

Features

- · High speed
 - $t_{AA} = 10 \text{ ns}$
- Embedded error-correcting code (ECC) for single-bit error correction
- · Low active and standby currents
 - I_{CC} = 90 mA typical at 100 MHz
 - I_{SB2} = 20 mA typical
- Operating voltage range: 2.2 V to 3.6 V
- 1.0-V data retention
- Transistor-transistor logic (TTL) compatible inputs and outputs
- ERR pin to indicate 1-bit error detection and correction
- Available in Pb-free 44-pin TSOP II package

Functional description

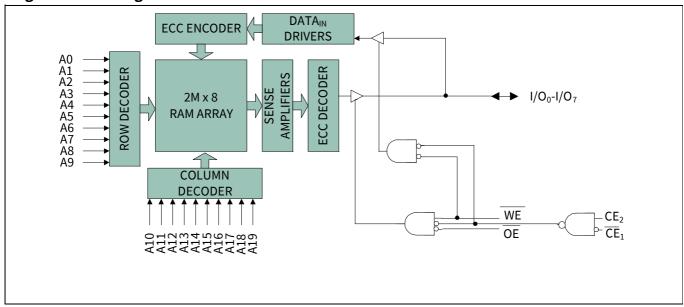
The CY7C1059H and CY7C1059HE are dual chip enable high-performance CMOS fast static RAM devices with embedded ECC. The CY7C1059H device is available in standard pin configurations. The CY7C1059HE device includes a single bit error indication pin (ERR) that signals the host processor in the case of an ECC error-detection and correction event.

To write to the device, take chip enables (\overline{CE}_1 LOW and \overline{CE}_2 HIGH) and write enable (\overline{WE}) input LOW. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A₀ through A₂₀).

To read from the device, take chip enables $(\overline{CE}_1 \text{ LOW})$ and $CE_2 \text{ HIGH}$ and output enable (\overline{OE}) LOW while forcing the write enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins. See **Truth table – CY7C1059H/CY7C1059HE on page 18** for a complete description of read and write modes. The input and output pins $(I/O_0 \text{ through } I/O_7)$ are placed in a high impedance state when the device is deselected $(\overline{CE}_1 \text{ HIGH})$ or $CE_2 \text{ LOW}$, the outputs are disabled $(\overline{OE} \text{ HIGH})$, or during a write operation $(\overline{CE}_1 \text{ LOW})$, $CE_2 \text{ HIGH}$, and $CE_2 \text{ LOW}$.

On CY7C1059HE devices, the detection and correction of a single-bit error in the accessed location is indicated by the assertion of the ERR output (ERR = High) $^{[1]}$.

All I/Os (I/O₀ through I/O₇) are placed in a high impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW), and control signals are de-asserted ($\overline{\text{CE}}_1$ / $\overline{\text{CE}}_2$, $\overline{\text{OE}}$, WE). CY7C1059H and CY7C1059HE devices are available in a 44-pin TSOP II package with center power and ground (revolutionary) pinout package.


Note

1. Automatic write back on error detection feature is not supported in this device.

Logic block diagram - CY7C1059H

Logic block diagram - CY7C1059H

Logic block diagram - CY7C1059HE

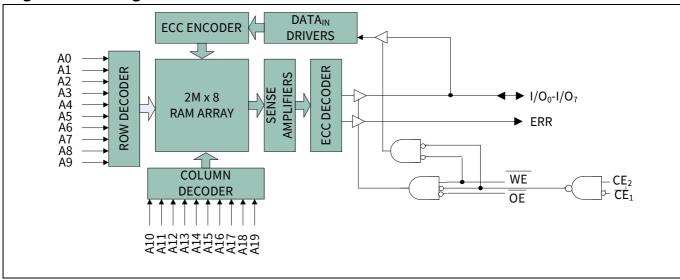


Table of contents

Table of contents

Features	
Functional description	
Logic block diagram - CY7C1059H	2
Logic block diagram - CY7C1059HE	
Table of contents	
1 Pin configurations	4
2 Product portfolio	5
3 Maximum ratings	6
4 Operating range	7
5 DC electrical characteristics	8
6 Capacitance	g
7 Thermal resistance	10
8 AC test loads and waveforms	11
9 Data retention	12
9.1 Data retention characteristics	12
9.2 Data retention waveform	12
10 AC switching characteristics	13
11 Switching waveforms	15
12 Truth table - CY7C1059H/CY7C1059HE	18
13 ERR output- CY7C1059HE	19
14 Ordering information	
14.1 Ordering code definitions	20
15 Package diagram	
16 Acronyms	
17 Document conventions	
17.1 Units of measure	23
Revision history	24

