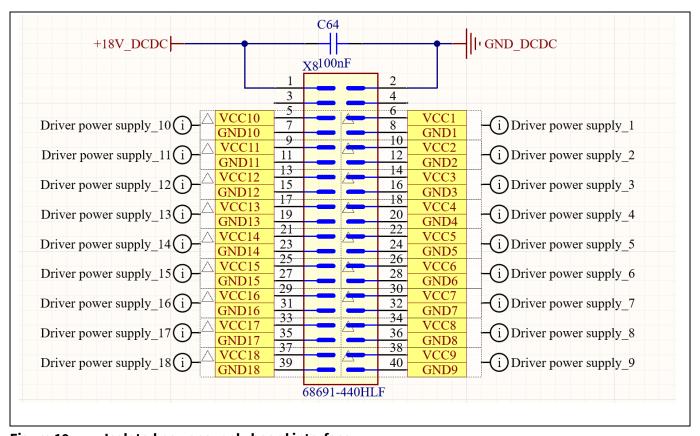


Figure 19 Isolated power supply board interface

For isolated power supply board, a standard 2.54 mm 2 x 20 pin header is used. The pin1 of connector X8, which has a dot on the PCB, is the positive supply while Pin2 is the ground. The created isolated voltage supplies for the gate drivers are taken through this connector in differential pairs.

High power density design with multilevel topology

Schematics

5.2 Isolated power supply board

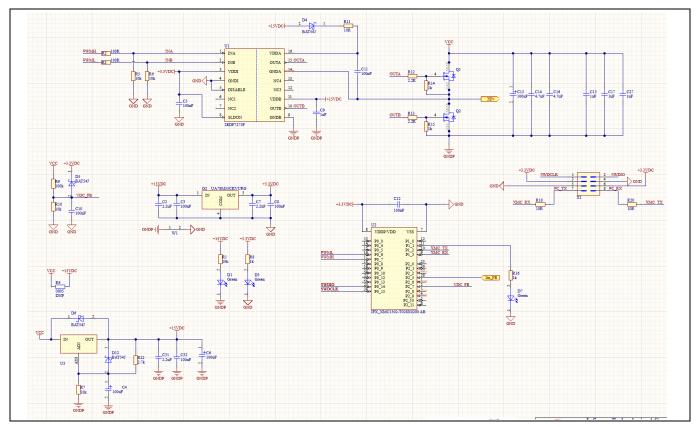


Figure 20 Isolated power supply board

For the control of the isolated gate voltage creation, XMC[™] XMC1302 is used. The duty cycle and the frequency of the PWM can be controlled with the firmware. The resistors R9, R10 and C10 form a voltage divider for analog input. To program this board, XMC debugger is required. X1 connector can be used both for programming and UART communications. The pin1 SWDCLK, which has a dot on the PCB needs to be connected to Pin1 (red) of the debugger as shown in Figure 21.

High power density design with multilevel topology

Schematics

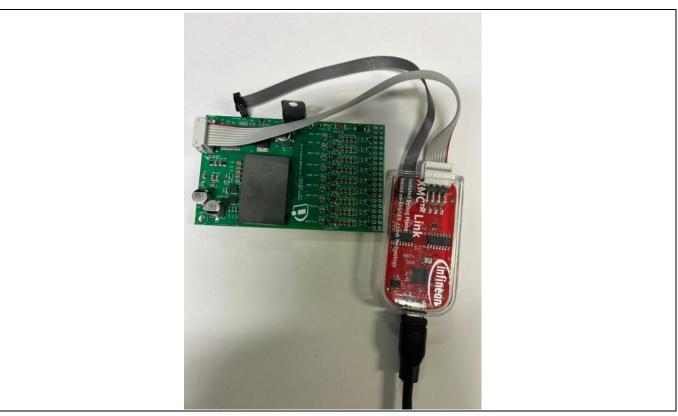
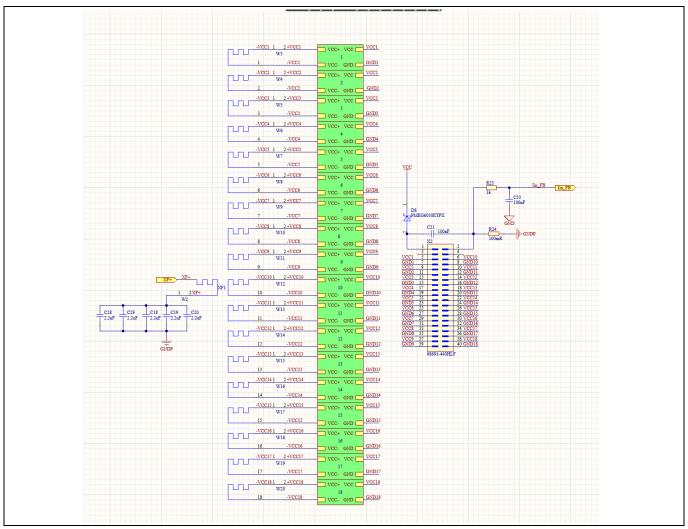



Figure 21 XMC[™] Link connection to the isolated power supply board

High power density design with multilevel topology

Schematics

Isolated power supply board - secondary side circuit for each of the 18 windings of the Figure 22 transformer

The forward converter is constructed without the reset winding. C18, C19, C20, C28, and C29 are in a series with the transformer. These capacitors are discharged when the output is low. The transformer is implemented with windings constructed on the PCB and an external EEQ30 ferrite core B66506G0000X197 from EPCOS-TDK.

