(infineon

Flash driver user guide
TRAVEO™ T2G family

About this document

Scope and purpose

This user guide describes the architecture, configuration, and usage of the flash driver. It helps you to
understand the functionality of the driver and provides a reference for the driver's API.

The installation, build process, and general information about the use of the EB tresos Studio are not within the
scope of this document. See the EB tresos Studio for ACG8 user’s guide [7] for detailed information of these
topics.

Intended audience

This document is intended for anyone who uses the flash driver of the TRAVEO™ T2G family.

Document structure

Chapter 1 General overview gives a brief introduction to the flash driver, explains the embedding in the
AUTOSAR environment, and describes the supported hardware and development environment.

Chapter 2 Using the flash driver details the steps required to use the flash driver in your application.
Chapter 3 Structure and dependencies describes the file structure and the dependencies for the flash driver.
Chapter 4 EB tresos Studio configuration interface describes the configuration of the flash driver.

Chapter 5 Functional description gives a functional description of all services offered by the flash driver.
Chapter 6 Hardware resources gives a description of all hardware resources used.

The Appendix A and Appendix B provides a complete API reference and access register table.

Abbreviations and definitions

Table1l Abbreviation
Abbreviation Description
API Application Programming Interface
ASIL Automotive Safety Integrity Level
AUTOSAR Automotive Open System Architecture
Basic Software (BSW) Standardized part of software which does not fulfill a vehicle functional
job.
CMO+ Arm® Cortex®-M0+ CPU core
CM4 Arm® Cortex®-M4 CPU core
CM7_0 Arm® Cortex®-M7 CPU first core
CMT7_1 Arm® Cortex®-M7 CPU second core
CM7_2 Arm® Cortex®-M7 CPU third core
User guide Please read the Important Notice at the end of this document 002-23407 Rev. *W

www.infineon.com 2025-12-10

http://www.infineon.com/

Flash driver user guide
TRAVEO™ T2G family

(infineon

About this document

CM7_3 Arm® Cortex®-M7 CPU fourth core

Data buffer A RAM area in memory which flash driver APIs access
DEM Diagnostic Event Manager

DET Default Error Tracer

DMA Direct Memory Access

EB tresos ECU AUTOSAR Suite

A collection of AUTOSAR Basic Software modules and a Runtime
Environment integrated in a common configuration and build
environment.

EB tresos Studio

Elektrobit Automotive configuration framework

ECC Error Checking Code

EEPROM Electrically erasable programmable ROM
FLS Flash driver module

FEE Flash EEPROM Emulation

Flash sector

A flash sector is the smallest amount of flash memory that can be
erased in one pass. The size of the flash sector depends upon the flash
technology and is therefore hardware dependent.

Flash page A flash page is the smallest amount of flash memory that can be
programmed in one pass. The size of the flash page depends upon the
flash technology and is therefore hardware dependent.

GHS Green Hills Software

HSM Hardware Security Module

HW Hardware

IPC Inter Processor Communication

ISR Interrupt Service Routine

uc Microcontroller

MCAL Microcontroller Abstraction Layer

MCU Microcontroller Unit

MPU Memory Protection Unit

Non-blocking mode

Mode that does not block CM0+ while flash memory operation is
running.

0s Operating System

SchM BSW Scheduler

S-LLD Security Low Level Driver

Work Flash Application flash (Flash memory for storing user’s data by such as FEE)

Work flash block#0

First flash area in two separate work flash. Refer to data sheet to know
the mounted devices and address mappings.

Work flash block#1

Second flash area in two separate work flash. Refer to data sheet to
know the mounted devices and address mappings.

User guide

2 002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

(infineon

About this document

Related documents

AUTOSAR requirements and specifications

Bibliography

[1]
[2]
[3]
[4]
[5]
[6]

General specification of basic software modules, AUTOSAR release 4.2.2.

Specification of flash driver, AUTOSAR release 4.2.2.
Specification of flash EEPROM emulation, AUTOSAR release 4.2.2.
Specification of default error tracer, AUTOSAR release 4.2.2.
Specification of RTE, AUTOSAR release 4.2.2.

Specification of ECU configuration parameters, AUTOSAR release 4.2.2.

Elektrobit automotive documentation

Bibliography

[7]

EB tresos Studio for ACG8 user's guide.

Hardware documentation

The hardware documents are listed in the delivery notes.

Related standards and norms

Bibliography

(8]

Layered software architecture, AUTOSAR release 4.2.2.

User guide 3

002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Table of contents

Table of contents

About this dOCUMENT....ccciiiiiiiiiiiiiriiiiiiiriiiriiiseiirsisrsestseisrssssessssssrssssesss 1
Table Of CONTENTS....ciuiiiiiiiiineiiiiniiieriiineiresiaiiaestesiaecrestascsesrestasssesssscssssssssssssssasssssssssassssssasssssssssassses 4
1 GENEIAl OVEIVIEW cuurvuineireiiaeinesreniaesrestascsestostaesssstascssssssssssssssascassssssasssssssssassssssassssssassasssnssassnns 8
1.1 Introduction to the AUTOSAR flash driVer.......cecieciiiicieeeeeeeee ettt e 8
1.2 (U ESY =T o o 71 TSRS 8
1.3 Embedding in the AUTOSAR €NVIFONMENT.....c.iiiiiietietetieeeteseetesteeeetesteeeesseseessesseessessesssessessesssenns 8
1.4 SUPPOIEA NANAWAIEeeieieciecieeseeeteete ettt e te et e et e e s e e s te s te s be s beessaeesaessseesseesseesseessnesseesnsanns 9
15 DeVelopmMENTt ENVIFONMENT.......cccveciieieierteetecte et etee e et estesteseesseetessesseesessesssessassesssessesssessesssessessessenns 9
1.6 Character Set and ENCOAINGcouiiiiriiieieteete ettt ettt et s et e bt et e sbe st et e sae et e sbesatentens 9
1.7 HSM SUPPOI ottt et e st e sstte s s et e sbeessaseesaseessssaesasaessssesssseesssesssssessssesssssessssesssseessseessnsens 9
2 Using the flash driVer.....cccciiiiiiiiiniiieiiiiiiiieiiiieeiiiiniieectiisicsesissisecssstsscsessssssscssssssssssssssssssssss 10
2.1 INStallation aNd Prer@QUISITES...ccviriieeeriereetec ettt e e et e e e e e e eesre s e e s e sreessansesssenseeseenses 10
2.2 Configuring the flash ArIVETccucvuiiiiei ettt ettt enas 10
2.2.1 F A el TR =Tt U L= a 1= =] TSR 11
2.3 Adapting YOUTr @PPLICATION .couiruiriieieteietetetee ettt ettt ettt sb s bbb et et ene s ee 12
2.4 STaArting the DUl PrOCESS....c.iitiiiiete ettt sttt et b sttt e sbe st e ae b e e ae 13
2.5 Measuring StaCk CONSUMPLIONccuiiririrertertertetetetet ettt ettt b ssesbesbesesaesaenaeneesessens 14
2.6 MEMOIY MAPPINE c.eveiiieeieeteetertte ettt et et et e st e st e s bt s bt esstesatesatesabe s be e bt e st esatesateeaseeaseesstesatesatesasenas 14
2.6.1 MemOory alloCation KEYWOIdccuviieeeeetieeeteeetee sttt e s re et e s sness e s e e e e seesneneas 14
3 SEructure and dePENUENCIES.....ccuceierreieceeierrerrececacesreceecsecassessscsscassassecsscassasssssssassassasssssssasses 16
3.1 R} =Y ol 1 TSRO 16
3.2 CONFIGUIALION FIlES .ttt sttt b et et sb st e st et et e s e naenaenesaeanas 16
3.3 LCTT =T = =T i 1 C=T TSR 16
3.4 DEPENAENCIES ...eueeteeeeeiesteetese st e e st e e teeee e et e aesse e e e sessaessessasssasesseasseaseessessesssessesseessensesssensesssenses 17
3.4.1 Flash EEPROM @MULALION (FEE) w.oouviiviiitiiciieeeeceecee ettt ceteeesteeneeeteeaeesseeeseesseesaneenseenseenseeeseesssesnns 17
3.4.2 DT ettt ettt ettt e et e et e e s et e s et e e s e et e s e a e e e s e r et e e e rate s e nate s e rates e s nraeee e nrnaesennes 17
343 5 L Yl g =T 1T T TP 17
344 g oY gt or=Y | (o UL o F- 2 o 1 LT TS 17
4 EB tresos Studio configuration interface......cccccceieiiiireiinirniniiniiieniniinnienineirniacissresiaccsessacaeess 18
4.1 GENEral CONFIGUIATION ..ttt ettt b s bbb s et e b et enesaeenes 18
4.2 Vendor SPeCific CONFIGUIAtIONcoivirierieieteeeercsese ettt ettt et saesn s eneeseee 18
4.2.1 Parameter CONSEIAINTS ...ciciiiiiiriiiieireeseereese et sre st ssressteesrae s e e sseeaeesseessaessnessnesssesssesssasssaesssennes 18
421.1 CONtAINET FISGENEIAL ..cuvieeeiecteeieieetetee ettt ettt e e ae e e et e s se e s essesssesesseessessesnsensesseansens 18
42.1.2 CoNtAINEr FISCONTIZSOLiiuiiiirieieieieecertsereste ettt st ettt et sb e ae st e ae s e e e e sneas 22
4.2.1.3 Container FIsDemEVeNtParameterREfscoveiiceeeeeceeeeeeree ettt 25
4214 Container FISEXLEINAIDIIVEL ...covieueiieiieieierieetesie st ete s et e st et estesae st estesseessessesssessesnsessesssensens 25
4215 CONTAINET FISSECEON . iiiuriiieiiiiitectistee st e e eseeseesreesaestessbessbasssassssesssesssessseesseessnessnesssesssanns 25
42.1.6 Container FIsPublishedINformation...........ceceeieceeeececeeeee et 26
422 Vendor and driver Specific PArameterscoiivieieienereecteee ettt s 28
4221 CONLAINET FISGENETAL .cuvviiiiiiieiiiictictceteere st se st s e sreste s bassbaessnesssesssesssaessnessnessnesssesssanns 28
4.2.2.2 CoNtAIiNEr FISCONTIZSOL ..ottt ettt 37
4223 CONtAINEL FISSECEON .. iitieuieieiteteeeeterteet ettt s et e e st e sae st e b e sae st esbesseessessesssesasensensesssensans 39
423 (01 o T=T g gV Yo [0 1 L3OO 39
4231 Flash EEPROM @MULALION ..c.veeiiiiiciecteeteecteeete ettt e e et steebeebaesbe e s e e sanesnbeeba e saesnsennns 39
4.2.3.2 DT ettt ettt ettt et e et e s et e e st e e s st e e s e e e e e s b e e e s e b e e e s e raae e e nraae e e nraee e e nreaeeennrees 39
4.2.3.3 5 L Yl o =T 1T =T USSR 39
5 FUNCHIONAl desSCriPtion .. ciuiieiieieiiaiiniieceecentenieteecancassossocsecassssssssscsscassssssssscassssssssssassassssssssssasse 40
User guide 4 002-23407 Rev. *W