Pin configurations

1 Pin configurations

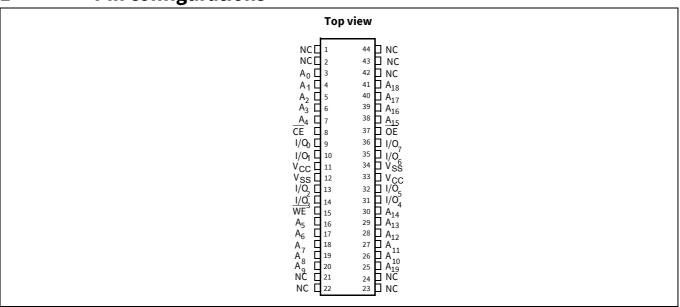


Figure 1 44-pin TSOP II^[2]

Note

2. NC pins are not connected on the die.

2021-11-02

infineon

Product portfolio

2 Product portfolio

Table 1 Product portfolio

	Footures and		V _{CC} range (V)		Power dissipation				
Product	Features and options (see the "Pin	Range		Speed	Operating I _{CC} , (mA) f = f _{max}		Standby, I _{SB2} (mA)		
	configurations" on page 4 section)		(V)	(ns)					
	on page 4 section)				Typ [3]	Max	Typ [3]	Max	
CY7C1059H30	Dual-chip enable	Industrial	2.2 V-3.6 V	10	90	110	20	30	
CY7C1059HE30	Dual-chip enable and ERR output		2.2 V-3.6 V	10	90	110	20	30	

Note

3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 1.8 V (for V_{CC} range of 1.65 V-2.2 V), V_{CC} = 3 V (for V_{CC} range of 2.2 V-3.6 V), and V_{CC} = 5 V (for V_{CC} range of 4.5 V-5.5 V), V_{CC} = 25°C.

infineon

Maximum ratings

3 Maximum ratings

Exceeding maximum ratings may impair the useful life of the device. These user guid	delines are not tested.
Storage temperature	65°C to +150°C
Ambient temperature with power applied	–55°C to +125°C
Supply voltage on V _{CC} relative to GND	0.5 V to +6.0 V
DC voltage applied to outputs in high Z state [4]	0.5 V to V _{CC} + 0.5 V
DC input voltage [4]	0.5 V to V _{CC} + 0.5 V
Current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, method 3015)	>2001 V
Latch up current	> 140 mA

Note

4. $V_{IL(min)} = -2.0 \text{ V}$ and $V_{IH(max)} = V_{CC} + 2 \text{ V}$ for pulse durations of less than 20 ns.

