

600 W DR-HSC

About this document

Scope and purpose

This application note details the necessary connections and operation guidelines for Infineon's demo board. The solution features a zero-voltage switching switched capacitor converter topology as a first stage, also known as ZSC converter with a fixed conversion ratio of 2:1. It is followed by a three-level flying capacitor dual phase stage that provides the 12 V regulated output.

The main Infineon components used in the 600 W digital dual-stage regulated hybrid switched capacitor convertor (DR-HSC) are as follows:

- 80 V OptiMOS™ 5: IPT012N08N5, 80 V N-channel linear FET 1.2 mΩ, TOLL (HSOF-8), eFuse
- 40 V OptiMOS™ 6: IQE013N04LM6, 40 V 1.35 mΩ, PQFN 3.3 mm x 3.3 mm source-down, ZSC FETs
- 25 V OptiMOS[™] 5: 25 V 1.1 mΩ, PQFN 3.3 x 3.3 mm fused lead, 3LFC FETs
- 1EDN7550B: EiceDRIVER™ 1EDN7550B, one channel non-isolated gate-driver
- XDP710: XDP710 hot-swap controller, wide input voltage range (5.5 V to 80 V) system monitoring and protection IC
- XDPP1100: The smallest digital power controller with PMBus interface

Intended audience

This document is intended for power engineers working on 48 V regulated DR-HSC hardware.

48 V to 12 V regulated convertor using the XDP $^{\text{\tiny{TM}}}$ XDP710 eFuse and XDPP1100 digital controller

600 W DR-HSC

Table of contents

Table of contents

Abou	t this document	1
Table	of contents	2
1	Introduction	4
1.1	DR-HSC operating principle	4
1.2	DP-3LFC operational modes	
1.3	Flying capacitor voltage balancing in DP-3LFC	7
2	Board information	11
2.1	Description	11
2.2	Features	11
2.3	Reference design	12
2.4	Board parameters and technical data	15
3	Operating instructions	16
3.1	Input/output connectors	16
3.2	Power sequence	16
4	XDP710 hot-swap controller	18
5	XDPP1100 digital power controller	19
5.1	XDPP1100 configuration	
5.2	Control loop	
5.3	Topology and dead-time configuration	21
5.4	PMBus configuration	
5.5	Input voltage sense	24
5.6	V _{mid} voltage sense	25
5.7	Output voltage sense	26
5.8	Firmware patch	27
5.8.1	Enable signal of the eFuse XDP710	27
5.8.2	Stage diagram	28
5.8.3	Enable/disable ZSC (loop1) and eFuse	29
5.8.3.	1 Enable ZSC and eFuse	29
5.8.3.	2 Disable ZSC and eFuse	29
5.8.4	ZSC force duty-cycle control	30
5.8.5	Disable VOUT_UV fault at converter enable	30
5.8.6	Startup sequence of DR-HSC	
5.8.7	Shutdown sequence of DR-HSC	
5.9	MFR commands	
5.9.1	MFR_48V_ON_THRESH	
5.9.2	MFR_48V_OFF_THRESH	
5.9.3	MFR_CONFIG_DELAY	
5.9.4	MFR_CONFIG_THRESHOLD	
5.9.5	MFR_MAX_DUTY	
6	Regulation and telemetry	
5.1	Line and load regulation	
5.2	Input voltage telemetry	
5.3	Output voltage telemetry	
5.4	Output current telemetry	
7	System performance	37

600 W DR-HSC

Table of contents

7.1	Main operation waveform	37
7.2	Startup and shutdown	38
7.3	Output ripple and noise	
7.4	Load transients	40
7.5	Measured efficiency	42
7.6	Thermal image	
8 P	Protections	44
8.1	Output OVP	46
8.2	Output OCP	
8.3	Output short circuit protection	47
9 S	System design	48
9.1	Schematics	
9.2	Bill of materials (BoM)	57
Refere	ences	61
Revisio	on history	62
Disclai	imer	63

600 W DR-HSC Introduction

1 Introduction

The rapidly increasing electricity consumption of modern data centers demands a continuous improvement at system and converter levels. In an attempt to reduce the conduction losses in DC bus distribution, recently, a 48 V has been proposed to replace the existing 12 V bus voltage. To adapt the existing 12 V infrastructure to 48 V, a DC-DC converter can provide the interface between the 48 V bus and the regulated 12 V rail. One of the biggest challenges in enabling artificial intelligence (AI) is designing a high-power density power architecture from 48 V bus voltage. In transformer-based converters, such as LLC and PSFB, the transformer also has a fixed core loss over the entire load range, limiting light-load and peak efficiency.

If isolation is not required, an IBC composed of a 2:1 SC divider and regulated 2-phase, 3-level buck converter including a balancing inductor (to balance the flying capacitors of the 3-level buck stage) is proposed. The DR-HSC converter is a novel two-stage approach where,

- The first stage is a zero voltage switching (ZVS) SC converter called ZSC convertor,
- The second stage is a dual-phase three-level flying capacitor (DP-3LFC) converter featuring an intrinsic flying capacitor balancing.

1.1 DR-HSC operating principle

The schematic of the DR-HSC is shown in Figure 1.

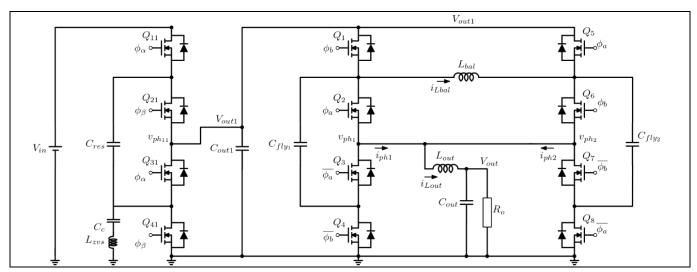


Figure 1 Two-stage ZVS switched capacitor and three-level dual-phase buck converters with balancing inductor (DR-HSC)

The first stage, ZSC, consists of a half-bridge multilevel structure and a resonant series LC circuit. The capacitor C_C and inductor C_{ZVS} are placed in series and then in parallel with Q_{41} to enable ZVS operation for all switches.

The second stage, a dual-phase 3-level flying capacitor (DP-3LFC), consists of two multi-level half-bridges, two phase nodes are shorted together and the two phases are shifted by 180°. To achieve the voltage balancing of the fly capacitors, an additional balancing inductor L_{bal} is added between the two positive terminals of the flying capacitor. The two phase nodes V_{ph1} and V_{ph2} are in phase and connected to a common output inductor L_{out} . DP-3LFC is controlled such that, within a part of one switching cycle T_{sw} , C_{fly1} and C_{fly2} are connected in series with the input voltage V_{out1} and GND. Such a connection ensures that the voltage summation across the flying capacitors C_{fly1} and C_{fly2} is always the input voltage V_{out1} . However, by itself, the connection of the two

600 W DR-HSC

Introduction

midpoints does not guarantee the flying capacitors balancing under all mismatch conditions, for example, strong gate driver's propagation delay mismatch. It is necessary to enforce the balancing action with an inductive component L_{bal} .

To analyze the DP- 3LFC waveforms at 50% duty-cycle. In this operation mode, the output inductor ripple is almost zero because of the $v_{ph1,2}(t) \simeq v_{out}(t)$. This is of paramount importance to consider since this converter is designed for a 48 V to 12 V conversion ratio, therefore such a condition is the nominal one. If low R_{droop} for the first stage and low input voltage variation, the output inductor can be drastically reduced keeping low frequency operation (e.g., between 150 kHz to 250 kHz),

The main waveform for the 2:1 ZSC stage is shown in Figure 2. The main waveform for the dual-phase three-level flying capacitor buck converter DP-3LFC is shown in Figure 3.

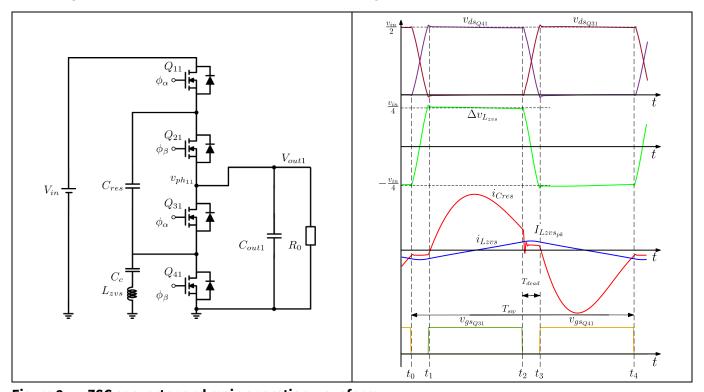


Figure 2 ZSC convertor and main operation waveform

600 W DR-HSC

Introduction

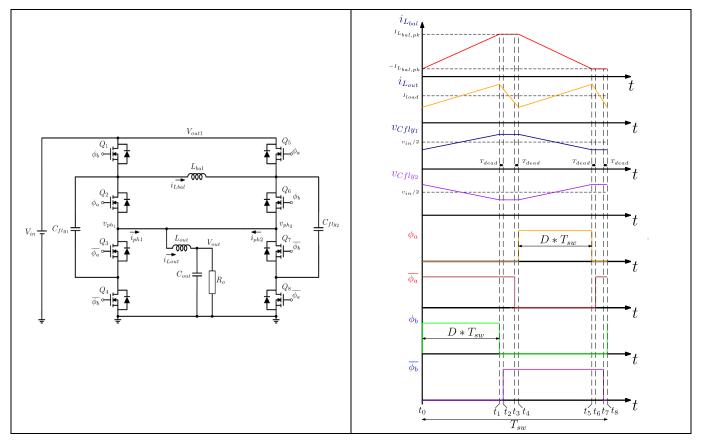


Figure 3 DP-3LFC convertor and main operation waveform with D < 0.5

1.2 DP-3LFC operational modes

The DP-3LFC converter stage is shown in Figure 3. One switching cycle T_{sw} cab be split into eight subintervals. The following is for an operation cycle with duty-cycle below 50%. The eight subintervals are described as follows:

- 1. t_0-t_1 : at $t=t_0$, both the switch Q_1 and Q_6 are turned on and the flying capacitor C_{fly1} is charged from the input and is connected with Q_3 to the node phase V_{ph1} powering the output inductance, while C_{fly2} is discharged powering the output inductance L_{out} . In this phase, the output inductance is powered with $v_{out1}-v_{C_{fly2}}$ and from $v_{C_{fly1}}$,respectively, from the source of Q_6 and the drain of Q_3 . During this phase the balancing inductor current rises from $-I_{L_{bal,pk}}$ to $I_{L_{bal,pk}}$ with a slope of $v_{C_{fly2}}/L_{bal}$.
- 2. $t_1 t_2$: at $t = t_1$, both the switch Q_1 and Q_6 are turned off.
- 3. $t_2 t_3$: at $t = t_2$ after a dead-time period T_{dead} , the switch Q_4 and Q_7 are turned on and the output inductance is discharged with a slope of V_{out}/L_{out} . The two flying capacitors C_{fly1} and C_{fly2} are kept to stable voltage levels $v_{C_{fly1}}(t_1)$ and $v_{C_{fly2}}(t_1)$ respectively. During this phase, the I_{Lbal} current flows between Q_4 and Q_8 .
- 4. $t_3 t_4$: at $t = t_3$, both the switch Q_3 and Q_8 are turned off.
- 5. $t_4 t_5$: at $t = t_4$, after a dead-time period T_{dead} , both the switch Q_2 and Q_5 are turned on, the flying capacitor C_{fly2} now is charged from the input and is connected with Q_7 to the node phase v_{ph2} powering the output inductance, while C_{fly1} is now discharging, powering the output inductance L_{out} . In this phase the output inductance is powered from $v_{ln} v_{C_{fly1}}$ and from $v_{C_{fly2}}$ respectively from the source of Q_2 and

600 W DR-HSC

Introduction

the drain of Q_7 . During this phase the balancing inductor current falls from $I_{L_{bal,pk}}$ to $-I_{L_{bal,pk}}$ with a slope of $v_{C_{fly1}}/L_{bal}$.

- 6. $t_5 t_6$: at $t = t_5$ both the switch Q_5 and Q_2 are turned off.
- 7. $t_6 t_7$: at $t = t_6$ after a dead-time period T_{dead} , both the switch Q_8 and Q_3 are turned on. In this phase, the output inductance is discharged with a slope of V_{out}/L_{out} . The two flying capacitors C_{fly1} and C_{fly2} are kept to a stable voltage level, $v_{C_{fly1}}(t_5)$ and $v_{C_{fly2}}(t_5)$, respectively. During this phase, the $i_{L_{bal}}$ current flows between Q_4 and Q_8 keeping a stable value of $-I_{L_{bal,vk}}$.
- 8. $t_7 t_8$: at $t = t_7$, both the switch Q_4 and Q_7 are turned off. At $t = t_8$ switch Q

From the converter operations illustrated above, it can be stated that any non-ideal behavior of the converter would be balanced by both converter symmetry and balancing inductor, without influencing the voltage loop since the mean value of $V_{ph1,2}$ is not affected.

1.3 Flying capacitor voltage balancing in DP-3LFC

The voltage stabilization of the flying capacitors to half of the input voltage is achieved through a capacitive and an inductive coupling between the two three-level flying capacitor phases, respectively from the phase node short and balancing inductor.

