

Please note that Cypress is an Infineon Technologies Company.

The document following this cover page is marked as "Cypress" document as this is the company that originally developed the product. Please note that Infineon will continue to offer the product to new and existing customers as part of the Infineon product portfolio.

Continuity of document content

The fact that Infineon offers the following product as part of the Infineon product portfolio does not lead to any changes to this document. Future revisions will occur when appropriate, and any changes will be set out on the document history page.

Continuity of ordering part numbers

Infineon continues to support existing part numbers. Please continue to use the ordering part numbers listed in the datasheet for ordering.

www.infineon.com

CY62158G/CY62158GE MoBL

8-Mbit (1M × 8-bits) Static RAM with Error-Correcting Code (ECC)

Features

■ Ultra-low standby power

□ Typical standby current: 1.4 µA

□ Maximum standby current: 6.5 µA

■ High speed: 45 ns

■ Embedded error-correcting code (ECC) for single-bit error

correction^[1, 2]

■ Operating voltage range: 2.2 V to 3.6 V

■ 1.0-V data retention

■ Transistor-transistor logic (TTL) compatible inputs and outputs

Available in Pb-free 48-ball VFBGA and 44-pin TSOP II package

Functional Description

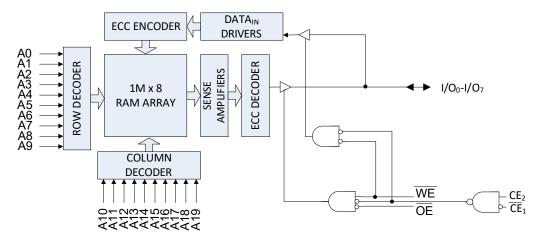
CY62158G/CY62158GE is a high-performance CMOS low-power (MoBL) SRAM device with embedded ECC.

Device is accessed by asserting both chip enable inputs – \overline{CE}_1 as LOW and CE_2 as HIGH.

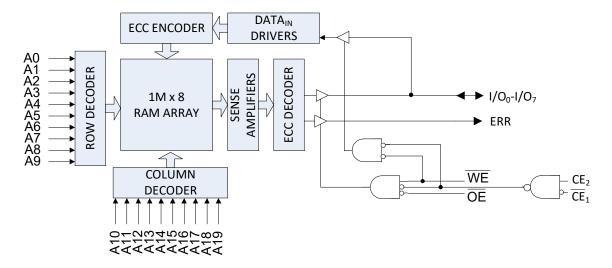
Write to the device is performed by taking Chip Enable 1 ($\overline{\underline{CE}}_1$) LOW and Chip Enable 2 (\overline{CE}_2) HIGH and the Write Enable (WE) input LOW. Data on the eight I/O pins (I/O $_0$ through I/O $_7$) is then written into the location specified on the address pins (A_0 through A_{19}).

Read from the device is performed by taking Chip Enable 1 ($\overline{\text{CE}}_1$) and Output Enable ($\overline{\text{OE}}$) LOW and Chip Enable 2 ($\overline{\text{CE}}_2$) HIGH while forcing Write Enable ($\overline{\text{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input and output pins (I/O $_0$ through I/O $_7$) are placed in a high-impedance state when the device is deselected ($\overline{\text{CE}}_1$ HIGH or CE $_2$ LOW), the outputs are disabled ($\overline{\text{OE}}$ HIGH), or a write operation is in progress ($\overline{\text{CE}}_1$ LOW and CE $_2$ HIGH and $\overline{\text{WE}}$ LOW). See the Truth Table – CY62158G/CY62158GE on page 13 for a complete description of read and write modes.


Product Portfolio

					Operating I _{CC}		issipation		
Product	Features and Options (see Pin Configurations –	Range	V _{CC} Range (V)	Speed (ns)					I _{SB2} (μ A)
	CY62158G)		(*)	(113)					
					Typ ^[3]	Max	Typ ^[3]	Max	
CY62158G/CY62158GE	Dual Chip Enable	Industrial	2.2 V-3.6 V	45	18	25	1.4	6.5	


- 1. This device does not support automatic write-back on error detection.
- SER FIT Rate <0.1 FIT/Mb. Refer AN88889 for details.
- 3. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = 3V (for V_{CC} range of 2.2V 3.6V), T_A = 25 °C.

