

## CoolGaN™ bidirectional switch 650 V G5 demo board user guide

**DEMO\_AC\_ZVS\_HVBDS** 

#### **About this document**

#### Scope and purpose

This user guide describes the operation and use of the DEMO\_AC\_ZVS\_HVBDS demonstration board. The guide also contains the schematic and bill of materials. For more information on CoolGaN™ BDS 650 V G5 IGLT65R055B2, see the datasheet [1].

#### Intended audience

This document is intended as a guide for design engineers demonstrating the performance of CoolGaN™ BDS 650 V G5 IGLT65R055B2 with the DEMO\_AC\_ZVS\_HVBDS demonstration board.

#### **Demonstration board**

This board is to be used during the design-in process for demonstrating and measuring the soft switching behavior and performance of the BDS under AC conditions.

This board is not intended for hard switching conditions.

Note: PCB and auxiliary circuits are NOT optimized for final customer design.

#### CoolGaN™

Infineon's CoolGaN™ solutions offer unmatched quality and operate at higher switching speeds resulting in lower power losses, higher efficiency, paving the way for smaller and lighter power supplies with the same size but increased power capability.

CoolGaN™ target applications include:

- 1-phase string inverter solutions
- 3-phase string inverter solutions
- Microinverter solutions
- Motor Control
- Server power supply units (PSU)



#### **Important notice**

### Important notice

"Demonstration Boards and Reference Boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or demonstration purposes, which include, without limitation, demonstration, reference and demonstration boards, kits and design (collectively referred to as "Reference Board").

Environmental conditions have been considered in the design of the Demonstration Boards and Reference Boards provided by Infineon Technologies. The design of the Demonstration Boards and Reference Boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing, and operation over the entire operating temperature range or lifetime.

The Demonstration Boards and Reference Boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Demonstration Boards and Reference Boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Demonstration Boards and Reference Boards are not commercialized products, and are solely intended for demonstration and testing purposes. In particular, they shall not be used for reliability testing or production. The Demonstration Boards and Reference Boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all Demonstration Boards and Reference Boards will be handled in a way, which is compliant with the relevant requirements and standards of the country in which they are operated.

The Demonstration Boards and Reference Boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective Demonstration Board or Reference Board.

It is the responsibility of the customer's technical departments to demonstrate the suitability of the Demonstration Boards and Reference Boards for the intended application, and to demonstrate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the Demonstration Boards and Reference Boards does not cause any harm to persons or third-party property.

The Demonstration Boards and Reference Boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third-party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the Demonstration Boards and Reference Boards and/or from any information provided in this document. The customer is obliged to defend, indemnify, and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.



#### Safety precautions

### **Safety precautions**

Note: Please note the following warnings regarding the hazards associated with development systems.

#### Table 1 Safety precautions

| $\overline{\wedge}$ |   |
|---------------------|---|
| 7                   | 7 |

**Warning:** The AC potential of this board is up to 240 VAC. When measuring voltage waveforms by oscilloscope, high-voltage differential probes must be used. Failure to do so may result in personal injury or death.



**Warning**: The demonstration or reference board contains capacitors, which take time to discharge after removal of the main supply. Before working on the drive system, wait 5 minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.



**Warning:** The demonstration or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by an oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.



**Warning:** Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.



**Caution:** The heat sink and device surfaces of the demonstration or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.



**Caution:** Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.



**Caution:** The demonstration or reference board contains parts and assemblies sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.



**Caution:** A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.



**Caution:** The demonstration or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.



### **Table of contents**

### **Table of contents**

| Abo  | out this document                                 | 1  |
|------|---------------------------------------------------|----|
| lmp  | portant notice                                    | 2  |
| Safe | fety precautions                                  | 3  |
| Tab  | ble of contentsble                                | 4  |
| 1    | Introduction                                      | 5  |
| 2    | AC-ZVS BDS board                                  |    |
| 2.1  |                                                   |    |
| 2.2  | Connections and operating instructions            | 6  |
| 2.3  | Power-on procedure                                | 7  |
| 2.4  | AC-ZVS BDS board                                  | 8  |
| 2.5  | PCB layout                                        | 9  |
| 2.6  | Simplified block diagram for the AC-ZVS BDS board | 11 |
| 2.7  |                                                   |    |
| 2.8  | Bill of materials                                 | 16 |
| 3    | Typical operating waveforms                       | 20 |
| 3.1  | 100 kHz, 50 ms                                    | 20 |
| 3.2  | 100 kHz, 100 μs, positive Vss                     | 20 |
| 3.3  | 100 kHz, 100 μs, negative Vss                     | 21 |
| 3.4  | 400 kHz, 100 ms                                   | 22 |
| 4    | Module performance                                | 24 |
| 4.1  | Total power consumption curves                    | 24 |
| Refe | ferences                                          | 25 |
| Revi | vision history                                    |    |
|      | sclaimer                                          |    |
| 0    | · - · · · · · · · · · · · · · · · · · ·           |    |



Introduction

### 1 Introduction

The CoolGaN™ bidirectional switch 650 V G5 IGLT65R055B2 is the first of its kind monolithic GaN switch, capable of actively blocking voltage and current in both directions. It has a quasi-common drain design with a double gate structure using the Infineon gate injection transistor (GIT) technology. The CoolGaN™ BDS is fundamentally a five terminal device, two gates, two sources and substrate. It has four modes of operations: the traditional on/off modes and two diode modes where the switch can be actively controlled to behave like a diode that can block voltages in both directions.

