(infineon

SPI handler/driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This guide describes the architecture, configuration, and use of the serial peripheral interface (SPI)
handler/driver. This document explains the functionality of the driver and provides a reference to the driver's
API.

The installation, build process, and general information on the use of the EB tresos are not within the scope of
this document.

Intended audience

This document is intended for anyone who uses the SPI handler/driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the SPI handler/driver, explains the embedding in the
AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the SPI handler/driver details the steps on how to use the SPI handler/driver in your
application.

Chapter 3 Structure and dependencies describes the file structure and the dependencies for the SPI
handler/driver.

Chapter 4 EB tresos Studio configuration interface describes the driver's configuration.
Chapter 5 Functional description gives a functional description of all services offered by the SPI handler/driver.
Chapter 6 Hardware resources gives a description of all hardware resources used.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Table 1 Abbreviation

Abbreviation Description

API Application Programming Interface

ASClI American Standard Code for Information Interchange

ASIL Automotive Safety Integrity Level

AUTOSAR Automotive Open System Architecture

Basic Software Standardized part of software which does not fulfill a vehicle

functional job.

DEM Diagnostic Event Manager

DET Default Error Tracer

GCE Generic Configuration Editor
User guide Please read the Important Notice at the end of this document 002-23398 Rev. *O

www.infineon.com 2025-12-11

http://www.infineon.com/

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

About this document

Abbreviation Description

EB tresos Studio Elektrobit Automotive configuration framework

ISR Interrupt Service Routine

uc Microcontroller

MCAL Microcontroller Abstraction Layer

MPU Memory Protection Unit

PCLK Peripheral Clock

SPI Serial Peripheral Interface

SCB Serial Communication Block

UTF-8 8-Bit Universal Character Set Transformation Format

Related documents

AUTOSAR requirements and specifications

Bibliography

[1]
[2]
[3]
[4]

General specification of basic software modules, AUTOSAR release 4.2.2.
Specification of SPI handler/driver, AUTOSAR release 4.2,2.
Specification of standard types, AUTOSAR release 4.2.2.

Specification of default error tracer, AUTOSAR release 4.2.2.

Elektrobit automotive documentation

Bibliography

[5]

EB tresos Studio for ACG8 user's guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

[6]

Layered software architecture, AUTOSAR release 4.2.2.

User guide 2 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Table of contents

Table of contents

About this dOCUMENT....ccciiiiiiiiiiiiiriiiiiiiriiiriiiseiirsisrsestseisrssssessssssrssssesss 1
Table Of CONtENES....ciuuiiiiiiiiiiriiiiiiitiiiraitiitteiitaitseieseisraesnsessssssassrsss 3
1 GENEral OVEIVIEW c.cvuuireuirnnirnirneirseisracraessseisrssrsssnss 6
1.1 INtroduction tO the SPINANALEr/ATIVET ...ttt bae e e ssbae e e ssbareesnns 6
1.2 USEI PIOFIlE ettt ettt ettt b st b et et s bbb e b et et et et nesaees 6
1.3 Embedding in the AUTOSAR €NVIFONMENT.....c..ccuiiriririirierieieietriterestesrestestete e sseesessessessesseseeeenesaens 7
1.4 SUPPOIEA NANAWAIEeeieieciecieeseeeteete ettt e te et e et e e s e e s te s te s be s beessaeesaessseesseesseesseessnesseesnsanns 8
15 DeVElOPMENT ENVIFONMENT ...ttt ettt ettt sbe st ettt sseebesaesbessense e eneenesaees 8
1.6 Character Set and ENCOAINGcouiiiiriiieieteete ettt ettt et s et e bt et e sbe st et e sae et e sbesatentens 8
2 Using the SPI handler/driver....c.cciiciiiiiuiiininiieeciniiaccesiniisecssiisccsesisicsessssssccsssssssssssssssssssssssssssss 9
2.1 INStallation aNd Prer@QUISITES......uiiiiiieiieceeciece ettt se e s esee s te s te s be e baeeseessae s sessbasssasseas 9
2.2 CONFIGUNNG TNE SPLATIVET .ttt et sb ettt et st b bbbt et e e e ene s eee 9
2.2.1 ArCNITECTUIE SPECITICS euviiiitieietece ettt ettt et e e e e be e re et e s be et esbeesaensesseentenes 9
2.3 Adapting YOUT @PPLICATION .ceueiuiriieierteieieet ettt sttt et ettt ss s b sbesbesae s e e eneenesaens 9
2.4 SEArting the DUILA PrOCESS.....evuieiiiiieietetete ettt sttt ettt be st bbb et saeenes 10
2.5 Measuring StaCk CONSUMPTION......ccuiiiiiiiritrteerterteee ettt ettt sttt e st sa st et e saeebesbasaesaeessenees 11
2.6 MEMOTY MAPPINE weeuverreetenrertenieneertesstertesseetessesseesaesseestessesstesessesatessesaeesesstensesseentensesaeensessesneensesneenses 11
2.6.1 MemOory alloCation KEYWOIccuiiiiiieeieeceesteete ettt et sre e be e baesreesaaesatesta e baessaesneeenns 11
2.6.2 Restriction of Memory alloCationcoceererierierieieiee ettt 12
3 SEructure and dePENUENCIES.....ccuceierreieceeierrerrececacesreceecsecassessscsscassassecsscassasssssssassassasssssssasses 13
31 SEALIC ILES ettt ettt ettt b e bbbttt b e bbbt et et neeaeenes 13
3.2 CONFIGUIALION FIlES .ttt sttt b et et sb st e st et et e s e naenaenesaeanas 13
33 GENEIALEA FIlES ..ttt ettt ettt s b e sttt b e bbb ettt eneenesaeenes 13
3.4 DEPENAENCIES ...eueeteeeeeiesteetese st e e st e e teeee e et e aesse e e e sessaessessasssasesseasseaseessessesssessesseessensesssensesssenses 14
34.1 T e [Y7 ST PTS 14
3.4.2 MCU AEIVET c.eiteiieiteieeteet ettt ettt et ettt ettt et a e s bbb et et et et e st esesbesbesbebensententeneenesaeses 14
343 5110 2 5 17T TSRS 14
3.4.4 AUTOSAR Sttt stes e st ettt st b st e st e st et et et e st sseebessessesessententesesseesessessensensenseneesesaens 14
3.4.5 BSW SCREAULE ...ttt sttt ettt ettt s b s b st st e b et et e esesaeenes 14
3.4.6 B] = P PP OP PP PPPPPPRRPRRRE 14
3.4.7 DEM ettt ettt sttt et ettt ettt st b e sttt et e a e h e b b e b et et et et e a e R s b e b e b et et et et et eneeaeeaes 14
3.4.8 g oot (Lo TUN =T oo | (= TSP 15
3.4.9 DM A ettt et ettt et e e ettt e e e e e st a e e e e e e s e ar bt e e e e e se s arataeeeesee s nrraaaeeeesesnnnnee 15
4 EB tresos Studio configuration interface.....cccccceieiiiiiniinirniniiniiininciinienineineniacisnresiacsessancaeese 16
4.1 GENEral CONFIGUIATION w.e.viiiiiiiiecctc ettt sttt ettt et sb s bbbt et et et enesaeenes 16
4.2 SPIArIVEr CONFIGUIATION ..ottt ettt sb e bt ettt enes 16
42.1 Channel CONFIGUIAtION ...coueeuiriirieiiieietete ettt ettt ettt sb e s b bttt e e e e b ne 16
422 JOD CONFIGUIAtION ..ttt sttt ettt sb et 17
4.2.3 External device CONfigUIration......c.coueiririnireniee ettt 18
4.2.4 SEQUENCE CONFIGUIATION....eetirtiiitiieteteteeeeste ettt ettt ettt s sbe st e be b e s et e e eneenene 21
4.2.5 SPIDEM event parameter refErENCES......ovvvirieiecierertecertee ettt e e e e 22
4.2.6 SPI published INfOrMatioNcoiiciiriieeeee ettt be e a e s ee e 22
4.3 Vendor and driver SPecific PAramMELtErscocieiecieeeeceecereeee sttt 22
43.1 CONtAINET SPIGENEIAL..ccueiieiiiiiiiieeeeeteee ettt e sttt esbe st et et st e s e st e stesaeessessesssansasseensenns 22
43.1.1 SPIEITOrCalloOUTFUNCHION ... iiiiiitictcctceteeter et sre s bessra e s aaesrae s ae s beesaeesanesrnesssesssanns 22
43.1.2 SPINCIUAEFILE ...ttt ettt et e sa e st e b e sae st e sbesseessessesssensesnsensessnensans 22
4.4 (0 =Tl g g Yo Yo 011 USSR 23
User guide 3 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Table of contents

441 0T e [Y= RO PR 23
442 DET ettt ettt ettt et ettt ettt ettt e h e s a b bbbt ettt e a bbb et et et et e Rt e Rt Rt b e b et et et et et et enesaeenes 23
443 AUTOSAR OS...neiiteieteteteeeie st es s st ettt st e b st s b et et et et e st satebesbessesestententesesatesessensensensenteneesesaens 23
4.44 BSW SCREAULET ...ttt sttt s e st et ssbe e s e e st e st e e be e be e baesreesatesrtesntasasasnsasnseennes 23
5 FUNCHIONAl deSCriPtioN . cccuieieiiieiieiteriececencenreceecacestecsecascassessessscassasssssscsssassesssssssassassssssssssasse 24
5.1 Channels, jODS, aNd SEQUENCES......cceeciiriirieieeeeteetee et e e seeste e sre e s e s e s e essesseessessesssessesssessessesssenns 24
5.1.1 (01 0 F= YoV =] £ OO OO OO SPRRPRRR 24
5.1.1.1 LCT=T 0 =T - | A OO U RUUSPRPRRRON 24
5.1.1.2 Internally buffered ChannEels ... s 25
5.1.1.3 Externally buffered ChannelS.........ceeeeieececeeeeee ettt 25
51.1.4 DAta DUTFEIS ..ttt ettt b ettt ee 26
5.1.2 JODIS ettt b e bbbttt et b s b b et et et et e e eae s ne 26
5.1.3 SEUUENCES «eeteeeietieeeeeitteeeeirteeeeetteeeeessteessesteessssraessssssaessssstaesssssteessssstessssssseesssssseessssssaessssssaessnns 26
5.1.4 SCNEAULING ettt ettt sttt sb et et e e st s st be s b e sbebe st et eneenesaeesenne 27
5.2 [N CLUSTON 1ottt s te e e et e e be e st e e et e e te e be e beesbeesseessteestaanbeaasaeassesnseasseansesssaesseesstensanns 27
53 INTEIALIZATION ettt sttt ettt et b e s bbb et et e e et et nenaeas 27
5.4 RUNTIME r@CONTIGUIATION ...ttt ettt ettt sbe sttt esae e a e esesneas 27
5.5 APL Parameter CECKINGcoueitiiieietereetere sttt ettt ettt st st e be st et e sbe st e s be st e besatensenbasanensens 27
5.5.1 AUTOSAR specified deVeloOpmMENT @ITOIS.....ccviviieieieceeececeetese e re e se e sne e saenes 28
5.5.2 Vendor specific deVElOPMENT BITOISc.ccieiecieeeeieceeeete ettt tesbe e e b e e be e s e beesaenes 28
5.6 o To U Tatu oY =T 4 o] 3RS RUPRP 29
5.7 ST oL =] Loy TSRS 29
5.8 R (1T o33 1 Lo T [USSR 29
5.9 DEDUGZING SUPPOIT ..ttt st et sttt et e bt saesbesbe st este st ete st ese s st esessesbesensensenaeneeneesessens 29
5.10 EXecution time dePeNAENCIEScoieeiiecieeceececeee ettt te e e te e be e s e e st e eteete s baesbaesreesatasnsanas 29
5.11 DeViation frOM AUTOSARo oieeeteeeetesteetee et rte e et e e e e e tesbaesbesbe s e e b eeseensesbaensensesssensesssensesennsenses 30
5.12 CAVEATS ittt e s e s a e s b e e b e s s bt e s bnesabae s 30
6 HardWare r@SOUICES c..cuceurruiieereiruiiaectentaiesectuiraccsestasssessestsscsesssssssssessasssssssssssssessasssssssssasssssse 32
6.1 POIES AN PINS..iitiiiiiiiiciece ettt cre e ete et e st e st e e te e be e baesseesreesate s beeseesssesstesnseasseansaesaesseesssensanns 32
6.2 L1 0= PP R URRRR 32
6.3 F LT ¢ U] o) £ OO OUPOTRRTPI 32
6.4 DM A ettt ettt ettt et e e e sttt e e e e e s b et et e e e e e s e b bt e e e e e s e s sttt aeeeeeese s nnrataeeeesesnnnee 33
7 APPENAIX A — API ref@re@NCe .c.cuiuieiieieiicerenrecerasrecesessecosessecesassocsssssscsssssscssssssssssssscsssssssssassssssas 34
7.1 INCIUAE FILES.nenteiieeeeeet ettt sttt et ettt s e b s b e b e be b e naenaenteneenesaeas 34
7.2 D = N N 01T OSSP 34
7.2.1 S S AU TY P ittt e e e st e e bt e s ate e e be e s be e e bae e bta e e bae e baeeebae e baeeenaeeenraeanns 34
7.2.2 SPI_JODRESUITYPE ettt re s te s sbe s be e sbaessaesssesssesseeessnessnessnessnesssasssanns 34
7.2.3 DI _ S EGRESUIETYPE .ottt ettt ettt st e st e st e sae st e sbesae e sesse et e sesssessesasensensesssansenseensenes 34
7.2.4 S DatABU I TY PO ettt s sttt a e s et e s s e et e sae et enbesnnenseeseeneenns 35
7.2.5 SPI_NUMDEIOTDAtATYPE. .. eectectieeeeeeeteee ettt et e te s e et e te s e e ae e e st e se e e esessesssensesssensessasssenes 35
7.2.6 S _CNANNELTYPE ettt ettt et et s et et e s b st e ae e e e e s e et et e sae et e besaeensenseeneenee 35
7.2.7 Y1 [o] o) Y/ o LTS OO TP PUPRPPRRPPRR 35
7.2.8 SPI_SEQUENCETYPE weeeiiriiieiteiteeteete et et st et e st e st e st e ste s besba e saessaesstesasesasesssaeseessaesasessessessanns 35
7.2.9 SPI_HWUNIETYPE ettt sttt ettt st s e st s st e s be s b e s st e s st e st e sasesasaessaessaesseesanesasesasenas 36
7.2.10 SPI_ASYNCMOUETYPE c.viiiiiiieiiteeteete sttt sre st e se e s e e s aesre s tessba s beesbaesseesssesssesssasssasssaesseesssesssesssanns 36
7.2.11 S EX D OVICETY P ettt ettt ettt st st st st e s b e bt e s st e st e s b e s seesse e s st esatesabesabenabaeas 36
7.2.12 SPI_OVSVAlUETYPE eveiiiiieiitctcetcete sttt reessie e ste e sre e s e e sre s be s bassbaessaessaesssesssesssesssaessaessnessnesssesssanns 36
7.3 1000 3151 =1 1 £SO PP PP PR PP PPTN 37
7.3.1 g oY olo Yo 1= TS 37
User guide 4 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Table of contents