2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Table of contents

5.1 FUNCLION Of the flash driVErcuiiiieiieee ettt ettt sbe s 40
5.1.1 Flash driver State MacChine.. ..ottt et 40
5.1.1.1 STAtE MEMIF_UNINIT .ottt ettt ettt et sresbesaesae e et et et e b ssessessessessensenseneenesaens 40
5.1.1.2 STALE MEMIF_IDLE ...ttt este st sttt ettt sae st sttt et et et ssesbesbesbesbensensensensenessens 40
5.1.1.3 STALE MEMIF_BUSY ..ttt ettt sttt et se e sve b sse sttt st esessesbesbesbensetenneneenesaees 41
5.1.2 Flash driver JOD reSULE STATEevieiiieeieeee ettt ettt ettt et 41
5.1.2.1 MEMIF_JOB_OKi..outoueriiieieieieteteeeitseeete st ste et e e et ss e sesbessesse st et et e e saessessessessessensensenesnnesenee 41
5.1.2.2 MEMIF_JOB_PENDINGccutsterteteieenttreententestenteteteeesessessessessesesseteneesessessessessensensensenseneeneesenne 41
5.1.2.3 MEMIF_JOB_CANCELED.....ccueitttiteietiritrieniertentetet et st te st st ste st et e e ssesbasbessesaesaessenaenasnasnens 41
5124 MEMIF_JOB_FAILEDeouiitiieieieteeeitreeeteseeste ettt et s s stesse ettt e e saeese s ssensesaenseeesesnnenenee 41
5.1.2.5 MEMIF_BLOCK_INCONSISTENT ...ooutiiriirtirierienienteieteessessessessessessessensesessessessessessessensensensssessenee 41
5.1.3 INIEIALIZATION Lottt st ettt et e st et et s st et e sae et e b e saaebesbe et e besatenses 42
5.1.4 Reading data from the flash MemOry ..o 42
5.15 Writing data to the flash MEMOIY ..ot 43
5.1.6 Erasing data from the flash MemMOry ..o 45
5.1.7 Comparing data from the flash MeMOIY.......cocviririiiiiirie e 46
5.1.8 Checking blank for the flash MemMOIYc.coiriririicee e 47
5.1.9 Canceling a job Prior t0 MAatUIITY.....ccueveirererereeeeeee ettt sr et 48
5.1.10 Retrieving the status iNfOrmMationccoiviriniinienieiccee e 48
5.1.11 Setting the driver 0peration MOE.........ceeeeriririerieieiee ettt 48
5.1.12 SUSPENAING @ JOD .ttt ettt ettt b st ettt e et s e b s b sbesbe st et e e esesneesenee 49
5.1.13 ReSUMING @ SUSPENAEA JOD ..c..viiiiiiieeteteeeeee ettt ettt ettt sttt sb e st e saesaaeees 49
5.1.14 TIMEOUL SUPEIVISION 1euuiiiiiiiiiiiierteritessieesieeseeseesaessessessseessesssessssesssesssesssesssessseesssesssesssessseessasssees 50
5.1.15 eCT flash safety MECANISIMc..ociieceeeeee ettt et e e 50
5.1.15.1 Related CONFIGUIAtIONS ...coveueieieieiier ettt ettt ettt 50
5.1.15.2 IPC lock acquisition and rElEASE........ccueeeeciereeteeceeee ettt ss e e e s ae e eneas 51
5.1.15.3 ArDItratioN SEQUENCES...cuiiiieciece ettt rte e e s e s e s ste s te e be e beesseesseesntesnbeenseenseesnas 52
5.1.15.4 ASSUMPLIONS OF USE ..iueiiieieeiieieeetetee ettt et e st aesre st e e e e et e s e e s et e sseesessaessensesssenss 57
5.1.155 LIMIETIONS ..ttt ettt ettt e bt et s e st e bt e bt e s st e satesatesabesebe e seenneenaee 57
5.2 Virtual flash MemMOIY LAYOUL......cui ittt ettt et a e b s et e seeasesbeesaensens 57
5.3 Parallel flash operations for separate work flash memories........c.ccovvvevievecencescececeeeeee, 57
5.4 DefaUlt ErTOr AEECHION....c.iviirieteeeeeeeeeerer ettt et e b e st e st e s b e tesaeaesaesnesesaens 58
5.5 RUNTIME €ITOF AETECION ..ottt ettt ettt b e s bbb e b e saeae e e e esesaees 59
5.6 REENTEIANCY ittt ettt e e e e e s bt et e e s s e s e s aeteeeesse s nnsrbaaaesssesnnsenaaeaeessasnnnes 59
5.7 DEDUGEING SUPPOI...cueiiieieiieieeiteteetete sttt sttt ettt s et esae et esse st e ssessaesbessesntessesasensasesssensesssenses 59
6 HardWare FE@SOUNCES cu.crveiieeiirecransrsesessscrssrsessses 60
6.1 REGISTEIS .ttt ettt ettt et et e s bt et e st e e bt s st et e s bt eat e b e s st e b e e bt et e sbeeat et e saeenbe bt enbe st entenses 60
6.2 L LT ¢] o) £ TP OPPTRPPR 60
6.3 FAULE ettt st b e bbbttt et b e s bbb et e e et et et resreas 61
6.4 IPC ettt ettt ettt sttt ettt et h e b bttt a e st e bt she ke be b et et et e st e Rt e b e e b e s b et e betente b et et enenaeas 62
6.5 SYSEEM CAlLuuintiieieieiete ettt ettt s b ettt s b bbbt ettt nesaeenes 63
6.6 Memory Protection UNTIT (MPU)cc.icieciiiieieceeeeieseeeere e te st sees e s e e sse e e esesre s s e tessaessessesssensesssenses 64
6.7 DM A ettt ettt et e e s e bt e s e b et e s e b et e s e b et e ser et et e et e s e rate s e raneeas 66
7 APPENiX A — APl refereNCe .cu.ciuuireeiirniirniirsenisnisraisrsestssssrssssessssssrsssssssssssssssssssssssssssssssssssssssnses 67
7.1 DAt LY PES ..ttt a e sba e a 67
7.1.1 Flash driver data fYPeS. ... ittt st ssiessre s e e s s e sressae e aeesbaesanesanesssesssasssasssaesssennes 67
7.1.1.1 FlS _AQAIESSTYPE caetiieieeieiesiteteee ettt et e te st st et e s e et e be st et e sseestessesstessesasensansesssansesssensessesssenses 67
7.1.1.2 FlS LN EENTY PO ettt ettt ettt et e s s et e sae s st et e sae e st e besst e sasseensesanenseneas 67
7.1.1.3 LS 0N I G Y Pttt ettt ettt ettt et b s bbbttt neae 67
User guide 5 002-23407 Rev. *W

