

# Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

# **Continuity of document content**

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

# **Continuity of ordering part numbers**

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com



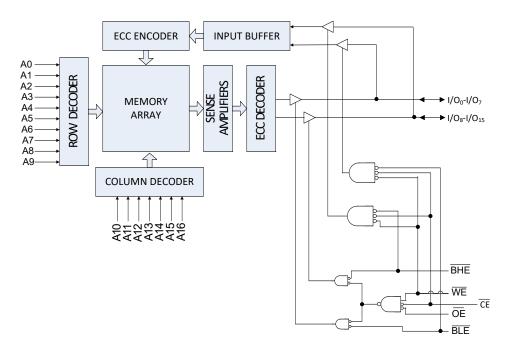


# 2-Mbit (128K words × 16-bit) Static RAM with Error-Correcting Code (ECC)

### **Features**

- AEC-Q100 qualified
- High speed
  - $t_{AA} = 10 ns; 12 ns$
- Temperature range
  - □ Automotive-A: -40 °C to 85 °C
  - ☐ Automotive-E: –40 °C to 125 °C
- $\blacksquare$  Embedded error-correcting code (ECC) for single-bit error correction  $^{[1,\;2]}$
- Low active and standby current
  - □ Active current, I<sub>CC</sub> = 40-mA typical (Automotive-E)
  - ☐ Standby current, I<sub>SB2</sub> = 6-mA typical (Automotive-E)
- Operating voltage range: 2.2 V to 3.6 V
- 1.0-V data retention
- TTL compatible inputs and outputs
- Available in Pb-free 48-ball VFBGA and 44-pin TSOP II packages

### **Functional Description**


CY7C1011G is a high-performance CMOS fast static RAM automotive part with embedded ECC. This device has a single Chip Enable ( $\overline{\text{CE}}$ ) input, and is accessed by asserting it LOW.

To perform data writes, assert the Write Enable ( $\overline{\text{WE}}$ ) input LOW, and provide the data on the device data pins (I/O<sub>0</sub> through I/O<sub>15</sub>) and address pins (A<sub>0</sub> through A<sub>16</sub>) pins. The Byte High Enable ( $\overline{\text{BHE}}$ ) and Byte Low Enable ( $\overline{\text{BLE}}$ ) inputs control byte writes and write data on the corresponding I/O lines to the memory location specified. BHE controls I/O<sub>8</sub> through I/O<sub>15</sub> and  $\overline{\text{BLE}}$  controls I/O<sub>0</sub> through I/O<sub>7</sub>.

To perform data reads, assert the Output Enable (OE) input and provide the required address on the address lines. You can access read data on the I/O lines (I/O $_0$  through I/O $_{15}$ ). To perform byte access, assert the required byte enable signal (BHE or BLE) to read either the upper byte or the lower byte of data from the specified address location.

All I/Os (I/O $_0$  through I/O $_{15}$ ) are placed in a high-impedance state when the device is deselected ( $\overline{\text{CE}}$  LOW), or when the control signals are deasserted ( $\overline{\text{OE}}$ , BLE, BHE).

# Logic Block Diagram - CY7C1011G



- This device does not support automatic write-back on error detection.
- 2. SER Rate < 0.1 FIT/Mb. Refer to AN88889 for details.

# **CY7C1011G Automotive**



### **Contents**

| Pin Configurations             | 3  |
|--------------------------------|----|
| Product Portfolio              |    |
| Maximum Ratings                | 4  |
| Operating Range                | 4  |
| DC Electrical Characteristics  | 4  |
| Capacitance                    | 5  |
| Thermal Resistance             | 5  |
| AC Test Loads and Waveforms    | 5  |
| Data Retention Characteristics | 6  |
| Data Retention Waveform        | 6  |
| AC Switching Characteristics   | 7  |
| Switching Waveforms            |    |
| Truth Table                    | 11 |

| Ordering Information                    | 12 |
|-----------------------------------------|----|
| Ordering Code Definitions               |    |
| Package Diagrams                        |    |
| Acronyms                                | 15 |
| Document Conventions                    | 15 |
| Units of Measure                        | 15 |
| Document History Page                   | 16 |
| Sales, Solutions, and Legal Information | 17 |
| Worldwide Sales and Design Support      | 17 |
| Products                                | 17 |
| PSoC® Solutions                         | 17 |
| Cypress Developer Community             | 17 |
| Technical Support                       |    |