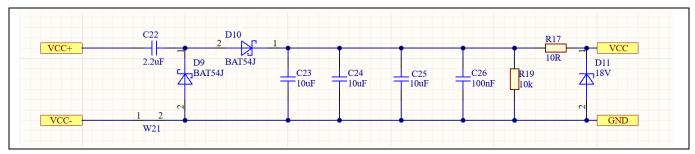


Figure 23 Isolated power supply board - rectifier

High power density design with multilevel topology

PCB layout

6 PCB layout

6.1 Power board

Figure 24 (a) Layer 1 (Top); (b) Layer 2 (Bottom)

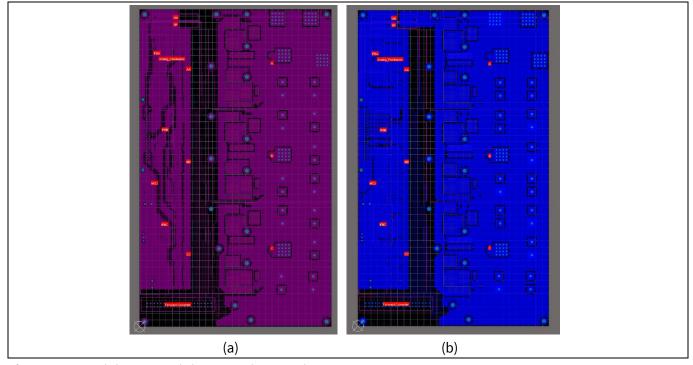


Figure 25 (a) Layer 3; (b) Layer 4 (Bottom)

PCB layout

Stac	:k up	Layer stack	Layer stack			
No.	Board layer stack	Name	Material	Thickness	Constant	
1		Top paste				
2		Top overlay				
3		Top solder	Solder resist	0.020 mm	3.5	
4		Layer 1	Copper	0.070 mm		
5		Dielectric1	FR-4	0.220 mm	4.3	
6		Layer 2	Copper	0.070 mm		
7		Core	FR-4	1.000 mm	4.3	
8		Layer 3	Copper	0.070 mm		
9]	Dielectric2	FR-4	0.220 mm	4.3	
10		Layer 4	Copper	0.070 mm		
			Solder			
11		Bottom solder	resist	0.020 mm	3.5	
12		Bottom overlay				
13		Bottom paste				

Figure 26 Power board stack up

High power density design with multilevel topology

PCB layout

6.2 Isolated power supply board

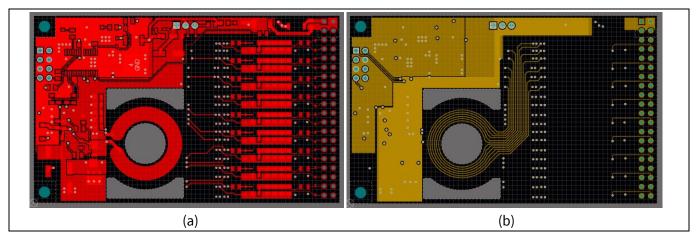


Figure 27 (a) Layer 1 (Top); (b) Layer 2 (Bottom)

Figure 28 (a) Layer 3; (b) Layer 4 (Bottom)

High power density design with multilevel topology

PCB layout

Stack up		Layer stack	Layer stack			
No.	Board layer stack	Name	Material	Thickness	Constant	
1		Top paste	_	-	_	
2		Top overlay	_	_	_	
3		Top solder	Solder resist	0.020 mm	3.5	
4		Layer 1	Copper	0.035 mm		
5		Dielectric1	FR-4	0.110 mm	4.29	
6		Layer 2	Copper	0.035 mm		
7		Core	FR-4	1.200 mm	4.29	
8		Layer 3	Copper	0.035 mm		
9		Dielectric2	FR-4	0.110 mm	4.29	
10		Layer 4	Copper	0.035 mm		
11		Bottom solder	Solder resist	0.020 mm	3.5	
12		Bottom overlay	_	-	_	
13		Bottom paste	_	_	_	