2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Table of contents

7.1.1.4 EXEEINAl data tYPES uvecieeieicieectecte ettt e re e s e e st st st e et e e b e e s e e s ae s ta e beeeraesreeenes 67
7.1.15 St RETUIMNTYPE ettt ettt ettt et et e e e e s e s e st essesse et esseessessesnsassesseessesssensansesssansans 67
7.1.1.6 StA_VErSiONINOTYPE .ooeieeieieeeeteeeteeee ettt e e et sae s et e sae e s e stesse e sesseessesanensansesssansans 67
7.1.1.7 MEMIF_MOAETYPE ettt ettt st et e e et e st e e e e besseeaesbe e st estessaessassasssensessaensesseessenses 68
7.1.1.8 MM S AtUSTYPE ceveeeeiecieeteteee ettt et e e e e e te et et e sse et e sseess et esseessassesseessesseessesseensenses 68
7.1.1.9 MEMIf_JODRESULTYPE c.uiiiectecteeeetete ettt te et ettt e s re e e e tesraestebessaesessaensessnessansas 68
7.2 MACTOS. .. tteeeeeiieeeeiirrteeeeteeeeeiirrreeeeeesesssrrtrtesesssesssssrasaesssssessssssaasessssssssssssaeeesssssssssssseeesssssssssssnnesesssssssnnns 68
7.2.1 g oY elo T 1T U 68
7.2.2 VErsioN INFOIMATION .viccviiiieiieciectect ettt et et e e b e e b e ebeebeebeesbeesaeeerbeenbsenseenssessseessesnns 69
7.2.3 MOAULE INTOIMALION ..vecnvieieeciectece ettt et e e et e e b e e be e be e baesbaesrbeenbaessaessaeessesssennns 69
7.2.4 AP SEIVICE IDS evtiieeiiieeeetee ettt eett e ettt e e ettt e e e e ctteeeeesbaeesesbaeasessaaeaessaaesenssasaaassssesanssseasanssananan 69
7.3 U] Lot oY U 70
7.3.1 FLS _INTT cureeteeiteeete ettt ettt e ere et e e beesbeesbaestbeerbe e be e ba e beessseesseeabe e ba e beebaeesaeerbeerbeenbaentaeetaensseenns 70
7.3.2 [T = = 1Y =TSR 71
7.3.3 F LS I e euteeeteecee ettt ettt ettt et e e et e e s e e s bae e be et e e be e baesbsesaseesseeabeesbaesssesaeesseesseesteersaentaessenssennns 72
7.3.4 [T K OF= Y Ut =] TR 73
7.3.5 (R E €T] =] 1 LTSRN 74
7.3.6 FIS _GEEJODRESULL ...ecuveereeieetecte ettt ete e e be e be e te e s re e b e e beebe e be e baessaessseenseenbaensaessenssennns 75
7.3.7 [RLE 2 == [IR 76
7.3.8 oYy o1 o Y- TSR T7
7.3.9 FIS_SEEMOUTEvveceieerecteeieet ettt ettt te e e e e re et e e be e beesbbesaseesbeesbeessaesbaesasesseesseesseesbaetaenseenssennns 78
7.3.10 FLS GOV ISTONINTO ¢ttt ettt ettt e ettt s e e et e sesaateseeaaeesssssstesssssaaessssaaeesessaeesssssaeesssnsnes 79
7.3.11 FIS _BlanKCRECK c.cuveeveeteeteeteeteete ettt ereerbe e be e te e s b e e b e e b e ebe e beesbaeesaessseesbeenbaentaeseesssennns 79
7.3.12 (R E R =Y Lo 1 010 0 [=e L= 1 (<IN 80
7.3.13 o U o113 o TSR 81
7.3.14 FIS_RESUIME ..veetveetieereeie ettt eeteereeereesbeesbeestaeetbeesbe e baesbaesssesssessseessaessaessessasssssessessseesaesaenssenssennns 82
7.3.15 FIS_SEECYCIEMOME ...ttt et et et s e et e st e e be e be e baesbaesrteenbaenbaesaessaesneennes 83
7.4 SCNEAULEA FUNCHIONS wevvviirictecrectt ettt ettt b e e b e erbeesbeesbeestbeerbeesbaebaeseesssessseenseenseesaensees 84
7.4.1 FLS MaAIN FUNCEION ettt ettt ettt e ettt et e s e e s eserateeeeesesessasateeeessesasssasaseeesssesssssssatesesssessnnnes 84
7.5 EXPECEEA INTEITACES ...eeeieteeeeteee ettt ettt be et esbe e e et e e be et e sbe et e tessaensesseensensenssenss 85
7.5.1 Y Yot I 1o AT (=] s Lol TSR 85
7.5.2 OPtIONALINEEITACES. ..ecutetieeecieeteeteeteeeetee ettt ettt e s e b e s be e e e be e e et e beessebesssensesseessensensaensenes 85
7.5.2.1 D<) il =T 0 Yo 1 = o] (OO UPPUPPPPPPR 85
7.5.2.2 Det_RePOITRUNEIMEEITON . ..ottt e re e sve e s ae e s be e s saae s s aae s aaeeens 86
7.5.3 CONFiGUIADLE INTEITACES. ... eoirtiriiieieieeeeeere ettt st ettt sb e b e saeae e e e eneenens 86
7.5.3.1 Fee_JODENANOLIfICAtION c..iiiiecieciictecrectectee et ettt et ebeerbeerbe e beesraeerbeerbeebaesssenssennns 87
7.5.3.2 FEe JODEITOINOTITICAtION 1eitieeeeeteeeeeeeeetee ettt ettt ettt eeeste e s eeseteeseesateeseesaneeseeseteessasseeessannees 87
7.5.3.3 Fee_DedErrorNOtifiCatioN. ...ttt ettt erbeerteesae e ereeeabeebeebeessaesnseenne 88
7.5.3.4 Fee_SedErrorNOtifiCatioNuiiiiciicieereecreecee ettt ettt ereesbeeteesaeeereeeabeebeebeesssessseenns 88
7.5.3.5 Systemcall CalloUt FUNCHION ..c..iviiieeieeeeeee ettt st eae s 89
7.5.3.6 EFaS@ CAllOUL APttt et e et e e te e et e eeba e e ebe e e tbaeebaseesbaesbaeesssaennseeesseenns 89
7.6 Required callback FUNCLIONScoiiiieieieeeeee ettt sttt snesae e as 90
7.6.1 CallOUL FUNCLIONS 1. cvveetiecreere ettt ettt et erteesteesteeebeebe e beesbaesbeesssessseerseenseenseessessaesssesssesnseenseens 90
7.6.2 EFTOFr CAllOUL AP ..ttt ettt ertte e e te e e tee e e ba e e bae e sbae s bee e sbaeeasas e ssaeensaeensasennsaesnsenan 90
8 Appendix B - Access register table.....ccciiiiiuiiiiiniineiiiiaiiaeiiiiaiiasieiiacinesieicsstessacssessssssesssssasanss 91
8.1 I] o PR URPRROE 91
8.2 7Y o R I I = G N 93
8.3 FLASHC L. oottt eeerctrtee et e s se sttt e e e e e s s ss st b aa e e e e s e e s s assaaaaeasssssssssssaaaeeessessssssaeasesssssssssssaneeeessensrnsen 94
8.4 N o A O I IR = G N 96
8.5 FAU LT ottt ettt e et ee e e e e s e sbae e e e e e e s ss s ae b st e aeeesesssssssaaaeesssasssssssaaaeesssesssssssseasesssesssssssaeeesssensrnsen 99
User guide 6 002-23407 Rev. *W

2025-12-10

o _.
Flash driver user guide < In f| neon
TRAVEO™ T2G family

Table of contents

8.6 P C et e e s — e e e e e e e s e bbb aeaae e e e e e e bttt aaaeeea e e bt aaaaeeeeeea b e taaeeeeeeeenrrrbaaaeeeeasan 101
8.7 CPUSS ettt ettt ettt s st e st e st e e et e e st et e e st et e s e e re e s e ea e e st e b e e Rt e s e e Rt et e ene e st e beer e et eereeneenneententes 103
8.8 M-DIMA (DMAC) .. eteeeeeteeteteeeestestestestesseessessesseessesseessessesssessesssessassasssessessesssessesssessessesssessessesssessesssenns 103
8.9 DIMAC _CH ettt ettt e e st et e st e e e be s be s st e s ae s st estesba e st e sasssasseassessansaessantesseessansassaansenseensenes 104
REVISION NISTOrY .. uiiuiiiiiiiiiiiiniiieiiiiiiiiiiiiiieiieiiniieesisiieecsesiescsessssssecssssssssessssssessssssssssssssssessssssssansss 106
0 1T o E= T T PN 112
User guide 7 002-23407 Rev. *W

2025-12-10

Flash driver user guide in ﬁ neon

TRAVEO™ T2G family
General overview

1 General overview

1.1 Introduction to the AUTOSAR flash driver

The flash driver abstracts the hardware internal flash controller of the TRAVEO™ T2G microcontroller and
provides API functions for writing, erasing, reading, and comparing data from or to the flash memory.

1.2 User profile
This guide presumes the reader has a basic knowledge of the following:

e Flash memory

e Embedded systems

e The AUTOSAR terminology

e The C programming language

1.3 Embedding in the AUTOSAR environment

Application 1 Application 2 Application 3 Application n Application

Application
Runtime Environment Abstraction
Layer

System Memory Communication
Services Services Services

Onboard Memory Communication ECU

Device Hardware Hardware bo Hardware Abstraction
Abstraction

Abstraction Abstraction Abstraction Layer

Operation System

Microcontroller

WC Driver Memory Driver COM Driver 1/O Driver Abstraction
Layer

Microcontroller Type

Figurel Overview of AUTOSAR software layers

Figure 1 shows the layered AUTOSAR software architecture. The FLS driver (Figure 2) is one of the memory
drivers in the microcontroller abstraction layer (see Layered software architecture [8]).

User guide 8 002-23407 Rev. *W
2025-12-10

Flash driver user guide < in ﬁ neon

TRAVEO™ T2G family
General overview

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers

MCU Driver
Core Test
Flash Test
RAM Test
LIN Driver
CAN Driver
OCU Driver

ICU Driver
PWM Driver
ADC Driver
DIO Driver
PORT Driver

=

@
=

p—
o
—
o
()

Watchdog Driver
Internal Flash Driver
Internal EEPROM Driver
SPI Handler Driver
FlexRay Driver
Ethernet Driver

Microcontroller

ol =
73

This version of the flash driver supports the TRAVEO™ T2G microcontroller family. No further special external
hardware devices are required. The supported derivatives are listed in the release notes.

Power &
Clock Unit

Figure2 Flashdriver in MCAL layer

14 Supported hardware

Additional derivatives that contain only a subset of the capabilities of one derivative mentioned above can be
implemented or supported by providing a resource file with its properties.

1.5 Development environment

The development environment corresponds to AUTOSAR release 4.2.2. The Base, Platforms, Make, and
Resource modules are required for proper functionality of the flash driver.

1.6 Character set and encoding

All source code files of the flash driver are restricted to the ASCII character set. The files are encoded in UTF-8
format, with only the 7-bit subset (values 0x00 ... 0x7F) being used.

1.7 HSM support

The flash driver is provided to handle flash memory from HSM on CM0+ in addition to the driver for application.
The plugin of the driver for HSM (on CMO0+) is called Fls_TS_T40D13M2I0R0. Whereas, the plugin of the driver for
application (on CM4, CM7_0, CM7_1, CM7_2, or CM7_3) is called Fls_TS_T40D13M1I0RO.

This document describes the common and plugin-specific features of both plugins.

002-23407 Rev. *W

User guide 9
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Using the flash driver

2 Using the flash driver

This chapter describes the necessary steps to incorporate the flash driver into your application.

2.1 Installation and prerequisites

Note: Before you start, see the EB tresos Studio for ACG8 user’s guide [7] for the following information.

1. Installation procedure of EB tresos ECU AUTOSAR components
2. Usage of the EB tresos Studio software

3. Usage of the EB tresos ECU AUTOSAR build environment (it includes an explanation of how to set up and
integrate your application within the EB tresos ECU AUTOSAR build environment)

The installation of the flash driver complies with the general installation procedure for EB tresos ECU AUTOSAR
components given in the documents mentioned above. If the driver is successfully installed, the driver will
appear in the module list of the EB tresos Studio.