The CoolGaN<sup>™</sup> bidirectional switch (BDS) targets multiple applications:

- Replacing back-to-back discrete switches in existing applications that employ BDS such as Vienna rectifiers,
   T-type converters, HERIC, etc.,
- Other applications such as solar micro-inverters employing single stage DC-AC conversion

The DEMO\_AC\_ZVS\_HVBDS demonstration board aims to demonstrate the AC soft-switching capability of the BDS in typical 50/60 Hz AC grid conditions with symmetrical triangular current mode (TCM) operations. The board also features a load-less setup and can test the BDS in a range of voltage, current, and switching frequency conditions, all under a simple open loop control.

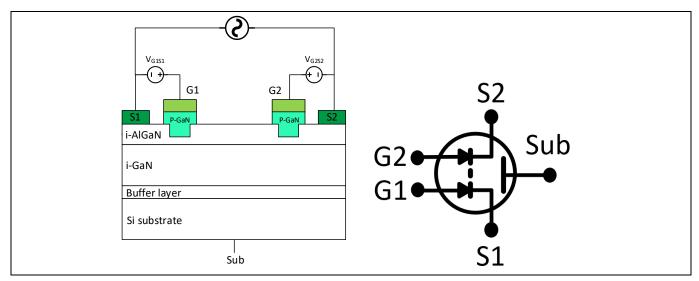



Figure 1 BDS with double gate structure using GIT technology (left) and the basic device symbol (right)



#### **AC-ZVS BDS board**

### 2 AC-ZVS BDS board

#### 2.1 Board features

•  $V_{ACin}$  =  $\pm 90-240 V_{AC}$ , grid voltages

•  $F_{grid}$  = 50–60 Hz, grid frequency

• D = 48–49%, duty cycle

• F<sub>SW</sub> = 100–400 kHz, switching frequency

• L<sub>B</sub> = 20–300 μH, external inductor (tested using an air-core from Johann Lasslop GmbH)

•  $V_{DD}$  = 8–12 V, aux. supply

+5 = 5 V supply

### 2.2 Connections and operating instructions

The DEMO\_AC\_ZVS\_HVBDS demo board requires a 5 V supply as well as a  $V_{DD}$  between 8–12 V for the auxiliary supplies.

Table 2 Connections

| Label         |        |       | Descriptions                                                                                     |  |  |
|---------------|--------|-------|--------------------------------------------------------------------------------------------------|--|--|
| lt            | \/A C: | VAC+  | Connect the input AC grid voltage to this pin                                                    |  |  |
| Input         | VACin  | VAC-  | Return of input power                                                                            |  |  |
| Inductor      | L B    | VSW1  | Connect the external inductor to this pin, also the switch node of the two BDS                   |  |  |
|               |        | VSW2  | Return of the external inductor, midpoint of the capacitor leg                                   |  |  |
|               | 9      | VDD   | Connect the auxiliary power (+9 V) to this pin                                                   |  |  |
| VDC           | 5      | +5    | Connect the input power (+5 V) to this pin                                                       |  |  |
|               | G      | GND   | Ground pins for supply return path, shared between VDD and +5                                    |  |  |
| Signal        | PWM_G1 | PWM1  | Connect a PWM signal to this pin for the gates                                                   |  |  |
| inputs        | PWM_G2 | PWM2  | Connect an inverse PWM signal to this pin for the gates                                          |  |  |
| Ground        | GND    | Gnd_  | Sense pins for the ground reference                                                              |  |  |
|               | G1A    | G1A   | Connect a differential scope probe to this pin to monitor G1A gate signal                        |  |  |
| Gate          | G1B    | G1B   | Connect a differential scope probe to this pin to monitor G1B gate signal                        |  |  |
| signals       | G2A    | G2A   | Connect a differential scope probe to this pin to monitor G2A gate signal                        |  |  |
|               | G2B    | G2B   | Connect a differential scope probe to this pin to monitor G2B gate signal                        |  |  |
|               | Vin+   | FVAC+ | Sense pins for Vin+                                                                              |  |  |
| VSS           | SW     | VSW1  | Sense pins for switch node                                                                       |  |  |
|               | Vin-   | FVAC- | Sense pins for Vin-                                                                              |  |  |
| AC/DC<br>mode | W1     | W1    | Alternative DC switching operation, de-solder AC from mid-point and connect mid-point to DC node |  |  |
|               | W2     | W2    | Alternative DC switching operation, de-solder AC from mid-point and connect mid-point to DC node |  |  |



#### **AC-ZVS BDS board**

### 2.3 Power-on procedure

#### Table 3 Power-on steps for AC-ZVS BDS board

| Board config      | Description                                                             |
|-------------------|-------------------------------------------------------------------------|
| PWM_G1 and PWM_G2 | Connect to the signal generator with correct complementary gate signals |
| VDC               | Apply 5 and VDD (9) VDC supplies                                        |
| L_B               | Connect external inductor within the stated value range                 |
| VACin             | Connect AC power supply to VAC+, VAC-                                   |

Note: Make sure that the gate signal is on before turning on supplies.