The series connection of the two flying capacitors during the subintervals t_0-t_1 and t_4-t_5 forces the sum of the two flying capacitors to be equal to the input voltage of the DP-3LFC stage. The main difference between subintervals t_0-t_1 and t_4-t_5 is that the capacitor C_{fly2} is at the bottom of the series connection while in t_4-t_5 , C_{fly1} is at the bottom of the series connection during the first interval. The voltage applied to the output inductor is equal to the voltage of the bottom capacitor ($V_{C_{fly,bottom}}$) minus the output voltage during

these phases. By assuming a certain voltage deviation between $V_{C_{fly1}}$ and $V_{C_{fly2}}$: $\Delta V = \frac{V_{C_{fly1}} - V_{C_{fly2}}}{2}$, it is possible to derive the time-dependent behavior of the re-balancing process from an initial voltage mismatch of ΔV_{init} :

$$\Delta V(t) = \Delta V_{init} \cdot e^{-t/\tau}$$

Equation 1

Where, the time-constant τ of the balancing depends on various system parameters and can be described with sufficient accuracy by the following equation:

$$\tau \simeq \frac{f_{sw}}{f_{res}} \, \frac{\sqrt{L_{out} C_{fly}}}{2R_{cond}} \frac{1}{D_{adj}}$$

Equation 2

Where, the resistance R_{cond} is the lumped resistance of the conduction path of the bottom capacitor to the output, while $f_{res} = \frac{1}{2\pi \sqrt{L_{out} C_{fly}}}$ is the resonant frequency and adjusted duty-cycle is:

600 W DR-HSC

Introduction

$$D_{adj} = \begin{cases} 2 \cdot D & D < 0.5 \\ 2 \cdot (1 - D) & D \ge 0.5 \end{cases}$$

Equation 3

However, the capacitive charge distribution cannot keep the flying capacitors voltage stabilized during all the non-ideal mechanisms (e.g., strong driving delay imbalance). Therefore, to improve flying capacitor voltage balancing, an inductive component is required between the two 3LFC phases. The Q_4 is controlled by $\overline{\phi}_a$, having the output inductor valley current always positive, and considering the flux balancing of the balancing inductor L_{bal} , the following equation is valid:

$$\frac{T_{on_{\phi_a}}}{T_{on_{\phi_b}}} = \frac{V_{Cfly2}}{V_{Cfly1} - DCR_{L_{bal}} * I_{bal,dc}}$$

Equation 4

Where DCR_{Lbal} is the DC resistance of the balancing inductor. From Equation 4 it follows that the average voltage of $V_{C_{fly2}}$ equals to $V_{C_{fly1}}$, therefore $V_{C_{fly1}} = V_{C_{fly2}} = \frac{V_{in}}{2}$ when there is not a strong difference between $T_{On_{\overline{\phi_n}}}$ and $T_{On_{\overline{\phi_n}}}$

When an unbalance is applied between the two phases of the 3LFC-DP converter, a DC current is built into the balancing inductor. Figure 4 shows the equivalent model of the DC current within the balancing inductor.

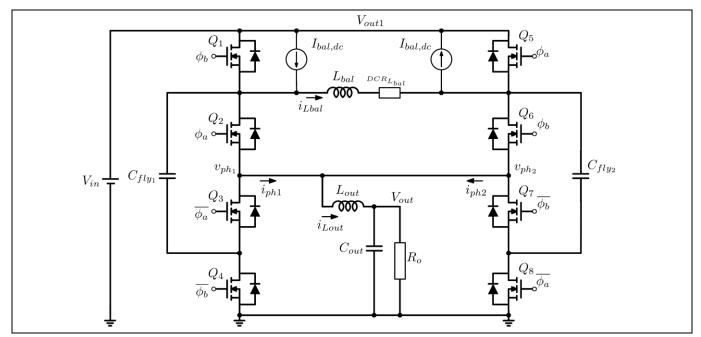


Figure 4 Three-level dual-phase buck converters with equivalent balancing model

If $T_{on_{\phi_a}} < T_{on_{\phi_b}}$, considering the converter is running and operating with positive valley current on the output inductor, the voltage of the flying capacitors will slightly drift from $\frac{V_{in}}{2}$, as shown in Equation 4. Balancing

600 W DR-HSC

Introduction

inductor compensation would seek to discharge the \mathcal{C}_{fly1} , when connected to V_{in} , discharging it when connected to ground potential, achieving the voltage balancing point as can be demonstrated with the following equation:

$$Q_{ina} = Q_{inh}$$

Equation 5

where Q_{inb} and Q_{ina} are respectively the net charges and discharges in the flying capacitor C_{fly1} , can be expressed as:

$$Q_{inb} = \int_0^{T_{on_{\phi_b}}} \left(\frac{V_{in} - V_{C_{fly1}}}{2L_{out}} t + \frac{I_{out}}{2} - \frac{I_{bal,dc}}{2} \right) dt$$

Equation 6

$$Q_{ina} = \int_{0}^{T_{on_{\phi_a}}} \left(\frac{V_{C_{fly1}}}{2L_{out}}t + \frac{I_{out}}{2} - \frac{I_{bal,dc}}{2}\right)dt$$

Equation 7

Equation 6 and Equation 7 are derived without considering MOSFET body diode conduction, $V_{C_{fly1}}$ is the average voltage within one switching cycle across C_{fly1} . By combining Equation 4, Equation 6, and Equation 7, the DC current of the balancing inductor can be calculated with the following equation.

$$I_{bal,dc} = I_{out} \frac{{}^{T_{on}}_{\phi_b} - {}^{T_{on}}_{\phi_a}}{{}^{T_{on}}_{\phi_b} + {}^{T_{on}}_{\phi_a}} + 2 \frac{{}^{V_{in}}{}^{T_{on}^2}_{\phi_b} - {}^{V_{Cfly1}} \left({}^{T_{on}}_{\phi_b} + {}^{T_{on}}_{\phi_a} \right)}{{}^{4L_{out}} \left({}^{T_{on}}_{\phi_b} + {}^{T_{on}}_{\phi_a} \right)}$$

Equation 8

To validate the voltage balancing of the flying capacitors, the test is done with the following conditions:

- With and without the balancing inductor L_{bal}
- To apply a strong unbalanced between the ϕ_a and ϕ_b , set the dead-time $\phi_{a_{dt}}=20 \text{ns}+\phi_{b_{dt}}$.

In the Figure 5(a), the test is done with the balancing inductor L_{bal} adopted. It shows that the flying capacitors are kept at the same, the voltage results in a low ripple in the output inductor. In the Figure 5(b), the test is done without the balancing inductor L_{bal} . The two flying capacitors are drifting by 4.765 V from 30 V input voltage with an output current I_{out} of 25 A.

V 1.0

600 W DR-HSC Introduction

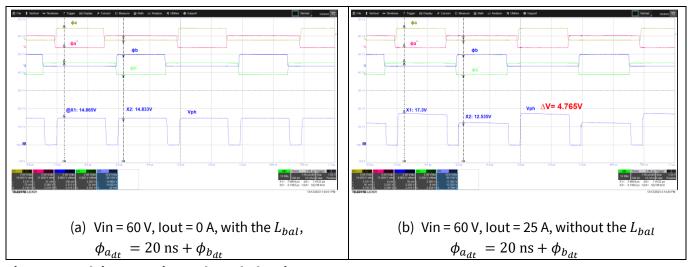


Figure 5 Flying capacitor voltage balancing

When the balancing inductor needs to compensate a non-ideal behavior of the 3LFC, as explained with Equation 8, a DC current is established within the balancing inductor.

The balancing inductor current has been measured, without the unbalanced applied (e.g. $\phi_{a_{dt}} = \phi_{b_{dt}}$) and with the unbalanced applied (e.g., $\phi_{a_{dt}} = 20 \text{ ns} + \phi_{b_{dt}}$). A DC current of 250 mA flows between two phases throughout the balancing inductor. The maximum current built into balancing inductor is negligible with respect to the output current and therefore the balancing inductor is carrying mostly a small-sized AC current.

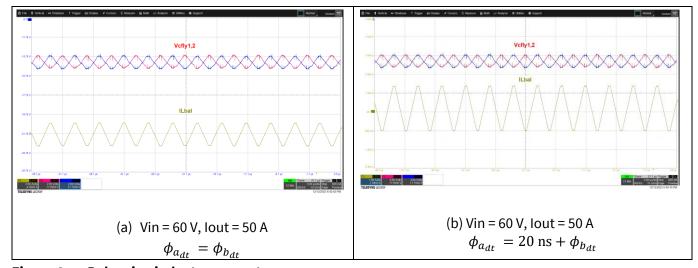


Figure 6 Balancing inductor current

600 W DR-HSC Board information

2 Board information

2.1 Description

The 48 V regulated DR-HSC converter is Infineon's patented topology. The board is capable of power transfer from 48 V to 12 V regulated. The process of power transfer consists of the following two stages:

- 1. An unregulated ZVS switched capacitor converter, converting the 48 V input voltage down to 24 V V_{mid} voltage.
- 2. A regulated dual-phase three-level flying capacitor stage, converting the 24 V V_{mid} down to 12 V Vout. A hot-swap controller, XDP710, is incorporated for a safe soft-start to limit the inrush current and providing protection capabilities during operation.

2.2 Features

This system consists of three main blocks shown in Figure 7 and Figure 8.

- The first block is the hot-swap stage that secures the converter against the bouncing of the input voltage and guarantees a safe soft startup.
- The second block is acts as a voltage divider called a zero-voltage switching switched capacitor converter (ZSC). This stage converts the input voltage down by half with a fixed ratio at fixed switching frequency, fixed duty-cycle, and dead-time over the full load range.
- The last block is based on a regulated three-level flying capacitor dual phase converter. This stage uses voltage mode duty-cycle control algorithms to regulate the variable input voltage to a regulated 12 V rail.

The board is capable of delivering 600 W continuous power over an input voltage range from 44 V - 60 V. An auxiliary power supply to provide bias voltage for gate driver, 3.3 V and 6.5 V V_{DD} during operation, with an output power higher than 300 W is required. A fan is required and should be placed next to the converter with about 100 CFM of airflow. The eFuse stage is controlled by a wide input voltage hot-swap controller XDP710, which drives a single N-channel MOSFET. In addition to a SOA controlled turn ON, the XDP710 provides continuous system health monitoring and communication to the main MCU via the PMBus interface. The ZSC and 3LFC-DF stages are driven and regulated by a digital controller, XDPP1100. XDPP1100 also controls the enable sequencing of the eFuse. The digital controls provide the utmost flexibility in design, efficiency, optimization, and customized FW capability to implement application add-on features.

600 W DR-HSC Board information

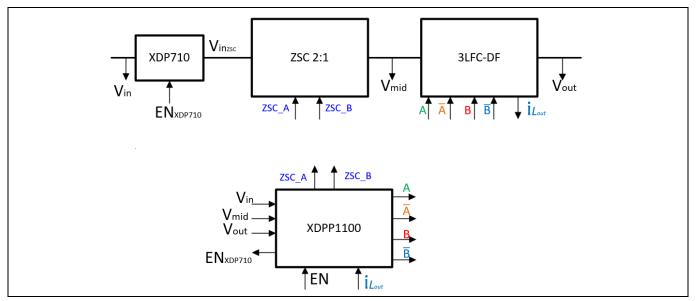


Figure 7 Regulated 48 V to 12 V DR-HSC converter basic operation.

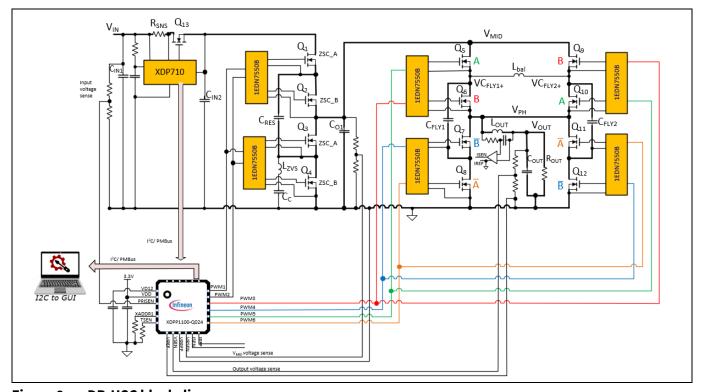


Figure 8 DR-HSC block diagram

2.3 Reference design

The reference design of the 600 W DR-HSC is shown in Figure 9. The top view is on the left and the bottom view is on the right. The 3D rendering of the PCB is shown in Figure 10. The board dimensions are $114 \text{ mm} \times 77 \text{ mm} \times 15 \text{ mm}$.

600 W DR-HSC Board information



Figure 9 Top and bottom side of the DR-HSC board

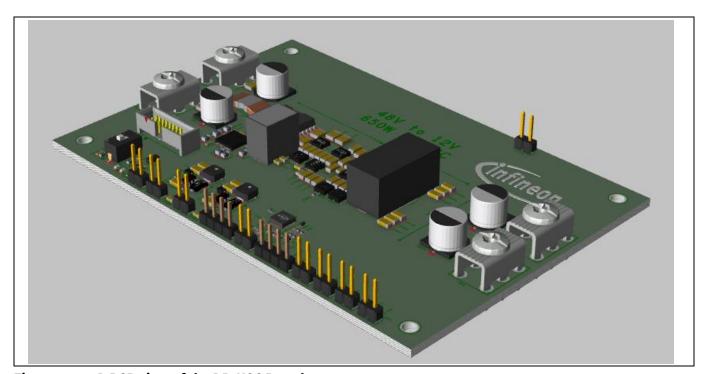


Figure 10 3D PCB view of the DR-HSC Board

Top and bottom views of the hardware demo board including the labeling of the main components are shown in Figure 11, Figure 12, and Figure 13.