In the following sections, it is assumed that the project is properly set up and is using the application template
as described in the EB tresos Studio for ACG8 user’s guide [7]. This template provides the necessary folder
structure, project and makefiles needed to configure and compile an application within the build environment.
You also have to be familiar with the usage of the command line shell.

2.2 Configuring the flash driver

This section provides a short overview about the configuration structure defined by AUTOSAR to use the flash
driver.

The following three basic containers are used to configure common behavior.

1. FlsConfigset: Container for runtime configuration parameters of the flash driver.
Implementation type: F1s ConfigType.

2. FlsGeneral: Container for general parameters of the flash driver. These parameters are always
precompiled.

3. FlsPublishedInformation: Container for published parameters. These parameters do not have any
configuration class setting because they are published information.

For detailed information and description, see EB tresos Studio configuration interface.

Note: Ensure that the application also includes an AUTOSAR-compliant default error tracer when default
error detection and/or runtime error detection are enabled. If not, the application will not compile.

See EB tresos Studio configuration interface for details of a configuration to be set up.

User guide 10 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Using the flash driver

2.2.1 Architecture details

e FlsErrorCalloutFunction: Specifiesan error callout handler, which is called when any errors are
detected during runtime.

e FlsIncludeFile: Specifies the file name, which is used to include definitions (such as declaration for error
callout handler).

e FlsEraseVerification,FlsBeforeWriteVerification,and FlsWriteVerification: Specifies
whether each verification at writing or erasing is enabled or disabled.

e FlsEraseCalloutFunction: Specifies an erase callout handler, which is called when an erase job set up
by F1s Erase () isaccepted.

e FlsDedErrorNotification: Specifies a DED error notification, which is called when a double-bit error
(DED) is detected.

e FlsSedErrorNotification: Specifiesa SED error notification, which is called when a single-bit error
(SED) is detected.

e FlsDmaChannel: Specifies a DMA channel used for reading from work flash.

e FlsAuxiliaryBufferSize: The size of the auxiliary buffer that stores data read from work flash by DMA
transfer at a time, for reading, verifying, or comparing process.

e FlsSetFlashCtlRegister: Specifiesthe bit fields of FLASH_CTL register that are set by the flash driver.

e FlsSetWorkFlashSafetyRegister: Specifies whether WORK_FLASH_SAFETY register is set by the flash
driver.

e FlsSetWorkFlashFaultMaskRegister: Specifies whether the fault mask 1 (MASK1) and mask 2 (MASK2)
registers for work flash are set by the flash driver.

e FlsDefineWdgClear: Specifies whether the function F1s wdgClear (described later) to clear the
watchdog timer is defined by the flash driver.

e FlsUseNonBlockingWrite: Specifies whether the flash driver writes to work flash in non-blocking mode.
This parameter is not applied for the write operation to work flash block#1.

e FlsUseDmaForRead: Specifies whether the flash driver reads from work flash with DMA transfer.

e FlsReportErrorIfNotBlank: Specifies whether the flash driver calls the error callout function when a
blank check job detects non-blank.

e FlsUseSafetyMechanism: Specifies whether eCT flash safety mechanism for write/erase is enabled or
disabled. The mechanism is used to inform another flash driver (for application or HSM) of flash embedded
(write or erase) operations or to be notified of flash embedded operations by them.

e FlsHsmPresent: Specifies whether the hardware security module (HSM) is present. If HSM exists, it will
perform setting of important registers.

e FlsArbitrationTimeout: Specifies tolerant time for arbitration (waiting for) to finish the flash operation
that was started from another core, typically maximum time to erase one flash sector. For more details on
the maximum time, see the device datasheet.

e FlsSystemcallCalloutFunction: Specifies a callout function, which is called whenever the flash driver
calls the system-call.

e FlsSetCycleModeApi: Specifies whetherthe F1s setCycleMode function is enabled or disabled.

The job end notification is configurable on configuration parameter F1sJobEndNotification. The job error
notification is configurable on configuration parameter F1sJobErrorNotification.

To avoid the watchdog timer trigger reset, you may have to clear the watchdog timer from the flash driverin

the following cases:

User guide 11 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Using the flash driver

e The following parameters are high value: F1sConfigSet/FlsMaxReadFastMode,
FlsConfigSet/FlsMaxReadNormalMode, FlsConfigSet/FlsMaxWriteFastMode, and
FlsConfigSet/FlsMaxWriteNormalMode.

e Theexecutiontimeof F1s MainFunction () takes longerthan the timeout of the watchdog timer due to
low CPU operating frequency and so on.

In such cases, you mustimplement F1s_WdgClear (). Thetemplate of F1s WdgClear () is definedin
Fls_CfgDer.c. If the configuration parameter F1sDefineWdgClear is TRUE, implement it directly in
Fls_CfgDer.c. Otherwise, you must define the function in any of your source file.

For example, in the case of configuring the WDG module:

#include <Wdg.h> /* Wdg Driver header file */
FUNC (void, FLS CODE) Fls WdgClear (void)
{
/* This function is implemented for clearing the watchdog timer by user. */

Wdg SetTriggerCondition(xxxx);

return;

2.3 Adapting your application

To use the flash driver in your application, you first have to include the flash driver header file by adding the
following code line to your source file:

#include "Fls.h" /* Fls Driver */

This publishes all the required function/data prototypes and symbolic names of the configuration to the
application.

In addition, you should also implement the error callout function for ASIL safety extension.

Declare the error callout function in the specified file by the F1sIncludeFile parameter and implementin
your application (see Required callback functions, Error callout API).

The error callout function name can be configured by the F1sErrorCalloutFunction parameter.

The erase callout function name can be optionally configured by the F1sEraseCalloutFunction parameter.
The DED error notification name can be optionally configured by the F1sDedErrorNotification parameter.
The SED error notification name can be optionally configured by the F1sSedErrorNotification parameter.

The callout function for invocation of system-call can be optionally configured by the
FlsSystemcallCalloutFunction parameter.

In the next step, the FLS should be initialized and configured. The configuration of the FLS with the flash driver
using EB tresos Studio is explained in EB tresos Studio for ACG8 user's guide [T].

The FLS initialization can be done with the following function call and parameter:

When configuration variant is VARIANT-POST-BUILD (Postbuild), the parameter is the address of a const
variable called F1s Config <number> (forexample, F1s Config 0),
Fls Init(&Fls_Config 0);

User guide 12 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Using the flash driver

Note: Fls Config <number>can be referred byincluding F1s PBcfg.h.

When the configuration variant is VARIANT-PRE-COMPILE (Precompile) and only one F1sConfigSet is
configured,

Fls Init (NULL_ PTR);
All other API calls can be used after successful initialization of the FLS whenever necessary.

If you use the MCU with data cache, and the data cache is enabled, the following areas must be allocated to

non-cacheable region by setting of memory protection unit (MPU):

o Work flash region

e Asection FLS START SEC VAR NO INIT ASIL B UNSPECIFIEDIinFls_MemMap.h

e Asection FLS START SEC SYSCALLSHARED VAR NO INIT ASIL B 32inFls_MemMap.h
(FIs_TS_T40D13M2I0R0)

For detailed information, see Memory allocation keyword and Memory protection unit (MPU).

Use DMA to read data from the flash memory unless the configuration parameter F1sGeneral/

FlsUseDmaForRead is setto FALSE (it may be set to FALSE if you do not need to detect ECC errors). In such

uses of DMA, you must enable the DMA controller before using the flash driver by using one of the following

ways because the flash driver does not enable the DMA controller:

o Set ENABLED bit (Bit No.31) in DMAC_CTL register to 1.

o Configure the MCU module with McubDmaEnable=true and call the Mcu_SetMode () function with the
configured mode.

For detailed information, see DMA.

2.4 Starting the build process

Do the following to build your application:
Note: For a clean build, use the build command with target clean all. before (make clean all).

1. Onthe command shell, type the following command to generate the necessary configuration-dependent
files. See Generated files for details.

> make generate
2. Type the following command to resolve all required file dependencies.

> make depend

3. Type the following command to compile and link the application:

> make (optional target: all)

The application is now built. All files are compiled and linked to a binary file, which can be downloaded to the
target hardware.

User guide 13 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Using the flash driver

2.5 Measuring stack consumption
Do the following to measure stack consumption. It requires the Base module for proper measurement.

Note: All files (including library files) should be rebuilt with the dedicated compiler option. The
executable file built in this step must be used only to measure stack consumption.

1. Add the following compiler option to the Makefile to enable stack consumption measurement.
-DSTACK_ANALYSIS ENABLE

2. Type the following command to clean library files.

> make clean 1lib

3. Follow the build process described in section Starting the build process.

Follow the instructions in the release notes and measure the stack consumption.

2.6 Memory mapping

The Fls_MemMap.h file in the S(TRESOS_BASE)/plugins/MemMap_TS_T40D13M0IOR0/include directory is a
sample. This file is replaced by the file generated by the MEMMAP module. Input to the MEMMAP module is
generated as Fls_Bswmd.arxml in the S(PROJECT_ROOT)/output/generated/swcd directory of your project
folder.

2.6.1 Memory allocation keyword

e FLS START SEC CODE ASIL B / FLS STOP SEC CODE ASIL B
The memory section type is CODE. All executable code is allocated in this section.

e FLS START SEC CONST ASIL B UNSPECIFIED / FLS STOP SEC CONST ASIL B UNSPECIFIED
The memory section type is CONST. The following contents are allocated in this section:

- All configuration data
- Hardware register base address data

e FLS START SEC_VAR INIT ASIL B UNSPECIFIED /
FLS_STOP_SEC VAR INIT ASIL B UNSPECIFIED

The memory section type is VAR. The following variable is allocated in this section:

- Flash driver state

e FLS START SEC_VAR NO INIT ASIL B UNSPECIFIED /
FLS_STOP_SEC VAR NO_ INIT ASIL B UNSPECIFIED

Note: When FLS STOP SEC VAR NO INIT ASIL B UNSPECIFIEDIS allocated to the end of SRAM
area, the write operation will be failed due to Silicon Errata 229.

e FLS_START SEC_SYSCALLSHARED VAR NO INIT ASIL B 32 /
FLS_STOP_SEC SYSCALLSHARED VAR NO INIT ASIL B 32 (Fls TS T40D13M2IO0RO)

The memory section type is VAR. The following variables are allocated in this section:

- Allvariables except for flash driver state (status)

User guide 14 002-23407 Rev. *W
2025-12-10

Flash driver user guide in ﬁ neon

TRAVEO™ T2G family
Using the flash driver

Note: When data cache is enabled in the MCU (for example, Arm® Cortex®-M7 CPU), this memory section
must be in non-cacheable region by setting of MPU. For further information, see Memory
protection unit (MPU).