Note: All boards will come pre-selected to AC mode. For both AC and DC mode, follow the power-on

procedure.



**AC-ZVS BDS board** 

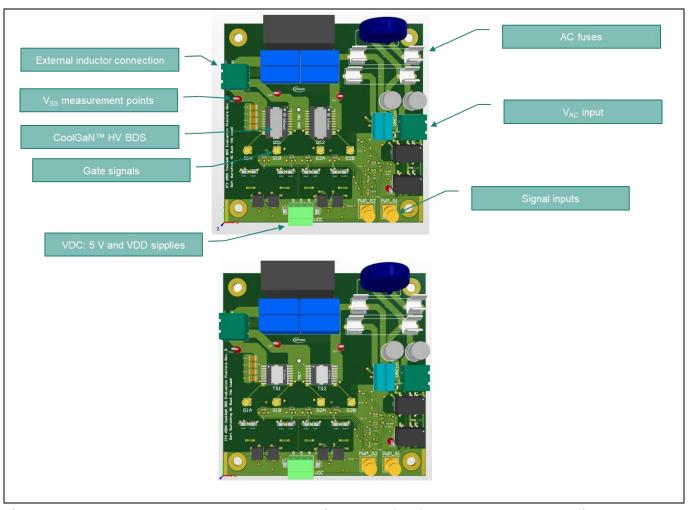



Figure 2 DEMO\_AC\_ZVS\_HVBDS demonstration board (top), DSO TSC and TOLT versions

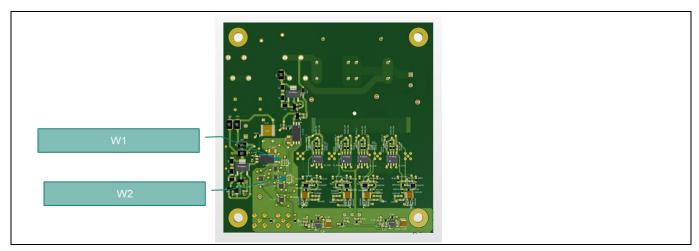



Figure 3 DEMO\_AC\_ZVS\_HVBDS demonstration board (bottom), DSO TSC version



**AC-ZVS BDS board** 

### 2.5 PCB layout

The following figures illustrate the PCB layout design of the DEMO\_AC\_ZVS\_HVBDS demo board, FR4 material, four layers, 10 x 10 cm<sup>2</sup>.

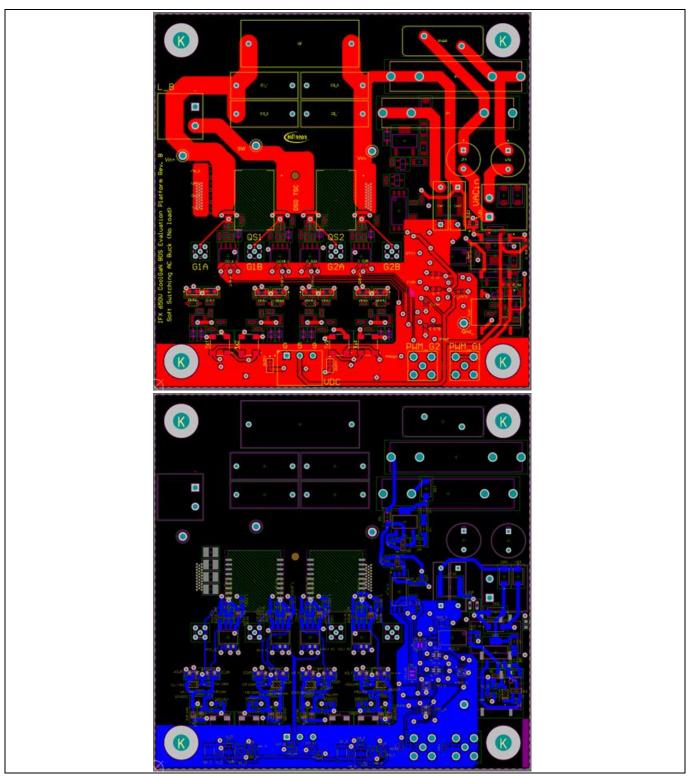
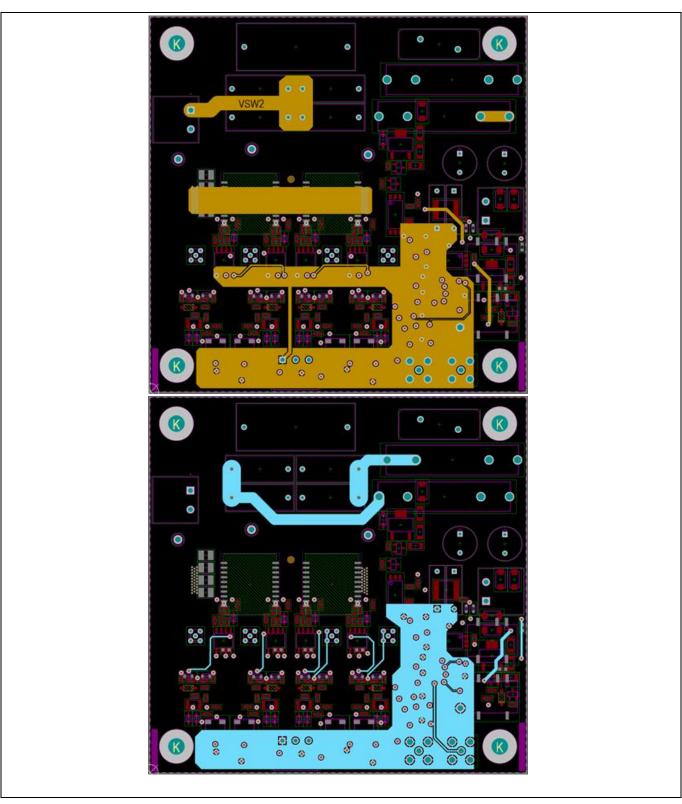