### **Pin Configurations**

Figure 1. 48-ball VFBGA pinout<sup>[3]</sup>

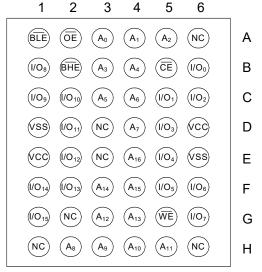
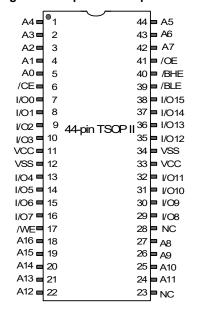




Figure 2. 44-pin TSOP II pinout [3]



### **Product Portfolio**

|             |              | Power Dissipation         |        | Power Dis                                                |     |                                |        |
|-------------|--------------|---------------------------|--------|----------------------------------------------------------|-----|--------------------------------|--------|
| Product     | Range        | V <sub>CC</sub> Range (V) | Speed  | Operating I <sub>CC</sub> , (mA)<br>f = f <sub>max</sub> |     | Standby                        | I (mA) |
| Floudet     | ixalige      | VCC Italige (V)           | (ns)   |                                                          |     | Standby, I <sub>SB2</sub> (mA) |        |
|             |              |                           |        | Typ <sup>[4]</sup>                                       | Max | Typ <sup>[4]</sup>             | Max    |
| CY7C1011G30 | Automotive-E | 2.2 V-3.6 V               | 10, 12 | 40                                                       | 50  | 6                              | 14     |
|             | Automotive-A |                           | 10     | 38                                                       | 45  | 6                              | 8      |

- 3. NC pins are not connected internally to the die.
- 4. Typical values are included for reference only and are not guaranteed or tested.



### **Maximum Ratings**

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature ......  $-65 \, ^{\circ}\text{C}$  to +150  $^{\circ}\text{C}$  Ambient temperature with power applied ......  $-55 \, ^{\circ}\text{C}$  to +125  $^{\circ}\text{C}$  Supply voltage on V<sub>CC</sub> relative to GND<sup>[5]</sup> ......  $-0.5 \, \text{V}$  to V<sub>CC</sub> + 0.3 V

DC voltage applied to outputs in HI-Z State  $^{[5]}$  ......-0.3 V to V<sub>CC</sub> + 0.3 V

| DC input voltage <sup>[5]</sup>                     | 0.3 V to V <sub>CC</sub> + 0.3 V |
|-----------------------------------------------------|----------------------------------|
| Current into outputs (in low state)                 | 20 mA                            |
| Static discharge voltage (MIL-STD-883, Method 3015) | >2001 V                          |
| Latch-up current                                    | > 140 mA                         |

# **Operating Range**

| Grade        | Ambient Temperature | V <sub>CC</sub> |
|--------------|---------------------|-----------------|
| Automotive-E | –40 °C to +125 °C   | 2.2 V to 3.6 V  |
| Automotive-A | –40 °C to +85 °C    | 2.2 V to 3.6 V  |