Logic Block Diagram - CY62158G

Logic Block Diagram - CY62158GE

CY62158G/CY62158GE MoBL

Contents

Pin Configurations - CY62158G	4
Pin Configurations - CY62158GE	5
Maximum Ratings	6
Operating Range	6
DC Electrical Characteristics	6
Capacitance	7
Thermal Resistance	
AC Test Loads and Waveforms	7
Data Retention Characteristics	8
Data Retention Waveform	8
Switching Characteristics	9
Switching Waveforms	
Truth Table - CY62158G/CY62158GE	
FRR Output - MoBI	13

Ordering information	14
Ordering Code Definitions	14
Package Diagrams	15
Acronyms	17
Document Conventions	17
Units of Measure	17
Document History Page	18
Sales, Solutions, and Legal Information	19
Worldwide Sales and Design Support	19
Products	19
PSoC® Solutions	19
Cypress Developer Community	19
Technical Support	19

Pin Configurations - CY62158G

Figure 1. 44-pin TSOP II Pinout^[4]

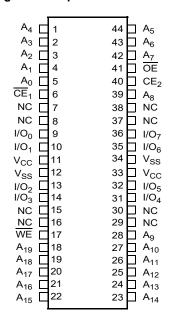
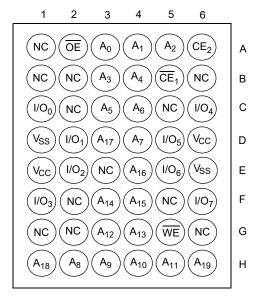
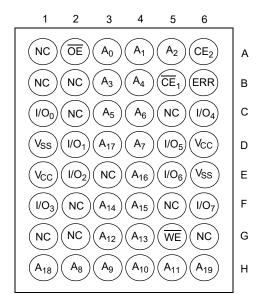



Figure 2. 48-ball VFBGA (6 × 8 × 1 mm) Pinout (without ERR) [4]


Note

^{4.} NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.

Pin Configurations - CY62158GE

Figure 3. 48-ball VFBGA (6 × 8 × 1 mm) Pinout (with ERR) $^{[5,\,6]}$

- 5. NC pins are not connected internally to the die and are typically used for address expansion to a higher-density device. Refer to the respective datasheets for pin configuration.
- 6. ERR is an Output pin.If not used, this pin should be left floating.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested. Storage temperature-65 °C to + 150 °C Ambient temperature

Supply voltage to ground potential -0.5 V to V_{CC} + 0.5 V

DC input voltage ^[7]	–0.5 V to V _{CC} + 0.5 V
Output current into outputs (LOW)	20 mA
Static discharge voltage (MIL-STD-883, Method 3015)	>2001 V
Latch-up current	>140 mA