For allocation of this memory section to given section name .autosar_fls_bss, an example of FIs_MemMap.h is
shown as follows. By linker, the section of .autosar_fls_bss must be allocated to address in non-cacheable
region.

(This is example for GHS compiler. If other compiler is used, confirm and follow the syntax rule of it.)

#ifdef FLS_START SEC_VAR NO INIT ASIL B UNSPECIFIED

#else
#define MEMMAP_S TARTED

#pragma ghs section bss=".autosar fls bss" // add

#endif
#ifdef FLS_STOP_SEC_VAR NO_INIT ASIL B_UNSPECIFIED

#else
#undef MEMMAP_S TARTED

#pragma ghs section bss=default // add

#endif

User guide 15 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Structure and dependencies

3 Structure and dependencies

The flash driver consists of static, configuration, and generated files.

3.1 Static files

Static files of the flash driver are located in the directory S(TRESOS_BASE)/plugins/Fls_TS_*. These files contain
the functionality of the driver, which does not depend on the current configuration.

All necessary source files are automatically compiled and linked during the build process and all include paths
are set.

3.2 Configuration files

The configuration of the flash driver is done using the EB tresos Studio software. When saving a project, the
configuration description is written in the Fls.xdm file, located in your project folder under
S(PROJECT_ROOT)/config. This file serves as the input to generate the configuration-dependent source and
header files during the build process.

Note: In the Fls.epc file, each sector container included in the F1sSectorList container must be
arranged in the order of the value of the F1sSectorStartaddress parameter.

3.3 Generated files

During the build process, the following files are generated based on the current configuration. They are located
in the subfolder output/generated of your project folder.

e include/Fls_Cfg.h and include/Fls_CfgDer.h contain the configuration declarations for the AUTOSAR module
FLS.

e include/Fls_Irg.h contains the configuration declarations of the interrupt service routine.

e include/Fls_PBcfg.h contains declarations of configuration variables required by the F1s Init API.
e make/Fls_cfg.mak is currently empty.

e sr¢/Fls_CfgDer.c contains the configuration relevant routine.

e sr¢/Fls_Irg.c contains the interrupt service routine.

e sr¢/Fls_PBcfg.c contains the structure of the F1sConfigset and the memory map information of the flash
sectors.

Note: You do not need to add the generated source files to your application make file. They are compiled
and linked automatically during the build process.

o swcd/Fls_Bswmd.arxml contains BSW module description.

Note: Additional steps are required for the generation of the BSW module description.
In EB tresos Studio, follow the menu path Project > Build Project and select generate_swcd.

User guide 16 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < Inf|neon
TRAVEO™ T2G family

Structure and dependencies

3.4 Dependencies

Figure 3 shows how the flash driver is embedded in the memory stack.

Note: To use the flash driver, the flash EEPROM emulation (see Specification of flash EEPROM emulation
[3]) and the BSW scheduler module (see Specification of RTE [5]) must be enabled and configured.
Optionally, the default error tracer (see Specification of default error tracer [4]) can be enabled
and configured.

Service

NVRAM Manager Layer
Memory Abstraction Interface ECU
Abstraction

Layer

EEROM Abstraction Flash EEROM Emulation

Microcontroller

EEROM Driver Flash Driver Abstraction
Layer

Microcontroller
Hardware

Microcontroller Type

Figure3 Relationship between the flash driver and other AUTOSAR modules

3.4.1 Flash EEPROM emulation (FEE)

The FEE is part of the ECU abstraction layer, which is located above the flash driver. It is the only module that
calls flash driver functions and provides callback functions for flash driver events such as the job end
notification or the job error notification.

3.4.2 DET

The default error tracer is optional and handles all errors.

3.4.3 BSW scheduler

The basic software scheduler calls the main function and handles the critical sections that are used within the
flash driver.

3.4.4 Error callout handler

The error callout handler is called on every error that is detected, independently of whether default error
detection is enabled or disabled. The error callout handler is an ASIL safety extension that is not specified by
AUTOSAR. It is configured via the F1sErrorCalloutFunction configuration parameter.

User guide 17 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

4 EB tresos Studio configuration interface

The GUI is not part of the current delivery. For further information see EB tresos Studio for ACG8 user's guide [T].

Note: The ECU parameter description of the Elektrobit automotive flash driver basically corresponds to
the one defined by AUTOSAR in Specification of flash driver [2], chapter 10. However, because there
are some vendor-specific extensions, use the ECU parameter description file that is delivered with
the flash driver located in S(TRESOS_BASE)/plugins/Fls_TS_*/config/Fls.xdm.

4.1 General configuration

The flash driver configuration, including different parameters and their meaning, is described in Specification of
flash driver [2] and Specification of ECU configuration parameters [6]. See these documents for further
information.

4.2 Vendor specific configuration

This section summarizes the differences between the configuration given in the Specification of flash driver 2]
and Specification of ECU configuration parameters [6] and the configuration necessary for this flash driver.

4.2.1 Parameter constraints

The range of several parameters of the general flash driver configuration was reduced to hardware-specific
values for the TRAVEO™ T2G microcontroller. These parameters are listed here, together with new hardware-
specific and vendor-specific parameters. The parameters are preconfigured by using default values relevant for
the selected derivative (when changing the derivative, a manual update is possible by clicking the Calc button).
If a parameter is not used by the driver or if the parameter is not configurable, the field cannot be edited.

4.2.1.1 Container FlsGeneral

42111 FlsAcLoadOnJobStart

Name

FlsAcLoadOnJobStart
Range

FALSE

Annotation

Driver does not load flash access code to RAM, so currently set as FALSE.

User guide 18 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

4.21.1.2 FlsBaseAddress

Name

FlsBaseAddress
Range
Annotation

Flash memory starts exactly at the given addresses. F1sBaseAddress is gathered from the Resource module
and therefore configuration is not required.

42113 FlsBlankCheckApi

Name

FlsBlankCheckApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s BlankCheck function.

421.1.4 FlsCancelApi

Name

FlsCancelApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s cancel function.

42115 FlsCompareApi

Name

FlsCompareApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s Compare function.

User guide 19 002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

(infineon

EB tresos Studio configuration interface

4.21.1.6 FlsDevErrorDetect

Name

FlsDevErrorDetect
Range
TRUE, FALSE

Annotation

Enables/disables the default error notification for the FLS driver. Setting this parameter to FALSE disables the
notification of default errors via DET. However, in contrast to AUTOSAR specification, detection of default

errors is still enabled as safety mechanisms (fault detection).

4211.7 FlsDriverindex

Name

FlsDriverIndex
Range
0

Annotation

Index of the driver. This parameter is not used in the flash driver. This will be assigned to the following symbolic

names. The symbolic name derived of the general container short name prefixed with "F1sconf

(FlsConf_FlsGenerall

42118 FlsGetJobResultApi

Name

FlsGetJobResultApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s GetJobResult function.

42119 FlsGetStatusApi

Name

FlsGetStatusApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s Getstatus function.

User guide 20

002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

4.21.1.10 FlsRuntimeErrorDetect

Name

FlsRuntimeErrorDetect
Range

TRUE, FALSE

Annotation

Enables/disables the runtime errors notification for the FLS driver. Setting this parameter to FALSE disables the
notification of runtime errors via DET. However, in contrast to AUTOSAR specification, detection of runtime
errors is still enabled as safety mechanisms (fault detection).

4.21.1.11 FlsSetModeApi

Name

FlsSetModeApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s setMode function.

421112 FlsTotalSize

Name

FlsTotalSize

Range

Total size of the available work flash memory. See the hardware manual.
Annotation

Flash memory length must exactly correspond to the available total size of work flash on the target device.

4.21.1.13 FlsUselnterrupts

Name

FlsUseInterrupts
Range

TRUE, FALSE
Annotation

Job processing triggered by hardware interrupt (TRUE) or not triggered by interrupt (FALSE). When this
parameter is set to TRUE, the parameter F1sGeneral/FlsUseNonBlockingWrite cannot be setto TRUE.

User guide 21 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

4.21.1.14 FlsVersioninfoApi

Name

FlsVersionInfoApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s GetversionInfo function.

4.2.1.2 Container FlsConfigSet

4.21.21 FlsAcErase

Name

FlsAcErase
Range
Annotation

This driver does not execute in RAM. Therefore, this parameter cannot be specified by the configuration tool.

4.21.2.2 FlsAcWrite

Name

FlsAcWrite
Range
Annotation

This driver does not execute in RAM. Therefore, this parameter cannot be specified by the configuration tool.

4.21.23 FlsCallCycle

Name

FlsCallCycle
Range
0.000..1.000
Annotation

Cycle time of calls of the flash driver's main function. The unit of this parameter is seconds. Therefore, the
configured value of this parameter is rounded down in milliseconds. If the value is 0.000, Timeout supervision is
not performed.

User guide 22 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

421.24 FlsDefaultMode

Name

FlsDefaultMode

Range

MEMIF_MODE_FAST, MEMIF_MODE_SLOW
Annotation

Default FLS device mode after initialization.

421.25 FlsJobEndNotification

Name

FlsJobEndNotification
Range
<FUNCTION_NAME>
Annotation

Mapped to the job end notification routine provided by some upper layer module, typically the FEE module.

Note: Notifications must be declared and defined outside the FLS module. The file containing the
declarations must be included using the parameter F1sGeneral/FlsIncludeFile.

421.2.6 FlsJobErrorNotification

Name

FlsJobErrorNotification
Range

<FUNCTION_NAME>
Annotation

Mapped to the job error notification routine provided by some upper layer module, typically the FEE module.