### **DC Electrical Characteristics**

Over the Operating Range

| Parameter        | Description                                         |                | Test Conditions                                                                                                                                | 10 ns               | 10 ns (Automotive-A) |                                      |                     | 10 ns/ 12ns (Automotive-E) |                                      |      |
|------------------|-----------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------|--------------------------------------|---------------------|----------------------------|--------------------------------------|------|
| Parameter        | De                                                  | Scription      | rest Conditions                                                                                                                                | Min                 | Тур                  | Max                                  | Min                 | Тур                        | Max                                  | Unit |
| V <sub>OH</sub>  | Output                                              | 2.2 V to 2.7 V | $V_{CC}$ = Min, $I_{OH}$ = -1.0 mA                                                                                                             | 2                   | _                    | _                                    | 2                   | -                          | -                                    | V    |
|                  | HIGH<br>voltage                                     | 2.7 V to 3.0 V | $V_{CC}$ = Min, $I_{OH}$ = $-4.0$ mA                                                                                                           | 2.2                 | _                    | -                                    | 2.2                 | _                          | -                                    |      |
|                  | Tonage                                              | 3.0 V to 3.6 V | $V_{CC}$ = Min, $I_{OH}$ = $-4.0$ mA                                                                                                           | 2.4                 | _                    | -                                    | 2.4                 | _                          | -                                    |      |
| $V_{OL}$         | Output                                              | 2.2 V to 2.7 V | V <sub>CC</sub> = Min, I <sub>OL</sub> = 2 mA                                                                                                  | _                   | _                    | 0.4                                  | _                   | _                          | 0.4                                  | V    |
|                  | LOW<br>voltage                                      | 2.7 V to 3.6 V | V <sub>CC</sub> = Min, I <sub>OL</sub> = 8 mA                                                                                                  | -                   | _                    | 0.4                                  | _                   | _                          | 0.4                                  |      |
| V <sub>IH</sub>  | Input                                               | 2.2 V to 2.7 V | _                                                                                                                                              | 2                   | _                    | V <sub>CC</sub> + 0.3 <sup>[5]</sup> | 2                   | _                          | V <sub>CC</sub> + 0.3 <sup>[5]</sup> | V    |
|                  | HIGH<br>voltage                                     | 2.7 V to 3.6 V | _                                                                                                                                              | 2                   | -                    | $V_{CC} + 0.3^{[5]}$                 | 2                   | -                          | V <sub>CC</sub> + 0.3 <sup>[5]</sup> |      |
| V <sub>IL</sub>  | Input                                               | 2.2 V to 2.7 V | _                                                                                                                                              | -0.3 <sup>[5]</sup> | _                    | 0.6                                  | $-0.3^{[5]}$        | _                          | 0.6                                  | V    |
|                  | LOW voltage 2.7 V to                                |                | _                                                                                                                                              | -0.3 <sup>[5]</sup> | -                    | 0.8                                  | -0.3 <sup>[5]</sup> | -                          | 0.8                                  |      |
| I <sub>IX</sub>  | Input lea                                           | kage current   | $GND \leq V_IN \leq V_CC$                                                                                                                      | -1                  | _                    | +1                                   | <b>-</b> 5          | _                          | +5                                   | μΑ   |
| I <sub>OZ</sub>  | Output le                                           | akage current  | GND ≤ V <sub>OUT</sub> ≤ V <sub>CC</sub> ,<br>Output disabled                                                                                  | -1                  | _                    | +1                                   | <b>-</b> 5          | _                          | +5                                   | μА   |
| I <sub>CC</sub>  | Operating current                                   | g supply       | $V_{CC}$ = 3.6 V, $I_{OUT}$ = 0 mA, $I_{RC}$ $I_{CMOS}$ levels                                                                                 | = _                 | 38                   | 45                                   | _                   | 40                         | 50                                   | mA   |
| I <sub>SB1</sub> | Automatic CE power<br>down current – TTL<br>inputs  |                | $V_{CC} = 3.6 \text{ V}, \overline{CE} \ge V_{IH},$ $V_{IN} \ge V_{IH} \text{ or } V_{IN} \le V_{IL},$ $f = f_{MAX}$                           | -                   | -                    | 15                                   | _                   | -                          | 24                                   | mA   |
| I <sub>SB2</sub> | Automatic CE power<br>down current – CMOS<br>inputs |                | $V_{CC} = 3.6 \text{ V},$ $\overline{CE} \ge V_{CC} - 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V}, f = 0$ | -                   | 6                    | 8                                    | -                   | 6                          | 14                                   | mA   |

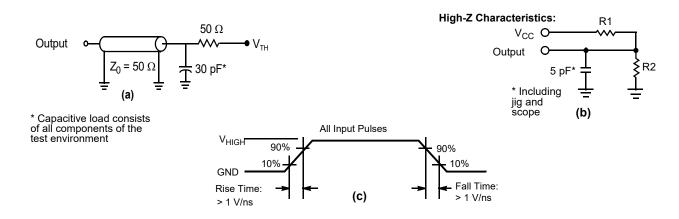
### Note

Document Number: 001-95423 Rev. \*F

<sup>5.</sup>  $V_{IL(min)}$  = -2.0 V and  $V_{IH(max)}$  =  $V_{CC}$  + 2 V for pulse durations of less than 20 ns.



## Capacitance


| Parameter [6]    | Description       | Test Conditions                                                     | All Packages | Unit |
|------------------|-------------------|---------------------------------------------------------------------|--------------|------|
| C <sub>IN</sub>  | Input capacitance | $T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = V_{CC(typ)}$ | 10           | pF   |
| C <sub>OUT</sub> | I/O capacitance   |                                                                     | 10           | pF   |

### **Thermal Resistance**

| Parameter [6]     | Description                           | Test Conditions                                                         | 48-ball VFBGA | 44-pin TSOPII | Unit |
|-------------------|---------------------------------------|-------------------------------------------------------------------------|---------------|---------------|------|
| $\Theta_{JA}$     |                                       | Still air, soldered on a 3 × 4.5 inch, four-layer printed circuit board | 30.68         | 66.82         | °C/W |
| $\Theta_{\sf JC}$ | Thermal resistance (junction to case) |                                                                         | 14.83         | 15.97         | °C/W |

