

Design guide for low-noise transistors for 6 GHz in space application

HiRel NPN Silicon RF Transistor

Scope and purpose

This application note provides application circuit design examples of Infineon's HiRel NPN Silicon RF Transistor for low-noise amplifiers (LNAs). In this document, the transistor-based LNA schematics, printed circuit board (PCB) layouts and measurement results are shown. This document is relevant to the following HiRel devices:

• BFY740B-02(ES)

Product features

- For L, S, C, X-frequency bands
- Ideal for low noise amplifiers
- Hermetically sealed microwave package

Intended audience

This document is intended for engineers who need to design LNAs.

Table of contents

Tabl	le of contents	1
	Introduction	
	Radio front ends for space applications	
1.2	Infineon HiRel NPN Silicon RF Transistor	2
2	6 GHz band LNA application circuits	3
2.1	Performance overview	3
2.2	Schematic	
2.3	Bill of materials	5
2.4	Evaluation boards and layout information	6
2.5	Measurement results of the 6 GHz band LNAs	7
3	Authors	11
Revi	ision history	12

Introduction

1 Introduction

1.1 Radio front ends for space applications

Infineon's broad range of high-performance and high reliability silicon bipolar transistors are ideal for low noise and high-gain broadband amplifiers and are supplied in hermetically sealed microwave transistor packages as well as chips.

Using Infineon's radiation hard high reliability RF microwave technology, the diverse portfolio of microwave bipolar junction transistors is available in a range of frequencies and voltage classes and are qualified for use for applications in both space and aerospace industries.

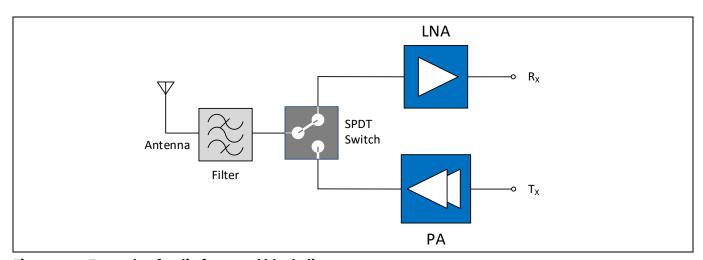


Figure 1 Example of radio front end block diagram

1.2 Infine on HiRel NPN Silicon RF Transistor

With nearly 50 years of space heritage, Infineon's radiation hard HiRel microwave transistors are offered in hermetically sealed ceramic packages and used in a wide range of space missions. Application examples are first and second stage LNA's, oscillators, and mixers.

Infineon's HiRel silicon bipolar transistor product range covers different generations of RF microwave transistor technology from bipolar Si to SiGe based devices. RF bipolar transistors with different voltage classes, frequency ranges, and output power, are available and based on Infineon's vast microwave bipolar transistor technical knowledge.

With different bipolar transistor types to choose from, Infineon's high reliability microwave bipolar junction transistor devices are available in different quality levels: Professional (P), which are designed for Engineering Modules and used for breadboards and circuit evaluation, and ESCC qualified (ES), which fulfills the requirements of the European Space Agency (ESA) for Flight Modules.

Their optimized inner transistor cell structure leads to best-in-class power gain and NF at high frequencies, including 6 GHz bands.

6 GHz band LNA application circuits

6 GHz band LNA application circuits 2

2.1 **Performance overview**

The following table shows the performance of the 6 GHz band low-noise transistors.