600 W DR-HSC Board information

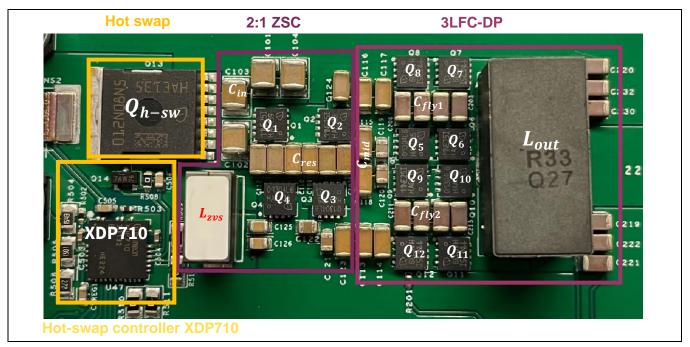


Figure 11 Top-view of the demo board for the regulated 48 V to 12 V DR-HSC converter

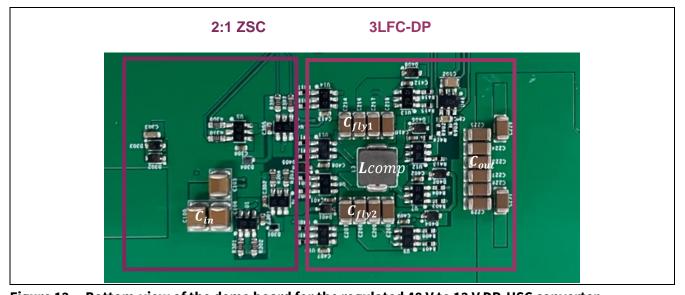


Figure 12 Bottom-view of the demo board for the regulated 48 V to 12 V DR-HSC converter

600 W DR-HSC Board information

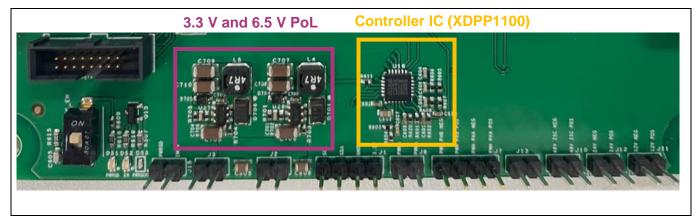


Figure 13 Controller IC and aux power location of the hardware demonstrator

2.4 Board parameters and technical data

• Input voltage range: +44 V to +60 V DC

Minimum VIN to turn on: 44 V

• Airflow: 100 CFM (at maximum output current)

• Protection features: input and output overvoltage, overtemperature, and overcurrent

All other board parameters are summarized in Table 1.

 Table 1
 Parameters and recommended operating conditions

Parameter	Symbol	Min	Тур	Max	Unit
Input voltage range	VIN_ON	44.0	48.0	60.0	V
Output voltage	V _{OUT}	11.5	12.0	12.5	V
Output power	P _{OUT}	_	600	650 (10 ms)	W
Output current	I _{OUT}	-	_	50	Α
ZSC switching frequency	f _{SW}	_	630	_	kHz
3LFC switching frequency	f _{SW}	_	250	_	kHz
Output voltage ripple	V_{ripple}	-	_	130	mV

600 W DR-HSC

Operating instructions

3 Operating instructions

3.1 Input/output connectors

Figure 14 DR-HSC main input and output voltage connection lugs

- 1. Main input voltage connector.
- 2. Main output voltage connector.
- 3. 12 V AUX power connector. A regulated +12 V AUX supply capable of 1 A is required for all auxiliary voltage rails and soft start circuits.
- 4. Communication data lines to the controller XDPP1100. (SCL, SDA, GND, 3.3 V)
- 5. Pulse pattern signals for the ZSC stage (PWMA, PWMB)
- 6. Pulse pattern signals for the 3LFC-DF stage (PWM_PHB_NEG, PWM_PHB_POS, PWM_PHA_NEG, and PWM_PHA_POS) Differential positive and negative measurement point on the input (Vin).
- 7. Differential positive and negative measurement point on the midpoint (24 V mid).
- 8. Differential positive and negative measurement point on the output (12 Vout).
- 9. ON/OFF switch for the 3LFC-DP
- 10. Hot-swap controller XDP710 communication and programming connector.

3.2 Power sequence

- 1. Apply +12 V capable of 1 A at 12 V and GND (connector 3 shown in Figure 14).
- 2. Set the 12 V output loading current to 0 A before the 12 V output is ready.
- 3. Toggle the on/off switch of the converter if necessary.

600 W DR-HSC

Operating instructions

- 4. Apply a DC voltage between 44 V and 60 V on the input lugs (Connector 1 shown in Figure 14). The converter is automatically starts up if the input voltage is in the specified window.
- 5. Observe that Vout rises over the test pins (Connector 9 shown in Figure 14) or directly across the Vout capacitors.
- 6. In case of a system shutdown, turn OFF the main DC supply voltage and wait until Vout reaches zero.

Note: Before turning on the main DC Vin, make sure +12 V AUX is reset by turning OFF/ON the 12 V AUX power supply.

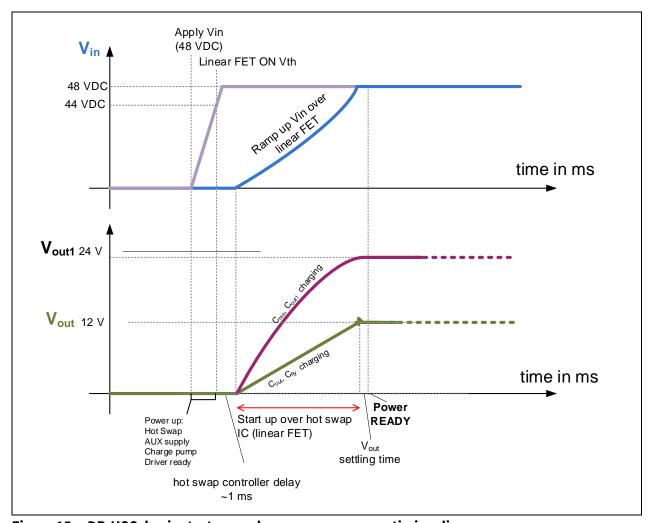


Figure 15 DR-HSC, basic startup, and power up sequence timing diagram

600 W DR-HSC XDP710 hot-swap controller

4 XDP710 hot-swap controller

The hot-swap controller XDP710 is capable of managing a controlled system turn ON and avoiding any inrush events by driving an external N-channel MOSFET within its safe operating area (SOA). It also incorporates an extensive variety of system protections for safety operations and generates various protection responses depending on the severity of the incident. You can use the Infineon GUI XDP designer to configure the hot-swap controller. See the XDP710 application note for more information.

In this board, an 80 V N-channel linear MOSFET IPT012N08N5 is controlled by the XDP710 hot-swap controller. The purpose of adopting the hot-swap controller is to limit the inrush current and implement the soft-start as the first stage 2:1 ZSC convertor operates in an open-loop mode. The dv/dt of the input voltage can be controlled so that the input voltage is delivered smoothly to the capacitor of the ZSC convertor. The SOA of the FET consists of a maximum allowed drain current that depends on its drain to source voltage. The more the voltage, the less current allowed through the FET. XDP710 has a closed control loop that monitors the current through the FET and its drain to source voltage. The current flow that charges the ZSC capacitor is controlled according to the FET's SOA.

600 W DR-HSC

XDPP1100 digital power controller

5 XDPP1100 digital power controller

5.1 XDPP1100 configuration

The FW patch and optimized configuration are stored in the nonvolatile memory OTP. You can run the demo board by following the instructions in Section 3.2 without needing additional configuration. To evaluate XDPP1100, you can change configuration such as fault thresholds or response. Most of the configurations can be changed on the fly. The modified configurations are stored in the RAM and can be modified an unlimited number of times. However, once the input voltage and 3.3 V VDD are removed, the modifications will be lost and reset to the default OTP settings. To keep the new configuration, you can store the customized configuration to the OTP. See the XDPP1100 application note for more information.

This design uses XDPP1100-Q024, which is a 24-pin device and drives two loops. Therefore, the Loop1 PMBus commands are not visible if it auto-populates the device into the graphical user interface (GUI). You need to force the I2C/PMBus communication and add XDPP1100-Q040 (40-pin version) to configure the device.

To verify the design tool, perform the following steps:

- 1. Connect the I²C dongle to the I²C connector on the board.
- 2. Load the design file (REF_600W_DR-HSC_XDPP.pcd).
- In the Options tab, check Force i2c/PMBus OK as shown in Figure 16.
 This step is mandatory as the device cannot be detected by using Auto populate.

Figure 16 Load design file through GUI and read from the device

4. Power up the board.

The GUI will show a pop-up window automatically after establishing communication as shown in Figure 17.

600 W DR-HSC

XDPP1100 digital power controller

Figure 17 Read from Device operation

5. Click Read from Device 0x01.

This will read the configuration file from XDPP1100.

5.2 Control loop

In the XDPP1100 GUI shown in Figure 18, use the XDPP1100-Q040 configuration for XDPP1100-Q024 to implement two digital control loops.

- Loop0: Controls the regulated 3LFC and it is closed loop with VMC control mode.
- Loop1: Controls the open-loop ZSC.

Note:

Both Loop0 and Loop1 are used to control the whole system and do not turn on/off either the ZSC stage or the 3LFC stage separately by the PMBus command "Operation".

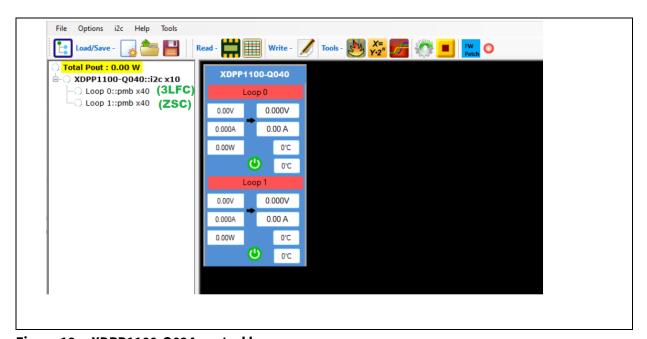


Figure 18 XDPP1100-Q024 control loop

600 W DR-HSC

XDPP1100 digital power controller

5.3 Topology and dead-time configuration

Loop0 controls the three-level flying capacitor buck (3LFC). Loop0 is configured to half-bridge (HB) topology to drive the interleaved 3LFC as shown in Figure 18. The control loop of the 3LFC is the same as Buck, $D = V_{OUT}/V_{IN_3LFC}$. Here the input voltage of 3LFC is the output of the 2:1 ZSC, $\frac{1}{2}$ V_{IN}. When V_{OUT} is higher than $\frac{1}{2}$ V_{IN_3LFC} or $\frac{1}{4}$ V_{IN}, the duty-cycle is higher than 50%. The HB control loop has the same duty-cycle equation, and it could be used to control the 3LFC.

The drawback of half-bridge topology is that the max duty-cycle of HB is limited to 100%. In other words, each 3LFC phase duty-cycle is limited to 50%. When the output voltage is higher than $\frac{1}{4}$ V_{IN}, the 3LFC stage loses regulation. To compensate for the duty-cycle limit, the PWM falling edge dead-time is used to extend the pulse width. XDPP1100 allows a maximum of 318.75 ns dead-time. In this design, PWM3 and PWM4 falling edge dead-time is set to 298.75 ns. At the 250 kHz switching frequency, the 298.75 ns provides 7.5% duty-cycle extension. This allows for regulation at 44 V input as shown in Figure 21.

The benefit of using HB topology is the duty-cycle lock feature of the XDPP1100. The XDPP1100 could lock the odd and even duty-cycle of bridge topologies. The pulse width only adjusts at the even cycle and keeps the odd cycle the same as the even cycle. This helps to keep the voltage balancing of the two flying capacitors.

In the XDPP1100 GUI Topology design tool, configure the following parameters:

• **Loop0 3LFC**: Configure the topology to half-bridge primary and center-tapped secondary, mapping the PWMs per HW connection.