Figure 29 Isolated power supply board stack up

High power density design with multilevel topology

Bill of materials

7 Bill of materials

7.1 Power board

Table 6 Power board BoM

Designator	Quantity	Description	Manufacturer	Manufacturer order number
C11_1, C12_1, C13_1, C14_1	12	CAP / ELCO / 270uF / 400V / 20% / Aluminiumelectrolytic /-25°C to 105°C / 10.00mm Pitch X 23.50mm Dia X 52.00mm H body / THT / -	Nichicon	LGW2G271MELZ50
C15_1, C15_2, C15_3, C16_1, C16_2, C16_3, C17_1, C17_2, C17_3, C18_1, C18_2, C18_3, C19_1, C19_2, C19_3, C20_1, C20_2, C20_3, C21_1, C21_2, C21_3, C22_1, C22_2, C22_3, C23_1, C23_2, C23_3, C24_1, C24_2, C24_3	30	CAP / CERA / 100nF / 500V / 10% / X7R (EIA) / -55°C to 125°C / 1210(3225) / SMD / -	Kemet	C1210C104KCRACTU
C25_1, C25_2, C25_3, C26_1, C26_2, C26_3, C27_1, C27_2, C27_3, C28_1, C28_2, C28_3, C31_1, C31_2, C31_3, C32_1, C32_2, C32_3, C33_1, C33_2, C33_3, C35_1, C35_2, C35_3, C36_1, C36_2, C36_3, C37_1, C37_2, C37_3, C38_1, C38_2, C38_3, C39_1, C39_2, C39_3, C40_1, C40_2, C40_3, C57, C64, C70, C71, C72, C73, C74	46	CAP / CERA / 100nF / 50V / 5% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	Kemet	C0805C104J5RAC
C34_1, C34_2, C34_3	3	CAP / CERA / 1nF / 50V / 10% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	Kemet	C0805C102K5RACTU
C41, C44, C45, C47, C48, C49, C50, C51, C54, C56, C58_1, C58_2, C58_3, C59_1, C59_2, C59_3, C60_1, C60_2, C60_3, C61_1, C61_2, C62_1, C62_2, C63_1, C63_2	25	CAP / CERA / 100nF / 50V / 5% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GRM21BR71H104JA01
C42, C43, C46, C52, C53, C55	6	CAP / ELCO / 100uF / 25V / 20% / Aluminiumelectrolytic /-55°C to 125°C / 6.60mm L X 6.60mm W X 8.00mm H / - / -	Panasonic	EEHZC1E101XP
C69_1, C69_2, C69_3	3	CAP / CERA / 100nF / 25V / 5% / X7R (EIA) / -55°C to 125°C / 0603(1608) / SMD / -	Kemet	C0603C104J3RAC
D1_1, D1_2, D1_3, D2_1, D2_2, D2_3, D3_1, D3_2, D3_3, D4_1, D4_2, D4_3, D5_1, D5_2, D5_3, D6_1, D6_2, D6_3, D7_1, D7_2, D7_3, D8_1, D8_2, D8_3, D21, D22_1, D22_2, D22_3, D23_1, D23_2, D23_3, D24_1, D24_2, D24_3	34	Schottky barrier single diode	Nexperia	BAT54J
D9_1, D9_2, D9_3, D10_1, D10_2, D10_3, D11_1, D11_2, D11_3, D12_1,	18	Zener Voltage Regulator, 20V	ON Semiconductor	MMSZ5250BT1G

High power density design with multilevel topology

Designator	Quantity	Description	Manufacturer	Manufacturer order number
D12_2, D12_3, D13_1, D13_2, D13_3, D14_1, D14_2, D14_3				
D15	1	CHIPLED, Green Colour, 570nm	OSRAM Opto Semiconductors	LG R971-KN-1
D16, D20	2	DIODE SCHOTTKY 60V 3A SOD128	Nexperia	PMEG6030ETPX
D17, D18, D19	3	LED GREEN CLEAR SMD	OSRAM Opto Semiconductors	LG M67K-H1J2-24-Z
G1	1	Positive Voltage Regulator ICs	STMicroelectronics	L7805CV
G2	1	μΑ78Mxx Positive-Voltage Regulator, 7V - 25V Input Voltage, 5.0V Output (Operating Temperature 0°C to 125°C)	Texas Instruments	UA78M05CKVURG3
J1_1, J1_2, J1_3	3	Jumper-0.64mm Thick Copper	Keystone Electronics	5100
L1, L2, L3, L4	4	IND / FERR / 330R / 1.5A / 25% / -55°C to 125°C / - / 0805(2012) / Inductor,Chip;2.00mm L X 1.25mm W X 1.05mm H / SMD / -	MuRata	BLM21PG331SN1D
MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8, MP9, MP10, MP11, MP12, MP12_1, MP12_2, MP12_3, MP13, MP13_1, MP13_2, MP13_3	19	M3 X 6mm Pan Head,Cross Head Metric Screw, 5.6mm X 2.4mm Head, Nylon 6,6	Duratool	D00687
Q1D_1, Q1D_2, Q1D_3, Q1S-Q2D- Q5D_1, Q1S-Q2D-Q5D_2, Q1S-Q2D- Q5D_3, Q2S-Q3D-NP_1, Q2S-Q3D-NP_2, Q2S-Q3D-NP_3, Q3S-Q4D-Q6S_1, Q3S- Q4D-Q6S_2, Q3S-Q4D-Q6S_3, Q4S- GND_1, Q4S-GND_2, Q4S-GND_3, Q5S- Q6D-PH_1, Q5S-Q6D-PH_2, Q5S-Q6D- PH_3	18	Test Point, Surface Mount, Finish- Tin Over Nickel	Harwin	S2751-46R
R1_1, R1_2, R1_3, R2_1, R2_2, R2_3, R3_1, R3_2, R3_3, R4_1, R4_2, R4_3, R25_1, R25_2, R25_3, R26_1, R26_2, R26_3	18	RES / STD / 30R / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805(2012) / SMD / -	Vishay	CRCW080530R0FK
R9_1, R9_2, R9_3, R10_1, R10_2, R10_3, R11_1, R11_2, R11_3, R12_1, R12_2, R12_3, R29_1, R29_2, R29_3, R30_1, R30_2, R30_3, R31_1, R31_2, R31_3, R32_1, R32_2, R32_3, R33_1, R33_2, R33_3, R36_1, R36_2, R36_3, R37_1, R37_2, R37_3, R38_1, R38_2, R38_3, R49_1, R49_2, R49_3, R50_1, R50_2, R50_3, R52_1, R52_2, R52_3, R53_1, R53_2, R53_3, R60_1, R60_2, R60_3, R61_1, R61_2, R61_3, R77, R106, R107, R108, R109, R110, R111	61	RES / STD / 10k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Yageo	RC0805FR-0710KL