Note: Notifications must be declared and defined outside the FLS module. The file containing the
declarations must be included using the parameter FilsGeneral/FlsIncludeFile.

4.21.2.7 FlsMaxReadFastMode

Name
FlsMaxReadFastMode
Range

4..* (multiple of 4)

Annotation

User guide 23 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
EB tresos Studio configuration interface

i

Default value is 1024. This value is a multiple of 4. This value is used in reading, comparing, blank checking and
verifying the written data after writing in fast mode.

421.2.8 FlsMaxReadNormalMode

Name

FlsMaxReadNormalMode
Range

4..* (multiple of 4)
Annotation

Default value is 128. This value is a multiple of 4. This value is used in reading, comparing, blank checking and
verifying the written data after writing in normal mode.

421.29 FlsMaxWriteFastMode

Name

FlsMaxWriteFastMode
Range

4..* (multiple of 4)
Annotation

Default value is 64. This value is a multiple of 4. This value is used in writing job without hardware interruptin
fast mode.

421.210 FlsMaxWriteNormalMode

Name

FlsMaxWriteNormalMode
Range

4..* (multiple of 4)
Annotation

Default value is 16. This value is a multiple of 4. This value is used in writing the job without hardware interrupt
in normal mode.

4.2.1.211 FlsProtection

Name
FlsProtection
Range

Annotation

User guide 24 002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

EB tresos Studio configuration interface

(infineon

The flash driver does not support protection. Therefore, this parameter cannot be specified by the

configuration tool.

4.2.1.3 Container FlsDemEventParameterRefs

This container is not present because it is obsolete.

4.2.1.4 Container FlsExternalDriver

This container is not present because external flash is not supported.

4.2.1.5 Container FlsSector

421.51 FlsNumberOfSectors

Name

FlsNumberOfSectors
Range
l*

Annotation

Number of continuous identical flash sectors. The maximum value depends on subderivative.

4.21.5.2 FlsPageSize

Name

FlsPageSize
Range

4

Annotation

Page size for write access of a sector.

42153 FlsSectorSize

Name

FlsSectorSize

Range

2048 (large sector) or 128 (small sector)
Annotation

Size of a sector in bytes.

User guide 25

002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

42154 FlsSectorStartaddress

Name

FlsSectorStartaddress

Range

Virtual start address of a flash sector. See Virtual flash memory layout.
Annotation

Start address of a flash sector.
4.2.1.6 Container FlsPublishedInformation

4.2.1.6.1 FlsAcLocationErase

Name

FlsAcLocationErase
Range
Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

4.2.1.6.2 FlsAcLocationWrite

Name

FlsAcLocationWrite
Range
Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

4.2.1.6.3 FlsAcSizeErase

Name

FlsAcSizeErase
Range
Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

User guide 26 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

421.6.4 FlsAcSizeWrite

Name

FlsAcSizeWrite
Range
Annotation

This driver does not execute in RAM. Therefore, this parameter is not used.

4.21.6.5 FlsEraseTime

Name

FlsEraseTime
Range

0.16
Annotation

The unit of this parameter is seconds and represents the maximum time to erase one complete flash sector in
all supported derivatives.

4.2.1.6.6 FlsErasedValue

Name

FlsErasedValue
Range
OXFFFFFFFF
Annotation

The erased value is regarded as OXFFFFFFFF for four bytes.

4.21.6.7 FlsExpectedHwld

Name

FlsExpectedHwId
Range

TRAVEO
Annotation

The flash driver does not support external flash. Therefore, this parameter is not used.

User guide 27 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

4.21.6.8 FlsSpecifiedEraseCycles

Name

FlsSpecifiedEraseCycles
Range

250000

Annotation

Number of erase cycles specified for the flash device.

4.2.1.6.9 FlsWriteTime

Name

FlsWriteTime
Range

0.001
Annotation

The unit of this parameter is seconds.
4.2.2 Vendor and driver specific parameters
4.2.2.1 Container FlsGeneral

42211 FlsErrorCalloutFunction

Name

FlsErrorCalloutFunction
Range

<FUNCTION_NAME>
Annotation

FlsErrorCalloutFunction isused to specify the error callout function name. The function is called on every
error. The ASIL level of this function limits the ASIL level of the FLS driver.

Note: FlsErrorCalloutFunction mustbe avalid C function name; otherwise an error can occur in
the configuration phase.

4221.2 FlsincludeFile

Name

FlsIncludeFile

User guide 28 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

Range
File names
Annotation

FlsIncludeFile is a list of the file names that shall be included within the driver. Any application-specific
symbol that is used by the Fls configuration such as error callout function should be included by configuring
this parameter.

Note: FlsIncludeFile must be a filename with the .h extension and a unique name; otherwise errors
can occur in the configuration phase.

Note: If the configuration parameter F1sJobEndNotification, FlsJobErrorNotification,
FlsDedErrorNotification,and/or FlsSedErrorNotification are configured, Fee_Cbk.h
(or another file containing the declarations) must be included by configuring this parameter
because notifications have to be declared and defined outside the FLS module.

4221.3 FlsEraseVerification

Name

FlsEraseVerification
Range

TRUE, FALSE

Annotation

Enables/disables the erase verification (blank check) after erasing a flash block. (Only if the upper-layer module
can ensure blankness of flash block, F1sEraseverification can be setto FALSE.)

4221.4 FlsBeforeWriteVerification

Name

FlsBeforeWriteVerification
Range

TRUE, FALSE

Annotation

Enables/disables the verification (blank check) before writing a flash block. (Only if the upper-layer module can
ensure availability of flash block, F1sBeforeWriteverification can be set to FALSE.)

42215 FlsWriteVerification

Name
FlsWriteVerification
Range

TRUE, FALSE

User guide 29 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

Annotation

Enables/disables the write verification (compare) after writing the flash block. (Only if the upper-layer module
can ensure data consistency, FlsliriteVerification can be setto FALSE.)

42216 FlsEraseCalloutFunction

Name

FlsEraseCalloutFunction
Range

<FUNCTION_NAME>
Annotation

FlsEraseCalloutFunction is used to specify the erase callout function name. The function is called after an
erase job is accepted.

Note: FlsEraseCalloutFunction mustbe avalid C function name; otherwise an error can occur in
the configuration phase.
4.221.7 FlsReadimmediateApi

Name

FlsReadImmediateApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s ReadImmediate function.

42218 FlsSuspendResumeApi

Name

FlsSuspendResumeApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s Suspend / Fls Resume function.

42219 FlsDmaChannel

Name

FlsDmaChannel

User guide 30 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

Range
0.*
Annotation

The DMA channel that is used for reading from work flash. The maximum value depends on the subderivative. If
flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM (Fls_TS_T40D13M2I0RO0) are used, a separate
DMA channel must be used for each flash driver. If the configuration parameter F1sUseDmaForRead is FALSE,
this parameter is not valid.

4.221.10 FlsAuxiliaryBufferSize

Name

FlsAuxiliaryBufferSize
Range

4..2048 (multiple of 4)
Annotation

The size of auxiliary buffer that stores data read from work flash by DMA transfer at a time for reading, verifying
or comparing process. Default value is 128. This value is a multiple of 4. If the configuration parameter
FlsUseDmaForRead is FALSE, this parameter is not valid.

4.2.2.1.11 FlsSetFlashCtlRegister

Name

FlsSetFlashCtlRegister

Range

FLS_FLASH_CTL_WORKONLY, FLS_FLASH_CTL_USERVALUE, FLS_FLASH_CTL_NOTSET
Annotation

Specifies the bit fields of FLASH_CTL register that are set by the flash driver.

FLS_FLASH_CTL_WORKONLY (Default): The only bit fields regarding work flash are set to the FLASH_CTL
register.

FLS_FLASH_CTL_USERVALUE: The user-specified value is set to the FLASH_CTL register. The value is defined by
the configuration parameter F1sUservValueForFlashCtlRegister.

FLS_FLASH_CTL_NOTSET: FLS driver does not set any value to the FLASH_CTL register.

4.2.21.12 FlsUserValueForFlashCtlRegister

Name
FlsUserValueForFlashCtlRegister
Range

0.*

User guide 31 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
EB tresos Studio configuration interface

i

Annotation

Avalue for the FLASH_CTL register that is set by the user when the configuration parameter
FlsSetFlashCtlRegisteris FLS_FLASH_CTL_USERVALUE. All significant bits in the register must be
specified, but the bits of FLASH macro wait states (LSB 4 bits) are not set by flash driver.

422113 FlsSetWorkFlashSafetyRegister

Name

FlsSetWorkFlashSafetyRegister
Range

TRUE, FALSE

Annotation

Specifies whether the WORK_FLASH_SAFETY register is set by the flash driver. If TRUE, the flash driver sets the
WORK_FLASH_SAFETY register. Otherwise, it does not set the WORK_FLASH_SAFETY register.

4.2.2.1.14 FlsDefineWdgClear

Name

FlsDefineWdgClear
Range

TRUE, FALSE
Annotation

Specifies whether the function F1s WdgClear to clear the watchdog timer is defined by the flash driver. If
TRUE, the Flash driver defines the function F1s_WdgClear. Otherwise, it does not define the function
Fls WdgClear.

4.2.21.15 FlsUseNonBlockingWrite

Name

FlsUseNonBlockingWrite
Range

TRUE, FALSE

Annotation

Specifies whether the flash driver writes to work flash in non-blocking mode. If TRUE, the Flash driver writes in
non-blocking mode. Otherwise, writes in blocking mode (Default). This parameter is not applied for the write
operation to work flash block#1. The direct register accesses to FLASHC1 implies non-blocking mode.

422116 FlsHsmPresent

Name

FlsHsmPresent

User guide 32 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
EB tresos Studio configuration interface

i

Range

TRUE, FALSE

Annotation

This parameter indicates whether the hardware security module (HSM) is present. If the HSM is not supported

yet, this parameter should be FALSE.