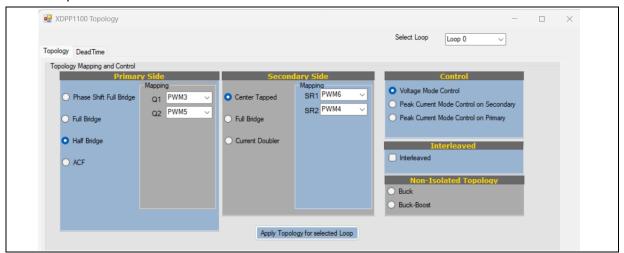


Figure 19 3LFC topology and control mode

600 W DR-HSC

XDPP1100 digital power controller

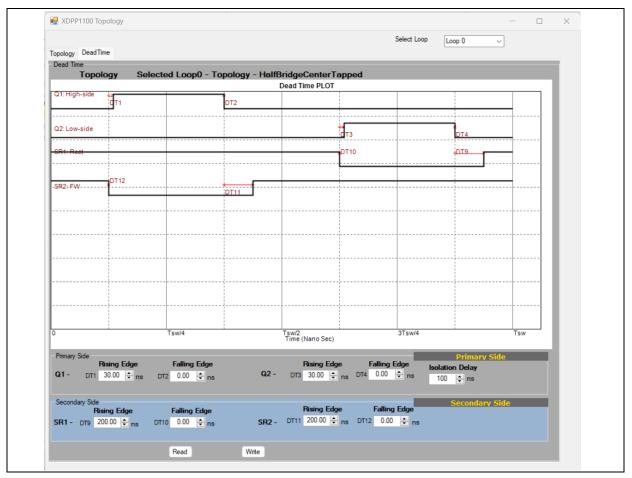


Figure 20 3LFC dead-time and isolation delay

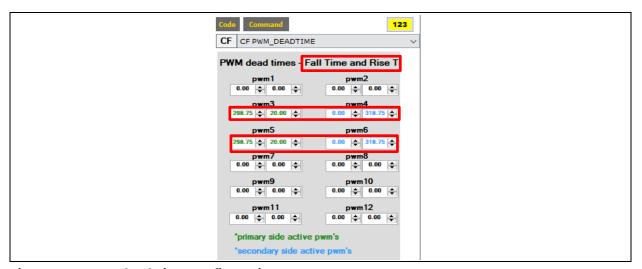


Figure 21 3LFC dead-time configuration

- **Loop1 ZSC**: Configure the topology to the half-bridge primary, mapping the PWMs per HW connection shown in the Figure 22.
- **ZSC dead-time configuration:** The ZSC dead-time is not implemented in the command 0xCF PWM_DEADTIME shown in the Figure 23. However, it is implemented by using the MFR command 0xED

600 W DR-HSC

XDPP1100 digital power controller

which defines the max duty-cycle. In this design, the value of the 0xED (max duty-cycle) is 0xF170 in the PMBus spreadsheet and the max duty-cycle is 92%. The dead-time can be calculated as given in the following equation:

$$dt = \frac{1}{F_{SW}} \times \frac{1 - Max \ duty \ cycle}{2} = \frac{1}{630 kHz} * \frac{1 - 0.92}{2} \approx 64 ns$$

Equation 9

where, the F_{sw} is the ZSC switching frequency, the max duty cycle is 92%.

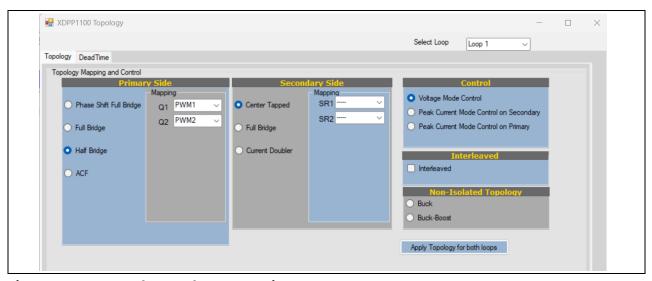


Figure 22 ZSC topology and PWM mapping



Figure 23 ZSC dead-time

600 W DR-HSC XDPP1100 digital power controller

5.4 PMBus configuration

The key PMBus commands are listed in Table 2 and Table 3.

Table 2 Basic PMBus configuration for Loop0 (3LFC)

Command	Name	Data	Meaning		
00	PAGE	0x00	Page 0		
01	OPERATION	0x01	On		
02	ON_OFF_CONFIG	0x1F	Respond to operation and EN pin, EN polarity active high		
20	VOUT_MODE	0x18	-8		
21	VOUT_COMMAND	0x0C00	12,000 V		
24	VOUT_MAX	0x0F00	15,000 V		
27	VOUT_TRANSITION_RATE	0xE810	2,000 mV/μs		
29	VOUT_SCALE_LOOP	_	0.13043		
32	MAX_DUTY	0xF190	100.00 percent		
33	FREQUENCY_SWITCH	0x087D	250 kHz		
34	POWER_MODE	0x03	0x03		
61	TON_RISE	F050	25.000 ms		
CD	MFR_VRECT_SCALE	_	0.128906		
EA	MFR_IOUT_APC	_	0.353516 A		

Table 3 Basic PMBus configuration for Loop1 (ZSC)

Command	Name	Data	Meaning		
00	PAGE	0x01	Page 1		
01	OPERATION	0x01	On		
02	ON_OFF_CONFIG	0x1A	Respond to operation on/off only		
20	VOUT_MODE	0x18	-8		
21	VOUT_COMMAND	0x1800	24,000 V		
27	VOUT_TRANSITION_RATE	0xE810	2,000 mV/μs		
32	MAX_DUTY	0xF190	100.00 percent		
33	FREQUENCY_SWITCH	0x093B	630 kHz		
34	POWER_MODE	0x03	0x03		

5.5 Input voltage sense

The XDPP1100 uses PRISEN ADC to sense the input voltage through the resistor-divider R603, R604. The input voltage is calculated based on the sensed PRISEN voltage. The PRISEN input voltage sensing is configured by register vin_pwl_slope and vin_trim shown in Figure 24.

The vin_pwl_slope can be calculated by the following equation:

V 1.0

600 W DR-HSC

XDPP1100 digital power controller

$$vin_pwl_slope = \frac{\Delta Vin \times 1.2 \times 2^5}{\Delta VPRISEN}$$

Equation 10

The ΔV_{PRISEN} / ΔV_{IN} is the resistor scale of the PRISEN resistor-divider (R603, R604). To utilize the full input voltage range of TS ADC (1.2 V), it is recommended to set the scale of V_{IN} resistor divider by:

Equation 11

For example, for maximum 95 V input the V_{IN} resistor-divider ratio is set to 1.2 V/95 V = 0.0126 V/V. To get this ratio, select R603 = 180 k Ω , R604 = 3.3 k Ω ; the actual divider ratio is 0.018003.

$$vin_pwl_slope = \frac{1.2 \times 2^5}{0.018003} = 2133$$

Equation 12

The vin_trim configures the offset of the input voltage that is sensed by PRISEN.

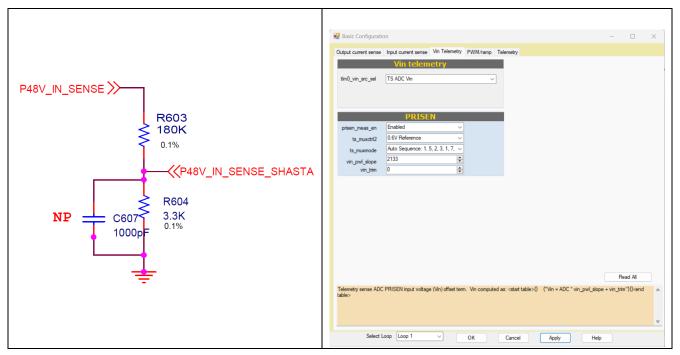


Figure 24 Input voltage sensing by PRISEN pin

5.6 V_{mid} voltage sense

The XDPP1100 uses VRSEN/VRREF ADC to sense the middle point voltage (V_{mid}) through the resistor-divider R605, R606 shown in the Figure 25. The voltage is calculated based on the sensed VRSEN voltage. This is the 3LFC input voltage shown in the Loop0 of the GUI.

600 W DR-HSC

XDPP1100 digital power controller

When configuring the Loop0, the MFR_VRECT_SCALE must be set to $2\times$ of the resistor divider value, because in half-bridge topology, the FW calculates input of loop0 (V_{IN_3LFC}) based on the following equation:

Equation 13

Setting MFR_VRECT_SCALE to 2× could cancel the factor of 2 in the equation.

The pid_vrect_ref should be set to 12 V / 0.32 V = 38

0xCD MFR_VRECT_SCALE in Loop0 is calculated based on V_{rect} resistor-divider R605, R606.

$$MFR_VRECT_SCALE = \frac{4.7 \text{ k}\Omega}{(68 \text{ k}\Omega + 4.7 \text{ k}\Omega)} \times 2 = 0.1293$$

Equation 14

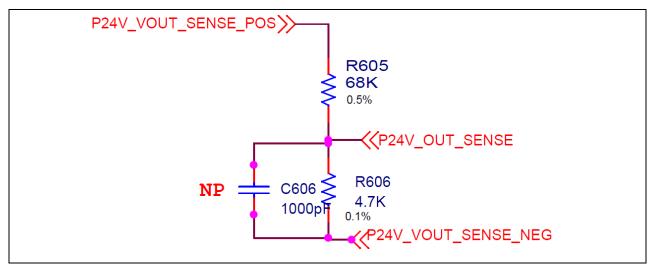


Figure 25 Vmid voltage sensing circuit

5.7 Output voltage sense

The output voltage is sensed at the VSEN pin through resistor-divider R607, R608 shown in the Figure 26. The set-point of VSEN is recommended to be set equal or higher than 1.2 V for the highest accuracy. This board sets the divider ratio to 0.1304 to get 1.56 V at the VSEN pin. the PMBus Command in Loop0 0x29 VOUT_SCALE_LOOP is 0.1304.

600 W DR-HSC

XDPP1100 digital power controller

$$VOUT_SCALE_LOOP = \frac{R608}{R607 + R608} = \frac{1.8K}{12K + 1.8K} = 0.1304$$

Equation 15

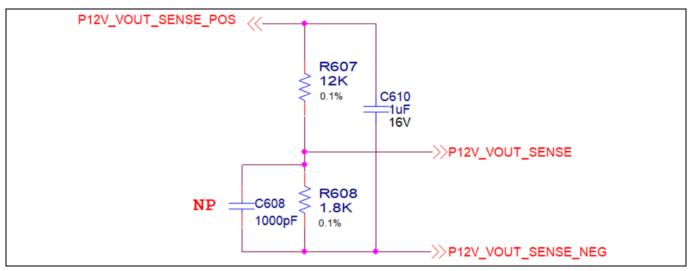


Figure 26 Output voltage sensing circuit

5.8 Firmware patch

5.8.1 Enable signal of the eFuse XDP710

The eFuse enable signal is controlled by pin 22 of XDPP1100, which is mapped to MP_SYNC by default. Therefore, a patch is required to modify this pin functionality, The patch is hard coded to use the MP_SYNC pin to turn on eFuse XDP710 for soft-start (e.g., signal enable for hot-swap controller).

600 W DR-HSC

XDPP1100 digital power controller

5.8.2 Stage diagram

Figure 27 ZSC (loop1) stage diagram

600 W DR-HSC

XDPP1100 digital power controller

Loop0 is enabled by the standard enable logic in ROM code. The VIN_ON threshold of loop0 is set very low to 3 V. The goal is to limit the inrush current in the 3LFC flying capacitor during startup. The VIN_ON threshold should be set as low as possible. However, when the input voltage applies, the Vo1 bus will be pulled up by the leakage current of the gate drivers. To prevent unexpected startup of 3LFC, e.g., without the enable converter, the VIN_ON threshold has to be set higher than the Vo1 voltage in the off state, which is around 2 V.

During shutdown, loop0 (3LFC stage) switches to the forced duty cycle except in a fault shutdown scenario. This is controlled by an FW patch to discharge the Vo1 bus voltage. The FW keeps loop0 PWMs switching and only turn off PWMs when Vout is lower than a threshold defined by MFR_CONFIG_THRESHOLD. See 5.9.4 of the configuration guide for more information.

In a fault shutdown, the PWM of both loop0 3LFC and loop1 ZSC would be pulled down immediately. The eFuse will be disabled except for undervoltage faults where soft shutdown is used.

Loop1 controls the 2:1 ZSC stage. The ZSC converter operates in open loop mode. The patch implements force duty-cycle and enable/disable eFuse functions. At startup, the ZSC stage should start switching before the eFuse XDP710 turns on. Use MFR_CONFIG_DELAY to delay the turn-on of the eFuse (see 5.9.3 for configuration guide).

5.8.3 Enable/disable ZSC (loop1) and eFuse

- Config MP_SYNC (EN_EFUSE) as GPIO pin. Set sync_func=1, sync_ppen=1.
- Set ramp1_force_duty (see 5.8.4, ramp1_force_duty_en=1

5.8.3.1 Enable ZSC and eFuse

The following conditions need to be met to enable ZSC and eFuse.

- ON_OFF_CONFIG and the EN, OPERATION enable converter.
- Input voltage is higher than the VIN_ON threshold of loop1. Loop1 tlm1_vin_src_sel = 3, The input voltage is sensed at the PRISEN pin.
- No fault shutdown.

The EN is designed to control both loop0 and loop1 by the patch.

The following sequence must be followed for the enable sequence.

- Enable loop1 PWM output. The loop1 duty-cycle is set by ramp1_force_duty and is configured by MFR_MAX_DUTY.
- After the delay set by MFR_CONFIG_DELAY, enable eFuse by setting MP_SYNC pin high.

5.8.3.2 Disable ZSC and eFuse

The following conditions need to be met for normal disable conditions.

- 1. ON_OFF_CONFIG and the EN, OPERATION disable converter (loop1)
- 2. VIN of loop1 is lower than the VIN_OFF threshold.

The following sequence must be followed for the normal disable sequence.

- 1. Turn off eFuse by setting MP_SYNC of the XDPP1100 pin low.
- 2. Keep PWM switching of both loop 0 and loop 1 until Vout of loop 0 is lower than MFR_CONFIG_THRESHOLD.

600 W DR-HSC

XDPP1100 digital power controller

The following sequence must be followed for the fault disable sequence at fault shutdown.

• Turn-off eFuse (MP_SYNC low) and shutdown all PWMs immediately.

5.8.4 ZSC force duty-cycle control

Set ramp1_force_duty = MFR_MAX_DUTY / (2^-8*100)

The ramp1_force_duty is updated at device power-up when loading the configuration from OTP, or when the MFR_MAX_DUTY command writes.