High power density design with multilevel topology

Designator	Quantity	Description	Manufacturer	Manufacturer order number
R39_1, R39_2, R39_3, R40_1, R40_2, R40_3, R41_1, R41_2, R41_3, R42_1, R42_2, R42_3, R43_1, R43_2, R43_3, R44_1, R44_2, R44_3, R45_1, R45_2, R45_3, R46_1, R46_2, R46_3, R47_1, R47_2, R47_3, R48_1, R48_2, R48_3, R51_1, R51_2, R51_3, R54_1, R54_2, R54_3, R55_1, R55_2, R55_3, R56_1, R56_2, R56_3, R57_1, R57_2, R57_3, R58_1, R58_2, R58_3, R59_1, R59_2, R59_3, R89_1, R89_2, R89_3, R90_1, R90_2, R90_3, R100_1, R100_2, R101_1, R101_2, R103, R104, R105, R112, R113, R114	67	RES / STD / 100R / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW0805100RFK
R62_1, R62_2, R62_3, R63_1, R63_2, R63_3, R64_1, R64_2, R64_3, R65_1, R65_2, R65_3, R66_1, R66_2, R66_3, R67_1, R67_2, R67_3	18	RES / STD / 0R / 125mW / 0R / 0ppm/K / -55°C to 155°C / 0805 / SMD / -	Yageo	RC0805JR-070RL
R70_1, R70_2, R70_3, R71_1, R71_2, R71_3	6	RES / STD / 4.7k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805(2012) / SMD / -	Vishay	CRCW08054K70FK
R72_1, R72_2, R72_3, R85_1, R85_2, R85_3, R86_1, R86_2, R86_3, R88_1, R88_2, R88_3, R97_1, R97_2, R99_1, R99_2	16	RES / STD / 15k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW080515K0FK
R73, R74, R75, R78	4	RES / STD / 1k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Yageo	RC0805FR-071KL
R76	1	RES / - / 4.7k / 125mW / 1% / 100ppm/K / - / 0805 / SMD / -	Bourns	CR0805-FX-4701GLF
R91_1, R91_2, R92_1, R92_2, R93_1, R93_2, R94_1, R94_2, R95_1, R95_2, R96_1, R96_2	12	RES / - / 1MEG / 125mW / 1% / 100ppm/K / - / 0805 / SMD / -	Multicomp	MCMR08X1004FTL
U1_1, U1_2, U1_3, U2_1, U2_2, U2_3, U3_1, U3_2, U3_3, U4_1, U4_2, U4_3	12	Single 2-Input AND Gate	Texas Instruments	SN74AHC1G08QDCKRQ1
U5_1, U5_2, U5_3, U6_1, U6_2, U6_3, U7_1, U7_2, U7_3	9	Fast, Robust, Dual-Channel, Functional and Reinforced Isolated MOSFET Gate-Driver with Accurate and Stable Timing	Infineon Technologies	2EDF7275F
U8_1, U8_2, U8_3, U9_1, U9_2	5	Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems	Texas Instruments	TLV9001IDBVR
U10_1, U10_2, U10_3	3	A high precision miniature coreless magnetic current sensor for AC and DC measurements with analog interface and two fast overcurrent detection outputs	Infineon Technologies	TLI4971-A120T5-E0001
X1, X2, X3, X3_1, X3_2, X3_3	6	Terminals WP-SHFU Pin- Plate 16Pin M5 Shank 180A	Wurth Elektronik	7461383
X4	1	Through Hole Socket, Right angle 2.54mm pitch, 16X2 pin, double row	Hirose Connectors	PCN13-32S-2.54DS(71)