Figure 4 DEMO\_AC\_ZVS\_HVBDS demo board - Top layer (layer 1), bottom layer (layer 4)





DEMO\_AC\_ZVS\_HVBDS demo board - Layer 2 (layer 2), Layer 3 (layer 3) Figure 5



**AC-ZVS BDS board** 

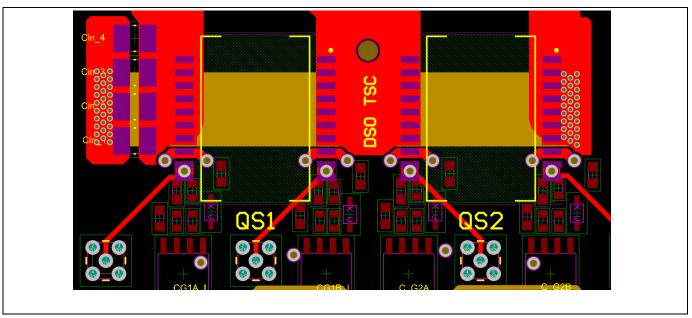



Figure 6 Commutation path of the two BDS (half bridge) between top layer and layer 2

## 2.6 Simplified block diagram for the AC-ZVS BDS board

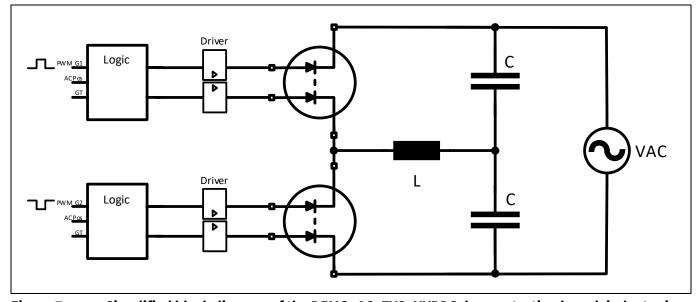



Figure 7 Simplified block diagram of the DEMO\_AC\_ZVS\_HVBDS demonstration board, inductor is external