### **AC Test Loads and Waveforms**

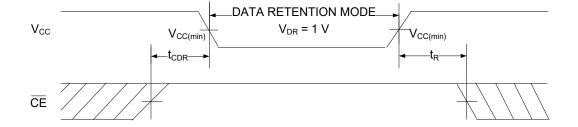
Figure 3. AC Test Loads and Waveforms [7]



| Parameters        | 3.0 V | Unit |
|-------------------|-------|------|
| R1                | 317   | Ω    |
| R2                | 351   | Ω    |
| V <sub>TH</sub>   | 1.5   | V    |
| V <sub>HIGH</sub> | 3     | V    |

- 6. Tested initially and after any design or process change that may affect these parameters.
   7. Full-device AC operation assumes a 100-µs ramp time from 0 to V<sub>CC(min)</sub> and a 100-µs wait time after V<sub>CC</sub> stabilization.




### **Data Retention Characteristics**

Over the Operating Range

| Doromotor                        | Description                          | Conditions                                                                                                                              | Autom   | otive-A | Autom | - Unit |    |
|----------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------|--------|----|
| Parameter                        | Description                          | Conditions                                                                                                                              | Min Max |         | Min   | Max    |    |
| $V_{DR}$                         | V <sub>CC</sub> for data retention   | _                                                                                                                                       | 1       | _       | 1     | -      | V  |
| I <sub>CCDR</sub>                | Data retention current               | $V_{CC} = 1.2 \text{ V}, \overline{CE} \ge V_{CC} - 0.2 \text{ V},$<br>$V_{IN} \ge V_{CC} - 0.2 \text{ V or } V_{IN} \le 0.2 \text{ V}$ | -       | 8       | -     | 14     | mA |
| t <sub>CDR</sub> <sup>[8]</sup>  | Chip deselect to data retention time | _                                                                                                                                       | 0       | -       | 0     | -      | ns |
| t <sub>R</sub> <sup>[8, 9]</sup> | Operation recovery time              | V <sub>CC</sub> ≥ 2.2 V, t <sub>AA</sub> = 10ns                                                                                         | 10      | _       | 10    | -      | ns |
| I'R'                             | Operation recovery time              | V <sub>CC</sub> ≥ 2.2 V, t <sub>AA</sub> = 12ns                                                                                         | _       | _       | 12    | _      | ns |

### **Data Retention Waveform**

Figure 4. Data Retention Waveform [9]



These parameters are guaranteed by design.
 Full-device operation requires linear V<sub>CC</sub> ramp from V<sub>DR</sub> to V<sub>CC(min.)</sub> ≥ 100 μs or stable at V<sub>CC(min.)</sub> ≥ 100 μs.