High power density design with multilevel topology

Designator	Quantity	Description	Manufacturer	Manufacturer order number
X5, X6	2	Term Block HDR 2POS VERT 5.08mm	Würth Electronic	691311500102
X7	1	Connector, 2.54mm Pitch, 4Pins, Receptacle, Vertical	Amphenol	75915-304LF
X8	1	High temperature thermoplastic material, High retention force onto PCB, Bergstik Header	Amphenol	68691-440HLF
X9_1, X9_2, X9_3, X10, X11, X12	6	SMT Micro Header, 1.27mm pitch, 6 pin, Vertical, Double Row	Samtec	FTSH-103-01-L-DV-TR
C11_1, C12_1, C13_1, C14_1	12	CAP / ELCO / 270uF / 400V / 20% / Aluminiumelectrolytic /-25°C to 105°C / 10.00mm Pitch X 23.50mm Dia X 52.00mm H body / THT / -	Nichicon	LGW2G271MELZ50
C15_1, C15_2, C15_3, C16_1, C16_2, C16_3, C17_1, C17_2, C17_3, C18_1, C18_2, C18_3, C19_1, C19_2, C19_3, C20_1, C20_2, C20_3, C21_1, C21_2, C21_3, C22_1, C22_2, C22_3, C23_1, C23_2, C23_3, C24_1, C24_2, C24_3	30	CAP / CERA / 100nF / 500V / 10% / X7R (EIA) / -55°C to 125°C / 1210(3225) / SMD / -	Kemet	C1210C104KCRACTU
C25_1, C25_2, C25_3, C26_1, C26_2, C26_3, C27_1, C27_2, C27_3, C28_1, C28_2, C28_3, C31_1, C31_2, C31_3, C32_1, C32_2, C32_3, C33_1, C33_2, C33_3, C35_1, C35_2, C35_3, C36_1, C36_2, C36_3, C37_1, C37_2, C37_3, C38_1, C38_2, C38_3, C39_1, C39_2, C39_3, C40_1, C40_2, C40_3, C57, C64, C70, C71, C72, C73, C74	46	CAP / CERA / 100nF / 50V / 5% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	Kemet	C0805C104J5RAC
C34_1, C34_2, C34_3	3	CAP / CERA / 1nF / 50V / 10% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	Kemet	C0805C102K5RACTU
C41, C44, C45, C47, C48, C49, C50, C51, C54, C56, C58_1, C58_2, C58_3, C59_1, C59_2, C59_3, C60_1, C60_2, C60_3, C61_1, C61_2, C62_1, C62_2, C63_1, C63_2	25	CAP / CERA / 100nF / 50V / 5% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GRM21BR71H104JA01
C42, C43, C46, C52, C53, C55	6	CAP / ELCO / 100uF / 25V / 20% / Aluminiumelectrolytic / -55°C to 125°C / 6.60mm L X 6.60mm W X 8.00mm H / - / -	Panasonic	EEHZC1E101XP
C69_1, C69_2, C69_3	3	CAP / CERA / 100nF / 25V / 5% / X7R (EIA) / -55°C to 125°C / 0603(1608) / SMD / -	Kemet	C0603C104J3RAC
D1_1, D1_2, D1_3, D2_1, D2_2, D2_3, D3_1, D3_2, D3_3, D4_1, D4_2, D4_3, D5_1, D5_2, D5_3, D6_1, D6_2, D6_3, D7_1, D7_2, D7_3, D8_1, D8_2, D8_3,	34	Schottky barrier single diode	Nexperia	BAT54J

High power density design with multilevel topology

Designator	Quantity	Description	Manufacturer	Manufacturer order number		
D21, D22_1, D22_2, D22_3, D23_1, D23_2, D23_3, D24_1, D24_2, D24_3						
D9_1, D9_2, D9_3, D10_1, D10_2, D10_3, D11_1, D11_2, D11_3, D12_1, D12_2, D12_3, D13_1, D13_2, D13_3, D14_1, D14_2, D14_3	18	Zener Voltage Regulator, 20V	ON Semiconductor	MMSZ5250BT1G		
D15	1	CHIPLED, Green Colour, 570nm	OSRAM Opto Semiconductors	LG R971-KN-1		
D16, D20	2	DIODE SCHOTTKY 60V 3A SOD128	Nexperia	PMEG6030ETPX		
D17, D18, D19	3	LED GREEN CLEAR SMD	OSRAM Opto Semiconductors	LG M67K-H1J2-24-Z		
G1	1	Positive Voltage Regulator ICs	STMicroelectronics	L7805CV		
G2	1	μΑ78Mxx Positive-Voltage Regulator, 7V - 25V Input Voltage, 5.0V Output (Operating Temperature 0°C to 125°C)	Texas Instruments	UA78M05CKVURG3		
J1_1, J1_2, J1_3	3	Jumper-0.64mm Thick Copper	Keystone Electronics	5100		
L1, L2, L3, L4	4	IND / FERR / 330R / 1.5A / 25% / -55°C to 125°C / - / 0805(2012) / Inductor,Chip;2.00mm L X 1.25mm W X 1.05mm H / SMD / -	MuRata	BLM21PG331SN1D		
MP1, MP2, MP3, MP4, MP5, MP6, MP7, MP8, MP9, MP10, MP11, MP12, MP12_1, MP12_2, MP12_3, MP13, MP13_1, MP13_2, MP13_3	19	M3 X 6mm Pan Head,Cross Head Metric Screw, 5.6mm X 2.4mm Head, Nylon 6,6	Duratool	D00687		
Q1D_1, Q1D_2, Q1D_3, Q1S-Q2D- Q5D_1, Q1S-Q2D-Q5D_2, Q1S-Q2D- Q5D_3, Q2S-Q3D-NP_1, Q2S-Q3D-NP_2, Q2S-Q3D-NP_3, Q3S-Q4D-Q6S_1, Q3S- Q4D-Q6S_2, Q3S-Q4D-Q6S_3, Q4S- GND_1, Q4S-GND_2, Q4S-GND_3, Q5S- Q6D-PH_1, Q5S-Q6D-PH_2, Q5S-Q6D- PH_3	18	Test Point, Surface Mount, Finish- Tin Over Nickel	Harwin	S2751-46R		
R1_1, R1_2, R1_3, R2_1, R2_2, R2_3, R3_1, R3_2, R3_3, R4_1, R4_2, R4_3, R25_1, R25_2, R25_3, R26_1, R26_2, R26_3	18	RES / STD / 30R / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805(2012) / SMD / -	Vishay	CRCW080530R0FK		
R73, R74, R75, R78	4	RES / STD / 1k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Yageo	RC0805FR-071KL		
R76	1	RES / - / 4.7k / 125mW / 1% / 100ppm/K / - / 0805 / SMD / -	Bourns	CR0805-FX-4701GLF		
R91_1, R91_2, R92_1, R92_2, R93_1, R93_2, R94_1, R94_2, R95_1, R95_2, R96_1, R96_2	12	RES / - / 1MEG / 125mW / 1% / 100ppm/K / - / 0805 / SMD / -	Multicomp	MCMR08X1004FTL		