infineon

Operating range

4 Operating range

Table 2 Operating range

Grade	Ambient temperature	V _{CC}	
Industrial	-40°C to +85°C	2.2 V to 3.6 V	

DC electrical characteristics

DC electrical characteristics 5

DC electrical characteristics Table 3

Over the operating range of -40°C to 85°C

Parameter	Description Test conditions		10 ns			11		
	Desc	cription	lest conditio	Test conditions		Typ [6]	Max	Unit
V _{OH}	Output	2.2 V to 2.7 V	V_{CC} = Min, I_{OH} = -1.0 mA		2.0	-	-	V
	HIGH voltage	2.7 V to 3.0 V	V_{CC} = Min, I_{OH} = -4.0 mA		2.2	-	-	
	1011000	3.0 V to 3.6 V	$V_{CC} = Min, I_{OH} = -4.0 \text{ mA}$		2.4	-	-	
V _{OL}	Output	2.2 V to 2.7 V	V _{CC} = Min, I _{OL} = 2 mA		-	-	0.4	
	LOW voltage	2.7 V to 3.6 V	V _{CC} = Min, I _{OL} = 8 mA		-	-	0.4	
V _{IH}	Input	2.2 V to 2.7 V	-		2.0	-	V _{CC} + 0.3	
	HIGH voltage	2.7 V to 3.6 V	-		2.0	-	V _{CC} + 0.3	
V _{IL}	Input LOW	2.2 V to 2.7 V	-		-0.3	-	0.6	
	voltage ^[5]	2.7 V to 3.6 V	-		-0.3	_	0.8	
I _{IX}	Input leaka	ge current	$GND \le V_{IN} \le V_{CC}$		-1.0	_	+1.0	μΑ
I _{OZ}	Output leal	kage current	$GND \le V_{OUT} \le V_{CC}$, output	t disabled	-1.0	_	+1.0	
I _{CC}	Operatings	supply current		f = 100 MHz	ı	90.0	110.0	mA
			CMOS levels	f=66.7 MHz	ı	70.0	80.0	
I _{SB1}	Automatic CE power down current – TTL inputs		$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \ge \text{V}_{\text{IH}}^{[7]}, \\ &\text{V}_{\text{IN}} \ge \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \le \text{V}_{\text{IL}}, f = f_{\text{I}} \end{aligned}$	XAM	1	_	40.0	
I _{SB2}	Automatic down curre inputs		$\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V} \\ &\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V or V}_{\text{IN}} \le 0 \end{aligned}$	[7] 0.2 V, f = 0	-	20.0 [6]	30.0	

^{5.} V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
6. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3 V (for V_{CC} range of 2.2 V-3.6 V) T_A = 25°C.
7. For all <u>dual</u> chip enable <u>de</u>vices, CE is the logical combination of CE₁ and CE₂. When CE₁ is LOW and CE₂ is HIGH, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.

(infineon

Capacitance

6 Capacitance

Table 4 Capacitance

Parameter [8]	Description	Test conditions	44-pin TSOP II	Unit
C _{IN}	Input capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	I/O capacitance		10	

Note

8. Tested initially and after any design or process changes that may affect these parameters.

infineon

Thermal resistance

7 Thermal resistance

Table 5 Thermal resistance

Parameter ^[9]	Description	Test conditions	44-pin TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	66.93	°C/W
Θ _{JC}	Thermal resistance (junction to case)		13.09	

Note

^{9.} Tested initially and after any design or process changes that may affect these parameters.

AC test loads and waveforms

8 AC test loads and waveforms

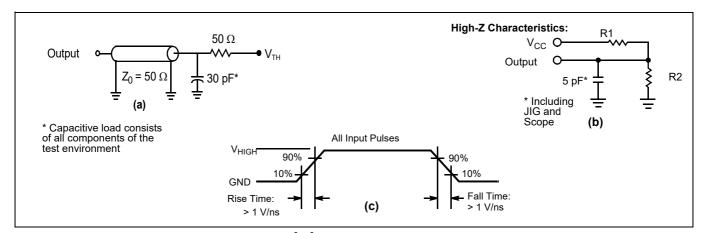


Figure 2 AC test loads and waveforms [10]

Table 6 AC test loads and waveforms

Parameters	1.8 V	3.0 V	5.0 V	Unit
R1	1667	317	317	Ω
R2	1538	351	351	Ω
V _{TH}	0.9	1.5	1.5	V
V _{HIGH}	1.8	3	3	V

Note

10. Full device AC operation assumes a 100- μ s ramp time from 0 to $V_{CC}(min)$ and 100- μ s wait time after V_{CC} stabilization.