### **AC Switching Characteristics**

Over the Operating Range

| Parameter [10]    | Description                                  | 10 ns (Aut<br>Autom | tomotive-A/<br>otive-E) | 12 ns (Aut | Unit |    |
|-------------------|----------------------------------------------|---------------------|-------------------------|------------|------|----|
|                   |                                              | Min                 | Max                     | Min        | Max  |    |
| Read Cycle        |                                              | ·                   |                         |            |      |    |
| t <sub>RC</sub>   | Read cycle time                              | 10                  | _                       | 12         | _    | ns |
| t <sub>AA</sub>   | Address to data                              | _                   | 10                      | -          | 12   | ns |
| t <sub>OHA</sub>  | Data                                         | 3                   | _                       | 3          | _    | ns |
| t <sub>ACE</sub>  | CE LOW to data <sup>[11]</sup>               | _                   | 10                      | -          | 12   | ns |
| t <sub>DOE</sub>  | OE LOW to data                               | _                   | 4.5                     | _          | 7    | ns |
| t <sub>LZOE</sub> | OE LOW to low impedance [11, 12]             | 0                   | _                       | 0          | _    | ns |
| t <sub>HZOE</sub> | OE HIGH to HI-Z [11, 12]                     | _                   | 5                       | _          | 6    | ns |
| t <sub>LZCE</sub> | CE LOW to low impedance [11, 11, 12]         | 3                   | _                       | 3          | _    | ns |
| t <sub>HZCE</sub> | CE HIGH to HI-Z [11, 11, 12]                 | _                   | 5                       | _          | 6    | ns |
| t <sub>PU</sub>   | CE LOW to power up [11, 12]                  | 0                   | _                       | 0          | _    | ns |
| t <sub>PD</sub>   | CE HIGH to power down [11, 12]               | _                   | 10                      | -          | 12   | ns |
| t <sub>DBE</sub>  | Byte enable to data valid                    | _                   | 4.5                     | -          | 7    | ns |
| t <sub>LZBE</sub> | Byte enable to low impedance <sup>[12]</sup> | 0                   | _                       | 0          | _    | ns |
| t <sub>HZBE</sub> | Byte disable to HI-Z <sup>[12]</sup>         | _                   | 6                       | -          | 6    | ns |
| Write Cycle [13   | , 14]                                        | <b>'</b>            | -II                     |            | ı    |    |
| t <sub>WC</sub>   | Write cycle time                             | 10                  | _                       | 12         | _    | ns |
| t <sub>SCE</sub>  | CE LOW to write end [11]                     | 7                   | _                       | 8          | _    | ns |
| t <sub>AW</sub>   | Address setup to write end                   | 7                   | _                       | 8          | _    | ns |
| t <sub>HA</sub>   | Address hold from write end                  | 0                   | _                       | 0          | _    | ns |
| t <sub>SA</sub>   | Address setup to write start                 | 0                   | _                       | 0          | _    | ns |
| t <sub>PWE</sub>  | WE pulse width                               | 7                   | _                       | 8          | _    | ns |
| t <sub>SD</sub>   | Data setup to write end                      | 5                   | _                       | 6          | _    | ns |
| t <sub>HD</sub>   | Data hold from write end                     | 0                   | _                       | 0          | _    | ns |
| t <sub>LZWE</sub> | WE HIGH to low impedance [11, 12]            | 3                   | _                       | 3          | _    | ns |
| t <sub>HZWE</sub> | WE LOW to HI-Z [11, 12]                      | _                   | 5                       | -          | 6    | ns |
| t <sub>BW</sub>   | Byte Enable to write end                     | 7                   | _                       | 8          | _    | ns |

<sup>10.</sup> Test conditions assume a signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V<sub>CC</sub> ≥ 3 V) and V<sub>CC</sub>/2 (for V<sub>CC</sub> < 3 V), and input pulse levels of 0 to 3 V (for V<sub>CC</sub> ≥ 3 V) and 0 to V<sub>CC</sub> (for V<sub>CC</sub> < 3 V). Test conditions for the read cycle use output loading shown in part (a) of Figure 3 on page 5, unless specified otherwise.

11. t<sub>HZCE</sub>, t<sub>HZWE</sub>, t<sub>HZCE</sub>, t<sub>HZWE</sub>, t<sub>HZBE</sub>, t<sub>LZCE</sub>, t<sub>LZWE</sub>, and t<sub>LZBE</sub> are specified with a load capacitance of 5 pF as in (b) of Figure 3 on page 5. Transition is measured ±200 mV from steady state voltage.

12. These parameters are guaranteed by design and are not tested.

13. The internal write time of the memory is defined by the overlap of WE = V<sub>IL</sub>, CE = V<sub>IL</sub> and BHE or BLE = V<sub>IL</sub>. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.

<sup>14.</sup> The minimum write cycle pulse width for Write Cycle No. 2 (WE Controlled,  $\overline{\text{OE}}$  LOW) should be equal to sum of  $t_{\text{ND}}$  and  $t_{\text{HZWE}}$ .



## **Switching Waveforms**

Figure 5. Read Cycle No. 1 of CY7C1011G (Address Transition Controlled) [15, 16]

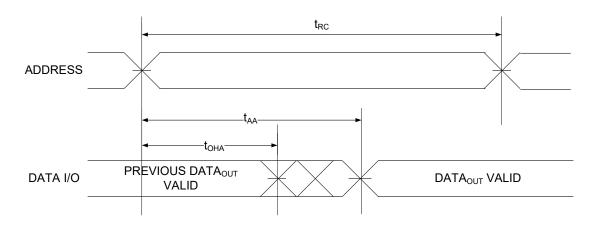
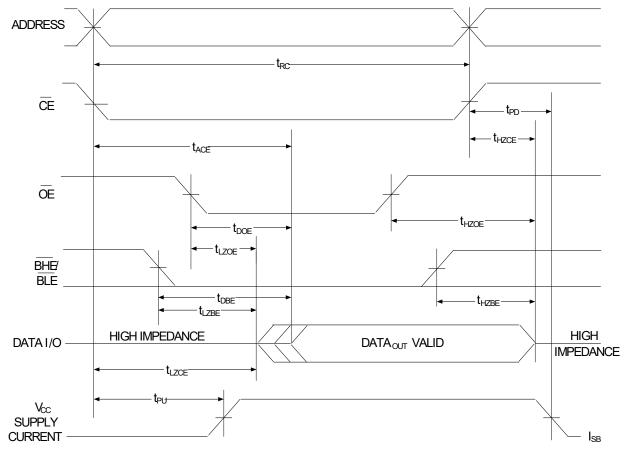
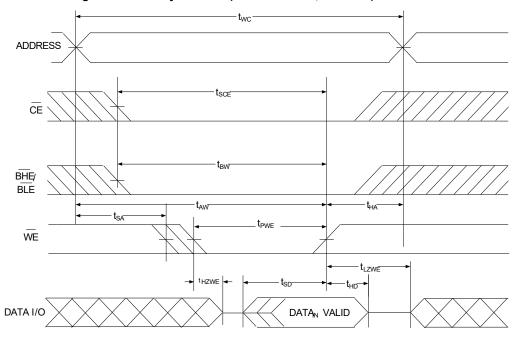