7.3.2 VZ<TaTo T g o LYol i ol =Y o] o ol Yo =L USRS 37
7.3.3 VErsion INFOIMAtION ..ccueiiieeeeeeeee ettt ettt e et e s e s e e e sse e s e sesseessesseensessneneenses 37
7.3.4 MOAULE INFOIMALION .ttt e e e e et e sre e e e bessnesesseessesseeneensas 38
7.3.5 APTSEIVICE IDS ..uuviieiiiieiiieiiteesteeesitesste e st e ssaeesteesssaessabeesbaeesssessssaesssseesssaesssaessssessssaesnssesssseesssaeenns 38
7.3.6 Vendor SPECIfiC API SENVICE IDS ...cueiciereeiereeeerieeeesteseetesteseestes e et essessaessessesssessesssessessesssensesnsenses 38
7.4 FUNCEIONS 1ttt et sre et e s st e e s ba e s bt e e s bee s baeessbaesssaessssaessseesssaeessaesssseesnsseenns 39
7.4.1 SNttt sttt et st s st s b e s bt e b e e s R e e st e s b e e b e e sa e raesseesanesarasaraeas 39
7.4.2 SPI_DEINIT ittt et e e st st st st s b e e b e s aaesa e e st e st e e b e e s e e raesreesanesaresaraens 40
7.4.3 SPI_WFITEIB ..ottt ettt e s be e s st e e s be e s abe e ssbaessssaessbaessaeesssasssaesnseessseenns 41
7.4.4 SPI_ASYNCTIANSIMIT ..eiiiiiiiiiitieienite st st eree et esteesteestestessessbassseessaesssesssesssesssesssaessaesssessesssesssasns 42
7.4.5 SPI_REAAIB ..ttt ettt re e s s e s e st e st a e be e st e e e r e e et e et e et e e be e baesreesreeeatesntaens 43
7.4.6 SPI_SEIUPEB. ..ttt e e e e s b e s be e s e e e e b e e s tbe e s bae e baeeebae e raeans 44
7.4.7 S GO S ATUS et tteeteeiecte ettt sttt sttt s e st s b e s b e e s b e e s r e e s r e s b e e b e e b e e beesreesaeesaresnraens 45
7.4.8 SPI_GEEJODRESUIL. ...ttt e e e be e be e st e s e e et e e beebe e be e baesseesreesatasntanas 46
7.4.9 SPi_GEtSEQUENCERESUILeeeveeieeeeieeeetee ettt ettt et e s e st e ste e e e ae s e e s e se s e essesseessesesseessenseessenes 47
7.4.10 SPI_GELVEISIONINTO ..ottt ettt et be s e ae e e et e be e e e tesssesesbeessansensaensenns 48
7.4.11 SPI_SYNCTIANSIMIT c.eiiiiieiiecette ettt ee st e e sbe e e stte e s beessabeessbeessseeeessaesssaesssaesnssesssseesssseenns 49
7.4.12 SPI_GETHWUNITSTATUS .eiteiieiiiriieterterrcsre ettt sr e sre s tessbe s beesbaessaessnesssesssaessasssaesseesssesssesssanns 50
7.4.13 Y o G- [o] O OO USRI 51
7.4.14 SPI_SELASYNCMOUE.....c. ettt ettt s et e et e st e ssesse e sesse s s e sesseessesneessensesssassessenssenes 52
7.4.15 SPI_GEtBUTEISTAtUS .eveeeeeieieeteeteeeee ettt e et te s e ae e et e s e s e s e sse et e sessaessenseensenes 53
7.4.16 Y o I =T 41 = (OO OO PO PR PRRUPPPRRPPRPRRPON 54
7.4.17 SPI_ChangEOVSSELLINGeevirririeieieieteteeeestesertet ettt ettt ettt st sb e s bt sae b et e e eaeeseee 55
7.5 SCHEAUIE FUNCLIONS ..ttt ettt e b e e et e s be et e be e e e beeseestesseensetessaensensesssanes 56
7.5.1 SPi_MainFUNCEION_HANAUNG c.cveriiieieieieeeereeee ettt sb et 56
7.6 Required callback fUNCLIONSccuviiieeeeeee ettt ae e nes 57
7.6.1 SPINOIfiCAation fFUNCHIONS ..ecveeicieteeece ettt ettt e b e e e b raeae e 57
7.6.1.1 SPi_JOBENANOLIfICAtION .eeeeveiecieececeeee ettt a e s e e ee e e se e e ennens 57
7.6.1.2 SPi_SeGENANOLIFICAtION ..eecveiricieieceeeeecee ettt te et et ebe et e ae s e beereennens 58
7.6.2] = PPNt 58
7.6.2.1 D] il =T 0 Yo 1 = o] (O USSR PPPPPPPR 58
7.6.3 D] PPN 59
7.6.3.1 DEM_REPOIEITOISTATUS ..eeiieiiiieeeiteeeectee et et eeee e e seee e s seee e s s e e e s smeeeessnenessssnneeesssnnnes 59
7.6.4 CallOUL FUNCHIONS ...ttt ettt et ettt s e et e sbesra e be e e et e baessensesssensensesssensenseensanns 59
7.6.4.1 g oY o= { Lo UL Y = TSR 59
8 Appendix B - Access register table......cccciieiiiiriiiiiniiieiiniiiiieiiinieiisiiiesiaiisestesisstsessasssessessascsens 61
8.1] O T PO PP PT R PSPUPPPPT 61
8.2 DIV ettt ettt e e s s et e e e s e s r b et e e e e e e s s b bt e e e e e e e s e s araaeeeese s nrraaaeeeeeessanrranaaeeesessnnn 69
REVISION NISTOIY...cuiiiiuiieiieieecanienierencencastosssssecastasssssscsscassssssssscasssssssssssssasssssssssssssassssssssssassssssssssassas 72
[0 1Tl =TT 1 T P Error! Bookmark not defined.
User guide 5 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

General overview

1

General overview

1.1 Introduction to the SPI handler/driver

The SPI handler/driver is a set of software routines, which enables you to support SPI communication on
special output pins of the CPU.

The SPI handler/driver provides services for reading from and writing to devices connected via SPI buses. The
SPI handler/driver provides access to SPI communication for multiple users (e.g., EEPROM, watchdog, and I/O
ASICs). Only SPI master mode and full-duplex operation are supported.

The SPI handler/driver provides three levels of scalable functionality as specified in the AUTOSAR Specification
of SPI handler/driver [2]:

Level 0 is a simple synchronous SPI handler/driver using a FIFO policy for multiple accesses.

Level 1 is a basic asynchronous SPI handler/driver supporting interruptible sequences and priority based
scheduling.

Level 2 is an enhanced SPI handler/driver supporting one hardware peripheral using synchronous transfers
as well as asynchronous transfers for the other peripherals.

The SPI handler/driver is not responsible for initializing or configuring hardware ports. This is done by the PORT
driver.

The SPI handler/driver conforms to the AUTOSAR standard and is implemented according to the AUTOSAR
Specification of SPI handler/driver [2].

1.2 User profile

This guide is intended for users with a basic knowledge of the following domains:

Embedded systems

C programming language
AUTOSAR standard

Target hardware architecture

User guide 6 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide Inﬂneon

TRAVEO™ T2G family
General overview

1.3 Embedding in the AUTOSAR environment

Application 1 Application 2 Application 3 Application n Application

Application
Abstraction
Layer

Runtime Environment

Service

System Memory Communication
Layer

Services Services Services

ECU

Onboard Memory Communication 1/O Hardware
Device Hardware Hardware
Abstraction Abstraction Abstraction

b) Abstraction
Abstraction Layer

Operation System

Microcontroller
Abstraction

uC Driver Memory Driver COM Driver 1/0 Driver
Layer

Microcontroller Type

Figure 1 Overview of AUTOSAR software layers

Figure 1 depicts the layered AUTOSAR software architecture. The SPI handler/driver (Figure 2) is part of the
microcontroller abstraction layer (MCAL), the lowest layer of basic software in the AUTOSAR environment.

For an exact overview of the AUTOSAR layered software architecture, see Layered software architecture [6].

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers

GPT Driver
Watchdog Driver
MCU Driver
Core Test
Flash Test
RAM Test
Internal Flash Driver
Internal EEPROM Driver
SPI Handler Driver
LIN Driver
CAN Driver
FlexRay Driver
Ethernet Driver
OCU Driver
ICU Driver
PWM Driver
ADC Driver
DIO Driver
PORT Driver

Microcontroller

Figure 2 SPI handler/driver in MCAL layer

002-23398 Rev. *O

User guide 7
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

General overview

1.4 Supported hardware

This version of the SPI handler/driver supports the TRAVEO™ T2G family. No special external hardware devices
are required.

The supported derivatives are listed in the release notes.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The modules Base, Dio, Make, Mcu, Port
and Resource are needed for proper functionality of the SPI handler/driver.

1.6 Character set and encoding

All source code files of the SPI driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 ... 0x7F) being used.

User guide 8 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Using the SPI handler/driver

2 Using the SPI handler/driver

This chapter describes all necessary steps to incorporate the SPI handler/driver into your application.

2.1 Installation and prerequisites

Note: Before continuing with this chapter, see the EB tresos Studio for ACG8 user's guide [5]. You can find

the required basic information about the installation procedure of EB tresos AUTOSAR
components and the use of the EB tresos and the EB tresos AUTOSAR build environment. You will
also find information on how to set up and integrate your own application within the EB tresos
AUTOSAR build environment there.

The installation of the SPI handler/driver corresponds with the general installation procedure for EB tresos
AUTOSAR components given in the documents mentioned above.

This document assumes that you have set up your project using the application template. This template
provides the necessary folder structure, project, and makefiles needed to configure and compile your
application within the build environment. You must be familiar with the use of the command shell.

2.2 Configuring the SPI driver

The SPI handler/driver can be configured with any AUTOSAR-compliant GCE tool. Save the configurationin a
separate file, for example, Spi.epc. For more information about the SPI handler/driver configuration, see
chapter 4 EB tresos Studio configuration interface.

2.2.1 Architecture specifics

e SpiSetupDelay: Specifies the timing to start transmission after chip select is activated.
e SpiHoldDelay: Specifies the timing of chip select to be inactive after a transmission is finished.
e sSpiDeselect: Specifies the timing of chip select to be active again after being inactive.
e SpiUseDma: Enables or disables the DMA channel for communication.

e SpiUseFifo: Enables ordisables the transmission using the FIFO functionality.

e SpiDmaChannelRx: Specifies the DMA channel to be used for receiving data.

e SpiDmaChannelTx: Specifies the DMA channel to be used for sending data.

e SpiForceOverwrite: Enables or disables forced overwrite of the control register.

e SpiClockRef: Specifies the frequency for the specific transmission unit.

e SpiErrorCalloutFunction: Specifies the error callout function.

e SpilncludeFile: Specifies afile that must be included by Spi_Externalinclude.h.

2.3 Adapting your application

To use the SPI handler/driver in your application, include the header files of SPI and PORT driver by adding the
following lines of code in your source file:

#include "Mcu.h"™ /* AUTOSAR MCU Driver */

#include "Port.h" /* AUTOSAR PORT Driver */

#include "Spi.h"™ /* AUTOSAR SPI Handler/Driver */

This publishes all required function and data prototypes and symbolic names of the configuration into the
application.

User guide 9 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Using the SPI handler/driver

To use the SPI handler/driver, the appropriate port pins, SCB clock setting and SPI interrupts must be
configured in PORT driver, MCU driver, and OS. For detailed information, see chapter 6 Hardware resources.

Initialization of MCU, PORT, and SPI handler/driver needs to be done in the following order:

Mcu Init (&Mcu Configl[0]);
Port Init(&Port Configl[0]);
Spi_ Init (NULL_ PTR) ;

The function Port Init () is called with a pointer to a structure of type Port ConfigType, whichis
published by the PORT driver itself.

If level 1 or level 2 functionality is used, an interrupt service routine must be configured in the AUTOSAR OS for
each asynchronous SPI peripheral as described in section 6.3 Interrupts.

When using level 2 functionality and the "polling" asynchronous mode, you must call the

Spi MainFunction Handling function cyclically. This can either be done by configuring the BSW scheduler
accordingly or by calling the Spi MainFunction Handling function from any other cyclic task. Note that the
"polling" mode is the default mode after initialization of the SPI handler/driver when using level 2 functionality.
To set "interrupt" mode instead, use the spi_SetAsyncMode APl function as described in section 7.4.14
Spi_SetAsyncMode.

All required input clocks for the configured hardware units (SCB) must be activated prior to initialization of the
SPI handler/driver. See section 3.4.2 MCU driver.

Your application must provide the notification functions and its declarations that you configured. The file
containing the declarations must be included using the SpiDriverConfiguration/SpiIncludeFile or
SpiDriverConfiguration/SpiUserCallbackHeaderFile parameter. The SpiJobEndNotification
function and the SpiSegEndNotification function take no parameters and have void return type:

void MyNotificationFunction (void)

{

/* Insert your code here */

}

The notification function is called from an interrupt or polling context and synchronous transmission process.

2.4 Starting the build process

Do the following to build your application:
Note: For a clean build, use the build command with target ciean all. before (make clean all).

1. Onthe command shell, type the following command to generate the necessary configuration-dependent
files. See 3.3 Generated files.

> make generate

2. Type the following command to resolve required file dependencies:
> make depend

3. Type the following command to compile and link the application:
> make (optional target: all)

User guide 10 002-23398 Rev. *0
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Using the SPI handler/driver

The application is now built. All files are compiled and linked to a binary file which can be downloaded to the
target hardware.

2.5 Measuring stack consumption

Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with a dedicated compiler option. The executable
file built in this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement.

-DSTACK _ANALYSIS ENABLE

2. Type the following command to clean library files.

make clean 1lib
3. Follow the build process described in 2.4 Starting the build process.
4. Follow theinstructions in the release notes and measure the stack consumption.
2.6 Memory mapping

The Spi_MemMap.h file in the S(TRESOS_BASE)/plugins/MemMap_TS_T40D13MO0IOR0/include directory is a
sample. This file is replaced by the file generated by MEMMAP module. Input to MEMMAP module is generated
as Spi_Bswmd.arxml in the S(PROJECT_ROOT)/ output/generate_swcd/swcd directory of your project folder
2.6.1 Memory allocation keyword
e SPI START SEC CODE ASIL B/SPI STOP SEC CODE ASIL B

The memory section type is CODE. All executable code is allocated in this section.
e SPI START SEC CONST ASIL B UNSPECIFIED/SPI STOP SEC CONST ASIL B UNSPECIFIED

The memory section type is CONST. All configuration data is allocated in this section.

e SPI_START SEC VAR NO INIT ASIL B UNSPECIFIED/
SPI_STOP_SEC_ VAR NO_INIT ASIL B UNSPECIFIED

The memory section type is VAR. All non-initialized variables with non-alignment are allocated in this section.
e SPI START SEC VAR NO INIT ASIL B 32/SPI STOP SEC VAR NO INIT ASIL B 32

The memory section type is VAR. The variable for internal buffers of transmission with 4 bytes alignment are
allocated in this section.

e SPI START SEC VAR INIT ASIL B 8/SPI STOP SEC VAR INIT ASIL B 8

The memory section type is VAR. The initialized variable for number of queued sequences is allocated in this
section.

e SPI_START SEC VAR INIT ASIL B UNSPECIFIED/SPI_STOP SEC VAR INIT ASIL B UNSPECIFIED

The memory section type is VAR. All initialized variables with non-alignment are allocated in this section.

User guide 11 002-23398 Rev. *0
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Using the SPI handler/driver

2.6.2 Restriction of memory allocation

The CPU has an individual cache that is not shared with the DMA bus master. Therefore, you must ensure that
the data related to DMA are in specific regions accessible to the DMA. In addition, some sections must be
allocated in a specific memory region. This driver does not support the use of data related to DMA placed in
CPU's tightly coupled memories (TCMs) and internal video RAM (VRAM).

e The section that contains external buffers (EB) used for RX:
- When using DMA for EB reception:

The section must be allocated to a user-specific memory region configured by the CPU's memory protection
unit (MPU) as non-cache-able.

- When not using DMA or the EB is not used for DMA reception:
No restriction.

e The section that contains external buffers (EB) used for Tx:
- When using DMA for EB transmission:

The section must be allocated to a user-specific memory region configured by the MPU as write-through or
non-cache-able. For performance, it is recommended to allocate the section to non-cache-able.

- When not using DMA or the EB is not used for DMA transmission:
No restriction.

e Thesection surrounded by SPT START SEC VAR NO INIT ASIL B 32
/SPI_STOP SEC VAR NO INIT ASIL B 32

- When using DMA without internal buffers (IB):

The section must be allocated to a user-specific memory region configured by the MPU as write-through or
non-cache-able. For performance, it is recommended to allocate the section to non-cache-able.