The ZSC frequency is defined by the FREQUENCY_SWITCH of loop1. It will be updated when FREQUENCY_SWITCH writes.

5.8.5 Disable VOUT_UV fault at converter enable.

Loop0 VOUT_UV fault should not trigger during soft start. The VOUT_UV fault is only activated after Vout ramps up and higher than VOUT_UV_WARN_LIMIT.

5.8.6 Startup sequence of DR-HSC

The main startup waveform is shown in Figure 28.

For reference, the definition of the waveforms is as follows:

- V_{in} : Actual input voltage before eFuse. Sensed with PRISEN ADC.
- Vin_{-zsc}: Input voltage of ZSC and output voltage of eFuse FET.
- Vout_{zsc} or Vin_{3LFC-DP}: Output voltage of ZSC which is the input voltage of 3LFC-DP, sensed with VRSEN ADC.
- V_{out} : Output voltage of 3LFC-DP (output voltage of loop0). Sensed by fast ADC VSEN.
- *EN*: Digital enable of converter (connected to MP_EN GPIO[0]).
- EN_{e-fuse} : Digital signal from XDPP1100 MP_SYNC pin to enable eFuse controller XDP710 startup

The following procedure describes the startup sequence.

- 1. Apply Vin 48 V, no load.
- 2. The loop1 PWM starts switching at a fixed duty cycle as described in section 5.8.4.
- 3. After a defined delay EN_{delay} (e.g., set with MFR_CONFIG_DELAY = 0)-enabled eFuse is pulled up and the eFuse controller starts the eFuse startup procedure.
- 4. When the output voltage of ZSC has reached the VIN_ON threshold 3.0 V of loop0, the second stage 3LFC-DP stars switching.

600 W DR-HSC

XDPP1100 digital power controller

Figure 28 Startup sequence

5.8.7 Shutdown sequence of DR-HSC

Waveforms references are shown in Figure 29.

The following procedures describe the nominal shutdown sequence.

- 1. When the Vin voltage is below the VIN_OFF threshold defined by MFR_48V_OFF_THRESH (0xB2), the EN_{e-fuse} signal goes down. The PWM of ZSC keeps switching at fixed duty-cycle as in nominal operation when the PWM of the 3LFC-DP keep switching, modulating the output voltage following shutdown ramp.
- 2. When the output voltage of loop0 reaches the output voltage off V_{off} defined by the MFR_CONFIG_THRESHOLD(0xE5), both loops stop switching.

600 W DR-HSC

XDPP1100 digital power controller

Figure 29 Shutdown sequence

5.9 MFR commands

5.9.1 MFR_48V_ON_THRESH

The MFR_48V_ON_THRESH sets the eFuse turn-on threshold. This command has two data bytes in the LINEAR11 data format.

Table 4 MFR_48V_ON_THRESH

Command code	Command name	Write Tx	Read Tx	Bytes	Format
B1h	MFR_48V_ON_THRESH	Write word	Read word	2	Linear 11

Example: MFR_48V_ON_THRESH = 0xF0B0. Sets the turn-on threshold to 44 V.

5.9.2 MFR_48V_OFF_THRESH

The MFR_48V_OFF_THRESH sets the E-FUSE turn-off threshold. This command has two data bytes in the LINEAR11 data format.

Table 5 MFR_48V_OFF_THRESH

Command code	Command name	Write Tx	Read Tx	Bytes	Format
B2h	MFR_48V_OFF_THRESH	Write word	Read word	2	Linear 11

Example: MFR_48V_ON_THRESH = 0xF0A8. Sets the turn-off threshold to 42 V.

600 W DR-HSC

XDPP1100 digital power controller

5.9.3 MFR_CONFIG_DELAY

The MFR_CONFIG_DELAY command sets the E-FUSE turn-on delay. This command has two data bytes in the LINEAR11 data format. eFuse turn-on delay = MFR_CONFIG_DELAY * $10 \mu s + 20 \mu s$.

Table 6 MFR_CONFIG_DELAY

Command code	Command name	Write Tx	Read Tx	Bytes	Format
E8h	MFR_CONFIG_DELAY	Write word	Read word	2	Linear 11

Example: MFR_CONFIG_DELAY = $0xF805_H = 2.5_D$, the eFuse turn-on delay is 45 µs.

5.9.4 MFR_CONFIG_THRESHOLD

The MFR_CONFIG_THRESHOLD sets the ZSC PWM shutdown threshold in normal shutdown.

Table 7 MFR_CONFIG_THRESHOLD

Command code	Command name	Write Tx	Read Tx	Bytes	Format
E5h	MFR_CONFIG_THRESHOLD	Write word	Read word	2	Linear11, Unit V

Example: MFR_CONFIG_THRESHOLD = $0xA3333_H = 0.2_D$, will set the shutdown threshold to 0.2 V. The shutdown occurs at VOUT = 0.2 V.

5.9.5 MFR_MAX_DUTY

The MFR_MAX_DUTY defines the max duty-cycle of the ZSC. This command has two data bytes in the LINEAR11 data format.

Table 8 MFR_MAX_DUTY

Command code	Command name	Write Tx	Read Tx	Bytes	Format
EDh	MFR_MAX_DUTY	Write word	Read word	2	Linear 11

Example: MFR _MAX_DUTY = 0xF170, set the ZSC PWM maximum duty-cycle to 92%.

600 W DR-HSC

Regulation and telemetry

6 Regulation and telemetry

6.1 Line and load regulation

Line and load regulation was tested at 44 V, 48 V, and 60 V input at 0 A, 10 A, 20 A, 30 A, 40 A, and 50 A load.

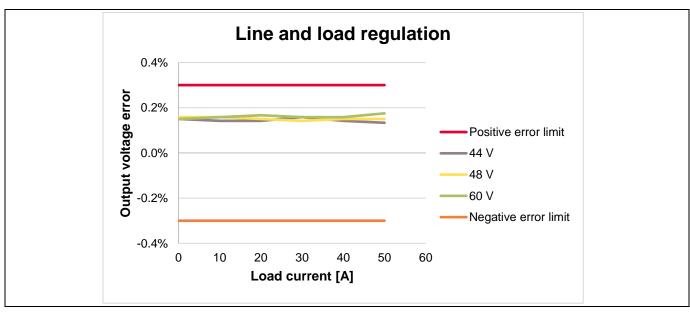


Figure 30 Line and load regulation

6.2 Input voltage telemetry

The input voltage is sensed before the eFuse. The input voltage telemetry accuracy was tested at no load, half load, and full load.

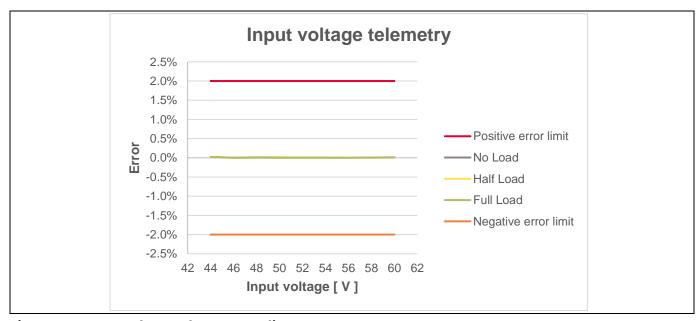


Figure 31 Input voltage telemetry reading accuracy

V 1.0

600 W DR-HSC

Regulation and telemetry

6.3 Output voltage telemetry

The output voltage telemetry was measured at 44 V, 48 V, and 60 V input at 0 A, 10 A, 20 A, 30 A, 40 A, and 50 A load.

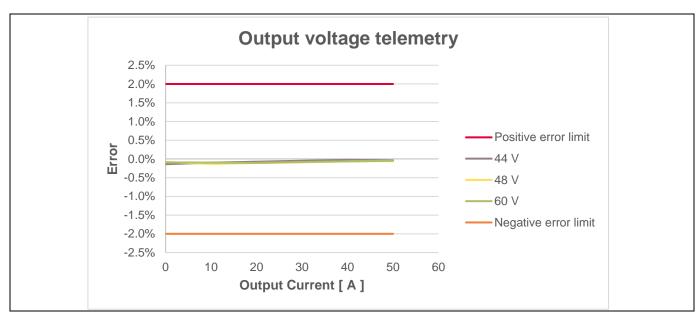


Figure 32 Output voltage telemetry reading accuracy

6.4 Output current telemetry

The output current is sensed through the DCR of the output inductor L2. Fine-tuning of the RC parameters across the inductor is needed to get accurate current sensing. At no load or light load, there is reverse current present through the inductor in a buck-derived topology. In this case, an op-amp with bidirectional sensing capability is recommended, otherwise the light load current telemetry cannot be sensed accurately. The DCR of the inductor has a positive temperature coefficient, which means resistance increases as temperature rises, so temperature compensation should be considered to achieve accurate output current sensing, which can be implemented easily with XDPP1100.

The output current telemetry was tested at 44 V, 48 V, and 60 V input. The IOUT_CAL_OFFSET is set to 9.5 A.

From the test results shown in the Figure 33, the current sensing is not accurate at light load. To improve the sensing accuracy at light load, change the op-amp U46 from ADM4073T to LMP8481 and connect 1.2 VDD of XDPP1100 to the REF pin of the LMP8481. With this change, the reverse current is sensed correctly.

600 W DR-HSC

Regulation and telemetry

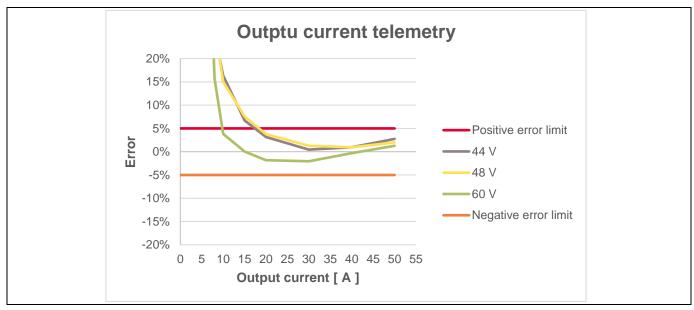


Figure 33 Output current telemetry reading accuracy

600 W DR-HSC System performance

7 System performance

7.1 Main operation waveform

The DR-HSC board consists of an unregulated and a regulated stage.

The unregulated ZSC stage switches at around 630 kHz with 50% duty-cycle and a fixed dead-time. Since it is a soft switching topology, the main losses come from MOSFET conduction losses, PCB conduction losses, and gate driving losses.

The regulated stage compared to the ZSC stage is a hard switching topology operating at a low switching frequency of 250 kHz. One major advantage of the topology is that the inductor is facing twice the switching frequency (f_{sw}) and only half of the input voltage (V_{mid}). This allows to use a very small inductor value, without increasing the current ripple and core losses in the inductor. Another benefit is that if $V_{mid}/2$ is exactly Vout, the inductor sees no ripple current and therefore has very low core losses. That means the most efficient operation point for the converter is when V_{in} = 48 V, V_{mid} = 24 V, and V_{out} = 12 V. Overall, the solution can achieve high power density and high efficiency, and is very flexible in how a design can be implemented.

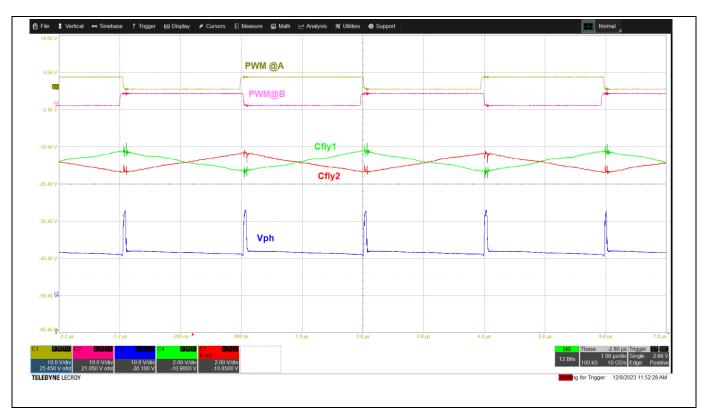


Figure 34 3LFC-DP, basic operation waveforms showing the phase node voltage and the ripple voltage on C_{fly1} and C_{fly2} and according to PWM signals at $V_{in} = 48 \text{ V}$ @ $I_{out} = 40 \text{ A}$.

600 W DR-HSC System performance

7.2 Startup and shutdown

In Figure 35, startup main waveforms of the regulated 48 V to 12 V DR-HSC converter, at Vin = 48 V and 60 V, lout = 0 A are shown.

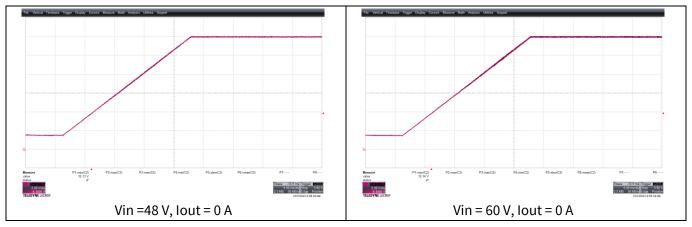


Figure 35 Startup behavior

The shutdown main waveforms, from Vin 48 V, are shown in the following figure. When the VIN goes below Vin_{min} , the eFuse is turned off and the ZSC and 3LFC-DP are keep switching till Vout goes below $V_{off_th} = 2$ V. To make sure that V_{mid} capacitors and ZSC capacitors are completely discharged to zero, the ZSC stage keeps switching after the shutdown.