Figure 6. Read Cycle No. 2 (OE Controlled) [16]



Notes
15. The device is continuously selected,  $\overline{OE} = V_{IL}$ ,  $\overline{CE} = V_{IL}$ ,  $\overline{BHE}$  or  $\overline{BLE}$  or both =  $V_{IL}$ .
16.  $\overline{WE}$  is HIGH for read cycle.




### Switching Waveforms (continued)

DATA I/O

Figure 7. Write Cycle No. 1 (CE Controlled) [17, 18, 19] **ADDRESS** WE BHE/

Figure 8. Write Cycle No. 2 ( $\overline{\text{WE}}$  Controlled,  $\overline{\text{OE}}$  LOW) [17, 18, 19, 20]

DATA<sub>IN</sub> VALID



- 17. Address valid prior to or coincident with  $\overline{\text{CE}}$  LOW transition.
- 18. The internal write time of the memory is defined by the overlap of WE = V<sub>IL</sub>, \overlap is V<sub>IL</sub> and \overlap is EE = V<sub>IL</sub>. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 19. Data I/O is in HI-Z state if  $\overline{CE} = V_{IH}$ , or  $\overline{OE} = V_{IH}$  or  $\overline{BHE}$ , and/or  $\overline{BLE} = V_{IH}$ .

  20. The minimum write cycle pulse width should be equal to sum of  $t_{SD}$  and  $t_{HZWE}$ .



### Switching Waveforms (continued)

Figure 9. Write Cycle No. 3 (BLE or BHE Controlled) [21, 22]

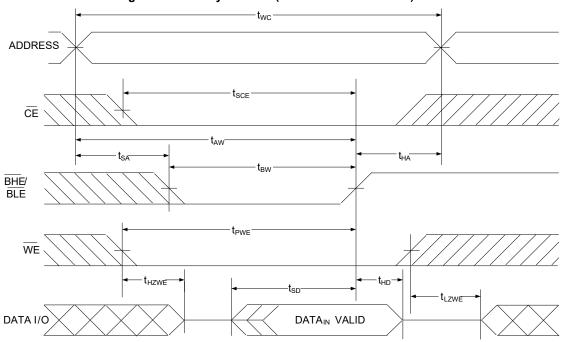
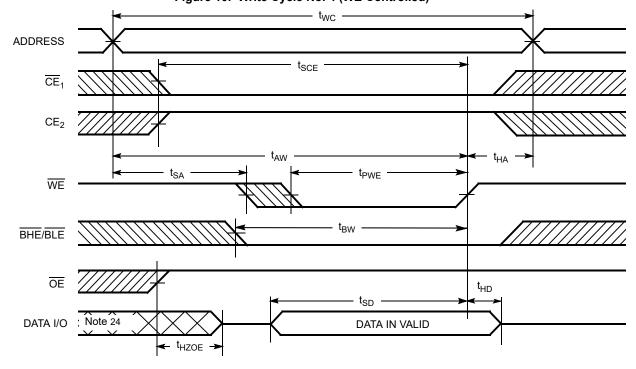




Figure 10. Write Cycle No. 4 (WE Controlled) [21, 22, 23]