**AC-ZVS BDS board** 

### 2.7 Schematics

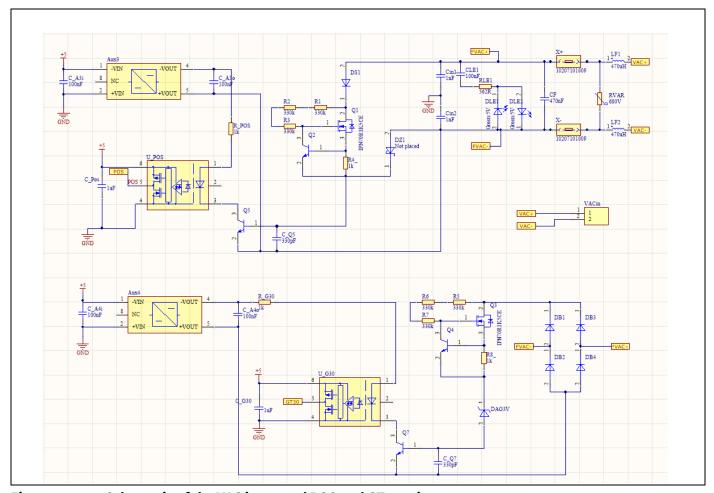



Figure 8 Schematic of the VAC input and POS and GT sensing



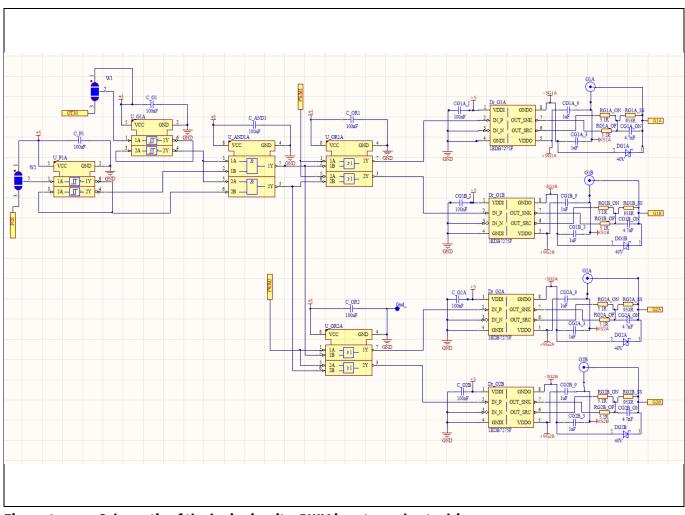



Figure 9 Schematic of the logic circuits, PWM inputs, and gate drivers



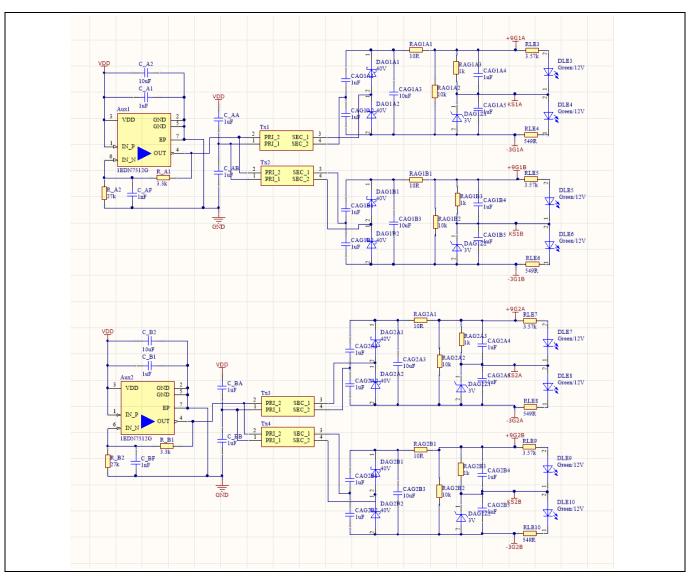



Figure 10 Schematic of the auxiliary supplies for the floating gate drivers



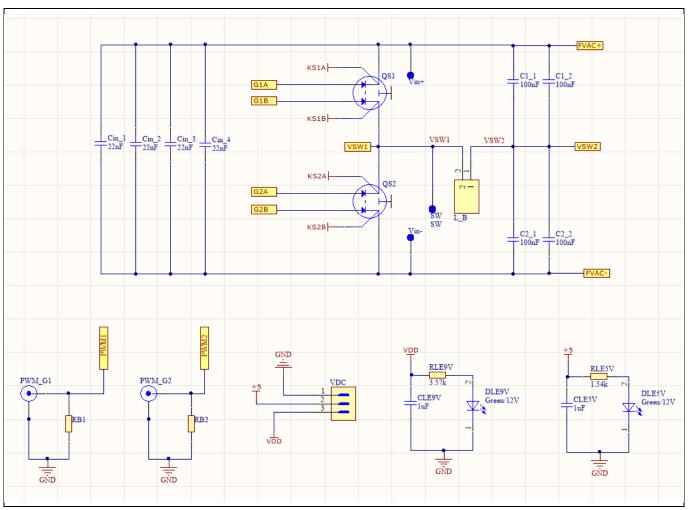



Figure 11 Schematic of the BDS half bridge switching against a capacitor divider leg



**AC-ZVS BDS board** 

## 2.8 Bill of materials

Table 4 DEMO\_AC\_ZVS\_HVBDS - Bill of materials

| Qty | Reference                                                                                                                                                                                                                                                            | Value      | Manufacturer             | Part number        | Description           |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------|--------------------|-----------------------|
| 2   | Aux1, Aux2                                                                                                                                                                                                                                                           | 1EDN7512G  | Infineon<br>Technologies | 1EDN7512G          | Driver for Aux. power |
| 2   | Aux3, Aux4                                                                                                                                                                                                                                                           | IES0105S09 | XP Power                 | IES0105S09         | Aux. supply           |
| 4   | C1_1, C1_2,<br>C2_1, C2_2                                                                                                                                                                                                                                            | 100 nF     | Epcos                    | B32652A6104J000    | Film Caps             |
| 34  | C_A1, C_AA, C_AB, C_B1, C_BA, C_BB, C_Q5, C_Q7, CAG1A1, CAG1A2, CAG1A4, CAG1A5, CAG1B1, CAG1B2, CAG1B4, CAG2A1, CAG2A1, CAG2A1, CAG2A2, CAG2A4, CAG2B1, CAG2B1, CAG2B5, CAG2B1, CAG2B5, CG1A_3, CG1A_9, CG1B_3, CG1B_9, CG2A_3, CG2A_9, CG2B_3, CG2B_9, CLE5V, CLE9V | 1 uF       | Murata                   | GCM188R71E105KA64D | ceramic caps          |
| 6   | C_A2, C_B2,<br>CAG1A3,<br>CAG1B3,<br>CAG2A3,<br>CAG2B3                                                                                                                                                                                                               | 10 uF      | Murata                   | GRM32DR71E106KA12L | ceramic caps          |
| 13  | C_A3i, C_A3o,<br>C_A4i, C_A4o,<br>C_AND1,<br>C_G1, C_G2A,                                                                                                                                                                                                            | 100 nF     | Murata                   | GCM188R71E104KA57D | ceramic caps          |