Data retention

9 Data retention

9.1 Data retention characteristics

Table 7 Data retention characteristics

Over the operating range of -40°C to 85°C

Parameter	Description	Description Conditions			Unit
V_{DR}	V _{CC} for data retention	-	1.0	-	V
I _{CCDR}	Data retention current	$V_{CC} = V_{DR}, \overline{CE} \ge V_{CC} - 0.2 V^{[11]}, V_{IN} \ge V_{CC} - 0.2 V \text{ or } V_{IN} \le 0.2 V$	-	30.0	mA
t _{CDR} ^[12]	Chip deselect to data retention time	-	0	-	ns
t _R ^[12, 13]	Operation recovery time	V _{CC} ≥ 2.2 V	10.0	-	
		V _{CC} < 2.2 V	15.0	-	

9.2 Data retention waveform

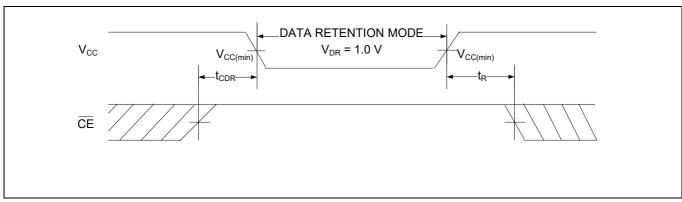


Figure 3 Data retention waveform^[11]

^{11.} For all <u>dual</u> chip enable <u>devices</u>, $\overline{\text{CE}}$ is the logical <u>combination</u> of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.

^{12.} This parameter is guaranteed by design and is not tested.

^{13.} Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} \ge 100 \,\mu s$ or stable at $V_{CC(min.)} \ge 100 \,\mu s$.

(infineon

AC switching characteristics

10 AC switching characteristics

Table 8 AC switching characteristics

Over the operating range of -40°C to 85°C

Parameter [14]	Description	10	ns	11
Parameter	Description	Min	Max	Unit
Read cycle		,		-
t _{POWER}	V _{CC} stable to first access ^[15, 16]	100.0	-	μς
t _{RC}	Read cycle time	10.0	-	ns
t _{AA}	Address to data / ERR valid	_	10.0	
t _{OHA}	Data / ERR hold from address change	3.0	-	
t _{ACE}	CE LOW to data / ERR valid ^[17]	_	10.0	
t _{DOE}	OE LOW to data / ERR valid	_	5.0	
t _{LZOE}	OE LOW to low Z [18, 19, 20]	0	-	
t _{HZOE}	OE HIGH to high Z [18, 19, 20]	_	5.0	
t _{LZCE}	CE LOW to low Z [17, 18, 19, 20]	3.0	-	
t _{HZCE}	CE HIGH to high Z [17, 18, 19, 20]	-	5.0	
t _{PU}	CE LOW to power-up [16, 17]	0	-	
t _{PD}	CE HIGH to power-down [16, 17]	_	10.0	

Write cycle [21, 22]

- 14.Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC} \ge 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use output loading shown in part (a) of **Figure 2 on page 11**, unless specified otherwise.
- $15.t_{POWER}$ gives minimum amount of time that the power supply is at stable V_{CC} until first memory access is performed.
- 16. These parameters are guaranteed by design and are not tested.
- 17. For all <u>dual</u> chip enable <u>devices</u>, \overline{CE} is the logical <u>combination</u> of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE}_1 is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE}_1 is HIGH.
- 18. t_{HZOE} , t_{HZCE} , t_{HZWE} , t_{LZOE} , t_{LZOE} , and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of **Figure 2 on page 11**. Transition is measured ± 200 mV from steady state voltage.
- 19.At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZDE} , and t_{HZWE} is less than t_{LZWE} for any device.
- 20. Tested initially and after any design or process changes that may affect these parameters.
- 21. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 22. The minimum write pulse width for write cycle No.2 (WE Controlled, OE LOW) should be sum of t_{H7WE} and t_{SD}.

infineon

AC switching characteristics

Table 8 AC switching characteristics (continued)

Over the operating range of -40°C to 85°C

Parameter [14]	Description	10	ns	Unit
- Farailleter -	Description	Min	Max	Unit
t _{WC}	Write cycle time	10.0	_	ns
t _{SCE}	CE LOW to write end [17]	7.0	_	
t _{AW}	Address setup to write end	7.0	-	
t _{HA}	Address hold from write end	0	_	
t _{SA}	Address setup to write start	0	_	
t _{PWE}	WE pulse width	7.0	_	
t _{SD}	Data setup to write end	5.0	_	
t _{HD}	Data hold from write end	0	_	
t _{LZWE}	WE HIGH to low Z [18, 19, 20]	3.0	_	
t _{HZWE}	WE LOW to high Z [18, 19, 20]	-	5.0	