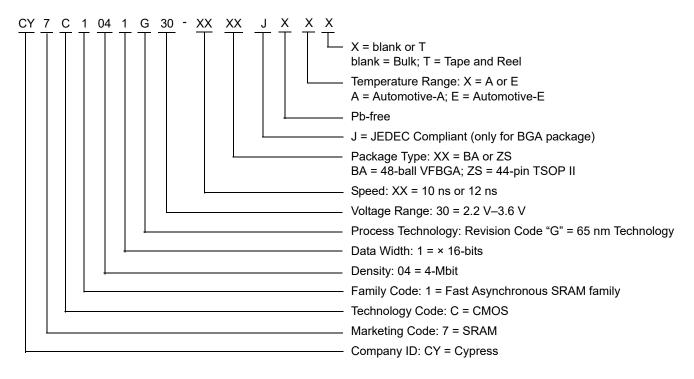


- 21. The internal write time of the memory is defined by the overlap of WE = V<sub>IL</sub>, CE = V<sub>IL</sub> and BHE or BLE = V<sub>IL</sub>. These signals must be LOW to initiate a write, and the HIGH transition of any of these signals can terminate the operation. The input data setup and hold timing should be referenced to the edge of the signal that terminates the write.
- 22. Data I/O is in HI-Z state if  $\overline{CE} = V_{IH}$ , or  $\overline{OE} = V_{IH}$  or  $\overline{BHE}$ , and/or  $\overline{BLE} = V_{IH}$ .

  23. Data I/O is high impedance if  $\overline{OE} = V_{IH}$ .
- 24. During this period the I/Os are in output state. Do not apply input signals.



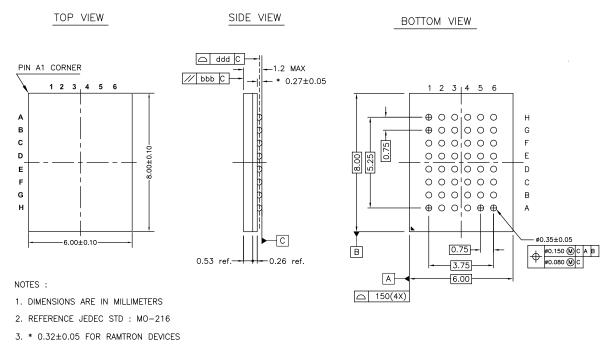
## **Truth Table**


| CE | OE | WE | BLE | BHE | I/O <sub>0</sub> –I/O <sub>7</sub> | I/O <sub>8</sub> -I/O <sub>15</sub> | Mode                       | Power                      |
|----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------|
| Н  | Х  | Х  | Х   | Х   | HI-Z                               | HI-Z                                | Power-down                 | Standby (I <sub>SB</sub> ) |
| L  | L  | Н  | L   | L   | Data out                           | Data out                            | Read all bits              | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | L   | Н   | Data out                           | HI-Z                                | Read lower bits only       | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | Н   | L   | HI-Z                               | Data out                            | Read upper bits only       | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | L   | Data in                            | Data in                             | Write all bits             | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | Н   | Data in                            | HI-Z                                | Write lower bits only      | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | Н   | L   | HI-Z                               | Data in                             | Write upper bits only      | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | Х   | Х   | HI-Z                               | HI-Z                                | Selected, outputs disabled | Active (I <sub>CC</sub> )  |



# **Ordering Information**

| Speed (ns) | Ordering Code        | Voltage<br>Range | Package<br>Diagram | Package Type<br>(All Pb-free) | Operating<br>Range |
|------------|----------------------|------------------|--------------------|-------------------------------|--------------------|
| 10         | CY7C1011G30-10ZSXA   | 2.2 V-3.6 V      | 51-85087           | 44-pin TSOP II                | Automotive-A       |
|            | CY7C1011G30-10ZSXAT  | 2.2 V-3.6 V      | 51-85087           | 44-pin TSOP II, Tape & Reel   | Automotive-A       |
|            | CY7C1011G30-10BAJXE  | 2.2 V-3.6 V      | 001-85259          | 48-ball VFBGA                 | Automotive-E       |
|            | CY7C1011G30-10BAJXET | 2.2 V-3.6 V      | 001-85259          | 48-ball VFBGA, Tape & Reel    | Automotive-E       |
| 12         | CY7C1011G30-12ZSXE   | 2.2 V-3.6 V      | 51-85087           | 44-pin TSOP II                | Automotive-E       |
|            | CY7C1011G30-12ZSXET  | 2.2 V-3.6 V      | 51-85087           | 44-pin TSOP II, Tape & Reel   | Automotive-E       |