Operating Range

Grade	Ambient Temperature	V cc ^[8]
Industrial	–40 °C to +85 °C	2.2 V to 3.6 V

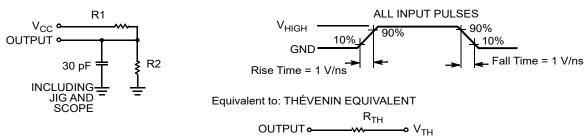
DC Electrical Characteristics

Over the Operating Range of -40 °C to 85 °C

Doromotor	Description		Toot Conditi		45 ns			Unit	
Parameter			Test Conditions		Min	Typ ^[9]	Max	Unit	
	Output HIGH	4.5 V to 5.5 V	V_{CC} = Min, I_{OH} = -1.0 m	A	2.4	_	_		
V _{OH}	voltage	4.5 V to 5.5 V	V _{CC} = Min, I _{OH} = -0.1 mA		V _{CC} – 0.4 ^[10]	-	_	V	
V _{OL}	Output LOW voltage	4.5 V to 5.5 V	V _{CC} = Min, I _{OL} = 2.1 mA	V _{CC} = Min, I _{OL} = 2.1 mA		_	0.4	V	
V _{IH} ^[7]	Input HIGH voltage	4.5 V to 5.5 V	-		2.2	_	V _{CC} + 0.5	V	
V _{IL} ^[7]	Input LOW voltage	4.5 V to 5.5 V	_		-0.5	_	0.8	V	
I _{IX}	Input leakage cu	rrent	$GND \leq V_{IN} \leq V_{CC}$		-1.0	-	+1.0	μA	
I _{OZ}	Output leakage current		GND \leq V _{OUT} \leq V _{CC} , Out	GND ≤ V _{OUT} ≤ V _{CC} , Output disabled		_	+1.0	μA	
I _{CC}	I _{CC} V _{CC} operating supply current		V _{CC} = Max, I _{OUT} = 0 mA, (45 ns)		-	18.0	25.0	mA	
			CiviO3 levels	f = 1 MHz	-	6.0	7.0		
I _{SB1} ^[11]	Automatic power down current – CMOS inputs; $V_{CC} = 2.2$ to 3.6 V $V_{IN} \ge V_{CC} = 0.2$ V $f = f_{max}$ (address		$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or CE}$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V, V}_{\text{IN}} \le \text{f} = \text{f}_{\text{max}} \text{ (address and da}$	0.2 V, ta only),	-	1.4	6.5	μΑ	
			$f = 0$ (\overline{OE} , and \overline{WE}), $V_{CC} = V_{CC(max)}$			4.4	0.0		
	Automatic power	r down current –	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}$ $CE_2 \le 0.2 \text{ V, or}$	25 °C ^[12] 40 °C ^[12]	_	1.4	2.8		
I _{SB2} ^[11]	CMOS inputs;		$V_{IN} \ge V_{CC} - 0.2 \text{ V or}$	70 °C ^[12]	_		3.5	μΑ	
	$V_{CC} = 2.2 \text{ to } 3.6 \text{ V}$		$V_{IN} \le 0.2 \text{ V},$ f = 0, $V_{CC} = V_{CC(max)}$		_		5.5		
			i = o, vcc = vcc(max)	85 °C	_		6.5		

- Notes
 7. V_{IL(min)} = -2.0 V and V_{IH(max)} = V_{CC} + 2 V for pulse durations of less than 20 ns.
 8. Full Device AC operation assumes a 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.
 9. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at Vcc = 3V (for V_{CC} range of 2.2 V to 3.6 V), T_A = 25 °C.
 10. This paramete<u>r is</u> guaranteed by design and not tested.
 11. Chip enables (CE₁ and CE₂) must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
 12. The I_{SB2} limits at 25 °C, 40 °C, 70 °C and typical limit at 85 °C are guaranteed by design and not 100% tested.

Capacitance


Parameter ^[13]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	T = 25 °C f = 1 MHz \/ = \/	10	pF
C _{OUT}	Output capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance

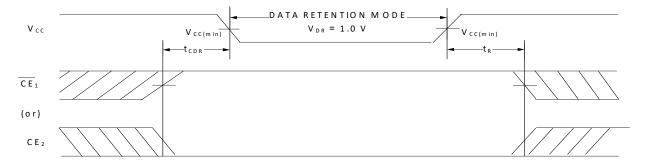
Parameter ^[13]	Description	Test Conditions	48-ball VFBGA	44-pin TSOP II	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, four-layer printed	36.92	66.93	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)	circuit board	13.55	13.09	°C/W

AC Test Loads and Waveforms

Figure 4. AC Test Loads and Waveforms

Parameters	5.0 V	Unit
R1	1800	Ω
R2	990	Ω
R _{TH}	639	Ω
V _{TH}	1.77	V
V _{HIGH}	5.0	V