Figure 36 Shutdown behavior at Vin = 48 V, lout = 0 A

7.3 Output ripple and noise

The voltage ripple in steady state is less than 130 mV at different input and output current.

V 1.0

600 W DR-HSC

System performance

- C_{out} = 14 x GRM31CD71H106KE11 22 μ F ceramic + 2 x EEE-FK1C221V 220 μ F electrolytic
- Vin = 48 V, lout = 0 A

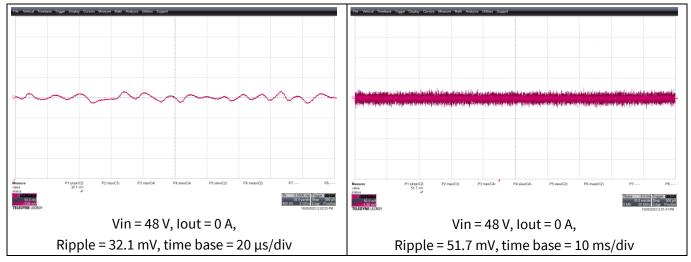


Figure 37 Output ripple at Vin =48 V, lout = 0 A

• **Vin** = 48 V, **lout** = 50 A

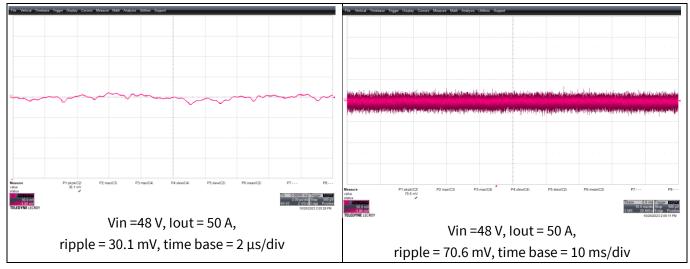


Figure 38 Output ripple at Vin = 48 V, lout = 50 A

• Vin = 60 V, lout = 0 A

600 W DR-HSC System performance

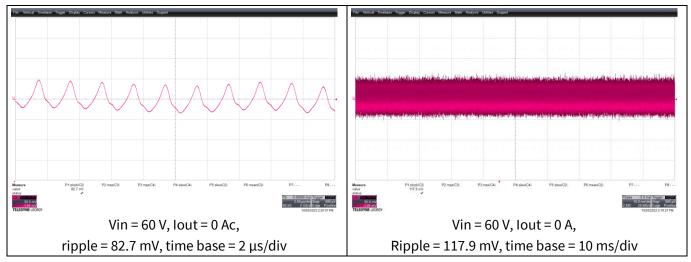


Figure 39 Output ripple at Vin = 60 V, lout = 0 A

• Vin = 60 V, lout = 50 A

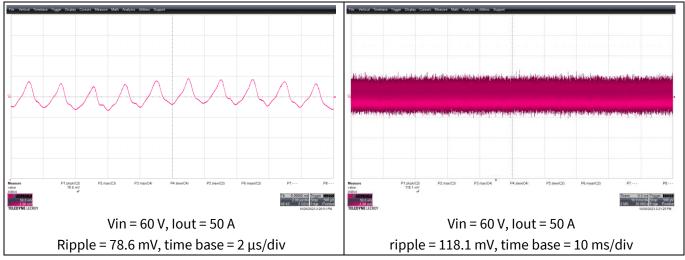


Figure 40 Output ripple at Vin = 60 V, 50 A

7.4 Load transients

The E-load transition rate is set to 1 A/ μ s.

- Vin = 48 V
- CH2: 12 V output, CH4: output current
- Transient done from 0 A to 2 5A, the min voltage is 11.549 V, the max voltage is 12.274 V
- Transient done from 25 A to 50 A, the min voltage is 11.688 V, the max voltage is 12.308 V
- Transient done from 5 A to 45 A, the min voltage is 11.641 V, the max voltage is 12.336 V
- Transient done from 0 A to 50 A, the min voltage is 11.561 V, the max voltage is 12.343 V

V 1.0

600 W DR-HSC System performance

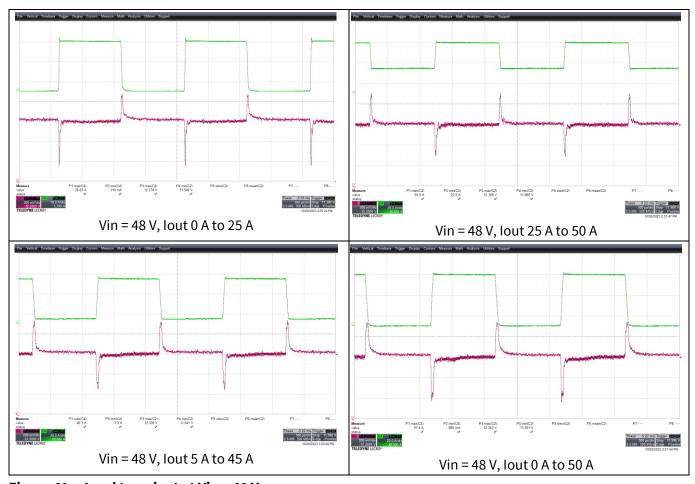
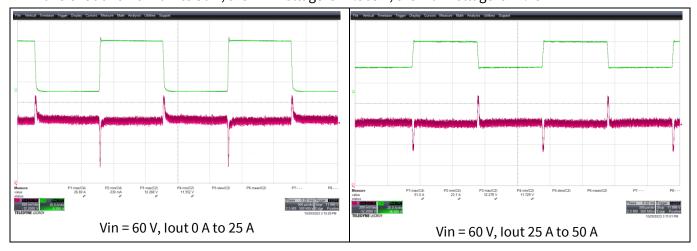



Figure 41 Load transient at Vin = 48 V

- Vin = 60 V
- CH2: 12 V output, CH4: Output current
- Transient done from 0 A to 25 A, the min voltage is 11.552 V, the max voltage is 12.268 V
- Transient done from 25 A to 50 A, the min voltage is 11.729 V, the max voltage is 12.278 V
- Transient done from 5 A to 45 A, the min voltage is 11.700 V, the max voltage is 12.285 V
- Transient done from 0 A to 50 A, the min voltage is 11.563 V, the max voltage is 12.292 V

600 W DR-HSC System performance

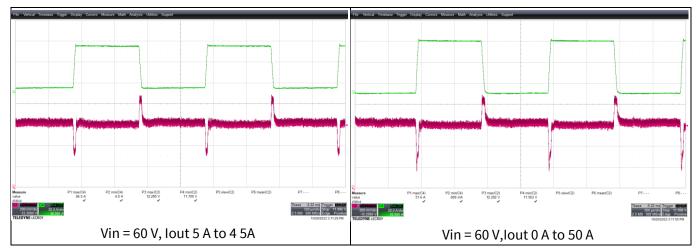


Figure 42 Load transient at Vin = 60 V

7.5 Measured efficiency

In Figure 43, the efficiency is tested at Vin = 44 V, 48 V, 54 V, and 60 V. The measured efficiency over different Vin voltages including AUX supply losses (PoL6.5 V and 3.3 V, controller IC, driver IC). Hot swap switch conduction losses are not included in the graph.

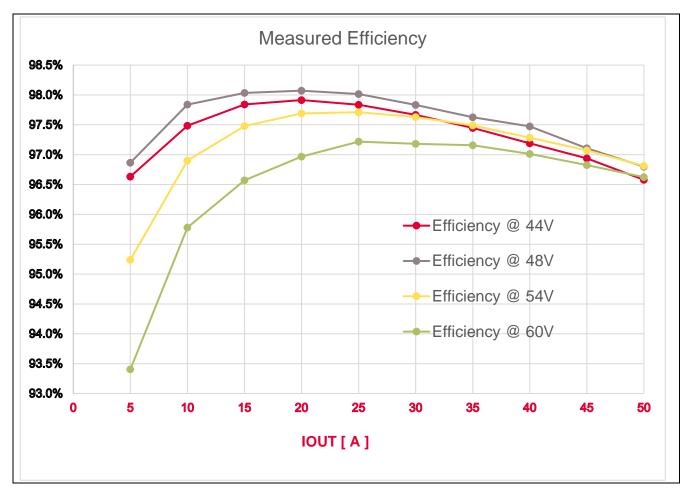


Figure 43 Measured efficiency

600 W DR-HSC System performance

7.6 Thermal image

The thermal image was taken at Vin = 48 V, lout = 50 A, the ambient temperature = 25° C with the fan cooling (airflow ~ = 100 CFM). The hot spot is 76° C, the 3LFC MOSFETs Q5, Q9 are hot spots.

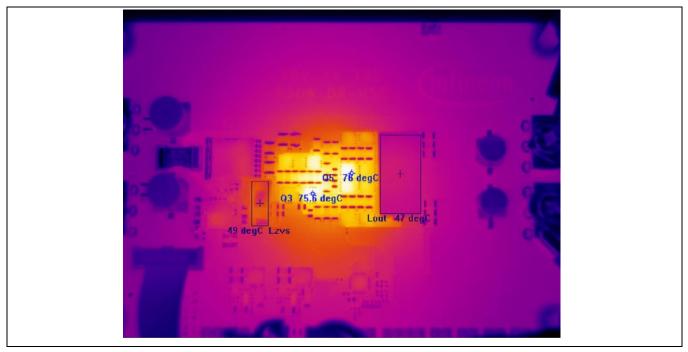


Figure 44 Thermal performance

600 W DR-HSC Protections

8 Protections

In this section, the input and output fault protections are verified. The default fault thresholds and fault response of the board are listed in the following table.

 Table 9
 Default fault protection configuration

Protection type		Default value	Unit	
		(PMBus configurable)		
Output overvoltage	Fault limit threshold	14	V	
Loop0	Warn limit threshold	13.5	V	
	Fault response	Disable and retry, no retry	-	
Output undervoltage	Fault limit threshold	0	V	
Loop0	Warn limit threshold	0	V	
	Fault response	Ignore fault	-	
Output overcurrent	Fault limit threshold	60	A	
Loop0	Warn limit threshold	58	A	
	Fault response	Shutdown and retry	-	
Output undercurrent	Fault limit threshold	-128	A	
Loop0	Fault response	Continues to operate (Constant-current)	-	
Overtemperature	Fault limit threshold	125	°C	
Loop0	Warn limit threshold	90	°C	
	Fault response	Disable and retry	-	
Undertemperature	Fault limit threshold	-42	°C	
Loop0	Warn limit threshold	-40	°C	
	Fault response	Ignore fault	_	
Output overcurrent fast	Fault limit threshold	80	A	
fault or short circuit (Loop0)	Fault response	Shut down and no retry	-	
Input overvoltage	Fault limit threshold	66	V	
Loop1	Warn limit threshold	65	V	
	Fault response	Ignore fault	_	
Input undervoltage	Fault limit threshold	2	V	
Loop1	Warn limit threshold	2.5	V	
	Fault response	Ignore fault	_	

The fault threshold and response can be configured by the design tool **Fault Protections**. XDPP1100 also allows the user to configure the sensitivity of the fault detection. The **Fault Configuration** tab configures the fault registers that define the consecutive fault count and the hysteresis of the fault comparator. For more information about the faults and protections can be found in the XDPP1100 application note.

600 W DR-HSC

Protections

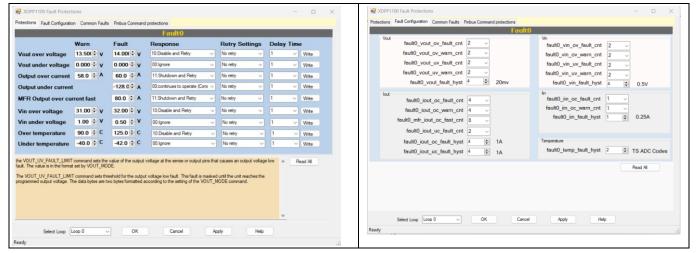


Figure 45 Fault protections design tool

600 W DR-HSC

Protections

8.1 Output OVP

Tested at Vin = 60 V, Iout = 0 A, the OVP is 14.03 V.

Ch1: 12 V output **Ch2**: Input voltage

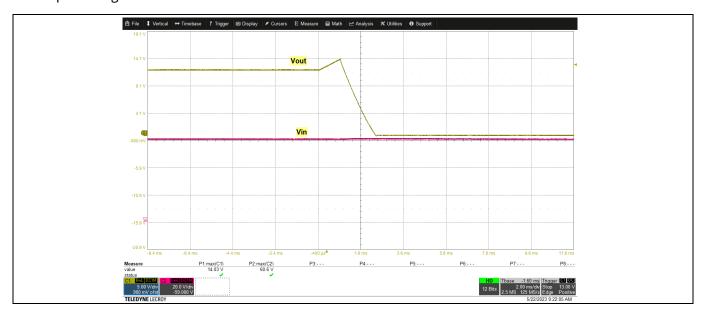


Figure 46 Output OVP waveform at Vin = 60 V, lout = 0 A

8.2 Output OCP

Tested at Vin = 48 V, Iout = 50 A

Ch2: 12 V output voltage

Ch3: output current

Ch4: 3LFC PWM

600 W DR-HSC

Protections

Figure 47 Output OCP waveform at Vin = 48 V, lout = 50 A to overcurrent

8.3 Output short circuit protection

Tested at Vin = 48 V, lout = 50 A, the output was shorted with a load bank.