High power density design with multilevel topology

Designator	Quantity	Description	Manufacturer	Manufacturer order number		
U1_1, U1_2, U1_3, U2_1, U2_2, U2_3, U3_1, U3_2, U3_3, U4_1, U4_2, U4_3	12	Single 2-Input AND Gate	Texas Instruments	SN74AHC1G08QDCKRQ1		
U5_1, U5_2, U5_3, U6_1, U6_2, U6_3, U7_1, U7_2, U7_3	9	Fast, Robust, Dual-Channel, Functional and Reinforced Isolated MOSFET Gate-Driver with Accurate and Stable Timing	Infineon Technologies	2EDF7275F		
U8_1, U8_2, U8_3, U9_1, U9_2	5	Low-Power, RRIO, 1-MHz Operational Amplifier for Cost-Sensitive Systems	Texas Instruments	TLV9001IDBVR		
U10_1, U10_2, U10_3	3	A high precision miniature coreless magnetic current sensor for AC and DC measurements with analog interface and two fast overcurrent detection outputs	Infineon Technologies	TLI4971-A120T5-E0001		
X1, X2, X3, X3_1, X3_2, X3_3	6	Terminals WP-SHFU Pin- Plate 16Pin M5 Shank 180A	Wurth Elektronik	7461383		
X4	1	Through Hole Socket, Right angle 2.54mm pitch, 16X2 pin, double row	Hirose Connectors	PCN13-32S-2.54DS(71)		
X5, X6	2	Term Block HDR 2POS VERT 5.08mm	Würth Electronic	691311500102		
X7	1	Connector, 2.54mm Pitch, 4Pins, Receptacle, Vertical	Amphenol	75915-304LF		
X8	1	High temperature thermoplastic material, High retention force onto PCB, Bergstik Header	Amphenol	68691-440HLF		
X9_1, X9_2, X9_3, X10, X11, X12	6	SMT Micro Header, 1.27mm pitch, 6 pin, Vertical, Double Row	Samtec	FTSH-103-01-L-DV-TR		
3	MP14, MP15, MP16	6 Position Cable Assembly Rectangular Socket to Cable	Samtech Inc	FFSD-03-S-04.00-01		

High power density design with multilevel topology

Bill of materials

7.2 Isolated power supply

Table 7 Isolated power supply board BoM

Quantity	Designator	Description	Manufacturer	Manufacturer Part Number
26	C2, C7, C18, C19, C20, C22_1, C22_2, C22_3, C22_4, C22_5, C22_6, C22_7, C22_8, C22_9, C22_10, C22_11, C22_12, C22_13, C22_14, C22_15, C22_16, C22_17, C22_18, C28, C29, C31	CAP / CERA / 2.2uF / 25V / 20% / X7R (EIA) / -55°C to 125°C / 0805(2012) / SMD / -	MuRata	GCM21BR71E225MA73
27	C3, C5, C8, C10, C11, C12, C21, C26_1, C26_2, C26_3, C26_4, C26_5, C26_6, C26_7, C26_8, C26_9, C26_10, C26_11, C26_12, C26_13, C26_14, C26_15, C26_16, C26_17, C26_18, C32, C33	CAP / CERA / 100nF / 50V / 5% / X7R (EIA) / - 55°C to 125°C / 0805(2012) / SMD / -	Kemet	C0805C104J5RAC
3	C4, C6, C13	CAP / ELCO / 100uF / 25V / 20% / Aluminiumelectrolytic / -55°C to 125°C / 6.60mm L X 6.60mm W X 8.00mm H / - / -	Panasonic	EEHZC1E101XP
1	C9	CAP / CERA / 1uF / 50V / 10% / X7R (EIA) / - 55°C to 125°C / 0805(2012) / SMD / -	MuRata	GCM21BR71H105KA03
2	C14, C16	CAP / CERA / 4.7uF / 25V / 10% / X7R (EIA) / -55°C to 125°C / 1206(3216) / SMD / -	TDK Corporation	C3216X7R1E475K160AC
3	C15, C17, C27	CAP / CERA / 1uF / 25V / 10% / X7R (EIA) / - 55°C to 125°C / 0603(1608) / SMD / -	TDK Corporation	CGA3E1X7R1E105K080AC
54	C23_1, C23_2, C23_3, C23_4,	CAP / CERA / 10uF / 25V / 20% / X5R (EIA) /	MuRata	GRM21BR61E106MA73