Table 1 Summary of measurement results for the 6 GHz band LNA

Parameter	Symbol Value		Unit	Notes
Device		<u>BFY740B-02(ES)</u>		
Bias voltage	V_{cc}	3.3	V	
Bias current	I _{cc}	26.4	mA	
Frequency	f	6.0	GHz	
Gain	G	14.0	dB	
NF	NF	1.56	dB	PCB and SMA loss subtracted: 0.15 dB
Input return loss	RL_in	10.6	dB	
Output RL _{out}		12.8	dB	
Reverse isolation	ISO _{rev}	22.1	dB	
Output 1 dB compression point	OP_{1dB}	8.6	dBm	Measured at 6.0 GHz
Output third-order intercept point	OIP ₃	15.3	dBm	Input power: -30 dBm Tone 1: 6000 MHz Tone 2: 6001 MHz
Stability	К	>1		Measured from 10 MHz to 15 GHz

6 GHz band LNA application circuits

2.2 Schematic

The following figure shows the schematic of the 6 GHz band LNAs with Infineon HiRel NPN Silicon RF Transistor BFY740B-02(ES). In the LNA circuit, resistors R1 and R2 stand for transistor voltage and current bias; meanwhile, they form a negative DC feedback mechanism to stabilize the transistor bias points in various conditions. Capacitors C3 and C4 serve as the RF bypass. Transistor input matching is achieved by C1, C2, and L1. The output matching network is formed by C5, L2, and R3. Resistor R3 also has the function of improving circuit stability.

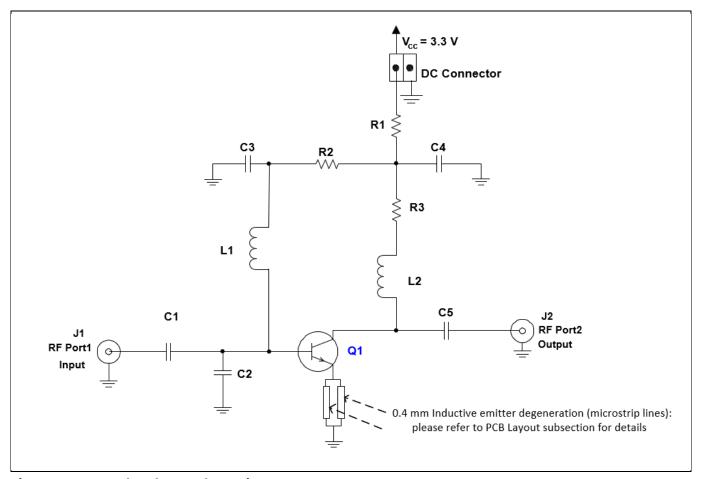


Figure 2 6 GHz band LNA schematic

6 GHz band LNA application circuits

Bill of materials 2.3

BOM of the 6 GHz band LNAs Table 2

Symbol	Value	Package/size	Manufacturer	Notes	
Q1	BFY740B-02(ES)	Micro-X	Infineon	SiGe:C bipolar low-noise transistor	
C1	6.8 pF	0402	Murata	Input matching and DC blocking	
C2	0.3 pF	0402	Murata	Input matching	
C3	47 nF	0402	Murata	RF decoupling	
C4	47 nF	0402	Murata	RF decoupling	
C 5	4.7 pF	0402	Murata	Output matching and DC blocking	
R1	22 ohm	0402	Various	DC bias and DC negative feedback	
R2	15 kohm	0402	Various	DC biasing for transistor base	
R3	39 ohm	0402	Various	Low-frequency stability improvement	
L1	6.8 nH	0402	LQW Murata	RF choke and input matching	
L2	4.7 nH	0402	LQW Murata	RF choke and output matching	

6 GHz band LNA application circuits

2.4 Evaluation boards and layout information

The evaluation boards for the 6 GHz band LNAs:

- PCB material: FR4
- PCB marking:
 - BFY740 Micro-X

The detailed description of the PCB stack and photos of the 6 GHz band LNAs' evaluation boards are shown in the following figures.