- When using DMA with internal buffers (IB):
The section must be allocated to a user-specific memory region configured by the MPU as non-cache-able.
- When not using DMA:

No restriction of memory allocation.

Note: This restriction is applied only to Cortex®-M7 devices because they include TCMs, VRAM and inner
cache. There is no restriction when using Cortex®-M4 devices.
All buffers accessed by DMA require 4-byte alignment.

User guide 12 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Structure and dependencies

3 Structure and dependencies

The SPI handler/driver consists of static, configuration, and generated files.

3.1 Static files

e S(PLUGIN_PATH)=$(TRESOS_BASE)/plugins/Spi_TS_*is the path to the SPI handler/driver plugin.

e S(PLUGIN_PATH)/lib_src contains all static source files of the SPI handler/driver. These files contain the
functionality of the driver that does not depend on the current configuration. The files are grouped into a
static library.

e S(PLUGIN_PATH)/src comprises configuration-dependent source files or special derivate files. Each file will
be rebuilt when the configuration is changed.

All necessary source files will automatically be compiled and linked during the build process and all include
paths will be set if the SPI handler/driver is enabled.

e S(PLUGIN_PATH)/include is the basic public include directory needed by the user to include Spi.h.

e S(PLUGIN_PATH)/autosar directory contains the AUTOSAR ECU parameter definition with vendor,
architecture and derivative-specific adaptations to create a correct matching parameter configuration for
the SPI handler/driver.

3.2 Configuration files

The configuration of the SPI handler/driver is done via EB tresos Studio. The file containing the SPI
handler/driver's configuration is named Spi.xdm and is in the directory S(PROJECT_ROOT)/config. This file
serves as the input for the generation of the configuration-dependent source and header files during the build
process.

3.3 Generated files

During the build process, the following files are generated based on the current configuration description. They
are in the output/generated sub folder of your project folder.

e include/Spi_Cfg.h

e include/Spi_Cfg_Der.h

e include/Spi_Externallnclude.h

e src/Spi_PBCfg.c

e src/Spi_PBCfg_Der.c

e src/Spi_lrg.c

e src/Spi_MainFunction_Handling.c

Note: Generated source files need not to be added to your application make file. These files will be
compiled and linked automatically during the build process.

e swcd/Spi_Bswnd.arxml

Note: Additional steps are required for the generation of BSW module description. In EB tresos Studio,
follow the menu path Project > Build Project and click generate_swcd.

User guide 13 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Structure and dependencies

3.4 Dependencies

3.4.1 PORT driver

Although the SPI handler/driver can be successfully compiled and linked without an AUTOSAR-compliant PORT
driver, the latter is required to configure and initialize all ports. Otherwise, the SPI handler/driver will show
undefined behavior. The PORT driver needs to be initialized before the SPI handler/driver is initialized.

3.4.2 MCU driver

The MCU driver needs to be initialized and all MCU clock reference points referenced by the hardware units
(SCB) via the configuration parameter spiClockRef must have been activated (via calls of MCU API functions)
before initializing the SPI handler/driver. See the MCU driver's user guide for details.

Note that the clock, prescaler, or PLL settings are controlled by the MCU driver. There are no shared resources
with the SPI handler/driver. Depending on the configuration, changes in the clock settings may affect the
operation of the SPI handler/driver.

3.4.3 DIO driver

The SPI handler/driver allows you to optionally control chip select by the software using a GPIO pin. This can be
configured by setting the spiCsselection parameter of an external deviceto cs vIa GPIO.In this case, the
SPI handler/driver uses the DIO driver to control the DIO channel configured in the SpiCsIdentifier
parameter for chip select operation.

3.44 AUTOSAR OS

The AUTOSAR operating system handles the interrupts used by the SPI handler/driver. See section 6.3
Interrupts for more information.

3.4.5 BSW scheduler

The BSW scheduler handles the critical sections that are used by the SPI handler/driver.

3.4.6 DET

If default error detection is enabled in the SPI handler/driver configuration, the DET needs to be installed,
configured, and integrated into the application as well.

This driver reports DET error codes as instance 0.

3.4.7 DEM

If the DEM event report is enabled in the SPI module configuration, the DEM needs to be installed, configured,
and integrated into the application as well.

To enable DEM support in the SPI handler/driver, the SPT_E HARDWARE ERROR production error needs to be
defined in the DEM configuration in the SpiDemEventParameterRefs container:

User guide 14 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Structure and dependencies

3.4.8 Error callout handler

The error callout handler is called on every error that is detected, regardless of whether default error detection
is enabled. The error callout handler is an ASIL safety extension that is not specified by AUTOSAR. It is
configured via the configuration parameter SpiErrorCalloutFunction.

3.4.9 DMA

DMA is supported for some hardware instances (see the datasheet of the subderivative for details). If a
hardware instance does not support DMA and it is configured to use DMA, an error will be generated.

The SPI module does not modify the global status of the DMA hardware. You must ensure that DMA is globally
enabled before using the DMA feature of the SPI.

User guide 15 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of this delivery. For further information, see EB tresos Studio for ACG8 user's guide [5].

4.1 General configuration

The module comes preconfigured with default settings. You must adapt these to your environment when
necessary.

e SpiDmaErrorHandlingPolling specifies the DMA error handling mode. When enabled in the interrupt
mode, the DMA error is handled by the polling mode.

e SpiCancelApi enables ordisables the cancel API function.
e SpiChannelBuffersAllowed isthe allowed buffers type to be used.
- 0:Internal buffers only
- 1:External buffers only
- 2:Both buffers
e SpiDevErrorDetect enables or disables the DET functionality for the SPI handler/driver.
e SpiHwStatusApi enables ordisables the hardware status APl function.
e SpiInterruptibleSeqgAllowed enables ordisablesthe interruptible sequences.

If sSpiLevelDeliveredissetto'l' or'2', this parameter is editable.

e SpiLevelDeliveredisthe level of driver to be used.
- 0: Level 0 simple synchronous mode
- 1:Level 1 basic asynchronous mode
- 2:Level 2 enhanced mode

e SpiSupportConcurrentSyncTransmit specifies whether concurrent Spi SyncTransmit calls for
different sequences is supported.

e SpiUserCallbackHeaderFile specifies the header file names that will be included by the SPI driver.
e SpiVersionInfoApi specifies whether the API function Spi GetVersionInfoisavailable.

4.2 SPI driver configuration

e SpiMaxChannel is notused. Itis calculated and generated by the generator automatically.

e SpiMaxJob is notused. Itis calculated and generated by the generator automatically.

e SpiMaxSequence is notused. Itis calculated and generated by the generator automatically.

4.2.1 Channel configuration

Note that the channel name and ID of a channel must be unique.

e SpiChannel1disthe ID for the channel. Itis used as a parameter for APl functions.
Note: Channel IDs must be zero-based and consecutive.

e SpiChannelType is the type of buffering to be used for this channel.
- 1IB:Internal buffering
- EB: External buffering

Note: Aselectable value depends on the SpiChannelBuffersAllowed setting.

User guide 16 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

e SpiDataWidth isthe data width setting for transmission in bits.
Note: List of values available for configuration depends on the subderivative.

Note: If SpiDataWidth=8-bit and the total data is more than 32 bytes, the data is divided into several
portions; the SPI driver sends each data portion to FIFO. So, if the SPI interrupt is blocked by
another interrupt or the main function is not being called frequently, FIFO empty occurs and CS
will be de-asserted. To avoid this situation, do one of the following;

- Set the SPI interrupt as a high-priority interrupt
- Call Spi_MainFunction_Handling frequently

- Set the SPI baudrate low

- Use SpiDataWidth=16-bit/32-bit.

- Use DMA (SpiUseDmay)

e SpiDefaultData is the default value setting for transmission.
Note: The configured value must be within the range configured by SpiDatawidth.
Note: If spiDefaultDatais disabled, the default value setting is 0.

e SpiEbMaxLength is the maximum size of a data buffer (Range: 1 to 65535); type Spi NumberOfDataType.

If EBis selected as SpiChannelType and 1 or 2 is selected as SpiChannelBuffersAllowed, this parameter
is editable.

e SpiAlignedBuffer requires a data-width-aligned external buffer

If a data-width-aligned buffer is required, spi Setupks will check the assigned data buffer. The required 1-,
2-, or 4-byte alignment depends on the declared data width.

The alignment is required to allow DMA-supported transmission of the channel.
e SpiIbNBuffers isthe size of the data buffers (Range: 1 to 65535; type Spi NumberOfDataType.

If IBis selected as SpiChannelType and 0 or 2 is selected as SpiChannelBuffersAllowed is, this
parameter is editable.

Note: Maximum size differs according to SpiDatawidth. Maximum size is 65535 if SpiDatawidthis 8
bits or less. Maximum size is 32767 if SpiDatawidth is 9 bits to 16 bits. Maximum size is 16383 if
SpiDataWidthis 17 bits or more.

e SpiTransferStart isthe bitordering for transmission.
- LSB: Leastsignificant bit first
- MSB: Most significant bit first

4.2.2 Job configuration

Note that the name and ID of a Job must be unique.

e SpiHwUnitSynchronous isthe job setting for synchronous or asynchronous transmission.
- SYNCHRONOUS: Synchronous
- ASYNCHRONOUS: Asynchronous

Note: If the parameter is not set, SpiJob uses the driver also in an asynchronous way.

User guide 17 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

Note: All spiJdob parameters that belong to the same external device specified by
SpiDeviceAssignment Will have the same SpiHwUnitSynchronous setting.

e SpiJobEndNotification specifiesthe function that will be called by the driver on completion of the job.
You must implement this function.

If SpiJdobEndNotification is blank, the function is not called.
If sSpiJobEndNotification is disabled, the function is not called.

e SpiJdobIdisthe ID of the job. This value will be assigned to the following symbolic names:
- The symbolic name derived from the spiJob container short name.
- The symbolic name derived from the SpiJob container short name prefixed with "spi ".
- The symbolic name derived from the SpiJob container short name prefixed with "SpiConf SpiJob ".

Note: Job IDs must be zero-based and consecutive.

e SpiJobPriorityisthe priority for the job; priorities lie in the range of 0 to 3, 0 being the lowest.
e SpiDeviceAssignment specifies the external device to be used for the job.
e SpiChannellist references to SPI, the channels, and their order within the job.

- SpiChannelIndex: specifies the order of channels within the job.

Note: SpiChannelIndex must have the same value as the index of the actual entry in
SpiChannellList.

- SpiChannelAssignment: specifies a list of channels associated with this Job.

Note: The spibatawidth for each channel that is assigned in one job must have the same width when
using the peripheral chip select (SpiEnableCs =enabled and SpiCsSelection=CS_VIA_
PERIPHERAL_ENGINE).

Note: SpiTransferStart foreach channel that is assigned in one job must have the same first
starting bit

Note: The total size of all channels’ data buffers (SpiEbMaxLength and SpiIbNBuffers) must not
exceed 65535 bytes.

Note: The bytes may be a multiple of units depending on the spiDatawidth entry.

If spiDeviceAssignment selects an external device with DMA support, the channels of the job
must allow buffer alignment even if the data width declared is 8 bits or less.

4.2.3 External device configuration

e SpiForceOverwrite enables ordisables forced overwrite of the control register. When this parameter is
enabled, control information in the control register is overwritten even if the transfer is to the same external
device.

e SpiClockRef isthe reference to the clock source configuration, which is set in the MCU driver
configuration.

Note: During configuration, an applicable clock will be selected. The runtime system is responsible for
activating the selected configuration before using the external device.

User guide 18 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

e SpiBaudrate isthe communication baud rate. This parameter allows using a range of values, from the
point of view of the configuration tools, from Hz up to MHz. The valueis in Hz.

Note: The hardware supports discrete baud rates in a range depending on the frequency of source clock

as follows:
(SpiClockRef.McuClockReferencePointFrequency / (0OVSValue+l)),
OovSvValue=3,4,5,..,15

Note: You can enter any baud rate value in this range, without respecting the hardware support of the
concrete baud rates. The code generator will automatically select the next lower allowed baud
rate without reporting a warning.

The tresos system supports checking and selecting the real baud rate. After entering the expected
baud rate, you can let the system calculate its exact value. If the given baud rate cannot be
supported, the calculation makes a weighted selection between the next higher or lower baud
rates. This weighting prefers four times more deviation for the lower baud rate selection than the
higher one. The configuration will support this calculated baud rate.

Before calculation, the clock reference point must be selected and correctly configured. The
calculation also works well if the given baud rate is outside the accepted range. In this case, the
highest or lowest accepted baud rate will be selected.

e SpiEnableCs enables or disables the chip select handling functions. If this parameter is enabled,
SpiCsSelection provides further details of the type of chip select control; if disabled, spicsSelection
isignored.

Note: Even if this parameter is set to disable, the SCB hardware function internally outputs
SPI SELECTO. Make sure SPI SELECTO is not output to the outside in the Port driver.

e SpiCsSelection specifies if the chip select is handled automatically by the SCB hardware function or via
general-purpose 1/0.
- CS_VIA GPIO:Handled via general-purpose I/O by the SPIdriver.
- CS_VIA PERIPHERAL ENGINE:Handled automatically by the SCB hardware function. The parameters
SpiSetupDelay, SpiHoldDelay, and SpiDeselect take effect on the chip select signal only in this

mode.
Note: When cs viaA Gprrois selected for this parameter, the SCB unit internally outputs SPI_SELECTO.
Make sure SPI_SELECTO is not output to the outside in the Port driver.
Note: If DMA is not used for SCB, the chip select might be de-asserted during a job transmission. To avoid

this situation, do either of the following;

- Use CS_VIA_GPIO (SpiCsSelection)

- Use DMA (SpiUseDmay)

- Use data, which is 32 elements or less, for a job

e SpiCsIdentifier specifiesthe chip select pin allocated to this Job. Available pins depend on the setting
of SpiCsSelection:
- ¢s_via Gp10:all configured Dio channels are listed
- CS_VIA PERIPHERAL ENGINE:SP/_SELECTO...SPI_SELECT3, depending on the configured SCB

If spiEnablecCs is enabled, this parameter is editable.

e SpiHwUnit isthe hardware unitto be used for this external device.

User guide 19 002-23398 Rev. *0
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

Note:

Note:

SCBO: SCB Channel 0
SCB1:SCB Channel 1

SCBn: SCB Channel n

Selectable hardware units depend on the subderivative.

If the same spiHwUn1it is set to multiple SpiExternalDevice containers, note the settings of
the following parameters.

The chip select pin must be set to each SpiCsIdentifier.

If multiple spiExternalDevice share the same SCB, the same value must be set for the
following parameters:

- SpiCsSelection

- SpiEnableCs

- SpiDmaChannelRx

- SpiDmaChannelTx.

If multiple SpiExternalDevice share the same SCB and SpiCsldentifier, the same value must be set
for the following parameters:

- SpiDataShiftEdge

- SpiShiftClockldleLevel

- SpiCsPolarity

- SpiSetupDelay

- SpiHoldDelay.

SpiCsPolarity specifies the active polarity of the chip select.

If spiEnableCs is enabled, this parameter is editable.

L.owW: Low level

- HIGH: High level

e SpiDataShiftEdge specifies the data shift edge.
- LEADING: Leading edge
- TRAILING: Trailing edge

If sSpiDataShiftEdge is setto LEADING, the spiSetupDelay must be configured such that the sampling of
the first bit takes place after the chip select pin becomes active.

e SpiShiftClockIdleLevel specifiesthe shift clockidle level.

LowW: Low level

- HIGH: High level

e SpiTimeClk2Cs allows using a range of values from 0 up to 100 microseconds. This parameter is not used
and not editable.

e SpiSetupDelay specifies the time in Spi serial clock count to start the transmission after chip select is

activated.

This parameter is only enabled, if SpiEnableCs is enabled. The parameter is editable and effective on the
signal only if a hardware-controlled chip select, i.e., if spiCsSelectionis set to
CS VIA PERIPHERAL ENGINE.