Note13. Tested initially and after any design or process changes that may affect these parameters.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions		Min	Typ ^[14]	Max	Unit
V_{DR}	V _{CC} for data retention			1.0	_	_	V
		$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}$	Vcc = 1.2V		4	9	
I _{CCDR} ^[14, 15]	Data retention current	$CE_2 \le 0.2 \text{ V},$ $V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V}$	Vcc = 1.5V		3.2	8	
			2.2 V < V _{CC} <u><</u> 3.6 V	_	1.4	6.5	μA
t _{CDR} ^[16]	Chip deselect to data retention time	-		0	-	-	-
t _R ^[16, 17]	Operation recovery time			45	_	_	ns

Data Retention Waveform

Figure 5. Data Retention Waveform

^{14.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = 3 \text{ V}$ (for V_{CC} range of 2.2 V–3.6 V), $T_A = 25 \text{ }^{\circ}\text{C}$.

^{15.} Chip enables ($\overline{\text{CE}}_1$ and CE_2) must be tied to CMOS levels to meet the $I_{\text{SB}1}$ / I_{CCDR} spec. Other inputs can be left floating. I_{CCDR} is guaranteed only after device is first powered up to $V_{\text{CC}(min)}$ and brought down to V_{DR} .

 $^{16. \,} These \ parameters \ are \ guaranteed \ by \ design.$

^{17.} Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100~\mu s$ or stable at $V_{CC(min)} \ge 100~\mu s$.

Switching Characteristics

Parameter ^[18]	Description		45 ns		
Parameter	Description	Min	Max	- Unit	
Read Cycle			•	•	
t _{RC}	Read cycle time	45.0	_	ns	
t _{AA}	Address to data valid	_	45.0	ns	
t _{OHA}	Data hold from address change	10.0	-	ns	
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid / CE LOW to ERR valid	_	45.0	ns	
t _{DOE}	OE LOW to data valid / OE LOW to ERR valid	_	22.0	ns	
t _{LZOE}	OE LOW to Low Z ^[19, 20, 21]	5.0	_	ns	
t _{HZOE}	OE HIGH to High Z ^[19, 20, 21, 22]	_	18.0	ns	
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[19, 20, 21]	10.0	_	ns	
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[19, 20, 21, 22]	_	18.0	ns	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up ^[21]	0	_	ns	
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down ^[21]	_	45.0	ns	
Write Cycle ^[23, 24]	1		1	•	
t _{WC}	Write cycle time	45.0	_	ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35.0	_	ns	
t _{AW}	Address setup to write end	35.0	_	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address setup to write start	0	_	ns	
t _{PWE}	WE pulse width	35.0	_	ns	
t _{SD}	Data setup to write end	25.0	_	ns	
t _{HD}	Data hold from write end	0	_	ns	
t _{HZWE}	WE LOW to High Z ^[19, 20, 21, 22]	_	18.0	ns	
t _{LZWE}	WE HIGH to Low Z ^[19, 20, 21]	10.0	-	ns	

Notes

Document Number: 002-29691 Rev. *A

^{18.} Test conditions assume signal transition time (rise/fall) of 3 ns or less, timing reference levels of 1.5 V (for V_{CC} ≥ 3 V) and V_{CC}/2 (for V_{CC} < 3 V), and input pulse levels of 0 to 3 V (for V_{CC} ≥ 3 V) and 0 to V_{CC} (for V_{CC} < 3V). Test conditions for the read cycle use output loading shown in AC Test Loads and Waveforms section, unless specified otherwise

^{19.} At any temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any device.

^{20.} Tested initially and after any design or process changes that may affect these parameters.

^{21.} These parameters are guaranteed by design and are not tested.

^{22.} t_{HZOE}, t_{HZCE}, and t_{HZWE} transitions are measured when the outputs enter a high impedance state.