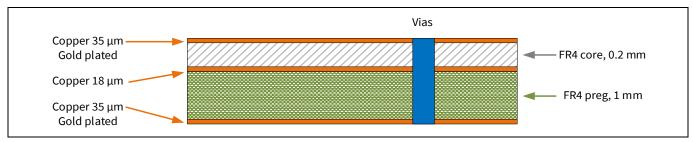


Figure 3 PCB stack information for the evaluation board

Figure 4 Photo of the evaluation board with marking Micro-X 6Hz LNA

6 GHz band LNA application circuits

2.5 Measurement results of the 6 GHz band LNAs

Figure 5 Small-signal gain of the 6 GHz band LNA

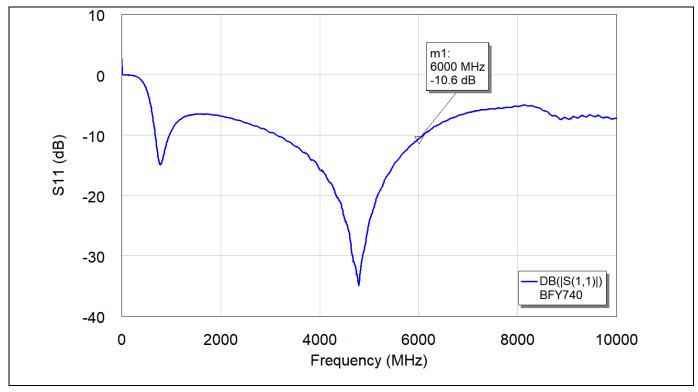


Figure 6 Input return loss measurement of 6 GHz band LNA

6 GHz band LNA application circuits

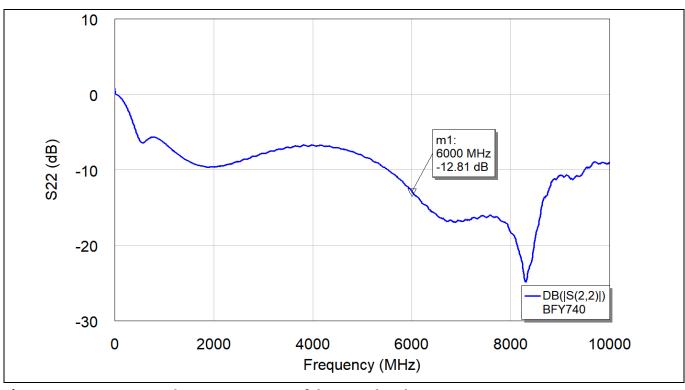


Figure 7 Output return loss measurement of the 6 GHz band LNA

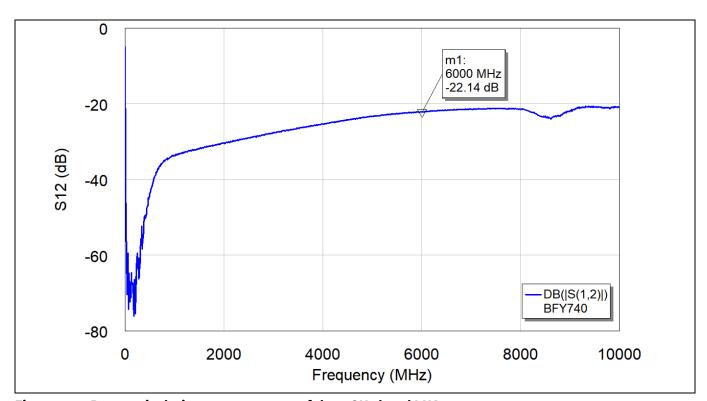


Figure 8 Reverse isolation measurement of the 6 GHz band LNA

6 GHz band LNA application circuits

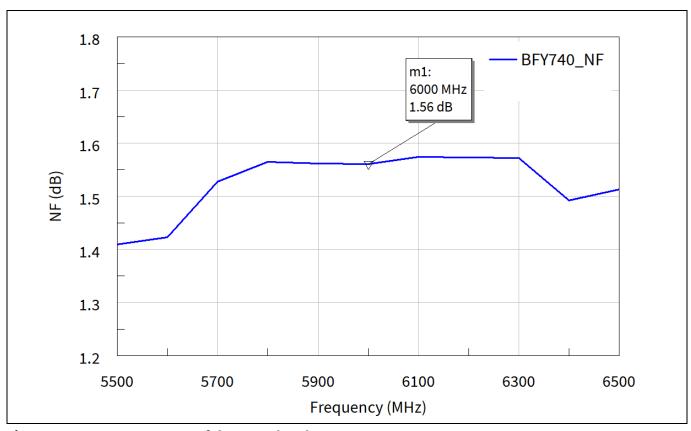


Figure 9 NF measurement of the 6 GHz band LNA