Note:

User guide

This parameter will be selected from the selection list.
Allowed value depends on SpibataShiftEdge

20 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

e SpiHoldDelay specifies the time the Spi serial clock count of chip select takes to become inactive after the
transmission is completed.

This parameter is only enabled, if SpiEnableCs is enabled. It is only editable and effective on the signal if a
hardware-controlled chip select, i.e., if SpiCsSelectionissettoCs VIA PERIPHERAL ENGINE.

Note: This parameter will be selected from the selection list.
Allowed value is depend on SpibataShiftEdge

e SpiDeselect specifies the time chip select takes to become active again after it is inactive. This parameter
is not used and is not editable.

e SpiUseFifo enables ordisables the transmission using the FIFO functionality. This parameter is fixed to
enable and not editable.

Note: FIFO transferable max entries depend on the subderivative. It is Max/4 entries.

e SpiUseDma determines whether the DMA controller is used to handle transfers for the specified peripheral.

If DMA is used for a peripheral, the two configuration parameters, SpibmaChannelsRkx and
SpibmaChannelTx, must be set to specify the DMA channel for Rx and Tx:

Note: The DMA controller is used only for asynchronous transmission.

Note: DMA operation is not supported for all hardware instances. The configurator will report an error if
SpiUseDma is enabled and the selected hardware instance does not support DMA transfer.

- SpiDmaChannelRx specifies the DMA channel to be used to handle specified peripheral reception.
- SpiDmaChannelTx specifies the DMA channel to be used to handle specified peripheral transmission.

4.2.4 Sequence configuration
Note that the name and ID of a sequence must be unique.

e SpilInterruptibleSequence specifies whether the sequence can be interrupted, i.e., jobs from another
sequence may run before the jobs for this sequence depending on the job priorities set.

e IfspiInterruptibleSeqAllowed ischecked, this parameter is editable.

e SpiSegEndNotification specifiesthe function that will be called by the driver on completion of the
sequence. You need to implement this function.

e If SpiSeqEndNotification isblank,the function is not called. If SpiSegEndNotification is disabled,
the function is not called.

e SpiSequenceIdisthelD forthe sequence to be used as a parameter for APl functions.

Note: Sequence IDs must be zero-based and consecutive.

e SpiJobAssignment specifies a list of jobs associated with this sequence.

Note: Jobs must be ordered in the descending order of their priorities.
Note: The SPI sequence must not mix synchronous and asynchronous jobs.
User guide 21 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

Note: The priorities of a job can only be between 0 (lowest) and 3 (highest); therefore, it is not possible to
have more than four jobs in a sequence with differing (decreasing) values. Jobs with equal priority
will be processed in the order of configuration in the sequence.

4.2.5 SPI DEM event parameter references

This is the container holding the references to DemEventParameter elements that are invoked using the
Dem ReportErrorStatus APlif the corresponding error (SPI_E HARDWARE ERROR) OCCUS.

e SPI_E HARDWARE ERROR is the reference to the DemEventParameter which will be issued when the
hardware error has occurred.

4.2.6 SPI published information

This is container holding all SPI-specific published information parameters.

e SpiMaxHwUnit specifies the maximum number of different SPI hardware microcontroller serial peripherals
(units/buses) available and handled by this SPI handler/driver module. This value is dummy. See the
hardware data sheet for the actual number of units.

4.3 Vendor and driver specific parameters
4.3.1 Container SpiGeneral

4.3.1.1 SpiErrorCalloutFunction
Description

Error callout function. Syntax:

void ErrorCalloutHandler
(
uintl6 ModuleId,
uint8 Instanceld,
uint8 ApiId,
uint8 ErrorId

)

The error callout function is called on every error. The ASIL level of this function limits the ASIL level of the SPI
handler/driver.

Type

FunctionNameParamDef

4.3.1.2 SpilncludeFile

Description

Alist of file names that will be included within the driver. Any application-specific symbol that is used by the Spi
configuration (e.g., error callout function) should be included by configuring this parameter.

Type
StringParamDef

User guide 22 002-23398 Rev. *0
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

4.4 Other modules

4.4.1 PORT driver

The pins given in section 6.1 Ports and pins must be configured in the PORT driver.

The trigger multiplexer given in section 6.4 DMA and trigger multiplexer must be configured in the PORT driver.

4.4.2 DET

DET must be configured, if default error detection is activated.

4.4.3 AUTOSAR OS

The SPI handler/driver's interrupts (listed in section 6.3 Interrupts) must be configured in the AUTOSAR
operating system.

Note: The AUTOSAR OS must only configure those interrupts that are used by the SPI handler/driver.

4.4.4 BSW scheduler

The SPI handler/driver uses the following services of the BSW scheduler (SchM) to enter and leave critical
sections

e SchM Enter Spi SPI_EXCLUSIVE AREA 0 (void)
e SchM Exit Spi SPI_EXCLUSIVE AREA 0 (void)

You must ensure that the BSW scheduler is properly configured and initialized before using the SPI services.

The exclusive area must prevent all tasks or interrupts from calling any SPI API function or SPI interrupt service
routine.

User guide 23 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide

TRAVEO™ T2G family
Functional description

(infineon

5 Functional description

The SPI handler/driver may be used with three different levels of functionality; level 0 offers basic synchronous
transmission, level 1 offers asynchronous transmission with job scheduling between multiple sequences, and
level 2 offers enhanced features handling both synchronous and asynchronous transmissions. The basic
operation of the driver is based on the configuration of channels, Jobs, and sequences. These are described in
more detail in this chapter

5.1 Channels, jobs, and sequences

The SPI handler/driver supports one or more channels, Jobs, and sequences to drive different kinds of
hardware devices. Data transmission depends on the configuration of these.

Figure 3 shows the correlation between channel, Job, and sequence.

Seguence a > Seguence b »

linkage linkage

i4—Chan x—™

+——lobn ——

i4—— Chany —»

Job m

Jobk ——————

4—Chan z ——»

4—Chan w—»e——Chan v —»

Job |

Chan u

(A U
[oleloofofolo]o]o]e] oopofofo]o
clclcloeeolofe]e] ololoefe]o

A A
plefofeloleeelo]o] plofefoloo
plofofefolefeo]o]e] olofofpfolo

Figure 3 Correlation between sequences, jobs, and channels
5.1.1 Channels
5.1.1.1 General

A channel defines a data channel that can be used to send data to a hardware device. Each channel has a
unique identifier. It is possible to have more than one channel set up for one hardware device.

For instance, the following are the channels for an EEPROM device on SPI:

e Channel for command

User guide 24 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Functional description

e Channel for address
e Channel for data

Buffers for the different channels set up can have different sizes and can be located internally in the driver or
externally in your application. These are referred to as internally buffered (IB) or externally buffered (EB)
channels.

5.1.1.2 Internally buffered channels

Internal buffers (IB) are used for small data transfer devices and daisy chain implementations. The maximum
size is defined by Spi_NumberOfDataType. The actual size of the IB to be used must be set in the configuration.
This is then fixed for all transmissions using this channel.

The SPI handler/driver provides a transmit buffer for each IB channel. Before starting of a transmission, data
needs to be written to the buffer by using the spi writeIB function. After that, a synchronous or
asynchronous transmission can be started by using Spi SyncTransmit or Spi AsyncTransmit respectively.

Note that the SPI handler/driver is not able to ensure integrity of the data residing in the buffer during
transmission. In addition, each request of Spi_wWriteIBonachannel will overwrite the previous contentin its
transmit buffer, regardless of whether a transmission has been performed with this data.

The SPI handler/driver provides a receive buffer for the IB channel with the same size as the transmit buffer.
The buffer is overwritten with new data at each transmission on that channel. Therefore, make sure that the
received data is read before a new transmission on that channel is initiated.

Reading of data from the receive buffer is done by using the spi Read1B function, which should only be called
after completion of a transmission.

5.1.1.3 Externally buffered channels

Externally buffered (EB) channels can be used to transmit large streams for communication: for EEPROM data
read and write, or for controlling complex hardware chips. The maximum size, defined by
Spi_NumberOfDataType, must be set in the configuration, but the buffer is in the users’ application. Before
transmission, you must provide the addresses of source and destination buffers together with their length by
using the APl function Spi SetupEB.

For EB channels, you must the buffer. You must ensure the consistency of the buffered data. You also provide
the pointers to the buffers for reception and transmission as well as the size of those buffers. The size should
not exceed the maximum size configured. A transmission is initiated in the same way as for IB channels, by
calling either Spi SyncTransmit or Spi AsyncTransmit operation.

Note: Before using the channel for transmit and receive operations, an application must call
Spi_SetupEBat least once to configure the channel's parameters such as channel length,
transmit, and receive buffer pointers. If data is sent without calling the function Spi SetupEB,
the single default data is transmitted. The default data is set by the configuration parameter
SpiDefaultData and the width is set by the configuration parameter SpiDatawidth. If the
channel's length or the transmit and receive buffer's location has changed in the application, it is
mandatory to reconfigure the channel's parameters with spi_SetupEB before using the channel.
If the channel's length, transmit and receive buffer's location are not changed, it is not necessary
tocall spi_setupEB. While updating the channel’s parameters, the application must make sure
that the channel is not currently being used by driver.

The channel’s status can be identified by the status of SpiJob from Spi GetJobResult. All

User guide 25 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Functional description

SpidJobs that share the channel must be checked. spi SetupEBcan be called if each JobResult
is either SPI_JOB_OK or SPI_JOB_FAILED.

5.1.1.4 Data buffers

The TX buffer that is passed to a channel (using Spi_WriteIBoOrSpi SetupEB) mustcontainthe dataina
certain manner, depending on the setting of spiDatawidth. The RX buffer is filled the same way during
transmission.

e SpiDataWidth<=8

e One byte (BO) of the buffer represents one data element (e.g., d0..d7) consisting of not more than 8 bits
each.

e 8<gspiDataWidth<=16

e Two bytes (B0, B1) of the buffer represent one data element (e.g., d0..d15) consisting of more than 8 and not
more than 16 bits each. The lower byte (B0) must be filled with the lower bits of the data element (d0..d7).
The higher byte (B1) must be filled with the remaining bits (d8..d15), starting at the lowest bit of B1.

e 16<SpibDataWidth<=32

o Four bytes (B0, B1, B2, B3) of the buffer represent one data element (e.g., d0..d31) consisting of more than
16 and not more than 32 bits each. The lowest byte (BO) must be filled with the lowest bits of the data
element (d0..d7). The next byte (B1) must be filled with the next bits (d8..d15), and so on. If SpiDatawWwidth
<= 24, the data in fourth byte (B3) is ignored (TX case) or filled with zero (RX case). All 4 bytes (B0, B1, B2, B3)
are allocated even if spiDataWidth <= 24,

The addresses of the TX and RX buffers must be integer multiples of the data element size, i.e.,:

e SpiDataWidth <=8:anyaddress
e 8<gspibataWidth <=16:address mod 2 mustbe 0
e 16<SpiDataWidth <=32:address mod 4 mustbe0

5.1.2 Jobs

A Job is composed of one or several channels with the same chip select (is not released during the processing
of the Job). A Job is considered atomic and therefore cannot be interrupted by another Job. A Job has an
assigned priority.

A Job contains at least one channel. It can contain more than one channel. These channels are configured in a
list for that Job. A Job has a priority that can be from 0 up to 3, where 0 is the lowest priority. A Job can belong
to more than one sequence.

A chip select is attached to a Job definition. The chip select is set at the beginning of the Job transmission and
released at the end of the Job.

At the end of the Job, a ' SpiJobEndNotification' is called, if configured.

5.1.3 Sequences

A sequence is a number of consecutively transmitted Jobs. Jobs configured for a sequence must be in the order
of priority starting with the highest priority first.

If a level 1 or level 2 driver is configured, sequences may be configured as either interruptible or non-
interruptible. If a sequence is interruptible and asynchronously transmitted, Jobs from another sequence may
run depending on priority.

User guide 26 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Functional description

If a sequence is configured as non-interruptible, a new sequence is scheduled after the transmitting sequence,
if the sequences are using the same hardware unit. If different hardware units are used, more than one
sequence can be transmitted at the same time.

Note that while sequences may be configured to have shared Jobs, sequences that have shared Jobs may not
be transmitted at the same time, i.e., the driver will reject a request to transmit a sequence if it has Jobs that
are configured as part of a sequence already in transmission.

At the end of the sequence, a ' spiSegEndNotification"' is called, if configured.

5.1.4 Scheduling

Jobs have assigned priorities. They will have decreasing priorities if they are linked in a sequence, i.e., the first
Job will have the highest priority.

If an interruptible sequence is configured, the system will check for another pending sequence at the end of a
Job transmission. If there is a Job for the same hardware with a higher priority, this Job will be transmitted
next.

When using interruptible sequences, note that the same channels should not be configured in those sequences,
as otherwise the data of the channels may be overwritten by a Job with a higher priority before you have read
the data. You must make sure of the consistent use of channels.

5.2 Inclusion

The file Spi.h includes all necessary external identifiers. Thus, your application only needs to include Spi.h to
make all APl functions and data types available.

5.3 Initialization

The SPI handler/driver must be initialized before use by calling the API function spi_Init.The module PORT
must also be initialized in a similar way.

5.4 Runtime reconfiguration

All configuration parameters can be not changed at runtime.

5.5 APl parameter checking
The driver's services perform regular error checks.

When an error occurs, the error hook routine (configured via SpiErrorCalloutFunction)is called and the
error code, service ID, module ID, and instance ID are passed as parameters.

If default error detection is enabled, all errors are also reported to DET, a central error hook function within the
AUTOSAR environment. The checking itself cannot be deactivated for safety reasons.

The AUTOSAR specified development error and vendor-specific development error checks are performed by
the services of the SPI handler/driver.

See section 7.4 Functions for a description of APl functions and associated error codes.

User guide 27 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Functional description

5.5.1 AUTOSAR specified development errors

Any API function - except Spi_Init and Spi GetVersionInfo - called with the driverin uninitialized state
reports the error code SPT_E UNINIT.

If spi Initiscalled and the driveris already in the initialized state, the error code
SPI _E ALREADY INITIALIZED isreported.

If the functions Spi_WriteIB,Spi ReadIBoOrSpi SetupkB are called with anincorrect channel parameter,
the error code SPI_E PARAM CHANNEL is reported.

If the function spi GetJobResult is called with the wrong Job parameter, the error code sSPI E PARAM JOB
is reported.

If the function Spi_GetSequenceResult,Spi AsyncTransmit, Spi SyncTransmit, and Spi_Cancel are
called with the wrong parameter sequence, the error code SPT_E PARAM SEQ is reported.

If the function spi setupEB is called with the wrong parameter length, the error code SPI E PARAM LENGTH
is reported.

If the function spi GetHWUnitStatus is called with the wrong parameter HwUnit, the error code
SPI_E PARAM UNIT isreported.

If the function spi GetvVersionInfo iscalled with a NULL pointer, the error code SPT E PARAM POINTER is
reported.

5.5.2 Vendor specific development errors

The error code SPI_E_INVALID_HW is reported if the Spi SyncTransmit function is called for a sequence
having Jobs for asynchronous hardware units or the spi AsyncTransmit function is called for a sequence
having Jobs for the synchronous hardware unit.

If the spi_setupEB function is called with buffer pointers that are not aligned and the buffer alignment
required (SpiAlignedBuffer is checked), the error code SPI_E_PARAM_POINTER is reported. A buffer pointer
isaligned if <buffer address> mod <required bytes per data unit> = 0.The number of required
bytes per data unit depends on SpibatawWidth (see the section called data buffers).

If the function spi_SetAsyncMode is called with an undefined parameter value buffer, the error code
SPI_E PARAM BAD MODE is reported.

If the function spi Read1Bis called with the parameter DataBufferPointer as NULL pointer, the error code
SPI_E PARAM POINTER isreported.