^{23.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, CE₁ = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

^{24.} The minimum write cycle pulse width for Write cycle No. 2 (WE Controlled, OE Low) should be equal to he sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 6. Read Cycle No. 1 (Address Transition Controlled) $^{[25,\ 26]}$

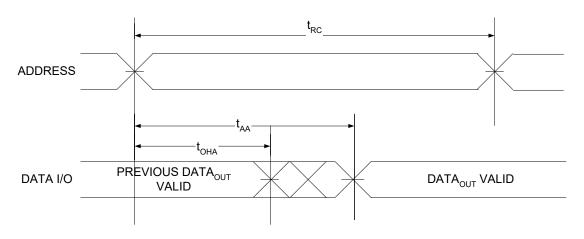
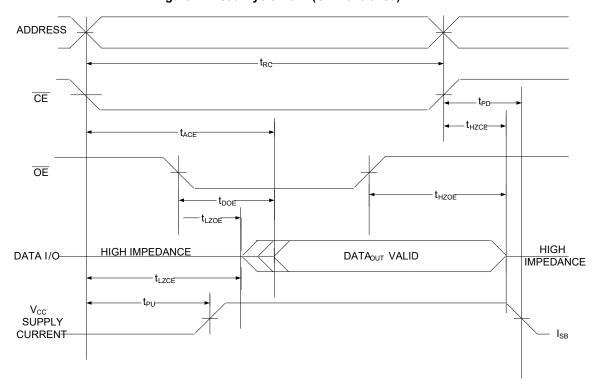
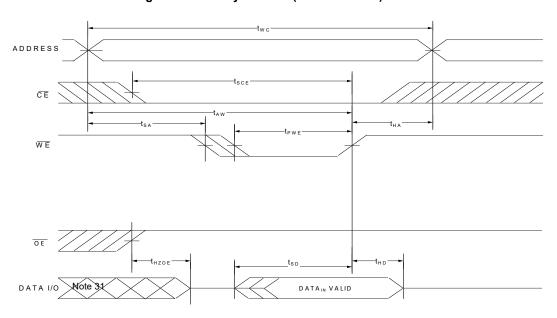



Figure 7. Read Cycle No. 2 (OE Controlled)[26, 27, 28]

^{25.} The device is continuously selected. $\overline{OE} = V_{IL}$, $\overline{CE} = V_{IL}$.

^{26.} $\overline{\text{WE}}$ is HIGH for read cycle.


^{27.} For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and CE_2 . When $\overline{\text{CE}}_1$ is LOW and CE_2 is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or CE_2 is LOW, $\overline{\text{CE}}$ is HIGH.

^{28.} Address valid prior to or coincident with $\overline{\text{CE}}$ LOW transition.

Switching Waveforms (continued)

Figure 8. Write Cycle No. 1 (WE Controlled)^[29, 30 31]

^{29.} For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and CE_2 . When $\overline{\text{CE}}_1$ is LOW and CE_2 is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or CE_2 is LOW, $\overline{\text{CE}}$ is HIGH.

^{30.} The internal write time of the memory is defined by the overlap of WE = V_{IL}, \overline{CE}_1 = V_{IL}, and CE_2 = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

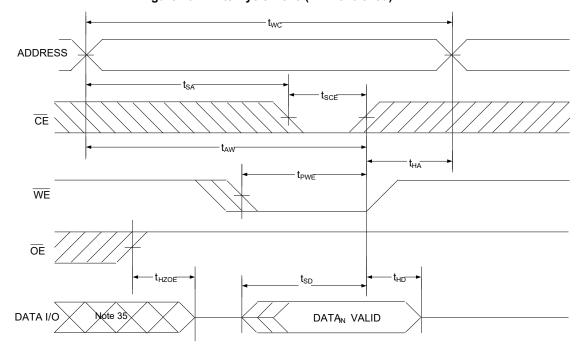
Data I/O is in the high-impedance state if \overline{CE} = V_{IH}, or \overline{OE} = V_{IH}.