422117 FlsUseSafetyMechanism

Name
FlsUseSafetyMechanism
Range

TRUE, FALSE

Annotation

Preprocessor switch to enable and disable eCT flash safety mechanism for flash embedded (write or erase)
operation. If other flash drivers (such as HSM, SHE) have not supported the safety mechanism yet, this
parameter should be FALSE. If both flash drivers for application (FIs_TS_T40D13M1I0R0) and for HSM
(Fls_TS_T40D13M2I0R0) are used, this parameter should be TRUE for using the safety mechanism because of
the arbitration between both flash drivers.

4.2.21.18 FlslpcStructure

Name
FlsIpcStructure
Range

O *

Annotation

IPC structure (number) used for eCT flash safety mechanism and HSM communication. The maximum value
depends on subderivative. If both flash drivers for application (FIs_TS_T40D13M1I0R0) and for HSM
(Fls_TS_T40D13M2I0R0) are used, this parameter should be used for safety mechanism because of the
arbitration between both flash drivers. Do not choose the IPC structures that are reserved for system calls. Set
this parameter to the same values in both flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM
(Fls_TS_T40D13M2I0R0). Refer to 5.1.15.3 Arbitration sequences for the detailed usage and behavior.

4.2.21.19 FlslpcinterruptStructure

Name
FlsIpcInterruptStructure
Range

0.*

User guide 33 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

Annotation

IPC interrupt structure (number) used for eCT flash safety mechanism and HSM communication. The maximum
value depends on subderivative. If both flash drivers for application (Fls_TS_T40D13M1I0R0) and for HSM
(Fls_TS_T40D13M2I0R0) are used, this parameter should be used for safety mechanism because of the
arbitration between both flash drivers. Do not choose the IPC interrupt structures that are reserved for system
calls. Set this parameter to different values for flash drivers for application (FIs_TS_T40D13M1I0R0) and for HSM
(Fls_TS_T40D13M2I0R0). Refer to 5.1.15.3 Arbitration sequences for the detailed usage and behavior.

4.2.21.20 FlslpcReleaseEventNotification
Name

FlsIpcReleaseEventNotification

Range

1.*

Annotation

IPC interrupt structures to generate the IPC release event used for eCT flash safety mechanism. Each bitfield
from LSB corresponds to the IPC interrupt structure that triggers the interrupt for an IPC release event. The
maximum value depends on the subderivative. If both flash drivers for application (FIs_TS_T40D13M1I0R0) and
for HSM (Fls_TS_T40D13M2I0RO0) are used, use this parameter for safety mechanism because of the arbitration
between both flash drivers. Do not choose the IPC interrupt structures that are reserved for system calls. Refer
to 5.1.15.3 Arbitration sequences for the detailed usage and behavior.

4.2.21.21 FlslpcNotificationEventToHsm

Name
FlsIpcNotificationEventToHsm
Range

O *

Annotation

IPC interrupt structure (number) used for flash processing request to HSM. The maximum value depends on the
subderivative. This parameter is used only for flash driver for pplication (FIs_TS_T40D13M1I0RO0). If both flash
drivers for application (Fls_TS_T40D13M1I0R0) and for HSM (Fls_TS_T40D13M2I0R0) are used, use flash driver
for application (Fls_TS_T40D13M1I0RO) to request buffer invalidation to flash driver for HSM
(Fls_TS_T40D13M2I0R0). Set this parameter to the same value as FlsIpcInterruptStructure inthe flash
driver for HSM (Fls_TS_T40D13M2I0RO0). Refer to 5.1.15.3 Arbitration sequences for the detailed usage and
behavior.

4.221.22 FlsWorkEmbeddedNotification
Name

FlsWorkEmbeddedNotification

Range

<FUNCTION_NAME>

User guide 34 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

Annotation

Work flash embedded notification routine. The notification routine is called after flash embedded (write or
erase) operation if the eCT flash safety mechanism is enabled. You must implement this; the flash driver does
not care about the definition of the routine.

Syntax example: void WorkEmbeddedNotification (void)

Note: Notifications must be declared and defined outside the FLS module. The file containing the
declarations must be included using the parameter Fl1sGeneral/FlsIncludeFile.

4.2.21.23 FlsArbitrationTimeout

Name
FlsArbitrationTimeout
Range

0.000..60.000

Annotation

Tolerant time for arbitration (waiting for) to finish the flash operation that was started from another core,
typically maximum time to erase one flash sector. The unit of this parameter is seconds. If there is a conflict in
flash operation, the current operation by FLS driver will wait for the earlier operation to finish, and then retry to
start the current operation. The maximum retry time until timeout is calculated by dividing the value of the
FlsGeneral/FlsArbitrationTimeout parameter by the value of the F1sConfigSet/FlsCallCycle
parameter. When the F1sConfigSet/FlsCallCycle is zero, the timeout will not be caused permanently. The
default value of this parameter is 0.2 s (200 ms), which is the maximum time for erasing one flash sector plus a
margin.

4.221.24 FlsSystemcallCalloutFunction

Name

FlsSystemcallCalloutFunction

Range

<FUNCTION_NAME>

Annotation

FlsSystemcallCalloutFunction isused to define the existence and to specify the name of a callout

function for invocation of system-call. The function is called whenever the flash driver calls the system-call.

Note: FlsSystemcallCalloutFunctionmustbe avalid C function name; otherwise an error can
occur in the configuration phase. You must implement the callout function to call the system-call
properly. Moreover, the parameter must have following interface:

Std ReturnType Systemcall Callout Function Name (uint32 *Fls IpcContext);

The F1s IpcContext parameterindicates SRAM address (SRAM_SCRATCH_ADDR) where the system-call
parameters have been stored and can be used to initiate the system-call request by such S-LLD IPC driver.

User guide 35 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
EB tresos Studio configuration interface

i

If the callout function calls the system-call successfully, it must return E_OK; otherwise it must return
E_NOT_OK.

4.2.21.25 FlsFaultStructure

Name

FlsFaultStructure
Range

O *

Annotation

Fault structure (number) used for fault reporting. See Fault. The maximum value depends on subderivative.

4.2.21.26 FlsSetCycleModeApi

Name

FlsSetCycleModeApi
Range

TRUE, FALSE
Annotation

Preprocessor switch for enabling the F1s SetCycleMode function. If TRUE, the F1s SetCycleMode function
is enabled. Otherwise, it is disabled (default).

4.2.21.27 FlsUseDmaForRead

Name

FlsUseDmaForRead
Range

TRUE, FALSE
Annotation

This parameter is used to indicate whether reading from work flash is performed by DMA transfer. If TRUE, the
Flash driver reads with DMA transfer (default). Otherwise, reads without DMA transfer (with CPU transfer).

4.2.21.28 FlsSetWorkFlashFaultMaskRegister

Name

FlsSetWorkFlashFaultMaskRegister
Range

TRUE, FALSE

User guide 36 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
EB tresos Studio configuration interface

i

Annotation

Specifies whether the fault mask 1 (MASK1) and mask 2 (MASK2) registers for work flash are set by the flash
driver. If TRUE, the flash driver sets the fault mask 1 register (default). Otherwise, it does not set the fault mask
1 register. If TRUE and the target device has two flash blocks, the flash driver sets the fault mask 2 register
(default). Otherwise, it does not set the fault mask 2 register. See Fault for details.

4.2.2.1.29 FlsReportErrorifNotBlank

Name

FlsReportErrorIfNotBlank
Range

TRUE, FALSE

Annotation

Specifies whether the FLS calls error callout functions (i.e., Error Callout Handler and Det ReportError ())
when a blank check job started by F1s BlankCheck () detectsthe FLS E VERIFY ERASE FAILED error,
which indicates non-blank. If TRUE, the flash driver calls the error callout functions for non-blank (default).
Otherwise, it does not call the error callout functions for non-blank.

4.2.2.2 Container FlsConfigSet

42221 FlsDedErrorNotification

Name

FlsDedErrorNotification
Range

<FUNCTION_NAME>
Annotation

Mapped to the DED error notification routine provided by some upper layer module.

Note: Notifications must be declared and defined outside the FLS module. The file containing the
declarations must be included using the parameter FlsGeneral/FlsIncludeFile.

42222 FlsSedErrorNotification

Name

FlsSedErrorNotification
Range

<FUNCTION_NAME>
Annotation

Mapped to the SED error notification routine provided by some upper layer module.

User guide 37 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
EB tresos Studio configuration interface

Note: Notifications must be declared and defined outside the FLS module. The file containing the
declarations must be included using the parameter Fl1sGeneral/FlsIncludeFile.

42223 FlsNumberOfDelayLoop

Name

FlsNumberOfDelayLoop
Range

0..4294967295
Annotation

This parameter specifies the number of delay (wait) loops for writing a 32-bit data. This value is typically
calculated by the following formula:

<FlsNumberOfDelayLoop>

= <CPU Clock> * <Write Time> * <Margin> / <Cycle per Loop>
Where,

e <CPU Clock> is CPU clock pera microsecond

e <Write Time> is Typ 32-bit (with ECC) write time (from datasheet)

e <Margin> isthe margin considering the tolerance

e <Cycle per Loop>isthe CPU cycle peraloop. (This value depends on compiler optimization. For
example, it is 1 for compiling by GHS)

For example, if CPU clock is 160 MHz, write time is 30 us, and margin is +5%, then:

<FlsNumberOfDelayLoop>

= 160 (cycle/usec) * 30 (usec) * 1.05 / 1

= 5040

Note: If the value of this parameter is large, the response of F1s MainFunction () for writing will be
delayed. When the 32-bit write time is longer than the typical (even if it is max), the writing is
completed because the next calls of F1s MainFunction () processes accordingly, although the
number of times the function is called increases. Therefore, it is unnecessary to set this parameter
to a large value. In addition, do not set the value such that the watchdog timer’s counter can reach
the limit value.

Note: If this parameter is set to 4294967295, F1s MainFunction () will wait until the lesser size of
FlsConfigSet/FlsMaxWriteNormalMode (Or F1sConfigSet/FlsMaxWriteFastMode)or
remaining data at that time has been written.

User guide 38 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

EB tresos Studio configuration interface

4.2.2.3 Container FlsSector

42.2.31 FlsSectorldentifier

Name

FlsSectorIdentifier
Range

Selectable list entry
Annotation

Identifier of the predefined flash sector as specified in the hardware manual.