The vendor-specific function Spi GetBufferStatus reports SPI_E UNINIT if the driveris notin the
initialized state, SPT_E PARAM CHANNEL if aninvalid channel parameter,and sPI_E PARAM POINTER if NULL
has been passed to one or more of its remaining parameters.

If the Spi AsyncTransmit function is called with the parameter sequence using the same HwUnit while
transmitting with the spi SyncTransmit function, the errorcode SPT E SEQ PENDING is reported.

If the, spi SyncTransmit function is called with the parameter sequence using the same HwUnit while
transmitting with the Spi AsyncTransmit function, the errorcode SPT E SEQ IN PROCESS is reported.

Inthe spi_Init function is called with aninvalid driver configuration set parameter the error code
SPI_E PARAM CONFIG isreported.

User guide 28 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Functional description

When an interrupt from an unconfigured SCB or DMA is detected, SPI's ISR reports SPT_E PARAM CONFIG.

The vendor-specific, Spi Terminate function reports SPT_E UNINIT if the driveris notininitialized state and
reports SPI_E PARAM SEQ in case of aninvalid sequence parameter.

The vendor-specific Spi_ChangeOvsSetting function reports:

e SPI E UNINIT ifthedriverisnotininitialized state
e SPI _E PARAM OTHERIin case of aninvalid over sampling parameter (ScbOvsValue)
e SPI E PARAM UNIT incase of aninvalid external device id (ExtDev)

5.6 Production errors

If receive FIFO overflow is detected during asynchronous transfer (as used in levels 1 and 2), or if timeout error
is detected during synchronous transfer, or executed Spi Terminate APl during asynchronous transfer (as
usedin levels 1), SPT_E HARDWARE ERROR is reported to the DEM - provided that its usage is enabled in the
configuration.

For synchronous transmission timeout detection is implemented as a loop cycle counter with constant counter
values. The Transmission timeout counter is restarted after each channel data word that was successfully
transmitted. Ensure the expected transmission duration and chip select durations are within timeout limits.

5.7 Reentrancy

All services except Spi_ Init,Spi Delnit,Spi_ SetAsyncMode and Spi MainFunction Handlingare
reentrant.

5.8 Sleep mode

The SPI handler/driver and the hardware controlled by the SPI handler/driver do not provide a dedicated Sleep
mode.

Note: All SPI sequences must be completed or stopped before entering the DeepSleep mode.
SPI operation in DeepSleep mode is not guaranteed.

5.9 Debugging support

The SPI handler/driver does not support debugging.

5.10 Execution time dependencies

The execution of the API function is dependent on certain factors. Table 2 lists these dependencies.

Table 2 Execution time dependencies
Affected function Dependency
Spi_Init () Runtime depends on the number of configured hardware units, Jobs,

sequences, and channels.

Spi_Delnit () Runtime depends on the number of configured hardware units.
Spi MainFunction Handling ()

Spi_AsyncTransmit () Runtime depends on the number of Jobs configured for the requested
sequence and the total number of configured channels.

User guide 29 002-23398 Rev. *0
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Functional description

Spi_SyncTransmit () Runtime depends on the number of Jobs configured for the requested
sequence.
5.11 Deviation from AUTOSAR

By AUTOSAR standard, level 2 functionality will allow only one dedicated hardware instance for synchronous
transmission. All other instances may be used for asynchronous transmission. The operation of synchronous
and asynchronous transmission on the same hardware instance is not specified.

This SPI handler/driver allows synchronous transmission on multiple hardware instances (i.e., SCB units).
Furthermore, it is possible to operate synchronous and asynchronous transmissions on the same hardware
instance, provided they do not overlap in time.

5.12 Caveats
This section provides a non-exhaustive list of items that are responsible for your application:

e [SWS_Spi_00052] [SWS_SPI_00053] [SWS_SPI_00049] [SWS_SPI_00084]: The application will take care of
the consistency of data in the external buffers and internal buffers during transmission. The application will
ensure that any Spi channel is not used by more than one hardware channel at a time. The application will
notcall Spi SetupEB, Spi WriteIB,orSpi ReadIB for channels that are currently in transmission.

e [SWS_SPI_00037]: The SPI handler/driver’s environment will call the spi setupkB function once for each
Spi channel with EB declared before the SPI handler/driver’s environment calls a transmit method on them.

e [SWS_SPI_00173]: The SPI handler/driver’s environment will call the spi AsyncTransmit function aftera
function call of spi setupEB for EB channels or a function call of spi_writeIB for B channels but before
the function call Spi_ReadIB.

e [SWS_SPI_00027]: The SPI handler/driver’s environment will call the spi Read1B function after a transmit
method call to have relevant data within IB channel.

e [SWS_SPI_00257]: The SPI handler/driver’s environment will not call Spi WriteIBorSpi ReadIB for
channels that are currently in transmission because the SPI driver cannot prevent overwriting of the IB
channel buffer.

e [SWS_SPI_00038] [SWS_SPI_00042] [SWS_SPI_00287]: The SPI handler/driver’s environment will call the
function to inquire the job status or the sequence status or the SPI hardware status (that is,

Spi GetJobResult, Spi GetSequenceResult,Or Spi GetHWUnitStatus).

Your application must prevent synchronous and asynchronous transmissions on the same SCB from running
concurrent transmission (asynchronous/synchronous or synchronous/asynchronous) when it transmits
synchronously. This includes the case when a sequence is cancelled and one job is still in transmission. The
transmission end can be checked by a sequence end notification or Spi GetHWUnitStatus.

DMA usage for configured SCB, the corresponding TX, RX, or both interrupt service routines (ISRs) might not be
generated. In such cases, the unused interrupt channels must be disabled at the interrupt controller (OS
configuration); that is, they must not be mapped to an unhandled interrupt ISR.

Asynchronous mode (SPI POLLING MODE/SPI INTERRUPT MODE)must notbe changed duringthe execution
of Spi MainFunction Handling,thatis.Spi SetAsyncMode and Spi MainFunction Handling must
not be called concurrently.

Spi MainFunction Handling mustnotinterruptor pre-emptother SPI handler/driver functions
(interruption/pre-emption of the Spi MainFunction Handling by other SPI handler/driver functions is
permitted according to their corresponding permitted reentrancy). Spi MainFunction Handling will be

User guide 30 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|neon

TRAVEO™ T2G family
Functional description

called from the lowest-priority task with reference to all other tasks and interrupts that call other SPI
handler/driver functions.

The spi_SyncTransmit function and the Spi AsyncTransmit function cannot be operated at the same time
using the same SpiHwUnit.

If the transmission FIFO becomes empty during data transmission, the SCB hardware considers the
transmission to be complete. In this case, when the SpiCcsSelectionissettoCs VIA PERIPHERAL ENGINE,
the chip select will be de-asserted. Therefore, when data exceeding the FIFO transferable max entries is
transmitted under conditions of high CPU utilization, use DMA to prevent unexpected behavior.

User guide 31 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

(infineon

Hardware resources

6

6.1

Ports and pins

Hardware resources

The SPI handler/driver uses the SCB instances of the TRAVEO™ T2G family microcontrollers. The pins listed in
Table 3 are used. Make sure that the pins are correctly set in the PORT driver's configuration.

Table 3 Pins for SPI operation
Pin name Direction | Drive mode Description
SCB<n>_MISO Input high-Z SCB channel <n> serial data input pin
SCB<n>_MOSI Output | strong pull down | strong pull SCB channel <n> serial data output pin

up

SCB<n>_CLK Output | strong pull down | strong pull SCB channel <n> clock I/0 pin
up
SCB<n>_ SELECT<m> | Qutput | strong pull down |strong pull Serial chip select <m>1/0 pin of SCB

up

channel

6.2 Timer

The SPI handler/driver does not use any hardware timers.

6.3

The interrupt services listed in Table 4 must be configured correctly for peripherals used by the SPI
handler/driver. If a peripheral is not used, the corresponding interrupt service must not be present in the
configuration.

Interrupts

Table 4
IRQ vector
SCB<n=> interrupt request

IRQ vectors and ISR names

ISR name Catl
Spi_Interrupt_SCB<n>_Catl
Spi_Interrupt_DMA_CH</>_lsr_Catl

ISR name Cat2
Spi_Interrupt_SCB<n>_Cat2
Spi_Interrupt_DMA_CH</>_lsr_Cat2

DMA completion interrupt
request ch.<i>for TX

DMA completion interrupt Spi_Interrupt_DMA_CH<j>_Isr_Cat2

request ch.<j>for RX

Spi_Interrupt_DMA_CH<j>_Isr_Catl

Note: The OS must be associated with the named ISRs with the corresponding SCB interrupt.

For example, if the hardware unit SCB ch.2 is configured, Spi_Interrupt SCB2 Cat2 () must
be called from the (0S-)interrupt service routine of SCB ch.2 interrupt. In case of categoryl usage,
the address of Spi_Interrupt SCB2 Catl () mustbe the entry for SCB ch.2 interruptin the

(0S) interrupt vector table.

DMA completion ISRs are only generated if the given DMA channel is used by an SCB instance for
SPI transmission.
If there is an SCB channel that uses DMA, the interrupt handlers for SCB is required.

Note:

002-23398 Rev. *O
2025-12-11

User guide 32

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Hardware resources

Table 5

Interrupt handler registration

Interrupt handler Used DMA Unused DMA

registration

DMA completion interrupt request ch.<i> for TX - SCB<n> interrupt request
DMA completion interrupt request ch.<j> for RX
SCB<n> interrupt request

Note:

Note:

Note:

6.4

Nesting interrupts are not supported because they may cause unexpected behavior. Therefore, all
interrupts of the same SCB (including DMA channels) must be set to the same interrupt priority to
avoid nesting interrupts itself and if you are using different HwUni ts, it is possible to set different
interrupt levels for each HwUni t.

The same interrupt priority will not nest itself. However, it allows nesting of other interrupts.

On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing
conditions in the integrated system with TRAVEO™ T2G MCAL. For more details, see the following
errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:
“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at
the end of the interrupt function to avoid the priority inversion.

TRAVEQ™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.

Thus, if necessary, the DSB instruction should be added just before the end of the handler by the
integrator.

DMA

The SPI handler/driver uses DMA channels, which can be configured by the user and will be enabled/disabled
by the SPI handler/driver as required. The DMA hardware itself must be enabled globally by the user before the
SPI handler/driver can be used for DMA transfer.

When using DMA, ensure that one to one trigger multiplexer is correctly set in the PORT driver’s configuration.

If you use the SPI handler/driver with data cache enabled, the memory section identified by
VAR_NO_INIT_ASIL_B_32 should be assigned to normal memory with cache invalid or shared memory with
write-through cache.

User guide

33 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Appendix A - API reference

7 Appendix A - API reference

7.1 Include files

The Spi.hfile is the only file that needs to be included to use functions from the SPI handler/driver.

7.2 Data types
7.2.1 Spi_StatusType
Type

typedef enum
{
SPI UNINIT,
SPI IDLE,
SPI BUSY
} Spi_StatusType;

Description

Spi_StatusType defines the range of specific status for the SPI handler/driver. This datatype holds the SPI
handler/driver status and can be obtained by calling the APl service Spi GetStatus.

7.2.2 Spi_JobResultType

Type

typedef enum

{
SPI_JOB OK,
SPI_JOB PENDING,
SPI JOB FAILED,
SPI_JOB QUEUED

} Spi JobResultType;

Description

Spi_JobResultType defines the range of a specific job’s status for the SPI handler/driver. This datatype
holds the SPI handler/driver Job status and can be obtained by calling the API service Spi GetJobResult
with the job ID.

7.2.3 Spi_SeqgResultType

Type

typedef enum

{
SPI_SEQ OK,
SPI_SEQ PENDING,
SPI_SEQ FAILED,
SPI SEQ CANCELED

} Spi_ SegResultType;

User guide 34 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Appendix A - API reference

Description

Spi_SegResultType defines the range of a specific sequence status for the SPI handler/driver. This datatype
holds the SPI handler/driver sequence status and can be obtained by calling the API service
Spi GetSequenceResult with the sequence ID.

7.2.4 Spi_DataBufferType
Type

uints8

Description

Spi_ DataBufferType defines the type of application data buffer elements.

7.2.5 Spi_NumberOfDataType
Type

uintlé6

Description

Spi_NumberOfDataType defines the number of data elements of the Spi DataType type used to send or
receive on a channel.

7.2.6 Spi_ChannelType

Type

uints8

Description

Spi ChannelType specifies the identification (ID) for a channel.

The type is numbered from 0 - <number of Channels-1>.

7.2.7 Spi_JobType
Type

uintl16

Description

The spi_JobType specifies the identification (ID) for Job. The type is numbered from 0 - <number of Jobs -1>.

7.2.8 Spi_SequenceType
Type

uint8

Description

The spi SsequenceType specifies the identification (ID) for a sequence of Jobs. The type is numbered from 0 -
<number of Sequences -1>.

User guide 35 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Appendix A - API reference

7.2.9 Spi_HWUnitType
Type

uints8

Description

The spi_ HwWUnitType specifies the identification (ID) for a SPI hardware peripheral unit.

7.2.10 Spi_AsyncModeType

Type

typedef enum
{

SPI POLLING MODE,

SPI INTERRUPT MODE
} Spi AsyncModeType;
Description

Spi_AsyncModeType specifies the asynchronous mechanism mode for SPI busses handled asynchronously in
level 2.

The type consists of the values SPT POLLING MODE and SPI INTERRUPT MODE

7.2.11 Spi_ExtDeviceType
Type

uints8

Description

Spi_ ExtDeviceType specifies the identification (ID) for a SPI external device.

7.2.12 Spi_OvsValueType
Type

uint8

Description

Spi_OvsValueType specifies the serial interface bit period oversampling factor.

User guide 36 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide

TRAVEO™ T2G family

Infineon

Appendix A - API reference

7.3 Constants

7.3.1 Error codes

A service may return one of the error codes, listed in Table 6, if default error detection is enabled.

Table 6 Error codes

Name Value | Description

SPI_E_PARAM_CHANNEL 10 Channel is not configured

SPI_E_PARAM_JOB 11 Job is not configured

SPI_E_PARAM SEQ 12 Sequence is not configured

SPI_E_PARAM LENGTH 13 Length is out of range

SPI_E_PARAM UNIT 14 Hardware unit is out of range

SPI_E_PARAM POINTER 16 versioninfo is NULL pointer

SPI_E _UNINIT 26 No Spi_Init done

SPI_E_SEQ PENDING 42 Sequence is pending or shared job in pending sequence

SPI_E_SEQ IN PROCESS 58 Sequence is on transmission and
SpiSupportConcurrentSyncTransmit is disabled or
another sequence is on transmission on the same bus

SPI_E_ALREADY INITIALIZED 74 APl spi Init serviceis called while the SPI handler/driver has
alreadyBeen initialized

7.3.2 Vendor specific error codes
Besides the error codes given in section 7.3.1 Error codes, this SPI handler/driver defines the errors listed in
Table 7.
Table 7 Vendor specific error codes
Name Value | Description

SPI_E_INVALID_HW

82 The transmit API function is called for a sequence containing Jobs for

an invalid hardware unit.

SPI_E_HW_ERROR 83 A hardware error occurred during transmission.
SPI_E_PARAM_BAD_MODE 84 Bad value for parameter mode supported.
SPI_E_PARAM_OTHER 86 Bad value for the other parameter supported.
SPI_E_PARAM_CONFIG 87 Incorrect value for the pointer of the configuration.
7.3.3 Version information
Table 8 Version information
Name Value Description
SPI_SW_MAJOR VERSION see release notes Vendor-specific major version number
SPI_SW_MINOR_VERSION see release notes Vendor-specific minor version number
SPI_SW_PATCH_VERSION see release notes Vendor-specific patch version number
User guide 37 002-23398 Rev. *O

2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n

TRAVEO™ T2G family
Appendix A - API reference

7.3.4 Module information

Table9 Module information
Name Value Description
SPI_MODULE_ID 83 Module ID (Spi)
SPI_VENDOR ID 66 Vendor ID

7.3.5 API service IDs

Table 10 lists the API service IDs used when reporting errors via DET or via the error callout function.