Ch1: 12 V output voltage

Ch3: 3LFC PWM

Ch4: output current

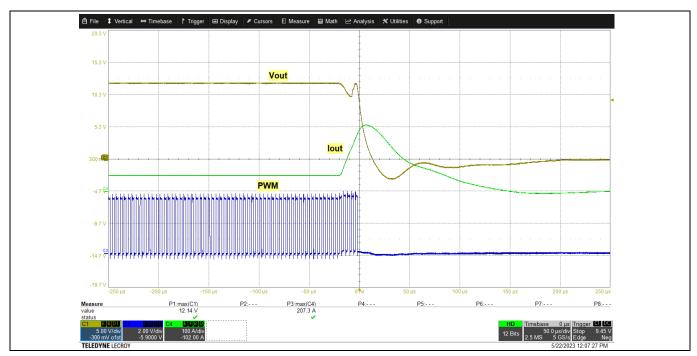


Figure 48 Output short circuit waveform using load bank

600 W DR-HSC System design

9 System design

9.1 Schematics

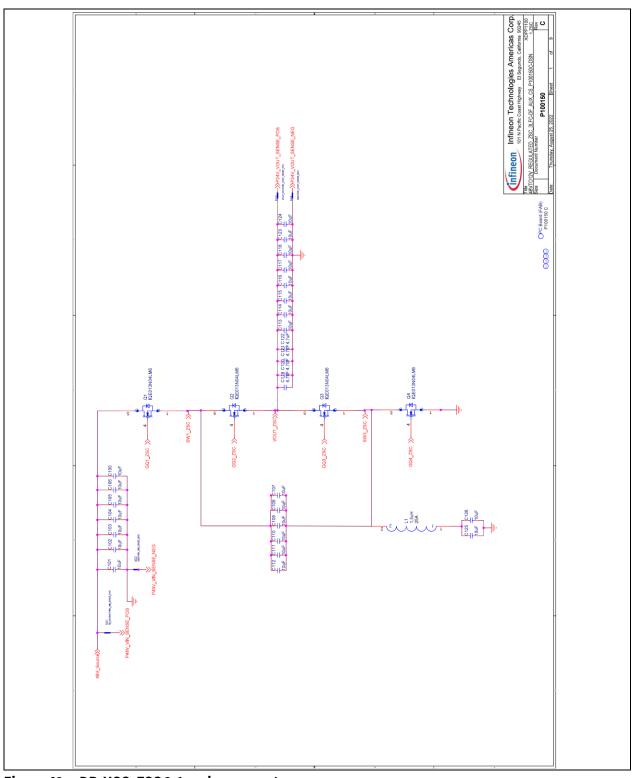


Figure 49 DR-HSC, ZSC 2:1 main power stage

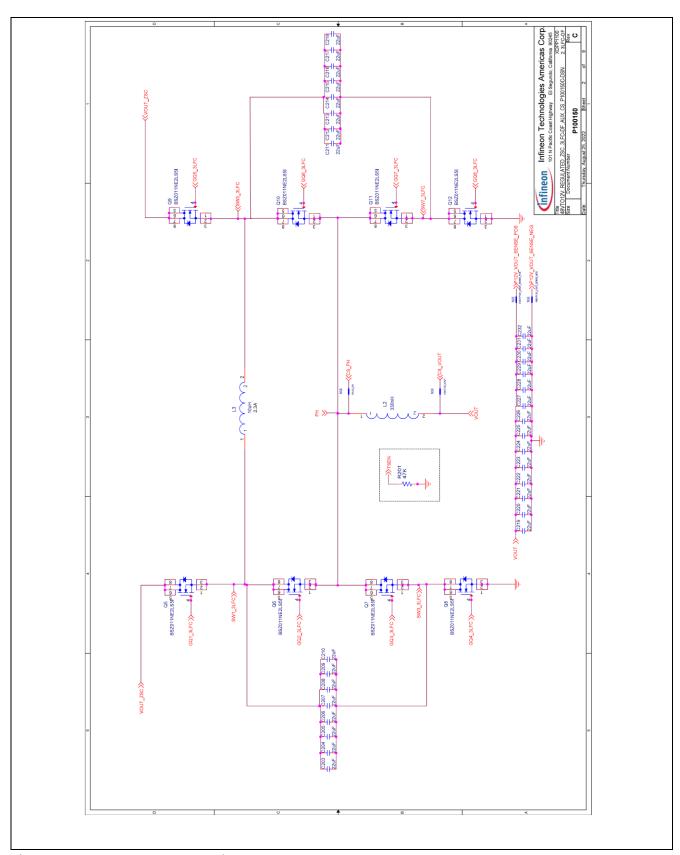


Figure 50 DR-HSC, 3LFC-DP main power stage

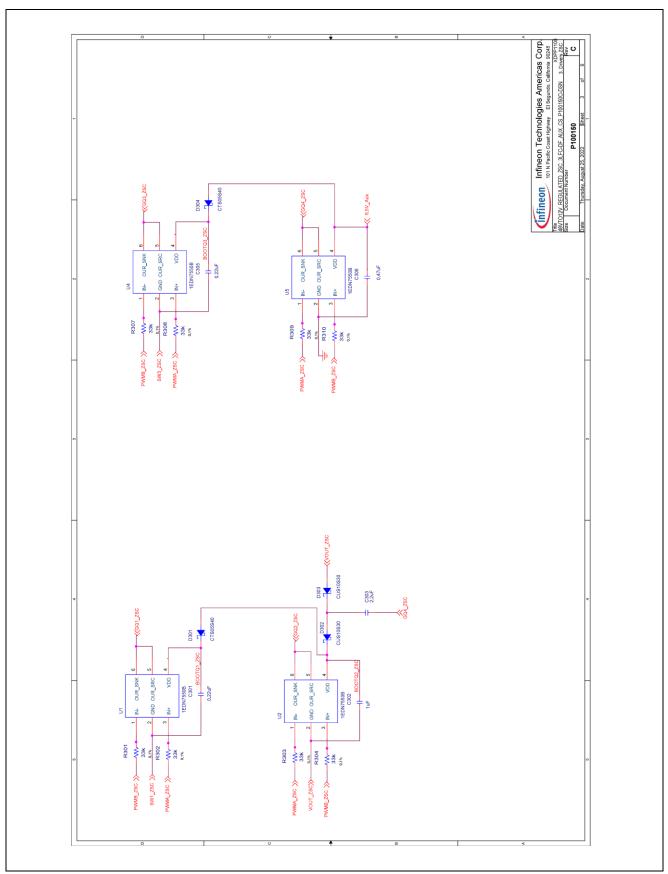


Figure 51 DR-HSC, 2:1 ZSC driver circuit including charge pump

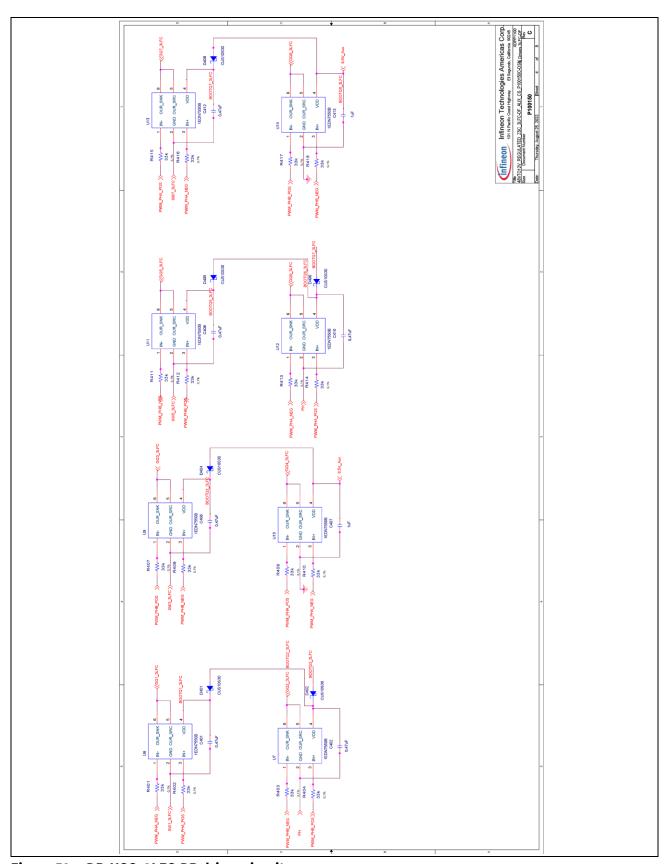


Figure 52 DR-HSC, 3LFC-DP driver circuit

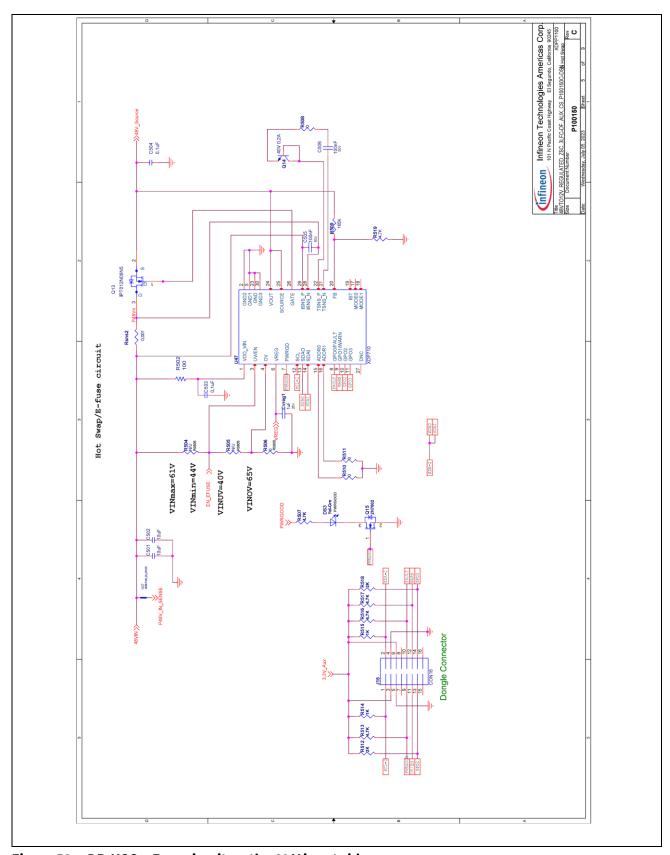


Figure 53 DR-HSC, eFuse circuit on the 48 V input side

600 W DR-HSC System design

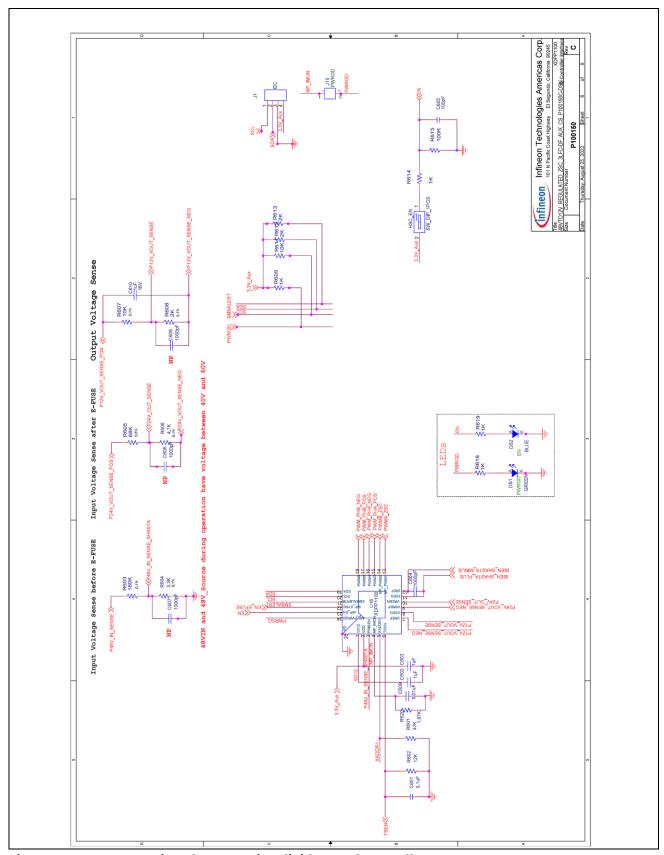


Figure 54 DR-HSC, Main voltage sensing dividers and controller IC

V 1.0

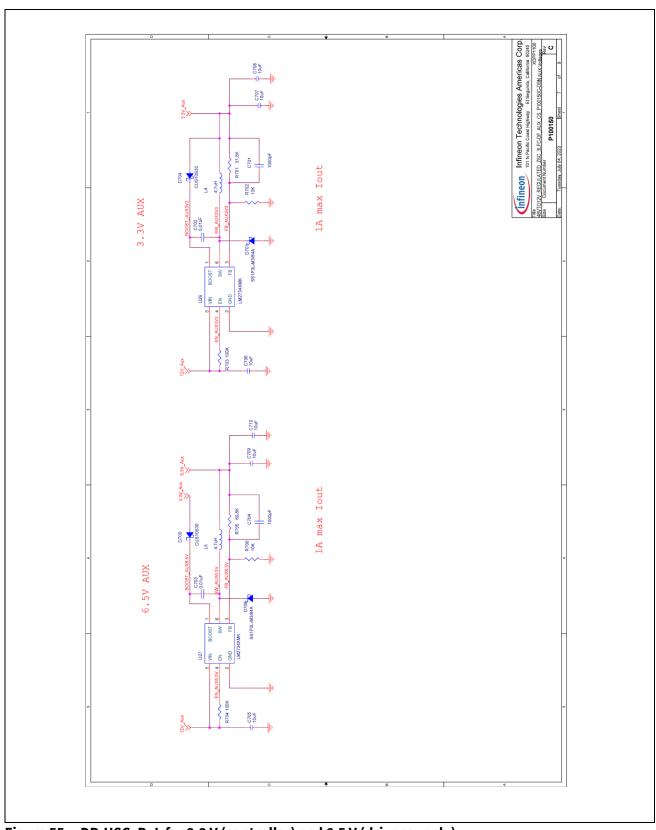


Figure 55 DR-HSC, PoL for 3.3 V (controller) and 6.5 V (driver supply)