High power density design with multilevel topology

Quantity	Designator	Description	Manufacturer	Manufacturer Part Number		
	C23_5, C23_6, C23_7, C23_8, C23_9, C23_10, C23_11, C23_12, C23_13, C23_14, C23_15, C23_16, C23_17, C23_18, C24_1, C24_2, C24_3, C24_4, C24_5, C24_6, C24_7, C24_8, C24_9, C24_10, C24_11, C24_12, C24_13, C24_14, C24_15, C24_16, C24_17, C24_18, C25_1, C25_2, C25_3, C25_4, C25_5, C25_6, C25_7, C25_8, C25_9, C25_10, C25_11, C25_12, C25_13, C25_14, C25_15, C25_16, C25_17, C25_16, C25_17, C25_18	-55°C to 85°C / 0805(2012) / SMD / -				
3	D1, D3, D7	LED GREEN CLEAR SMD	OSRAM Opto Semiconductors	LG M67K-H1J2-24-Z		
39		Schottky barrier single diode	Nexperia	BAT54J		
1	D8	DIODE SCHOTTKY 60V 3A SOD128	Nexperia	PMEG6030ETPX		

High power density design with multilevel topology

Quantity	Designator	Description	Manufacturer	Manufacturer Part Number BZX384-C18,115		
18	D11_1, D11_2, D11_3, D11_4, D11_5, D11_6, D11_7, D11_8, D11_9, D11_10, D11_11, D11_12, D11_13, D11_14, D11_15, D11_16, D11_17, D11_18	Low-power voltage regulator diode	Nexperia			
1	G2	μΑ78Mxx Positive- Voltage Regulator, 7V - 25V Input Voltage, 5.0V Output (Operating Temperature 0°C to 125°C)	Texas Instruments	UA78M05CKVURG3		
2	MP1, MP2	M3 X 6mm Pan Head,Cross Head Metric Screw, 5.6mm X 2.4mm Head, Nylon 6,6	Duratool	D00687		
2	Q1, Q2	OptiMOS Power- Transistor, 60 V	Infineon Technologies	BSZ099N06LS5		
23	R1, R5, R6, R7, R10, R19_1, R19_2, R19_3, R19_4, R19_5, R19_6, R19_7, R19_8, R19_9, R19_10, R19_11, R19_12, R19_13, R19_14, R19_15, R19_16, R19_17, R19_18	RES / STD / 10k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Yageo	RC0805FR-0710KL		
5	R8, R14, R15, R16, R23	RES / STD / 1k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Yageo RC0805FR-071I			
1	R9	RES / STD / 100k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW0805100KFK		
21	R11, R17_1, R17_2, R17_3, R17_4, R17_5, R17_6, R17_7, R17_8,	RES / STD / 10R / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW080510R0FK		

High power density design with multilevel topology

Quantity	Designator	Description	Manufacturer	Manufacturer Part Number			
	R17_9, R17_10, R17_11, R17_12, R17_13, R17_14, R17_15, R17_16, R17_17, R17_18, R18, R20						
2	R12, R13	RES / STD / 2.2R / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW08052R20FK			
1	R22	RES / STD / 2.7k / 125mW / 1% / 100ppm/K / -55°C to 155°C / 0805 / SMD / -	Vishay	CRCW08052K70FK			
1	R24	RES / STD / 100mR / 1W / 1% / 100ppm/K / -55°C to 155°C / 2010 / SMD / -					
1	U1	Fast, Robust, Dual- Channel, Functional and Reinforced Isolated MOSFET Gate-Driver with Accurate and Stable Timing	Infineon Technologies	2EDF7275F			
1	U2	32-bit processor core Microcontroller, Temp. Range(-40°C - +105°C), 14 ADC Channels, 200 Kbytes Flash	Infineon Technologies XMC1302-T028X0				
1	U3	Linear Voltage Regulator IC Positive Adjustable 1 Output 1.5A TO-220	STMicroelectronics	LM217T			
1	X1	Through hole .025 SQ Post Header, 2.54mm pitch, 8 pin, vertical, double row	Samtec	TSW-104-07-F-D			
1	XF1	Uncoated 3C95 Ferrite Core EQ Type 1.181" (30.00mm) Length 0.787" (20.00mm) Width	Ferroxcube	EQ30-3C95			

Quantity	Designator	Description	Manufacturer	Manufacturer Part Number		
		Diameter 0.315" (8.00mm) Height				
2	MP1, MP2	Hex Standoff Threaded M3x0.5 Stainless Steel 0.591" (15.00mm)	RAF Electronic Hardware	M1262-3005-SS-20		
2	MP3, MP4	M3 X 6mm Pan Head,Cross Head Metric Screw, 5.6mm X 2.4mm Head, Nylon 6,6	Duratool	D00687		