- 14.Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for $V_{CC} \ge 3$ V) and $V_{CC}/2$ (for $V_{CC} < 3$ V), and input pulse levels of 0 to 3 V (for $V_{CC} \ge 3$ V) and 0 to V_{CC} (for $V_{CC} < 3$ V). Test conditions for the read cycle use output loading shown in part (a) of **Figure 2 on page 11**, unless specified otherwise.
- $15.t_{POWER}$ gives minimum amount of time that the power supply is at stable V_{CC} until first memory access is performed.
- 16. These parameters are guaranteed by design and are not tested.
- 17. For all dual chip enable devices, \overline{CE} is the logical combination of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE}_1 is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE}_1 is HIGH.
- 18. t_{HZOE} , t_{HZCE} , t_{HZWE} , t_{LZOE} , and t_{LZWE} are specified with a load capacitance of 5 pF as in (b) of **Figure 2 on page 11**. Transition is measured ± 200 mV from steady state voltage.
- 19.At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZBE} is less than t_{LZBE} , t_{HZOE} is less than t_{LZWE} for any device.
- 20. Tested initially and after any design or process changes that may affect these parameters.
- 21. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 22. The minimum write pulse width for write cycle No.2 (WE Controlled, OE LOW) should be sum of t_{HZWE} and t_{SD}.

Switching waveforms

11 Switching waveforms

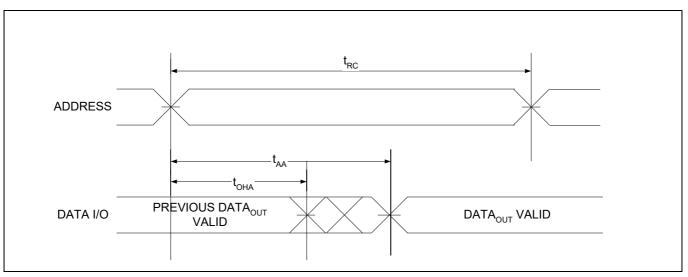


Figure 4 Read cycle No. 1 of CY7C1059H (address transition controlled)^[23, 24]

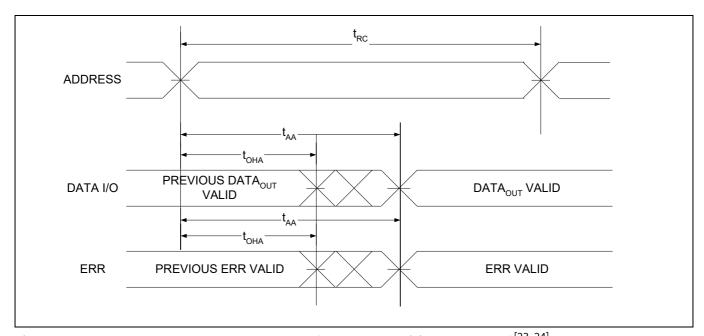


Figure 5 Read cycle No. 2 of CY7C1059HE (address transition controlled) [23, 24]

Notes

23.<u>The</u> device is continuously selected, $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$. 24.WE is HIGH for read cycle.

infineon

Switching waveforms

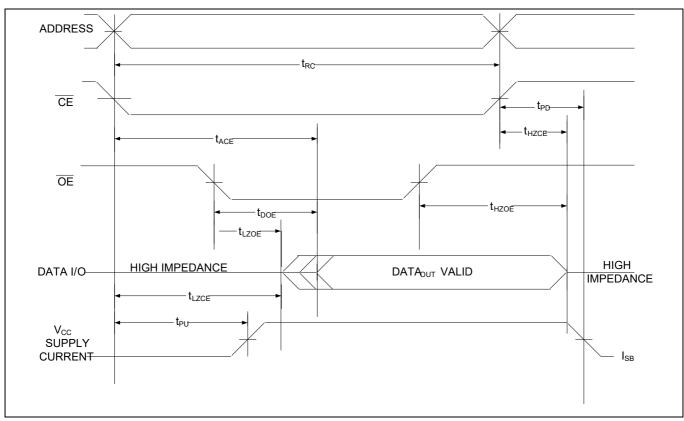


Figure 6 Read cycle No. 3 (\overline{OE} controlled, \overline{WE} HIGH) [25, $\overline{26, 27}$]