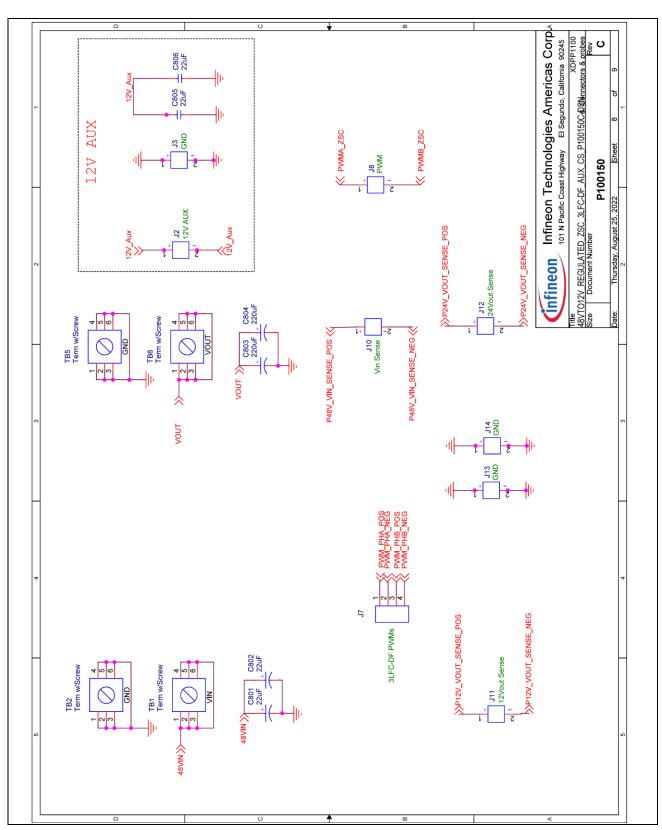
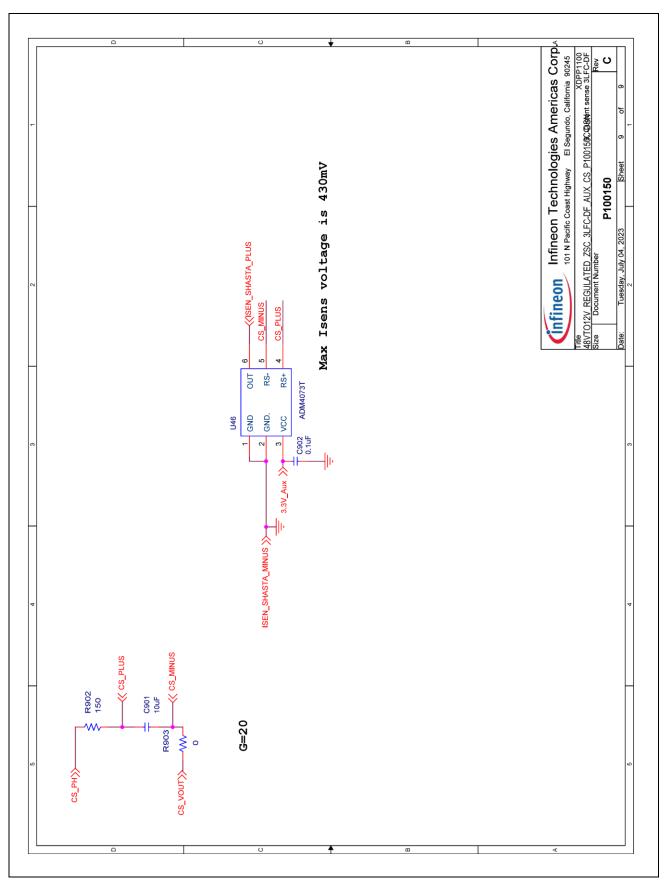



Figure 56 DR-HSC, Main input/output connectors and test points

600 W DR-HSC System design

56

Figure 57 DR-HSC, DCR current sensing IC

600 W DR-HSC System design

9.2 Bill of materials (BoM)

The following table shows the components of the hardware demonstrator.

Table 10 Bill of materials

Item	Quantity	Reference	Part	Footprint	Manufacturer	Part number
1	9	C100,C101, C102, C103, C104, C105, C106, C501, C502	10 μF	1210	Murata	GRM32EC72A106KE05
2	14	C107,C108,C109,C110,C 111,C112,C113,C114,C1 15,C116,C117,C118,C12 3,C124	10 μF	1206	Murata	GRM31CD71H106KE11
3	4	C119, C120, C121, C122	4.7 μF	0805	Murata	GRM21BC81H475KE11
4	2	C125,C126	10 μF	0805	Murata	GRM21BC81E106KE51
5	30	C203,C204,C205,C206,C 207,C208,C209,C210,C2 11,C212,C213,C214,C21 5,C216,C217,C218,C219 ,C220,C221,C222,C223, C224,C225,C226,C227,C 228,C229,C230,C231,C2 32	22 μF	1206	Murata	GRM31CC81E226ME11
6	2	C301,C305	0.22 μF	0402	Murata	GCM155R71C224KE02
7	1	C303	2.2 μF	0603	Murata	GRM188R61H225KE11
8	7	C306,C401,C402,C406,C 408,C410,C412	0.47 μF	0402	Murata	GRM155C81C474KE01
9	4	C302,C407,C413,C610	1 μF	0402	Murata	GRM155C81C105KE11
10	3	C503,C504,C601	100 nF	0402	Murata	GRM155R62A104KE14D
11	2	C505,C506	100nF	0603	Murata	GRM188R71H104JA93D
12	1	Cvreg1	1 μF	0603	Murata	GRM188R71E105KA12D
13	1	C602	1 μF	0402	Murata	GRM155R61C105KA12D
14	1	C603	1 μF	0603	Murata	GRM188R61C105KA12
15	6	C604,C606,C607,C608,C 701,C704	1000 pF	0402	Murata	GRM155R71H102KA01J
16	1	C605	100 pF	0603	Murata	GRM1885C2A101JA01D
17	3	C609,C702,C703	0.01μF	0402	Murata	GRM155R71C103KA01D
18	6	C705,C706,C707,C708,C 709,C710	10 μF	1206	TDK	CGA5L1X7R1E106M160 AD
19	2	C801, C802	22 μF	smd_Fca se_cap	Chemi Con	EMVA101ADA220MHA0 G
20	2	C803, C804	220 μF	smd_Fca se_cap	Panasonic	EEE-FK1C221V

600 W DR-HSC System design

Item	Quantity	Reference	Part	Footprint	Manufacturer	Part number
21	2	C805,C806	22 μF	0805	Murata	GRM21BR61E226ME44 K
22	1	C901	10 μF	0603	Murata	GRM188R61E106KA73D
23	1	C902	0.1 μF	0805	Murata	GCM21BR72A104KA37L
24	1	DS1	GREEN	LED-smd- 0603	Würth Elektronik	150060GS75000
25	1	DS2	BLUE	LED-smd- 0603	Würth Elektronik	150060BS75000
26	1	DS3	Yel-Grn	LED- SMD- SMLP13B C8T	Rohm	SML-P11MTT86R
27	2	D301, D304	CTS05S 40	CTS05S4 0	Toshiba	CTS05S40
28	10	D302,D303,D401,D402, D404,D405,D406,D408, D704,D705	CUS10S 30	SOD323	Toshiba	CUS10S30
29	2	D701,D706	SS1P3L- M3/84A	DO- 220AA	Vishay	SS1P3L-M3/84A
30	1	HSC_EN	SW_DIP _1POS	SW_1POS _GULL	C and K	SDA01H1SBD
31	2	J1, J7	CON4	conn4pin 100	Wurth	613 004 111 21
32	9	J2,J3,J8,J10,J11,J12,J1 3,J14,J15	CON2	conn2pin 100	Harwin	M20-9990246
33	1	J16	CON16	CON-M- THT-SHF- 108-01-L- D-TH	Samtec	SHF-108-01-L-D-TH
34	1	L1	1.5 μH/25 A	Lzvs_zsc	ITG	SLQ36385A-1R5L
35	1	L2	330 nH	Lout_3lfc	Sumida	CDB97D98
36	1	L3	10 μΗ	IHLP- 2020	Vishay	IHLP2020BZER100M01
37	2	L4,L5	4.7 μΗ	L- 2p_4p1x4 p1_VLCF4 020T	TDK	VLCF4020T-4R7N1R2
38	4	Q1, Q2, Q3, Q4	IQE013 N04LM6	dfet_smd _033x033 _h	Infineon	IQE013N04LM6ATMA1

V 1.0

Item	Quantity	Reference	Part	Footprint	Manufacturer	Part number
39	8	Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12	BSZ011 NE2LS5I	pg- tsdson8	Infineon	BSZ011NE2LS5IATMA1
40	1	Q13	IPT012 N08N5	TRANS	Infineon	IPT012N08N5ATMA1
41	1	Q14	40V 0.2A	SOT23	Nexperia	MMBT3904,215
42	1	Q15	2N7002	SOT23	Infineon	2N7002H6327XTSA2
43	1	Rsns2	0.001	R3920	Bourns	CSS2H-3920R-1L00F
44	2	R201,R601	47K	0402	Yageo	RC0402FR-1347KL
45	8	R301,R302,R303,R304,R 307,R308,R309,R31	33K	0603	Yageo	RT0603BRD0733KL
46	16	R401,R402,R403,R404,R 407,R408,R409,R410,R4 11,R412,R413,R414,R41 5,R416,R417,R418	33K	0402	Yageo	RT0402BRD0733KL
47	1	R502	100	0402	Panasonic	ERJ-2RKF1000X
48	1	R506	0	0805	Panasonic	ERJ-6GEY0R00V
49	4	R507,R513,R516,R517	4.7K	0603	Panasonic	ERJ-3EKF4701V
50	1	R508	0	0603	Panasonic	ERJ-3GEY0R00V
51	1	R509	165K	0805	Vishay	CRCW0805165KFKTA
52	2	R510,R511	0	0805	Panasonic	ERJ-6GEY0R00V
53	2	R512,R518	2K	0603	Panasonic	ERJ-3EKF2001V
54	5	R514,R515,R614,R618,R 619	1K	0603	Panasonic	ERJ-3EKF1001V
55	1	R519	4.7K	0805	Yageo	RC0805FR-074K7L
56	1	R602	12K	0402	Yageo	RMCF0402FT12K0
57	1	R603	180K	0402	Yageo	RT0402FRE07180KL
58	1	R604	3.3K	0402	TE	CPF-A-0402B3K3E
59	1	R605	68K	0402	Yageo	RR0510P-683-D
60	1	R606	4.7K	0402	Yageo	RT0402BRD074K7L
61	1	R607	12K	0402	Yageo	RT0402BRD0712KL
62	1	R608	1.8K	0402	Yageo	RT0402BRD071K8L
63	1	R609	1K	0402	Rohm	ERJ-2RKF1001X
64	3	R611,R702,R706	10K	0402	Rohm	ERJ-2RKF1002X
65	2	R612,R613	2K	0402	Yageo	RT0402FRE072KL
66	1	R615	100K	0603	Panasonic	ERJ-3EKF1003V
67	1	R620	1.87K	0402	Panasonic	ERJ-2RKF1871X
68	1	R701	31.6K	0402	Yageo	RT0402BRD0731K6L
69	2	R703,R704	100K	0402	TE	CRGP0402F100K

Item	Quantity	Reference	Part	Footprint	Manufacturer	Part number
70	1	R705	69.8K	0402	Yageo	RC0402FR-0769K8L
71	1	R902	150	0402	Yageo	ERJ2RKF1500X
72	1	R903	0	0402	Panasonic	ERJ-2GE0R00X
73	4	TB1,TB2,TB5,TB6	Term w/Scre w	TB_1_0	Keystone	8199
74	12	U1,U2,U4,U5,U6,U7,U9, U10,U11,U12,U13,U14	1EDN75 50B	PG- SOT23-6	Infineon	1EDN7550B
75	1	U16	XDPP11 00	qfn24- 4x4mm	Infineon	XDPP1100-Q024
76	1	U26,U27	LM2734 XMK	SOT23-6	TI	LM2734XMK
77	1	U46	ADM407 3T	PG- SOT23-6	Analog Devices	ADM4073TWRJZ
78	1	U47	XDP710	qfn29- 6x6mm	Infineon	XDP710-002

600 W DR-HSC References

References

- [1] Infineon Technologies AG: XDP710-002 hot-swap controller datasheet; Available online
- [2] Infineon Technologies AG: XDPP1100 datasheet; Available online
- [3] Infineon Technologies AG: XDP™ XDPP1100, XDPP1100A reference manual; Available online

600 W DR-HSC Revision history

Revision history

Document revision	Date	Description of changes
**	2024-04-24	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-04-24 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference AN043252

Important notice

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Narnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.