^{31.} During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

ADDRESS

twc


twc

twc

than

Figure 9. Write Cycle No. 2 (WE Controlled, OE Low)[32, 33, 34, 35]

Figure 10. Write Cycle No. 3 (CE Controlled)[32, 33, 34]

- 32. For all dual chip enable devices, $\overline{\text{CE}}$ is the logical combination of $\overline{\text{CE}}_1$ and $\overline{\text{CE}}_2$. When $\overline{\text{CE}}_1$ is LOW and $\overline{\text{CE}}_2$ is HIGH, $\overline{\text{CE}}$ is LOW; when $\overline{\text{CE}}_1$ is HIGH or $\overline{\text{CE}}_2$ is LOW, $\overline{\text{CE}}$ is HIGH.
- 33. The internal write time of the memory is defined by the overlap of WE = V_{IL}, \overline{CE}_1 = V_{IL}, and CE_2 = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

 Data I/O is in high impedance state if \overline{CE} = V_{IH}, or \overline{OE} = V_{IH}.
- 34. The minimum write cycle pulse width should be equal to the sum of the $t_{\mbox{\scriptsize HZWE}}$ and $t_{\mbox{\scriptsize SD}}.$
- 35. During this period I/O are in the output state. Do not apply input signals.

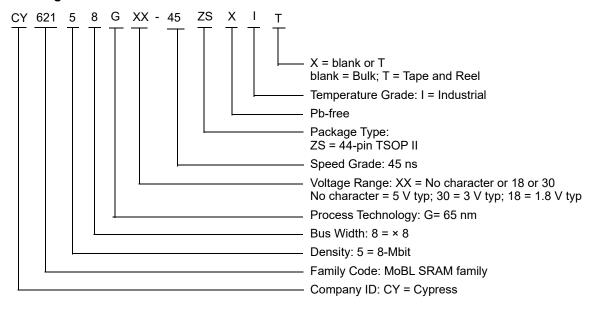
Truth Table - CY62158G/CY62158GE

CE ₁	CE ₂	WE	OE	I/Os	Mode	Power
Н	X ^[36]	X ^[36]	X ^[36]	High Z	Deselect / Power down	Standby (I _{SB2})
X ^[36]	L	X ^[36]	X ^[36]	High Z	Deselect / Power down	Standby (I _{SB2})
L	Н	Н	L	Data Out (I/O ₀ –I/O ₇)	Read	Active (I _{CC})
L	Н	Н	Н	High Z	Output disabled	Active (I _{CC})
L	Н	L	X	Data In (I/O ₀ –I/O ₇)	Write	Active (I _{CC})

ERR Output - MoBL

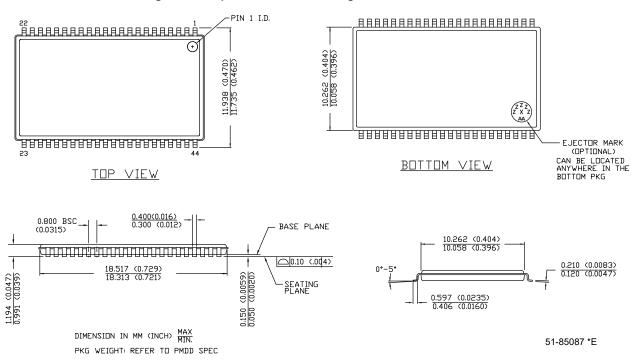
Output ^[37]	Mode	
0	Read operation, no single-bit error in the stored data.	
1	Read operation, single-bit error detected and corrected.	
High-Z	Device deselected / outputs disabled / Write operation	

Document Number: 002-29691 Rev. *A Page 13 of 19


Notes
36. The 'X' (Don't care) state for the chip enables refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.
37. ERR is an Output pin. If not used, this pin should be left floating.