Notes

27. Address valid prior to or coincident with CE LOW transition.

^{25.}For al<u>l dual chip enable devices, CE</u> is the logical <u>combination of CE</u>₁ and CE₂. When CE₁ is LOW and CE₂ is <u>HIGH</u>, CE is LOW; when CE₁ is HIGH or CE₂ is LOW, CE is HIGH.
26.WE is HIGH for read cycle.

Switching waveforms

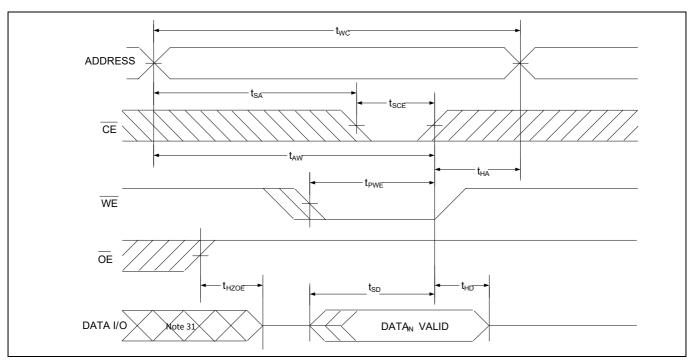


Figure 7 Write cycle No. 1 (CE Controlled) [28, 29, 30]

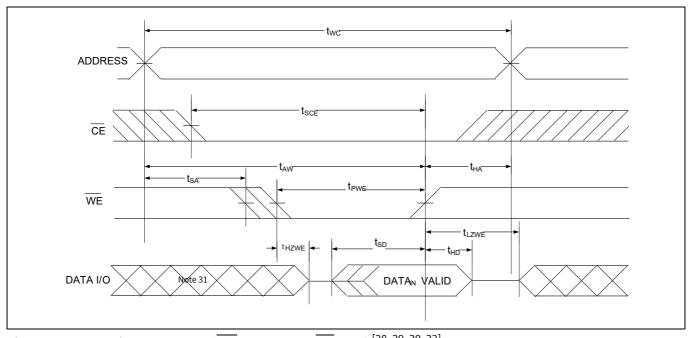


Figure 8 Write Cycle No. 2 (WE Controlled, OE Low) [28, 29, 30, 32]

- 28. For all <u>dual</u> chip enable <u>devices</u>, \overline{CE} is the logical <u>combination</u> of \overline{CE}_1 and \overline{CE}_2 . When \overline{CE}_1 is LOW and \overline{CE}_2 is HIGH, \overline{CE}_1 is LOW; when \overline{CE}_1 is HIGH or \overline{CE}_2 is LOW, \overline{CE}_1 is HIGH.
- 29. The internal write time of the memory is defined by the overlap of $\overline{WE} = V_{IL}$, $\overline{CE} = V_{IL}$. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be <u>referenced</u> to the edge of the signal that terminates the write.
- 30. Data I/O is in high impedance state if $\overline{CE} = V_{IH}$, or $\overline{OE} = V_{IH}$.
- 31. During this time I/O are in output put state. Do not apply input signals.
- 32. The minimum write cycle width should be sum of t_{HZWE} and t_{SD} .

infineon

Truth table - CY7C1059H/CY7C1059HE

12 Truth table - CY7C1059H/CY7C1059HE

Table 9 Truth table - CY7C1059H/CY7C1059HE

¯CE ₁	CE ₂	OE	WE	I/O ₀ -I/O ₇	Mode	Power
Н	X [33]	X [33]	X ^[33]	High Z	Power-down	Standby (I _{SB})
X [33]	L	X [33]	X ^[33]	High Z	Power-down	Standby (I _{SB})
L	Н	L	Н	Data out	Read all bits	Active (I _{CC})
L	Н	X [33]	L	Data in	Write all bits	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, outputs disabled	Active (I _{CC})