V 1.2



| Qty | Reference                                                                              | Value      | Manufacturer             | Part number        | Description     |
|-----|----------------------------------------------------------------------------------------|------------|--------------------------|--------------------|-----------------|
|     | C_G2B,<br>C_OR1,<br>C_OR2, C_P1,<br>CG1A_I,<br>CG1B_I                                  |            |                          |                    |                 |
| 2   | C_AF, C_BF                                                                             | 1 nF       | Murata                   | GCM188R71H102KA37J | ceramic caps    |
| 2   | C_G30, C_Pos                                                                           | 1 uF       | Murata                   | C1206X105J5RACTU   | ceramic caps    |
| 1   | CF                                                                                     | 470 nF     | TDK<br>Corporation       | B32914A5474M000    | Film Caps       |
| 4   | CG1A_ON,<br>CG1B_ON,<br>CG2A_ON,<br>CG2B_ON                                            | 4.7 nF     | Murata                   | GCM188R71H472KA37J | ceramic caps    |
| 2   | Cin1, Cin2                                                                             | 1 nF       | TDK<br>Corporation       | B32021A3102K000    | Film Caps       |
| 4   | Cin_1, Cin_2,<br>Cin_3, Cin_4                                                          | 22 nF      | Wurth<br>Elektronik      | 885342209007       | ceramic caps    |
| 1   | CLE1                                                                                   | 100 nF     | Kemet                    | C2220C104KDRAC7800 | ceramic caps    |
|     | DAG1A1, DAG1A2, DAG1B1, DAG1B2, DAG2A1, DAG2A2, DAG2B1, DAG2B2, DG1A, DG1B, DG2A, DG2B | 40 V       | Infineon<br>Technologies | BAT165             | Schottky Diode. |
| 5   | DAG1Z1,<br>DAG1Z2,<br>DAG2Z1,<br>DAG2Z2,<br>DAG3V                                      | 3 V        | Diodes                   | MMSZ5225BT1G       | Zener diode     |
| 5   | DB1, DB2,<br>DB3, DB4,<br>DS1                                                          | S1M-T R3G  | Taiwan<br>Semiconductor  | S1M-13-F           | Diode           |
| 2   | DLE1, DLE2                                                                             | Green/5 V  | Wurth<br>Elektronik      | 150060GS75000      | LED             |
| 10  | DLE3, DLE4,<br>DLE5, DLE5V,<br>DLE6, DLE7,<br>DLE8, DLE9,<br>DLE9V, DLE10              | Green/12 V | OSRAM                    | LG M67K-H1J2-24-Z  | LED             |
| 4   | Dr_G1A,<br>Dr_G1B,                                                                     | 1EDB7275F  | Infineon<br>Technologies | 1EDB7275F          | Gate Driver     |



| Qty | Reference                                                                | Value                   | Manufacturer                    | Part number         | Description                   |
|-----|--------------------------------------------------------------------------|-------------------------|---------------------------------|---------------------|-------------------------------|
|     | Dr_G2A,                                                                  |                         |                                 |                     |                               |
| 4   | Dr_G2B                                                                   | MMCV I D II CT          | Camataa                         | MMCV I D II CT TII1 | MMCV                          |
| 4   | G1A, G1B,<br>G2A, G2B                                                    | MMCX-J-P-H-ST-<br>TH1   | Samtec                          | MMCX-J-P-H-ST-TH1   | MMCX connector                |
| 4   | Gnd_, SW,<br>Vin-, Vin+                                                  |                         | Keystone<br>Electronics         | 5010                | Test points                   |
| 2   | L_B, VACin                                                               | MSTBA 2,5/ 2-G-<br>5,08 | Phoenix                         | 1757242             | PCB header, pair with 1757019 |
| 2   | LF1, LF2                                                                 | 470 uH                  | Bourns                          | RLB9012-471KL       | Inductor                      |
| 2   | PWM_G1,<br>PWM_G2                                                        | SMACONNECTOR            | Low Power<br>Radio<br>Solutions | SMACONNECTOR        | SMA connector                 |
| 2   | Q1, Q3                                                                   | IPN70R1K5CE             | Infineon<br>Technologies        | IPN70R1K5CE         | 700V CoolMOS                  |
| 4   | Q2, Q4, Q5,<br>Q7                                                        | MMBT4401LT1G            | ON<br>Semiconductor             | MMBT4401LT1G        | 40V BJT                       |
| 2   | QS1, QS2                                                                 | 650 V, 70 mOhm<br>Max.  | Infineon<br>Technologies        | IGLT65R055B2        | BDS                           |
| 6   | R1, R2, R3,<br>R5, R6, R7                                                | 330k                    | Vishay                          | CRCW1206330KFK      | Resistors                     |
| 8   | R4_, R8_,<br>R_G30,<br>R_POS,<br>RAG1A3,<br>RAG1B3,<br>RAG2A3,<br>RAG2B3 | 1k                      | Vishay                          | CRCW06031K00FK      | Resistors                     |
| 2   | R_A1, R_B1                                                               | 3.3k                    | Vishay                          | CRCW06033K30FK      | Resistors                     |
| 2   | R_A2, R_B2                                                               | 27k                     | Vishay                          | CRCW060327K0FK      | Resistors                     |
| 4   | RAG1A1,<br>RAG1B1,<br>RAG2A1,<br>RAG2B1                                  | 10R                     | Vishay                          | CRCW060310R0FKEA    | Resistors                     |
| 4   | RAG1A2,<br>RAG1B2,<br>RAG2A2,<br>RAG2B2                                  | 10k                     | Vishay                          | CRCW060310K0FKEA    | Resistors                     |
| 2   | RB1, RB2                                                                 | 49.9R                   | Vishay                          | CRCW060349R9FK      | Resistors                     |
| 8   | RG1A_OF,<br>RG1A_ON,<br>RG1B_OF,<br>RG1B_ON,<br>RG2A_OF,<br>RG2A_ON,     | 5.1R                    | Vishay                          | CRCW06035R10FK      | Resistors                     |