Test results

Test results 8

8.1 Power board turn ON and turn OFF waveforms

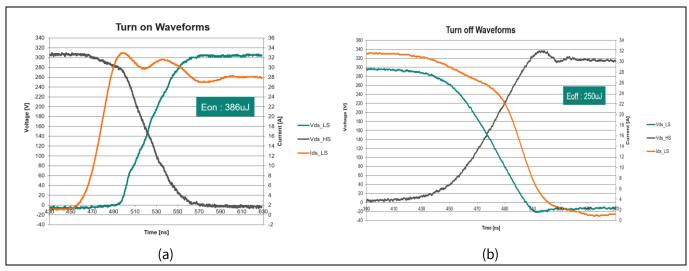


Figure 30 (a) Turn ON waveforms; (b) turn OFF waveforms

Both turn ON and turn OFF waveforms show clear transition with dv/dt lower than 5 V/ns. For this test, 18 V gate driver voltage together with 30 Ω gate driver resistor is used for 600 V input voltage (300 V on half bridge) at 30 A test current.

8.2 Thermal tests

Four different thermal tests were run without heatsink. Figure 31 shows the thermal test conditions.

THERMAL TEST CONDITIONS												
Test	V _{DC}	lphs	Vphs	s	R _{G(on)}	R _{G(oFF)}	fsw	Dead Time	Modulator	Modulation	Load	Total Caps
No	[V]	[A]	[V]	[kVA]	[Ω]	[Ω]	[kHz]	[ns]		Index		[uF]
#1	600	10	210	6.51	30	30	10	500	SinPWM	1	RL	3880
#2	600	12	210	7.49	30	30	10	500	SinPWM	1	RL	3880
#3	600	13	210	8.33	30	30	10	500	SinPWM	1	RL	3880
#4	600	15	210	9.74	30	30	10	500	SinPWM	1	RL	3880

Figure 31 Thermal test conditions

See Figure 32 for MOSFET nomenclature for the thermal tests.

Test results

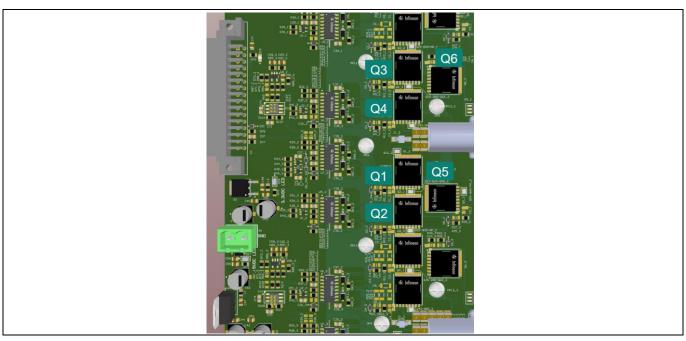


Figure 32 **Thermal test MOSFET locations**

Middle phase is selected for the MOSFET temperature measurements since they are in the middle of the board and experience higher temperatures during the tests. Figure 33 shows the results of each individual MOSFET temperature at different power levels.

Test	Tcase_Q1	Tcase_Q2	Tcase_Q3	Tcase_Q4	Tcase_Q5	Tcase_Q6	lph	Vph	S	Power	Pin	Pout	Ploss	Efficiency
No	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(A_rms)	(V_rms)	(VA)	Factor	(W)	(W)	(W)	(%)
#1	76	72	77	80	70	75	10.34	210	6514	0.99	6473.7	6449.1	24.7	99.62
#2	86	80	86	90	79	84	11.89	210	7491	0.99	7444.8	7415.8	29	99.61
#3	92	85	92	98	86	92	13.22	210	8329	0.99	8278.7	8245.3	33.3	99.60
#4	112	103	111	117	103	110	15.46	210	9740	0.99	9684.3	9642.4	41.9	99.57

Thermal test results without heatsink Figure 33

Figure 34 shows thermal test results with 250 mm x 45 mm x 19 mm heatsink (base thickness: 6 mm).

Test	Tcase_Q1	Tcase_Q2	Tcase_Q3	Tcase_Q4	Tcase_Q5	Tcase_Q6	Iph	Vph	S	Power	Pin	Pout	Ploss	Efficiency
No	(°C)	(°C)	(°C)	(°C)	(°C)	(°C)	(A_rms)	(V_rms)	(VA)	Factor	(W)	(W)	(w)	(%)
#5	69	65	64	68	65	66	14.66	210	9236	0.99	9182.0	9143.4	39	99.58

Figure 34 Thermal test results with heatsink

High power density design with multilevel topology

infineon

References

References

- [1] Infineon Technologies AG: KIT_XMC_LINK_SEGGER_V1 webpage; Available online
- [2] Infineon Technologies AG: KIT_XMC4400_DC_V1 webpage; Available online
- [3] Infineon Technologies AG: Current sensors webpage; Available online

Revision history

Revision history

Document revision	Date	Description of changes
V 1.0	2024-11-22	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-11-22 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference UG124134

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.