Note

^{33.} The input voltage levels on these pins should be either at V_{IH} or V_{IL} .

infineon

ERR output- CY7C1059HE

13 ERR output- CY7C1059HE

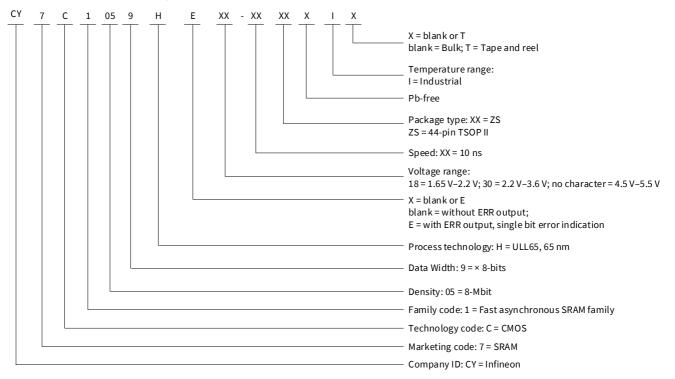
Table 10 ERR output - CY7C1059HE

Output [34]	Mode	
0	Read operation, no single bit error in the stored data.	
1	Read operation, single bit error detected and corrected.	
High Z	Device deselected or outputs disabled or write operation	

Note

34.ERR is an Output pin.If not used, this pin should be left floating.

infineon


Ordering information

14 Ordering information

Table 11 Ordering information

Speed (ns)	Voltage range	Ordering code	Package diagram	Package type (All Pb-free)	ERR pin / ball	Operating range
10	2.2 V-3.6 V	CY7C1059H30-10ZSXI	51-85087	44-pin TSOP II	No	Industrial

14.1 Ordering code definitions

Package diagram

15 Package diagram

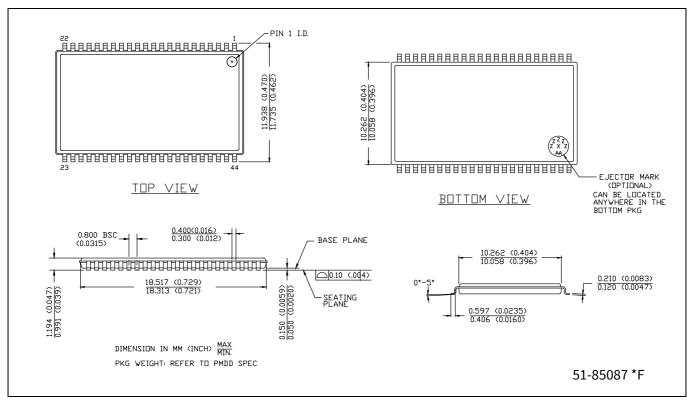


Figure 9 44-pin TSOP II (18.4 × 10.2 × 1.194 mm) Z54-II package outline, 51-85087

infineon

Acronyms

16 Acronyms

Table 12 Acronyms

Acronym	Description		
CE	chip enable		
CMOS	complementary metal oxide semiconductor		
I/O	input/output		
ŌĒ	output enable		
SRAM	static random access memory		
TSOP	thin small outline package		
TTL	transistor-transistor logic		
VFBGA	very fine-pitch ball grid array		
WE	write enable		

infineon

Document conventions

17 Document conventions

17.1 Units of measure

Table 13 Unit of measure

Symbol	Unit of measure	
°C	degree celsius	
MHz	megahertz	
μΑ	microampere	
μs	microsecond	
mA	milliampere	
mm	millimeter	
ns	nanosecond	
Ω	ohm	
%	percent	
pF	picofarad	
V	volt	
W	watt	

Revision history

Revision history

Document version	Date of release	Description of changes
**	2021-11-02	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-11-02 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Go to www.cypress.com/support

Document reference 002-34169 Rev. **

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.