| Qty | Reference                                   | Value | Manufacturer | Part number    | Description |
|-----|---------------------------------------------|-------|--------------|----------------|-------------|
|     | RG2B_OF,<br>RG2B_ON                         |       |              |                |             |
| 4   | RG1A_SS,<br>RG1B_SS,<br>RG2A_SS,<br>RG2B_SS | 953R  | Vishay       | CRCW0603953RFK | Resistors   |
| 1   | RLE1                                        | 562R  | Vishay       | CRCW0603562RFK | Resistors   |
| 5   | RLE3, RLE5,<br>RLE7, RLE9,<br>RLE9V         | 3.57k | Vishay       | CRCW06033K57FK | Resistors   |
| 4   | RLE4, RLE6,<br>RLE8, RLE10                  | 549R  | Vishay       | CRCW0603549RFK | Resistors   |
| 1   | RLE5V                                       | 1.54k | Vishay       | CRCW06031K54FK | Resistors   |



**Typical operating waveforms** 

## 3 Typical operating waveforms

### 3.1 100 kHz, 50 ms

AC-ZVS BDS demonstration board configuration:

 $\begin{array}{lll} \bullet & V_{ACin} & = 230 \ V_{AC} \\ \bullet & F_{grid} & = 50 \ Hz \\ \bullet & D & = 48.5\% \\ \bullet & F_{sw} & = 100 \ kHz \\ \bullet & L_{B} & = 300 \ \mu H \\ \end{array}$ 

**Operating conditions**: Room temperature, no airflow, no heatsink

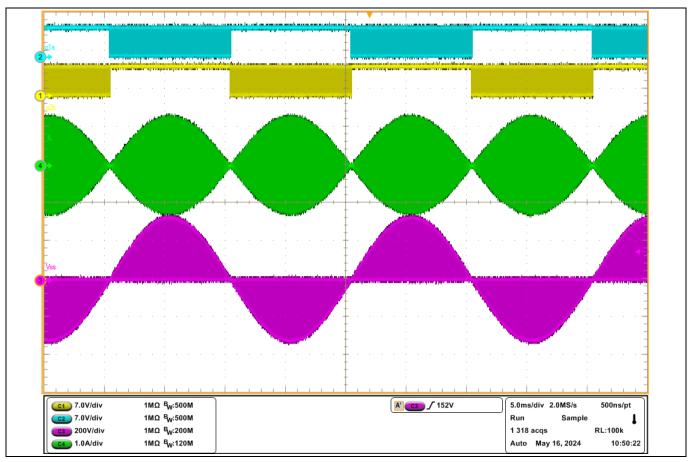



Figure 12 Typical operating waveforms at 100 kHz (Ch1: G2B, Ch2: G1A, Ch3: VSS, Ch4: IL)

### 3.2 100 kHz, 100 μs, positive Vss

AC-ZVS BDS demonstration board configuration:

 $\begin{array}{lll} \bullet & V_{ACin} & = 230 \, V_{AC} \\ \bullet & F_{grid} & = 50 \, Hz \\ \bullet & D & = 48.5\% \\ \bullet & F_{sw} & = 100 \, kHz \\ \bullet & L_{B} & = 300 \, \mu H \\ \end{array}$ 

V 1.2



### **Typical operating waveforms**

**Operating conditions**: Room temperature, no airflow, no heatsink

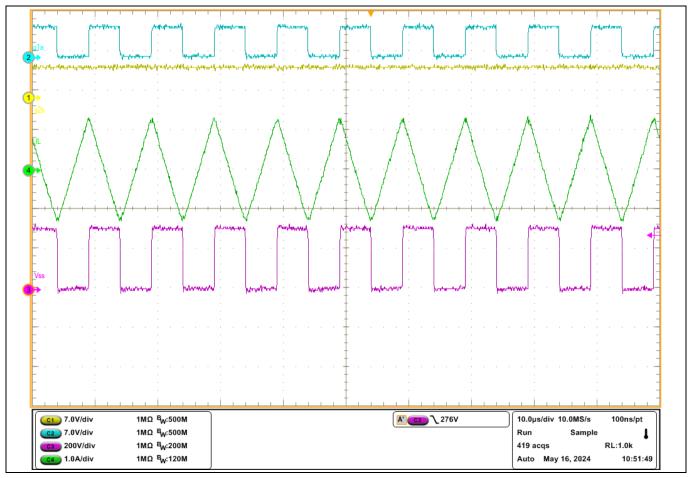



Figure 13 Typical operating waveforms at 100 kHz (Ch1: G2B, Ch2: G1A, Ch3: VSS, Ch4: IL)

### 3.3 100 kHz, 100 μs, negative Vss

AC-ZVS BDS demonstration board configuration:

•  $V_{ACin}$  = 230  $V_{AC}$ 

•  $F_{grid}$  = 50 Hz

• D = 48.5%

•  $F_{sw} = 100 \text{ kHz}$ 

• L<sub>B</sub> = 300 μH

**Operating conditions**: Room temperature, no airflow, no heatsink



### **Typical operating waveforms**

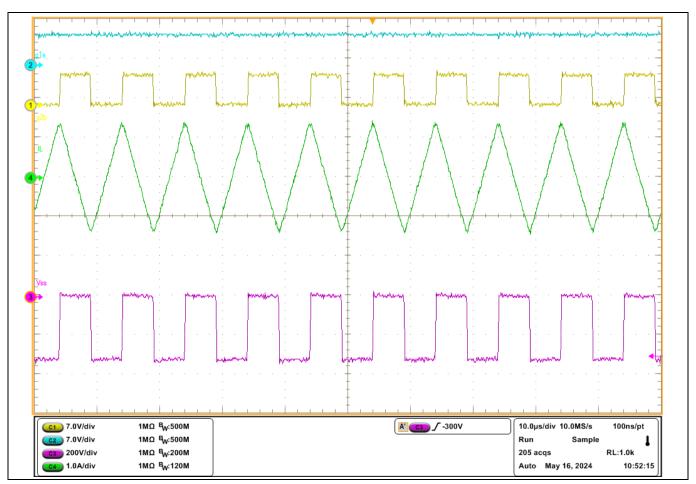



Figure 14 Typical operating waveforms at 100 kHz (Ch1: G2B, Ch2: G1A, Ch3: VSS, Ch4: IL)

### 3.4 400 kHz, 100 ms

AC-ZVS BDS demonstration board configuration:

- $V_{ACin}$  = 240  $V_{AC}$
- F<sub>grid</sub> = 50 Hz
- D = 48%
- $F_{sw} = 400 \text{ kHz}$
- L<sub>B</sub> = 20 μH
- $T_{case}$  = 46.3°C

**Operating conditions**: Room temperature, no airflow, no heatsink



### **Typical operating waveforms**

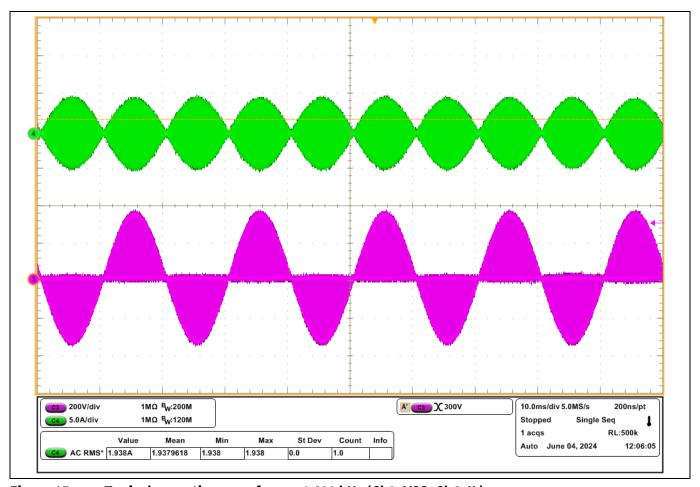



Figure 15 Typical operating waveforms at 400 kHz (Ch3: VSS, Ch4: IL)



Figure 16 Thermal image of the BDS



**Module performance** 

## 4 Module performance

### 4.1 Total power consumption curves

Dual-phase power module demonstration board:

**Operating conditions**: Room temperature, no airflow, no heatsink

Note:

The power consumption curves include the losses of BDS, the inductor losses, the losses of the capacitors, and PCB trace losses. Measured at the input of the terminals

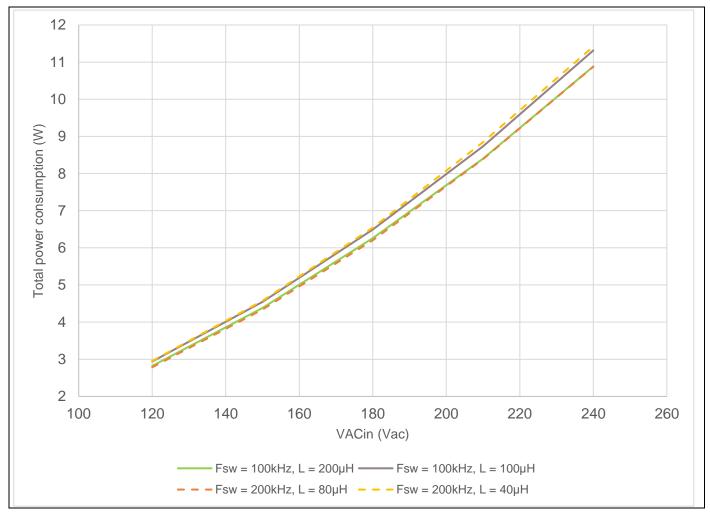



Figure 17 Total power consumption vs. VACin at different switching frequencies and inductor values.



References

### References

[1] Infineon Technologies: CoolGaN™ BDS 650 V G5 IGLT65R055B2 Bi-directional enhancement-mode power transistor datasheet. Available online



## **Revision history**

## **Revision history**

| Document revision | Date       | Description of changes                                                           |
|-------------------|------------|----------------------------------------------------------------------------------|
| V1.0              | 2024-06-07 | First draft                                                                      |
| V1.1              | 2024-10-22 | The statement: "This board is not intended for hard switching conditions" added. |
| V1.2              | 2025-04-24 | BDS symbol                                                                       |

#### Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-04-24 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference UG090038

#### Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.