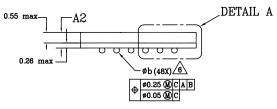
Ordering Information

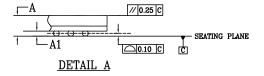
Speed (ns)	Ordering Code	Package Diagram	Package Type (all Pb-free)	Operating Range
	CY62158G30-45ZSXI	51-85087	44-pin TSOP II (Pb-free)	- Industrial
45	CY62158G30-45ZSXIT	31-03007		
	CY62158G30-45BVXI	51-85150	48-ball VFBGA	
	CY62158GE30-45BVXI	31-03130		


Ordering Code Definitions

Package Diagrams

Figure 11. 44-pin TSOP Z44-II Package Outline, 51-85087




(2X) 0.10 C (datum B) SE E В еE Α A1 CORNER 9 0 910 9 \triangle 000000 G SD0 0 0 0 0 0 00000 巾 00000 (datum A) 000000 000000 00000 еD

0.10 C (2X)

Figure 12. 48-Ball VFBGA $6 \times 8 \times$ 1.0 mm BV48/BZ48/VCF048 Package Outline, 51-85150

TOP VIEW

SIDE	VIEW

		DIMENSIONS	
SYMBOL	MIN.	NOM.	MAX.
Α	-	-	1.00
A1	0.16	-	-
A2	-	-	0.81
D		8.00 BSC	
E		6.00 BSC	
D1		5.25 BSC	
E1		3.75 BSC	
MD		8	
ME		6	
n		48	
Øь	0.25	0.30	0.35
eE		0.75 BSC	
eD	0.75 BSC		
SD	0.375 BSC		
SE		0,375 BSC	

NOTES:

- 1. DIMENSIONING AND TOLERANCING METHODS PER ASME Y14.5M-2009.
- 2. ALL DIMENSIONS ARE IN MILLIMETERS.
- 3. BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020.
- 4. @REPRESENTS THE SOLDER BALL GRID PITCH.

2 3 4 5 6

BOTTOM VIEW

5. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. n IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE

6 DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C.

7. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW "SD" OR "SE" = 0.

WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2.

"+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED BALLS.

A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS.

51-85150 *I

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description		
CE	Chip Enable		
CMOS	Complementary Metal Oxide Semiconductor		
I/O	Input/Output		
OE	Output Enable		
SRAM	Static Random Access Memory		
VFBGA	Very Fine-Pitch Ball Grid Array		
WE	Write Enable		
ECC	Error Correcting Code		

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
MHz	megahertz		
μA	microampere		
μs	microsecond		
mA	milliampere		
mm	millimeter		
ns	nanosecond		
Ω	ohm		
%	percent		
pF	picofarad		
V	volt		

Document History Page

Document Title: CY62158G/CY62158GE MoBL, 8-Mbit (1M × 8-bits) Static RAM with Error-Correcting Code (ECC) Document Number: 002-29691			
Rev.	ECN No.	Submission Date	Description of Change
*A	6814364	02/28/2020	Release to Web.

Document Number: 002-29691 Rev. *A Page 18 of 19

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

cypress.com/mcu

cypress.com/wireless

Products

Arm® Cortex® Microcontrollers

Automotive

Clocks & Buffers

Interface

Internet of Things

Cypress.com/automotive

cypress.com/clocks

cypress.com/interface

cypress.com/iot

cypress.com/memory

Microcontrollers

Wireless Connectivity

PSoC cypress.com/psoc
Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Code Examples | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2020. This document is the property of Cypress Semiconductor Corporation and its subsidiaries ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware product, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress shall have no liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. CYPRESS DOES NOT REPRESENT, WARRANT, OR GUARANTEE THAT CYPRESS PRODUCTS, OR SYSTEMS CREATED USING CYPRESS PRODUCTS, WILL BE FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATALOSS OR THEFT, OR OTHER SECURITY INTRUSION (collectively, "Security Breach"). Cypress disclaims any liability relating to any Security Breach, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from any Security Breach. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. "High-Risk Device" means any device or system whose failure could cause personal injury, death, or property damage. Examples of High-Risk Devices are weapons, nuclear installations, surgical implants, and other medical devices. "Critical Component" means any component of

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-29691 Rev. *A Revised February 28, 2020 Page 19 of 19