Table 10 APl service IDs
Name Value APl name
SPI_API INIT 0x0 Spi_Init
SPI_API DEINIT ox1 Spi_DelInit
SPI_API WRITEIB 0x2 Spi WriteIB
SPI_API ASYNCTRANSMIT 0x3 Spi AsyncTransmit
SPI_API READIB Ox4 Spi ReadIB
SPI_API SETUPEB 0x5 Spi_SetupEB
SPI_API GETSTATUS 0x6 Spi_GetStatus
SPI_API GETJOBRESULT ox7 Spi_GetJobResult
SPI API GETSEQUENCERESULT 0x8 Spi GetSequenceResult
SPI API GETVERSIONINFO 0x9 Spi GetVersionInfo
SPI_API SYNCTRANSMIT OxA Spi SyncTransmit
SPI API GETHWUNITSTATUS OxB Spi GetHWUnitStatus
SPI_API CANCEL oxC Spi Cancel
SPI API SETASYNCMODE oxD Spi_ SetAsyncMode
SPI _API MAINFUNCTION HANDLING 0x10 Spi MainFunction Handling
7.3.6 Vendor specific APl service IDs

The following API service IDs are used when reporting errors via the error callout function:

Table 11 Vendor specific API service IDs

Name Value | Description

SPI_API ISR 0x40 This API ID is used to indicate that an error occurredin a
function that was called within an interrupt context.

SPI_API GETBUFFERSTATUS 0x41 This is vendor-specific API ID for Spi GetBufferStatus

SPI_API HANDLER 0x42 This API ID is used to indicate that the hardware error occurred
in aninternal function.

SPI_API TERMINATE 0x43 This is vendor-specific API ID for Spi Terminate.

SPI_API_CHANGEOVSSETTING | Ox44 This is vendor-specific API ID for. Spi ChangeOvsSetting

User guide 38 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Appendix A - API reference

7.4 Functions
7.4.1 Spi_Init
Syntax

void Spi Init(
const Spi ConfigType* ConfigPtr
)

Service ID

0x0

Sync/Async
Sync
Reentrancy
Non-reentrant
Parameters (in)

e ConfigPtr - Specifies the pointer to a configuration. If NULL pointer is specified, the first element of the
configuration set array is used.

Parameters (out)
None

Return value
None

DET errors

e SPI E ALREADY INITIALIZED-The SPIhandler/driverhas already been initialized.
e SPI_E PARAM CONFIG- Theinvalid pointeris specified.

DEM errors
None
Description

This function initializes all local data for the configured channels, Jobs, and sequences. After initialization, the
driver state will be SPI_IDLE, all sequence results will be SPI_SEQ_OK, and all Job results will be SPI_JOB_OK.
This function will be called with NULL pointer. Only precompiled configuration parameters are used for
initialization.

User guide 39 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

Infineon

Appendix A - API reference

7.4.2 Spi_Delnit

Syntax

Std ReturnType Spi Delnit (
void

)

Service ID

0x1

Sync/Async

Sync

Reentrancy

Non-reentrant

Parameters (in)

None

Parameters (out)

None

Return value

E_OKorE_NOT_OK

DET errors

e SPI E UNINIT-Thedriverisuninitialized.

DEM errors
None

Description

This function sets the driver state to SPT_UNINIT and returnsE_OK.

Spi DelnitreturnsE NOT OK,ifthedriverisinthe SPI BUSY stateorinthe SPI UNINIT state.

User guide

40

002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,
TRAVEO™ T2G family
Appendix A - API reference

7.4.3 Spi_WritelB

Syntax

Std ReturnType Spi WritelIB(
Spi ChannelType Channel,
const Spi DataBufferType* DataBufferPtr

)

Service ID

0x2

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e Channel -Specifiesthe ID of the channel where data will be written.

e DataBufferPtr - Specifies the pointer to a data buffer containing data to be written. If DataBufferpPtris
NULL, the default transmit value will be transmitted.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI_E PARAM CHANNEL - Undefined channel orincorrect channel type.

DEM errors
None
Description

This service writes data to the internal buffer associated with the parameter channel. You must ensure that the
buffer given by DataBuf ferpPtr has the same size as the internal buffer. If successful, it returns E_ox.

User guide 41 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

7.4.4 Spi_AsyncTransmit

Syntax

Std ReturnType Spi AsyncTransmit (
Spi SequenceType Sequence

)

Service ID

0x3

Sync/Async

Async

Reentrancy
Reentrant
Parameters (in)

e Sequence - Specifies the ID of the sequence that is to be transmitted.
Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI E PARAM SEQ -Undefined sequence

e SPI E SEQ PENDING - Sequence is pending orshares a job with a pending sequence or the sequence is
included in the job of the same hardware unit as the synchronous transferring hardware unit.

e SPI E INVALID HW-Sequence contains the jobsforaninvalid hardware unit.
DEM errors

e SPI_E HARDWARE ERROR - Hardware error was detected. The error is reported after the job ends in the
context of an interrupt or the main function.

Description

This function is the asynchronous service to transmit data on the SPI bus. This service takes the given
parameter, initiates a transmission, sets the SPI handler/driver status to SPI_BUSY, sets the sequence result to
SPI_SEQ_PENDING, sets all Jobs result to SPI_JOB_QUEUED, and returns. If a sequence requested by this
hardware is pending, then the new sequence will be added to the transmit queue for this hardware unit;
otherwise, it will startimmediately and set the first job result to Sp1_JoB PENDING. Note that you cannot call
this function if a transmission is in progress on this channel. If successful, it returns £_0x.

User guide 42 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

7.4.5 Spi_ReadIB

Syntax

Std ReturnType Spi_ ReadIB(

Spi ChannelType Channel,

Spi DataBufferType* DataBufferPointer
)

Service ID

0x4
Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e Channel - Specifies the ID of the channel from which data will be read.
e DataBufferPointer - Specifies the pointer to a data buffer where the read data will be written.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI _E PARAM CHANNEL - Undefined channelorincorrect channel type
e SPI _E PARAM POINTER-ArgumentDataBufferPointer is NULL pointer

DEM errors
None
Description

This function reads data from the internal buffer specified by the parameter channel and writes this data to the
area given by the DataBufferPointer. You must make sure that at least one transmission function has been
called before attempting to read the buffer. You must also ensure that the area given by the
DataBufferPointer islarge enough to store the data from the internal buffer. Note that you must not call
this function if a transmission is in progress on this channel. If successful, it returns E_OK.

User guide 43 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

7.4.6 Spi_SetupEB

Syntax

Std ReturnType Spi_ SetupEB (
Spi ChannelType Channel,
const Spi DataBufferType* SrcDataBufferPtr,
Spi DataBufferType* DesDataBufferPtr,
Spi NumberOfDataType Length
)

Service ID

0x5

Sync/Async
Sync
Reentrancy
Reentrant
Parameters (in)

e Channel -Specifiesthe ID of the channel for which buffers are to be initialized
e SrchataBufferPtr - Pointer to a data buffer that holds the transmit data
e DesDataBufferPtr - Pointer to a data buffer where incoming data is stored

e Length -Length of datato be transmitted/received; minimum length is 1 and the maximum length is setin
configuration.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI _E UNINIT-Thedriverisuninitialized.
e SPI _E PARAM CHANNEL -Undefined channel orincorrect channel type
e SPI E PARAM LENGTH -Lengthis out of range or does not match to data width

e SPI_E PARAM POINTER -At least one of the data buffers is not aligned according to the buffer alignment
required by the configuration.

DEM errors
None
Description

This function sets up the buffers and the length of data for the external buffers (EB) of the SPI handler/driver for
the given channel. This function should be called for each channel that is configured with external buffers
before a transmission is attempted. If srcDataBufferptr is NULL, the default data configured will be
transmitted. If DesDataBufferPtr is NULL, the incoming data is ignored by the driver. Note that you cannot
call this function if a transmission is in progress on this channel. If successful, it returns £_ox.

User guide 44 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

Infineon

Appendix A - API reference

7.4.7 Spi_GetStatus

Syntax

Spi StatusType Spi GetStatus (
void

)

Service ID

0x6

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

None

Return value

SPI UNINIT,SPI IDLE,Or SPI_BUSY

DET errors

e SPI E UNINIT-Thedriverisuninitialized.

DEM errors
None

Description

The function returns the SPI handler/driver status. It returns SPT_UNINIT if Spi Init hasnotyetbeen called.
It returns sp1_IDLE if there is no sequence in progress. It returns SpI_BUSY if at least one sequence s in

progress.

User guide

45 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n

TRAVEO™ T2G family
Appendix A - API reference

7.4.8 Spi_GetJobResult

Syntax

Spi JobResultType Spi GetJobResult (
Spi JobType Job

)

Service ID

0x7

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e Job -IDofthe Job.

Parameters (out)

None

Return value

SPI JOB OK,SPI JOB PENDING,SPI JOB FAILED,Of SPI JOB QUEUED

DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI_E PARAM JOB-Undefined Job ID

DEM errors
None
Description

The function returns the last transmission result of the specified job. If the SPI handler/driver has not been
initialized when this service is called, the return value is undefined. The function is used to verify if the Job
transmission succeeded (spI_JOB_OK), failed (SPI_JOB FAILED), executing (SPI_JOB PENDING), or queued
(SPI_JOB QUEUED).

User guide 46 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n

TRAVEO™ T2G family
Appendix A - API reference

7.4.9 Spi_GetSequenceResult

Syntax

Spi SegResultType Spi GetSequenceResult (
Spi SequenceType Sequence

)

Service ID

0x8

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e Sequence - ID of the sequence.
Parameters (out)

None

Return value

SPI _SEQ OK,SPI SEQ PENDING,SPI SEQ FAILED,Or SPI SEQ CANCELED
DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI_E PARAM SEQ - Undefined sequence ID.

DEM errors
None
Description

The function returns the last transmission result of the specified sequence. This function is used to verify
whether the full sequence transmission succeeded (spI_SEQ Ok), failed (SPI_SEQ FAILED), executing
(SPI_SEQ PENDING),orcanceled (SPI_SEQ CANCELED). If the service is called before the SPI handler/driver is
initialized, the return value will be undefined.

User guide 47 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

7.4.10 Spi_GetVersioninfo

Syntax

void Spi GetVersionInfo (
Std VersionInfoType* versioninfo

)

Service ID

0x9

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

None

Parameters (out)

e versioninfo - Pointerto the location where the version information will be written.
Return value

None

DET errors

e SPI_E_PARAM_POINTER - versioninfo is NULL pointer.
DEM errors

None

Description

This function returns the version information of this module. This includes module ID, vendor ID, and vendor-
specific version numbers.

User guide 48 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

7.4.11 Spi_SyncTransmit

Syntax

Std ReturnType Spi_ SyncTransmit (
Spi SequenceType Sequence

)

Service ID

0xA

Sync/Async

Async

Reentrancy
Reentrant
Parameters (in)

e Sequence - ID of the sequence.
Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI_E PARAM SEQ-Undefined sequence ID

e SPI E SEQ IN PROCESS - The functionis called at the wrong time or the sequence is included in the job of
the same hardware unit as the asynchronous transferring hardware unit.

e SPI E INVALID HW - Sequence containsthe jobs for an invalid hardware unit.
e SPI E SEQ PENDING - Sequence is pending or shares a job with a pending sequence.

DEM errors
e SPI E HARDWARE ERROR - Timeout error was detected.
Description

This function provides synchronous transmission of data. It sets the SPI handler/driver status to SpT_BUSY,
sets the sequence status to SPI_SEQ PENDING, sets the first Job status to SPI JOB PENDING, and performs
the transmission. The driver accepts concurrent Spi SyncTransmit () if the sequences to be transmitted use
a different bus and spisupportConcurrentSyncTransmit is enabled. If successful, it returns E_ox. Job and
sequence results are updated accordingly.

User guide 49 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

Infineon

Appendix A - API reference

7.4.12 Spi_GetHWUnitStatus

Syntax

Spi StatusType Spi_ GetHWUnitStatus (
Spi HWUnitType HWUnit

)

Service ID

0xB

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e HWUnit - ID of the hardware unit.

Parameters (out)

None

Return value

SPI_UNINIT, SPI_IDLE or SPI_BUSY

DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI E PARAM UNIT - Undefined hardware unit

DEM errors
None

Description

This function returns the status of the specified SPI hardware unit.

User guide 50

002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

Infineon

Appendix A - API reference

7.4.13 Spi_Cancel

Syntax
void Spi Cancel (
Spi SequenceType Sequence
)
Service ID
0xC
Sync/Async
Async
Reentrancy
Reentrant
Parameters (in)
e Sequence - ID of the sequence to be canceled.
Parameters (out)
None
Return value
None

DET errors

e SPI E UNINIT-Thedriverisuninitialized.
e SPI_E PARAM SEQ-Undefined sequence ID

DEM errors
None

Description

This function cancels an ongoing sequence transmission. The sequence will be canceled between jobs i.e., a
Job will not be canceled once started. The sequence status will be setto SPI_SEQ CANCELED.

User guide

51 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

Infineon

Appendix A - API reference

7.4.14 Spi_SetAsyncMode

Syntax

Std ReturnType Spi_ SetAsyncMode (
Spi AsyncModeType Mode
)

Service ID
0xD
Sync/Async
Sync
Reentrancy
Non-reentrant

Parameters (in)

e Mode - The mode to be used for asynchronous transmissions.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT-Thedriverisuninitialized.

e SPI E PARAM BAD MODE - Value for mode is not supported.

DEM errors
None

Description

This function sets the mode for handling asynchronous transmissions on SPI buses. This may be interrupt
mode (SPI_INTERRUPT MODE) or polling mode (SPI_POLLING MODE). Spi_ SetAsyncMode must not be

called during the execution of Spi MainFunction Handling.

User guide 52

002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

7.4.15 Spi_GetBufferStatus

Syntax

Std ReturnType Spi_ GetBufferStatus (
Spi ChannelType Channel,
const Spi DataBufferType** SrcDataBufferPtrPtr,
Spi DataBufferType** DesDataBufferPtrPtr,
Spi NumberOfDataType* SrcRemainingLengthPtr,
Spi NumberOfDataType* DesRemainingLengthPtr

)

Service ID

0x41

Sync/Async

Sync

Reentrancy

Reentrant

Parameters (in)

e Channel - ChannelID.
Parameters (out)

e SrcDataBufferPtrPtr - The pointer that will be filled with the pointer to source data buffer
e DesDataBufferPtrPtr - The pointer that will be filled with the pointer to destination data buffer

e SrcRemainingLengthPtr - Pointer to the variable that will be filled with the remaining length (number of
date elements) of the source data yet to be transmitted from the source data buffer

e DesRemainingLengthPtr - Pointer to the variable that will be filled with the remaining length (number of
date elements) of the destination data yet to be received to destination data buffer

Return value

E_OK: Output parameters have been filled with the buffer status.
E_NOT OK:Output parameters could not be filled with the buffer status.

DET errors

e SPI_E UNINIT - Thedriveris uninitialized.
e SPI_E PARAM CHANNEL - Undefined channel

e SPI E PARAM POINTER-NULL_PTR was passed as the parameters srcDataBufferPtrPbtr,
DesDataBufferPtrPtr, SrcRemainingLengthPtr, Or DesRemainingLengthPtr

DEM errors
None
Description

Vendor-specific service to read back the buffer status and the remaining length of data for the SPI
handler/driver channel specified.

User guide 53 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

After the transmission starts started (including the case that it has already finished), Spi GetBufferStatus
returns the buffer position and the remaining length calculated from the values that will be used (or have been
used) for copying data.

Spi_GetBuffersStatus returns the buffer pointers (SrcDataBufferPtrPtr and DesDataBufferPtrPtr)
pointing to the position after the position in the buffer that was read/written the last time; that is, The pointer
to the "next" position is returned or the pointer to the position directly after the buffer is returned if it was
completely processed.