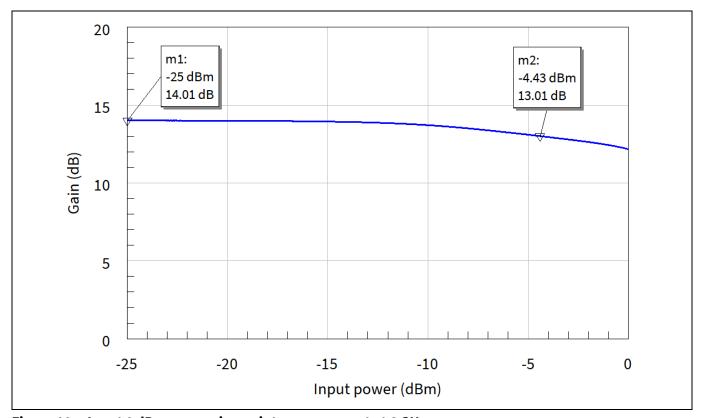


Figure 10 Input 1 dB compression point measurement at 6 GHz

V 0.1

6 GHz band LNA application circuits

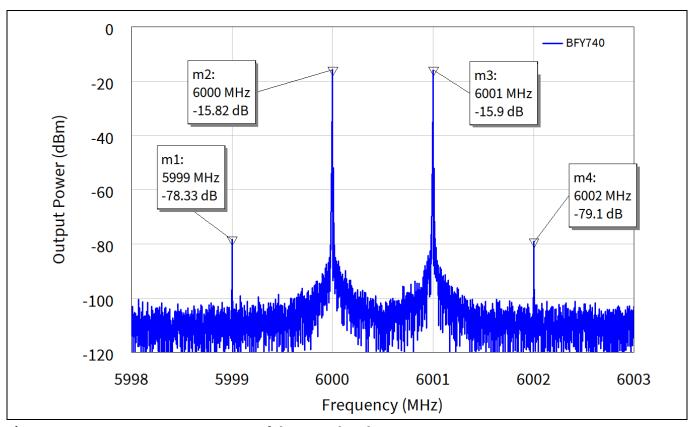


Figure 11 Output IMD₃ measurement of the 6 GHz band LNA

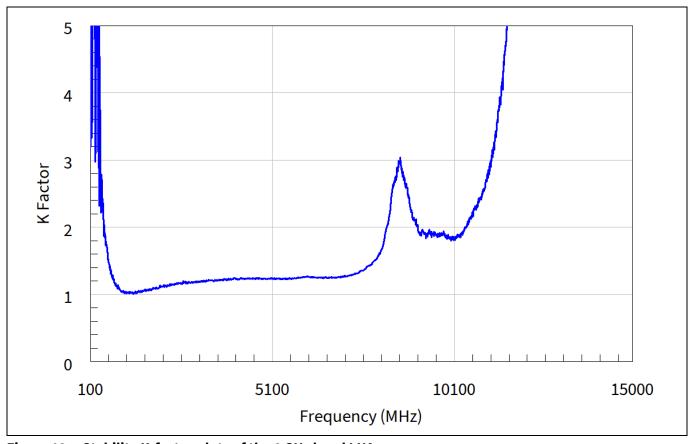


Figure 12 Stability K-factor plots of the 6 GHz band LNAs

V 0.1

Authors

Authors 3

Ishrat Mahbub, Application engineer of business unit RF and sensors

Markus Lehner, Product marketing Manager, HiRel

Revision history

Revision history

Document version	Date of release	Description of changes
V1.0	10.07.2025	Release of application note

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-06-31
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN_171411

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.