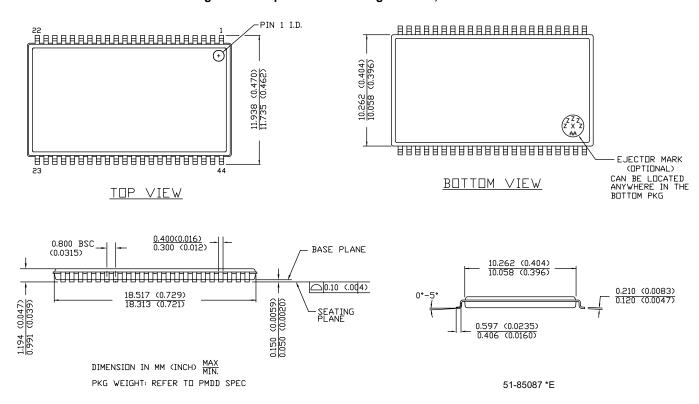

### **Ordering Code Definitions**





## **Package Diagrams**

Figure 11. 48-ball VFBGA ((6 × 8 × 1.2 mm) 0.35 mm Ball Diameter) Package Outline, 001-85259




001-85259 \*A



### Package Diagrams (continued)

Figure 12. 44-pin TSOP II Package Outline, 51-85087





# **Acronyms**

| Acronym | Description                             |  |  |  |  |
|---------|-----------------------------------------|--|--|--|--|
| BHE     | Byte High Enable                        |  |  |  |  |
| BLE     | Byte Low Enable                         |  |  |  |  |
| CE      | Chip Enable                             |  |  |  |  |
| CMOS    | Complementary Metal Oxide Semiconductor |  |  |  |  |
| I/O     | Input/Output                            |  |  |  |  |
| ŌĒ      | Output Enable                           |  |  |  |  |
| SRAM    | Static Random Access Memory             |  |  |  |  |
| TSOP    | Thin Small Outline Package              |  |  |  |  |
| TTL     | Transistor-Transistor Logic             |  |  |  |  |
| VFBGA   | Very Fine-Pitch Ball Grid Array         |  |  |  |  |
| WE      | Write Enable                            |  |  |  |  |

### **Document Conventions**

### **Units of Measure**

| Symbol | Unit of Measure |  |  |  |  |
|--------|-----------------|--|--|--|--|
| °C     | degrees Celsius |  |  |  |  |
| MHz    | megahertz       |  |  |  |  |
| μΑ     | microampere     |  |  |  |  |
| μS     | microsecond     |  |  |  |  |
| mA     | milliampere     |  |  |  |  |
| mm     | millimeter      |  |  |  |  |
| ns     | nanosecond      |  |  |  |  |
| Ω      | ohm             |  |  |  |  |
| %      | percent         |  |  |  |  |
| pF     | picofarad       |  |  |  |  |
| V      | volt            |  |  |  |  |
| W      | watt            |  |  |  |  |



# **Document History Page**

| Rev. | ECN No. | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------|---------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *A   | 4998910 | NILE               | 11/02/2015         | Changed status from Preliminary to Final.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| *B   | 5024020 | NILE               | 11/23/2015         | Updated Ordering Information:<br>Updated part numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| *C   | 5692050 | NILE               | 04/27/2017         | Added 12 ns speed bin related information in all instances across the document.  Updated Features: Added "AEC-Q100 qualified".  Updated DC Electrical Characteristics: Removed details of V <sub>OH</sub> parameter corresponding to "2.7 V to 3.6 V".  Added details of V <sub>OH</sub> parameter corresponding to "2.7 V to 3.0 V" and "3.0 V to 3.6 V".  Updated Note 5 (Replaced "2 ns" with "20 ns").  Updated Ordering Information: Updated part numbers.  Updated to new template. Completing Sunset Review. |
| *D   | 5725360 | NILE               | 05/03/2017         | Updated Ordering Information: Updated part numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| *E   | 6142440 | NILE               | 04/17/2018         | Updated Features: Added Note 2 and referred the same note in "Embedded error-correcting code (ECC) for single-bit error correction".                                                                                                                                                                                                                                                                                                                                                                                |
| *F   | 6560693 | NILE               | 04/29/2019         | Updated to new template.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |



### Sales, Solutions, and Legal Information

### **Worldwide Sales and Design Support**

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/touch cypress.com/usb

cypress.com/wireless

### **Products**

Touch Sensing

USB Controllers
Wireless Connectivity

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic

### PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

### **Cypress Developer Community**

Community | Projects | Video | Blogs | Training | Components

### **Technical Support**

cypress.com/support

© Cypress Semiconductor Corporation, 2015–2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or properly damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component o

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 001-95423 Rev. \*F Revised April 29, 2019 Page 17 of 17