Depending on the configuration of the SCB, the update of the internal variables takes place in chunks orin a
single block. Therefore, during transmission, the returned values may not reflect the actual pointer and
remaining length. Instead, the returned values may relate to the buffer positions at an earlier point in time. The
returned buffer positions and remaining lengths are determined before the transmission starts and after the
transmission ends.

If channel TX data was set to NULL_PTR (i.e., default TX data) before transmission, then

Spi GetBufferStatus returns undetermined pointerin SrcDataBufferPtrPtr and undetermined length
in SrcRemainingLengthPtr during and after transmission. The returned values cannot be used for TX
plausibility checks.

If channel RX data was set to NULL_PTR (i.e., ignore RX data) before transmission, then

Spi GetBufferStatus returns undetermined DesDataBufferPtrPtr and undetermined length in
DesRemainingLengthPtr during and after transmission. The returned values cannot be used for RX
plausibility checks.

7.4.16 Spi_Terminate

Syntax

Std ReturnType Spi Terminate (
Spi SequenceType Sequence

)

Service ID

0x43

Sync/Async
Async
Reentrancy
Reentrant
Parameters (in)

e Sequence - Sequence ID of sequence to be terminated.
Parameters (out)
None

Return value

E_OKorE_NOT_OK

User guide 54 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide Inf|ne0n ,

TRAVEO™ T2G family
Appendix A - API reference

DET errors

e SPI _E UNINIT-Thedriverisuninitialized.
e SPI_E PARAM SEQ-Undefined sequence ID.

DEM errors
None
Description

Vendor-specific service to terminate transmission on the SPI bus only for the ongoing sequence. If successful, it
returns E_OK. SPI hardware unit status is updated accordingly.

7.4.17 Spi_ChangeOvsSetting

Syntax

Std ReturnType Spi ChangeOvsSetting (
Spi ExtDeviceType ExtDev,

Spi OvsValueType ScbOvsValue
)

Service ID

0x44
Sync/Async
Async
Reentrancy
Non-reentrant
Parameters (in)

e ExtDev - External device ID of external device that to be changed baud rate.
e ScbOvsValue -Settingvalue of OVS bitin SCB CTRL register.

Parameters (out)
None

Return value
E_OKorE_NOT_OK
DET errors

e SPI E UNINIT - Thedriveris uninitialized.
e SPI _E PARAM UNIT -Undefined external device ID.
e SPI_E PARAM OTHER - Invalid OVS value.

DEM errors

None

User guide 55 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Appendix A - API reference

Description

Vendor-specific service to change SPI over sampling setting for the changing clock. If successful, it returns
E_OK. The setvalue is reflected at the next transfer.

7.5 Scheduled functions

7.5.1 Spi_MainFunction_Handling

Syntax

void Spi MainFunction Handling(
void

)

Service ID

0x10

Sync/Async

Sync
Reentrancy
Non-reentrant
Parameters (in)
None
Parameters (out)
None

Return value
None

DET errors

None

DEM errors

e SPI E HARDWARE ERROR -Hardware error was detected
Description

You must call this function periodically when polling mode is used in the level 2 driver.

User guide 56 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Appendix A - API reference

7.6 Required callback functions

7.6.1 SPI notification functions

The SPI handler/driver uses the following callback routines to inform other software modules about certain
states or state changes. These other modules are required to provide the routines in the expected manner.

Callback notifications are statically configurable.
Implementation of all notification functions is required to be reentrant.

Notification functions are called if it is enabled in configuration, regardless of synchronous or asynchronous
transmission.

The following API functions may be called from the SPI handler/driver callback notifications:

e Spi_ReadIB

e Spi_WritelB

e Spi_SetupEB

e Spi_GetJobResult

e Spi_GetSequenceResult
e Spi_GetHWUnitStatus

e Spi_Cancel

All other SPI handler/driver API calls are not allowed.

7.6.1.1 Spi_JobEndNotification

Syntax

void (*Spi JobEndNotification) (
void

)

Parameters (in)
None
Parameters (out)
None

Return value
None
Description

The spi_JobEndNotification isa callback routine provided by the user for each job to notify the caller that
a job has been finished. If configured, it will be called at the end of a job transmission.

User guide 57 002-23398 Rev. *O
2025-12-11

o _.
SPI handler/driver user guide < Inf| neon ,
TRAVEO™ T2G family

Appendix A - API reference

7.6.1.2 Spi_SeqEndNotification

Syntax

void (*Spi SegEndNotification) (
void

)

Parameters (in)

None

Parameters (out)

None

Return value

None

Description

The spi SegEndNotificationisa callback routine provided by the user for each sequence to notify the
caller that a sequence has been finished. If configured, it will be called at the end of a sequence transmission.

7.6.2 DET

If default error detection is enabled, the SPI handler/driver uses the following callback function provided by
DET. If you do not use DET, you, must implement this function within your application.

7.6.2.1 Det_ReportError

Syntax

Std ReturnType Det ReportError
(

uintl6 ModuleId,

uint8 Instanceld,

uint8 ApilId,

uint8 ErrorId

)

Reentrancy
Reentrant
Parameters (in)

e ModuleId-Module ID of the calling module

e Instanceld-Instance ID of the calling module

e ApiId-ID ofthe APl service that calls this function
e ErrorId-ID ofthe detected development error

Return value

Returns always E_OK.

User guide 58 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

Appendix A - API reference

Description

Service for reporting development errors.

7.6.3 DEM

Infineon

If DEM notifications are enabled, the SPI handler/driver uses the following callback function provided by DEM. If

you do not use DEM, you must implement this function within your application.

7.6.3.1 Dem_ReportErrorStatus

Syntax

void Dem ReportErrorStatus

(
Dem EventIdType EventId,
Dem EventStatusType EventStatus

)

Reentrancy
Reentrant
Parameters (in)

e EventId-ldentification of an event by the assigned event ID
e EventStatus - Monitor test result of the given event

Return value
None
Description

Service for reporting diagnostic events.

7.6.4 Callout functions

7.6.4.1 Error callout API

The AUTOSAR SPI module requires an error callout handler. Each error is reported to this handler; error
checking cannot be switched OFF. The name of the function to be called can be configured by the parameter

SpiErrorCalloutFunction.

Syntax

void Error Handler Name
(
uintl6 Moduleld,
uint8 Instanceld,
uint8 ApiId,
uint8 ErrorId

)
Reentrancy

Reentrant

User guide 59

002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide
TRAVEO™ T2G family

(infineon

Appendix A - API reference

Parameters (in)

ModuleId - Module ID of the calling module
InstancelId - Instance ID of the calling module
ApiId - ID of the API service that calls this function
ErrorId-ID of the detected error

Return value

None

Description

Service for reporting errors.

User guide 60

002-23398 Rev. *O
2025-12-11

TT-¢T-9¢0C

apIng Jasn

o
—

0. "A\3Y 86€€C-C00

8 Appendix B - Access register table
8.1 SCB
Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
CTRL 31:0 |Word 0x0100800F Initialize CTRL Initialize SPI 0x9303970F | 0x01000000
(32 bits) register driver
0x81008000 De-initialize CTRL De-initialize 0x9303D70F | 0x81000000
register SPI driver

0x0100000 | SCB Setup CTRL register | From transfer | 0x9303970F | 0x01000000
enable <<31|over start to bit[31]:Set on transfer
sampling value transfer end stating/Clear on transfer ending
Depend on bit[3:0]:Depend on baud rate of
configuration transfer

SPI_CTRL 31:0 | Word 0x80000001 Initialize SPI_CTRL Initialize SPI 0x83014033 | 0x80000001

(32 bits) register driver
0x03000010 De-initialize De-initialize Ox8F017F3F | 0x03000010
SPI_CTRL register SPI driver

0x80000001 | Chip Set up SPI_CTRL When transfer | 0x83014033 | 0x80000001
selectidentifier<<26 | register start bit[27:26]:Depend on chip select
| CShold delay <<13 bit[13]:Depend on hold delay
CS setup ‘?'e'ay <12 bit[12]:Depend on set up delay
| CS3 polarity << 11| | biti11:81 D q hib select
CS2 polarity <<10| 'l[" J:Depend on chip selec
CS1 polarity <<9| CS0 p? anty ‘
polarity << 8| Clock bit[3]:Depend on clock idle level
idle level << 3| Data bit[2]:Depend on data shift edge
shift edge <<2
Depend on
configuration

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

9

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
SPI_TX CTRL 31:0 | Word 0x00000000 Initialize Initialize SPI 0x00000030 | 0x00000000
(32 bits) SPI_TX_CTRL register | driver
0x00000000 De-initialize De-initialize 0x00000030 | 0x00000000
SPI_TX_CTRL register | SPI driver
0x00000000 Refresh SPI_TX_CTRL | When transfer | 0x00000030 | 0x00000000
register start
SPI_RX_CTRL 31:0 | Word 0x00000000 Initialize Initialize SPI 0x00000130 | 0x00000000
(32 bits) SPI_RX_CTRL register | driver
0x00000000 De-initialize De-initialize 0x00000130 | 0x00000000
SPI_RX_CTRL register | SPIdriver
0x00000000 Refresh SPI_RX_CTRL | When transfer | 0x00000100 | 0x00000000
register start
TX CTRL 31:0 | Word 0x00000107 Initialize TX_CTRL Initialize SPI 0x00010000 | 0x00000000
(32 bits) register driver
0x00000107 De-initialize TX_CTRL | De-initialize 0x0001011F | 0x00000107
register SPI driver
0x00000000 | First Set up TX_CTRL When transfer | 0x00010000 | 0x00000000

transfer bit << 8 | Data
width

Depend on
configuration

register

start

bit[8]:Depend on first transfer
bit
bit[4:0]:Depend on data width

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

€9

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
TX_FIFO_CTRL 131:0 |Word 0x00000000 Initialize Initialize SPI 0x00030000 | 0x00000000
(32 bits) SPI_TX_FIFO_CTRL driver
register
0x00000000 De-initialize De-initialize 0x000300FF | 0x00000000
SPI_TX_FIFO_CTRL SPI driver
register
0x00000000 | Set up transmitter From transfer | 0x00020000 | 0x00000000
invalidate FIFO << 16| | FIFO control register | startto bit[16]:Set on transmission
| FIFO trigger level transfer end starting/Clear on transmission
Depend transfer ending
mode bit[7:0]:
Sync transfer : FIFO size/bytes
per data element
Async transfer(DMA) : FIFO
size/bytes per data element
Async transfer(non-DMA
interrupt):1
Async transfer(non-DMA
polling): FIFO size/bytes per
data element
TX_FIFO_STAT |31:0 |Word 0x00000000 Read only register Initialize SPI OxFFFF81FF | 0x00000000
us (32 bits) driver
0x00000000 Read only register De-initialize OxFFFF81FF | 0x00000000
SPI driver
0x00000000 | FIFO Checking FIFO isnot | During transfer | 0x00008000 | 0x00000000

write pointer << 24 |
FIFO read pointer <<
16 | Amount of entries
in FIFO

Read only

FULL.

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

¥9

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
TX_FIFO_WR 31:0 |Word Transfer data Transfer data During transfer | - -
(32 bits) Write only register
RX_CTRL 31:.0 | Word 0x00000107 Initialize RX_CTRL Initialize SPI 0x00000200 | 0x00000000.
(32 bits) register driver
0x00000107 De-initialize RX_CTRL | De-initialize 0x0000031F | 0x00000107
register SPI driver
0x00000000 | First Set up RX_CTRL During transfer | 0x00000200 | 0x00000000.
transfer bit <<8 | Data | register bit[8]:Depend on first transfer
width bit
Depend on bit[4:0]:Depend on data width
configuration
RX_FIFO_CTRL |31:0 |Word 0x00000000 Initialize Initialize SPI 0x00030000 | 0x00000000
(32 bits) SPI_TX_FIFO_CTRL | driver
register
0x00000000 De-initialize De-initialize 0x000300FF | 0x00000000
SPI_RX_FIFO_CTRL SPI driver
register
0x00000000 | Set up receiver FIFO From transfer | 0x00000200 | 0x00000000.

Invalidate FIFO << 16 |
FIFO trigger level

Depend transfer
mode

control register

start to
transfer end

bit[16]:Set on receive
starting/Clear on receive ending
bit[7:0]:

Sync transfer : FIFO size/bytes
per data element
Async transfer(DMA) : 0
Async transfer(non-DMA
interrupt):(FIFO size-24)/bytes
per data element
Async transfer(non-DMA
polling): 0

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

99

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size

RX_FIFO_STAT |31:0 |Word 0x00000000 Read only register Initialize SPI OXFFFF81FF | 0x00000000
us (32 bits) driver

0x00000000 Read only register De-initialize OxFFFF81FF | 0x00000000

SPI driver

0x00000000 | FIFO Checking received During transfer | 0x00008000 | 0x00000000

write pointer << 24 | data exist.

FIFO read pointer <<

16 | Amount of entries

in FIFO

Read only
RX_FIFO_RD 31:0 | Word DATA[31:0] Received data - - -

(32 bits) Can’t monitoring
INTR_CAUSE 31:0 |Word 0x00000000 Initialize Initialize SPI 0x00000000 | 0x00000000
(32 bits) driver (monitoring | (monitoring is not needed.)
0x00000000 De-initialize De-initialize is not
SPI driver needed.)

0x00000000 | RX Interrupt cause During transfer

interrupt << 3 | Master

interrupt

Read only
INTR_T2C_EC_ |31:0 | Word 0x00000000 Initialize externally Initialize SPI 0x0000000F | 0x00000000
MASK (32 bits) clocked I12C interrupt | driver

mask register
0x00000000 De-initialize De-initialize 0x0000000F | 0x00000000
externally clocked SPI driver

[2C interrupt mask
register

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

99

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
INTR_SPI_EC_ |31:0 | Word 0x00000000 Initialize externally Initialize SPI 0x0000000F | 0x00000000
MASK (32 bits) clocked SPlinterrupt | driver
mask register
0x00000000 De-initialize De-initialize 0x0000000F | 0x00000000
externally clocked SPI driver
SPlinterrupt mask
register
INTR_M 31:0 | Word 0x000003FF Initialize Master Initialize SPI 0x00000000 | 0x00000000
(32 bits) interrupt request driver (monitoring | (monitoring is not needed.)
register is not
0x000003FF De-initialize Master | De-initialize needed.)
interrupt request SPI driver
register
0x00000000 | SPI SPI bus idle checking | During transfer
transfer done <<9
INTR_M MASK 31:0 |Word 0x00000000 Initialize Master Initialize SPI 0x00000317 | 0x00000000
(32 bits) interrupt mask driver
register
0x00000000 De-initialize Master De-initialize 0x00000317 | 0x00000000
interrupt mask SPI driver
register
0x00000000 | SPI Enable or disable During transfer | 0x00000117 | 0x00000000

transfer done
interrupt mask

SPI_DONE interrupt

ininterrupt
mode

bit[9]:Set on complete TX data
write to FIFO in non-DMA Async
transfer

Set on complete RX data
receiving in DMA Async transfer

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

[}
g}

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
INTR_S_MASK 31:0 |Word 0x00000000 Initialize Slave Initialize SPI 0x000007FF | 0x00000000
(32 bits) interrupt mask driver
register
0x00000000 De-initialize Slave De-initialize 0x000007FF | 0x00000000
interrupt mask SPI driver
register
INTR_TX 31:0 | Word 0x000007FF Initialize transmitter | Initialize SPI 0x00000000 | 0x00000000
(32 bits) interrupt request driver (monitoring | (monitoring is not needed.)
register is not
0x000007FF De-initialize De-initialize needed.)
transmitter interrupt | SPI driver
request register
0x000007FF Clear all transmitter | When
interrupt factor transition stop
INTR_TX_MASK |31:0 | Word 0x00000000 De-initialize Initialize SPI 0x00007FFF | 0x00000000
(32 bits) transmitter interrupt | driver
mask register
0x00000000 De-initialize De-initialize 0x00007FFF | 0x00000000
transmitter interrupt | SPI driver
mask register
0x00000000 Disable all When 0x00007FFF | 0x00000000
transmitter transmission
interrupts stop

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

89

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
INTR_RX 31:0 | Word 0x00000FFF Initialize receiver Initialize SPI 0x00000000 | 0x00000000
(32 bits) interrupt request driver (monitoring | (monitoring is not needed.)
register is not
0x00000FFF De-initialize receiver | De-initialize needed.)
interrupt request SPI driver
register
0x00000FFF Clear all receiver When
interrupt factor receiving stop
When receiver
interruptis
cached
0x00000000 | FIFO Checking transfer During transfer
over flow << 5 error
0x00000000 | FIFO not | Checking received During transfer
empty <<2 | FIFO data exist.
trigger
INTR_RX_MASK |31:0 | Word 0x00000000 Initialize receiver Initialize SPI 0x00000FFF | 0x00000000
(32 bits) interrupt mask driver
register
0x00000000 De-initialize receiver | De-initialize 0x00000FFF | 0x00000000
interrupt mask SPI driver
register
0x0000000 | FIFO Enable receiver FIFO | When transfer | 0x00000F80 | 0x00000000
trigger interrupt trigger interrupt start without bit[0]:Set on Async transfer
enable DMAin (non-DMA,) starting/Clear on
interrupt Async transfer (non-DMA)
mode ending
0x00000000 Disable all interrupts | When transfer | 0xO0000FFF | 0x00000000

start with DMA
ininterrupt
mode or non-

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

69

0. "A\3Y 86€€C-C00

Register Bit |Access |Value Description Timing Mask value | Monitoring value
No. |size
interrupt
mode
0x00000000 Disable all receiver When 0x00000FFF | 0x00000000
interrupts receiving stop
8.2 DW
Register Bit Access | Value Description Timing Mask value | Monitoring value
No. |size
CH_CTL 31:.0 |Word 0x00000002 Initialize channel Initialize SPI 0x80000BF4 | 0x00000000
(32 bits) control register driver
0x00000002 De-initialize De-initialize SPI | 0x80000BF4 | 0x00000000
channel control driver
register
0x00000000 | Start or Stop DMA | During transfer | 0xX00000BF4 | 0x00000000
DMA channel with DMA bit[31]:Set on Async transfer (DMA)
enable <<31 stating/Clear on Async transfer (DMA)
ending
CH_STATUS 31:0 |Word -:Read only Initialize channel | Initialize SPI 0x0000000F | 0x00000001
(32 bits) status register driver
-:Read only De-initialize De-initialize SPI | 0x0000000F | 0x00000001
channel status driver
register
Cause of Checking DW During transfer | 0x00000000 | 0x00000000
interrupt channel status. with DMA bit[3:0]:Clear on Async transfer (DMA)
Read only stating/ Set on Async transfer (DMA) ending

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

0L

0. "A\3Y 86€€C-C00

Register Bit Access | Value Description Timing Mask value | Monitoring value
No. |size
CH_IDX 31:0 |Word 0x00000000 Initialize channel | Initialize SPI 0x00000000 | 0x00000000
(32 bits) current indices driver
0x00000000 De-initialize De-initialize SPI | 0OX0000FFFF | 0x00000000
channel current driver
indices
0x00000000 | Y | Calculate buffer During transfer | 0x00000000 | 0x00000000
loop index<<8 | position with DMA bit[15:8] | bit[7:0]
| X loop index Clear on Async transfer (DMA) stating
Change on during transfer
CH_CURR_PT |31:.0 |Word 0x00000000 Initialize channel Initialize SPI 0x00000000 | 0x00000000
R (32 bits) current descriptor | driver
pointer register
0x00000000 De-initialize De-initialize SPI | OXFFFFFFFC | 0x00000000
channel current driver
descriptor pointer
register
ADDR[31:2] Set descriptor When stating 0x00000000 | 0x00000000
address transfer with bit[31:2]:Set to current descriptor address
DMA on stating transfer
ADDRJ[31:2] Calculate buffer During transfer | 0x00000000 | 0x00000000
position with DMA bit[31:2]:Clear to 0 on ending transfer
INTR 31:0 | Word 0x00000001 Initialize interrupt | Initialize SPI 0x00000000 | 0x00000000
(32 bits) register driver (monitoring | (monitoring is not needed.)
0x00000001 De-initialize De-initialize SPI | is not
interrupt register | driver needed.)
0x00000001 Clear interrupt When stating

transfer with
DMA

When DMA
interrupt
catched

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

TT-¢T-9¢0C

apIng Jasn

1L

0. "A\3Y 86€€C-C00

Register Bit Access | Value Description Timing Mask value | Monitoring value
No. |size
INTR_MASK 31:0 |Word 0x00000000 Initialize interrupt | Initialize SPI 0x00000001 | 0x00000000
(32 bits) mask register driver
0x00000000 De-initialize De-initialize SPI | 0x00000001 | 0x00000000
interrupt mask driver
register
0x00000000 | Disable or enable | During transfer | 0x00000000 | 0x00000000
Enable DMA interrupt with DMA bit[0]:Set on stating DMA/Clear on ending
interrupt DMA
SRAM_DATAO |31:0 |Word 0x00000000 Initialize SRAM Initialize SPI 0x00000000 | 0x00000000
(32 bits) data0 register driver (monitoring | (monitoring is not needed.)
is not
needed.)
0x00000000 De-initialize SRAM | De-initialize SPI | 0x00000000 | 0x00000000
data0 register driver (monitoring | (monitoring is not needed.)
is not
needed.)
SRAM_DATAL |31:0 |Word 0x00000000 Initialize SRAM Initialize SPI 0x00000000 | 0X00000000
(32 bits) datal register driver (monitoring | (monitoring is not needed.)
is not
needed.)
0x00000000 De-initialize SRAM | De-initialize SPI | 0x00000000 | 0x00000000
datal register driver (monitoring | (monitoring is not needed.)
is not
needed.)

91qe) 49351821 sS9I0Y - g Xipuaddy

Awey ozl ,,03NVHL

apIns Jasn JanLIp/i3)puey |dS

uoauljul

e

SPI handler/driver user guide

TRAVEO™ T2G family

(infineon

Revision history

Revision history

Revision

Issue date

Description of change

* %

2018-06-27

New spec.

*A

2018-10-09

Added two TRAVEO™ T2G Automotive Body Controller High Family
TRMs in Hardware Documentation.

Deleted the datasheet in Hardware Documentation.

Corrected description of SpilncludeFile parameterin 2.2.1
Architecture Specifics.

Add DMA and cache usage in following section.

5.12 Using DMA and Cache

Exclude SpiBaudrate and SpiUseDma from the SpiHwUnit Note in the
4.2.3 External Device Configuration.

Changed notes related to the SpiDataWidth and the total size of all
Channel's data buffers in SpiChannelAssignment of 4.2.2 Job
Configuration.

Added to 4.2.6 SPI Published Information that the value of
SpiMaxHwUnit is dummy and that actual value is referenced in the
hardware data sheet.

*B

2019-06-11

Updated hardware documentation information.
6.4 DMA
Add description about section VAR_NO_INIT_ASIL_B_32 assignment

*C

2019-08-07

2.2.1 Architecture Specifics

Added SpiForceOverwrite

4.2.1 Channel Configuration

Added the note comment in SpiDataWidth
4.2.3 External Device Configuration

Added SpiForceOverwrite configuration and changed SpiUseFifo
description.

B.1.1 SCB
Changed CTRL register descriptions.

*D

2019-12-23

4.2.1 Channel Configuration
Added SpiDataWidth (DMA) to the Note

*E

2020-04-06

2.6.2 Restriction of Memory Allocation
Added a chapter regarding restriction of memory allocation.
5.12 Usage of DMA and Cache

Deleted the chapter because the usage of DMA and Cache is merged to
Section 2.6.2.

*F

2020-09-07

2.6 Memory Mapping

Changed Spi_MemMap.h file include folder.

2.6.2 Restriction of Memory Allocation

Added the recommendation of allocation and the restriction of VRAM.
4.1 General Configuration

User guide

72 002-23398 Rev. *O
2025-12-11

SPI handler/driver user guide

TRAVEO™ T2G family

(infineon

Revision history

Revision

Issue date

Description of change

Deleted restriction of SpiSupportConcurrentSyncTransmit.
4.2.3 External Device Configuration

Changed and added Note description.

SpiCsSelection

SpiHwUnit

SpiUseDma

5.3 Initialization

Deleted description of post-build.

A.4.15 Spi_GetBufferStatus

Deleted description of DMA.

*G

2020-11-19

MOVED TO INFINEON TEMPLATE.

*H

2021-05-24

5.8 Sleep Mode

Changed description and added Note.
5.1.1.3 Externally Buffered Channels
Changed Note.

*|

2021-08-19

Added a note in 6.3 Interrupts

*J

2021-12-07

Updated to the latest branding guidelines

*K

2023-10-06

Added SRAM_DATAO and SRAM_DATAL1 register information in 8.2 DW.

*L

2023-12-08

Web release. No content updates.

*M

2024-03-18

Deleted Notes in 6.3 Interrupts

*N

2024-07-29

Updated description in 5.6 Production errors

*0

2025-12-11

Added decsription in 5.12 Caveats

User guide

73 002-23398 Rev. *O
2025-12-11

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-12-11
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:

erratum@infineon.com

Document Reference Number
002-23398 Rev. *0

Important Notice

Products which may also include samples and may be
comprised of hardware or software or both (“Product(s)”) are
sold or provided and delivered by Infineon Technologies AG
and its affiliates (“Infineon”) subject to the terms and
conditions of the frame supply contract or other written
agreement(s) executed by a customer and Infineon or, in the
absence of the foregoing, the applicable Sales Conditions of
Infineon. General terms and conditions of a customer or
deviations from applicable Sales Conditions of Infineon shall
only be binding for Infineon if and to the extent Infineon has
given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of
non-infringement of third-party rights and implied warranties
such as warranties of fitness for a specific use/purpose or
merchantability.

Infineon shall not be responsible for any information with
respect to samples, the application or customer’s specific use
of any Product or for any examples or typical values given in
this document.

The data contained in this document is exclusively intended for
technically qualified and skilled customer representatives. It is
the responsibility of the customer to evaluate the suitability of
the Product for the intended application and the customer’s
specific use and to verify all relevant technical data contained
in this document in the intended application and the
customer’s specific use. The customer is responsible for
properly designing, programming, and testing the functionality
and safety of the intended application, as well as complying
with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products
may not be used in any application where a failure of the
Products or any consequences of the use thereof can
reasonably be expected to result in personal injury. However,
the foregoing shall not prevent the customer from using any
Product in such fields of use that Infineon has explicitly
designed and sold it for, provided that the overall responsibility
for the application lies with the customer.

Infineon expressly reserves the right to use its content for
commercial text and data mining (TDM) according to applicable
laws, e.g. Section 44b of the German Copyright Act (UrhG).If the
Product includes security features:

Because no computing device can be absolutely secure, and
despite security measures implemented in the Product, Infineon
does not guarantee that the Product will be free from intrusion,
data theft or loss, or other breaches (“Security Breaches”), and
Infineon shall have no liability arising out of any Security
Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual
property laws and treaties of the United States, Germany, and
other countries worldwide. All rights reserved. Therefore, you
may use the software only as provided in the software license
agreement accompanying the software.

If no software license agreement applies, Infineon hereby grants
you a personal, non-exclusive, non-transferable license (without
the right to sublicense) under its intellectual property rights in
the software (a) for software provided in source code form, to
modify and reproduce the software solely for use with Infineon
hardware products, only internally within your organization, and
(b) to distribute the software in binary code form externally to
end users, solely for use on Infineon hardware products. Any
other use, reproduction, modification, translation, or
compilation of the software is prohibited. For further information
on the Product, technology, delivery terms and conditions, and
prices, please contact your nearest Infineon office or visit
https://www.infineon.com

mailto:erratum@infineon.com
https://www.infineon.com/

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the SPI handler/driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding

	2 Using the SPI handler/driver
	2.1 Installation and prerequisites
	2.2 Configuring the SPI driver
	2.2.1 Architecture specifics

	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword
	2.6.2 Restriction of memory allocation

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 PORT driver
	3.4.2 MCU driver
	3.4.3 DIO driver
	3.4.4 AUTOSAR OS
	3.4.5 BSW scheduler
	3.4.6 DET
	3.4.7 DEM
	3.4.8 Error callout handler
	3.4.9 DMA

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 SPI driver configuration
	4.2.1 Channel configuration
	4.2.2 Job configuration
	4.2.3 External device configuration
	4.2.4 Sequence configuration
	4.2.5 SPI DEM event parameter references
	4.2.6 SPI published information

	4.3 Vendor and driver specific parameters
	4.3.1 Container SpiGeneral
	4.3.1.1 SpiErrorCalloutFunction
	4.3.1.2 SpiIncludeFile

	4.4 Other modules
	4.4.1 PORT driver
	4.4.2 DET
	4.4.3 AUTOSAR OS
	4.4.4 BSW scheduler

	5 Functional description
	5.1 Channels, jobs, and sequences
	5.1.1 Channels
	5.1.1.1 General
	5.1.1.2 Internally buffered channels
	5.1.1.3 Externally buffered channels
	5.1.1.4 Data buffers

	5.1.2 Jobs
	5.1.3 Sequences
	5.1.4 Scheduling

	5.2 Inclusion
	5.3 Initialization
	5.4 Runtime reconfiguration
	5.5 API parameter checking
	5.5.1 AUTOSAR specified development errors
	5.5.2 Vendor specific development errors

	5.6 Production errors
	5.7 Reentrancy
	5.8 Sleep mode
	5.9 Debugging support
	5.10 Execution time dependencies
	5.11 Deviation from AUTOSAR
	5.12 Caveats

	6 Hardware resources
	6.1 Ports and pins
	6.2 Timer
	6.3 Interrupts
	6.4 DMA

	7 Appendix A – API reference
	7.1 Include files
	7.2 Data types
	7.2.1 Spi_StatusType
	7.2.2 Spi_JobResultType
	7.2.3 Spi_SeqResultType
	7.2.4 Spi_DataBufferType
	7.2.5 Spi_NumberOfDataType
	7.2.6 Spi_ChannelType
	7.2.7 Spi_JobType
	7.2.8 Spi_SequenceType
	7.2.9 Spi_HWUnitType
	7.2.10 Spi_AsyncModeType
	7.2.11 Spi_ExtDeviceType
	7.2.12 Spi_OvsValueType

	7.3 Constants
	7.3.1 Error codes
	7.3.2 Vendor specific error codes
	7.3.3 Version information
	7.3.4 Module information
	7.3.5 API service IDs
	7.3.6 Vendor specific API service IDs

	7.4 Functions
	7.4.1 Spi_Init
	7.4.2 Spi_DeInit
	7.4.3 Spi_WriteIB
	7.4.4 Spi_AsyncTransmit
	7.4.5 Spi_ReadIB
	7.4.6 Spi_SetupEB
	7.4.7 Spi_GetStatus
	7.4.8 Spi_GetJobResult
	7.4.9 Spi_GetSequenceResult
	7.4.10 Spi_GetVersionInfo
	7.4.11 Spi_SyncTransmit
	7.4.12 Spi_GetHWUnitStatus
	7.4.13 Spi_Cancel
	7.4.14 Spi_SetAsyncMode
	7.4.15 Spi_GetBufferStatus
	7.4.16 Spi_Terminate
	7.4.17 Spi_ChangeOvsSetting

	7.5 Scheduled functions
	7.5.1 Spi_MainFunction_Handling

	7.6 Required callback functions
	7.6.1 SPI notification functions
	7.6.1.1 Spi_JobEndNotification
	7.6.1.2 Spi_SeqEndNotification

	7.6.2 DET
	7.6.2.1 Det_ReportError

	7.6.3 DEM
	7.6.3.1 Dem_ReportErrorStatus

	7.6.4 Callout functions
	7.6.4.1 Error callout API

	8 Appendix B – Access register table
	8.1 SCB
	8.2 DW

	Revision history