4.2.3 Other modules

4.2.3.1 Flash EEPROM emulation

The flash EEPROM emulation must be configured according to Specification of flash EEPROM emulation [3].

4.2.3.2 DET

The default error tracer (DET) must be configured according to Specification of default error tracer [4].

If runtime errors notification is activated and runtime error is detected, the following four runtime errors are
supported by this flash driver:

e FLS E ERASE FAILED
e FLS E WRITE FAILED

e FLS E READ FAILED

e FLS E COMPARE FAILED

4.2.3.3 BSW scheduler

The flash driver uses the following services of the BSW scheduler to enter and leave critical sections:

e SchM Enter Fls FLS EXCLUSIVE AREA 0 (void)
e SchM Exit Fls FLS EXCLUSIVE AREA 0 (void)

Ensure that the BSW scheduler is properly configured and initialized before using the flash driver.

User guide 39 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Functional description

5 Functional description

The flash driver provides a hardware-independent interface for the flash EEPROM emulation to read, write,
erase, and compare data from or to the flash memory. The flash driver only uses the work flash memory.

The flash driver is usually used via the flash EEPROM emulation (Specification of flash EEPROM emulation [3])
and therefore, its functions should not be called directly by the application. In general, the flash driver's
functions (except the main function) are exclusively called by the flash EEPROM emulation.

5.1 Function of the flash driver

5.1.1 Flash driver state machine

!
D

Fls_Init()
MEMIF_IDLE
Fls_Erase() '\
E:ii\éver:j(()) Fls_MainFunction()

Unitl job is done or
Fls_Conpare() Fls_Cancel()
Fls_BlankCheck() -

Fls_Readlmmediate() /

(MEMIF_BUSY)

Figure4 State machine of the flash driver

5.1.1.1 State MEMIF_UNINIT

After power on, the flash driver is in the MEMIF UNINIT statein which it has not been initialized yet.

5.1.1.2 State MEMIF_IDLE

After successful initialization, the driver reaches the MEMIF IDLE state and is ready. If an ongoing read, write,
erase, compare, or blank check job is finished or canceled, the driver remains in this state and is ready for the
next job.

Note: After transition to the MEMIF IDLE state, there is a possibility that the hardware is still working
because the flash driver cannot abort the underlying hardware task even if it has been ready to
accept a new job. In this case, it is necessary to be careful when the transition to the low-power
consumption mode happens. See Retrieving the status information.

User guide 40 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
Functional description

i

5.1.1.3 State MEMIF_BUSY

Inthe MEMIF BUSY state, the flash driver has accepted a read, write, erase, compare or blank check job, which
will be executed during the next call(s) of the F1s MainFunction () function until the job is finished or

canceled by the user.
(MEMIF_JOB_OK)

C MEMIF_JOB_PENDING >

|

MEMIF_BLOCK_
C MEMIF_JOB_FAILED) QEMlF_JOB_CANCELLE[D C INCONSISTENT)

Figure5 State machine of the job result

5.1.2 Flash driver job result state

5.1.2.1 MEMIF_JOB_OK

The last job finished successfully. This state is also used after initialization.

5.1.2.2 MEMIF_JOB_PENDING

Aread, write, erase, compare, or blank check job is pending and will be executed on the next call of
Fls MainFunction().

5.1.2.3 MEMIF_JOB_CANCELED

The last job was canceled by the user via calling the F1s cancel () function.

5.1.24 MEMIF_JOB_FAILED

The last job failed due to a hardware error, timeout, and so on.

5.1.2.5 MEMIF_BLOCK_INCONSISTENT

This job result can only occur on compare jobs. It is set if the compare job yielded differences.

User guide 41 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

5.1.3 Initialization
The initialization is done via the function call.

In case of the VARIANT-POST-BUILD variant (Postbuild), the parameter is the address of a const variable
Fls Config <number> (forexample, F1s Config 0):

Fls Init(&Fls Config 0);

In case of the VARIANT-PRE-COMPILE variant (Precompile), only one F1sConfigsSet is configured:

Fls Init (NULL_PTR);

After the initialization, the flash driver accepts a read, write, erase, compare, or blank check job for the flash
memory.

5.1.4 Reading data from the flash memory

The flash driver supports reading data from the flash memory with blank checking (F1s Read ()) and without
blank checking (F1s ReadImmediate ()).Inthe TRAVEO™ T2G microcontroller family, the blank check needs
to be performed in advance of reading because undefined value is read from the blank (erased) area. Only if the
upper-layer module has known where the blank areas are, for example, F1s BlankCheck (), reading without
blank checking can be used. See Checking blank for the flash memory. Otherwise, reading with the blank
checking should be used. Generally, F1s Read () isslowerthan Fls ReadImmediate () due to significant
overhead of blank checking.

A read job with the blank checking is set up via the following command:

ReturnValue = Fls Read(SourceAddress, TargetAddressPtr, Length);

Aread job without the blank checking is set up via the following command:

ReturnValue = Fls ReadImmediate (SourceAddress, TargetAddressPtr, Length);

Note: Foruseof F1s ReadImmediate (), the configuration parameter
FlsGeneral/FlsReadImmediateApi must be setto TRUE.

If the function returns £_ 0K, the job was accepted and will be executed on the next call(s) of
Fls MainFunction (). The flash driveris now in the MEMIF_BUSY state and will not accept other commands.
The job resultis set to MEMIF JOB PENDING.

On each call of the main function, a specific number of bytes is copied from the flash memory sourceaddress
tothe TargetaddressPtr. The number of bytes depends on the memory layout (for example, gaps) and the
configuration parameter such as F1sConfigSet/FlsMaxReadNormalMode. If both SourceAddress and
TargetAddressPtr are multiples of 4, the latency of F1s MainFunction () canreduce.

If the configuration parameter F1sGeneral/FlsUseDmaForRead is TRUE (default), the flash driver reads data
with DMA transfer. The DMA channel used is specified by the configuration parameter
FlsGeneral/FlsDmaChannel. The read data is stored once in the auxiliary buffer that the flash driver has
prepared and is passed to the target data buffer that you have prepared. The auxiliary buffer size is determined
by the configuration parameter FlsGeneral/Fl1sAuxiliaryBufferSize. The larger the size of the auxiliary
buffer, the larger is the data read during a DMA transfer. However, this increases RAM consumption. The
auxiliary buffer size is limited to the value of F1sConfigSet/FlsMaxReadNormalMode (or
FlsConfigSet/FlsMaxReadFastMode) or a large sector size.

User guide 42 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

After the total number of bytes is successfully copied from the flash memory, the driver state is set back to
MEMIF_IDLE and the job result is set to MEMIF JOB_OK. In addition, the driver also calls an end notification
function if it was configured with the F1sConfigSet/FlsJobEndNotification parameter.

If you are reading from a blank (erased) area, F1s_Read () copies all OxFF data, whereas,
Fls ReadImmediate () copies indefinite data.

If a double-bit error was detected during the read process, the driver copies all 0xFF data and calls the error
callout handler and the DET runtime errors notification (If the configuration parameter
FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the error code FLS E DED FAILURE,and the driver
will continue the read job. DED error notification also will be called if it was configured with the parameter
FlsConfigSet/FlsDedErrorNotification.In HSM (Fls_TS_T40D13M2I0RO0), the driver detects the double-
bit error as “read failed” and will set the job result to MEMIF JOB FAILED and call the error callout handler
with the error code FLs E READ FAILED FOR CALLOUT and the DET runtime errors notification (If the
configuration parameter F1sGeneral/FlsRuntimeErrorDetect is TRUE) with the error code

FLS E READ FAILED and the driver will abort the read job.

If a single-bit error was detected during the read process, the driver calls the error callout handler and the DET
runtime errors notification (If the configuration parameter F1sGeneral /Fl1sRuntimeErrorDetect iS TRUE)
with the error code FLs E SED FAILURE and the driver will continue the read job. The SED error notification
also will be called if it was configured with the parameter F1sConfigSet/FlsSedErrorNotification.In
HSM (Fls_TS_T40D13M2I0R0), the driver cannot detect the single-bit error.

If there is a conflict in the flash operation (reading while erase/write), the flash driver will return to the upper
layer (once) to wait for the earlier operation to finish, and then it will retry reading on the next call of

Fls MainFunction (). The maximum retry time until timeout is calculated by dividing the value of the
configuration parameter F1sGeneral/FlsArbitrationTimeout by the value of the
FlsConfigSet/FlsCallCycle parameter. If the maximum retry time exceeds, the driver will set the job
resulttoMEMIF JOB FAILED and call the error callout handler and the DET error notification with the error
code FLS E TIMEOUT.

If any other error occurred during the read process, the driver will set the job result to MEMIF JOB FAILED
and call the error callout handler with the error code FLS E READ FAILED FOR CALLOUT and the DET
runtime errors notification (If the configuration parameter F1sGeneral /Fl1sRuntimeErrorDetect iS TRUE)
with the error code FLs E READ FAILED and the driver will abort the read job.

5.1.5 Writing data to the flash memory

The flash driver supports writing data to the flash memory with polling-controlled job and interrupt controlled
job. The type of job used is determined by the configuration parameter F1sGeneral /FlsUselInterrupts.
The interrupt-controlled job is used for performance enhancement for writing a large amount of data because
it minimizes the calling and latency of F1s MainFunction (). The polling-controlled job is simply used for
writing data. In this case, calling and latency of F1s MainFunction () depends on the configuration
parameters such as F1sConfigSet/FlsMaxWriteNormalMode and
FlsConfigSet/FlsNumberOfDelayLoop.

A write job is set up via the following command:

ReturnValue = Fls Write (TargetAddress, SourceAddressPtr, Length);

Note: The TargetAddress and the Length must be aligned to the flash page size. A flash page is the
smallest amount of flash memory that can be programmed in one pass. The size of the flash page
is architecture-dependent and outlined in Virtual flash memory layout.

User guide 43 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

If the function returns £_0x, the job was accepted and will be executed on the next call(s) of
Fls MainFunction (). Theflash driveris now in the MEMIF_BUSY state and will not accept other commands.
The job result is set to MEMIF_JOB_PENDING.

If an interrupt-controlled job is used, on each call of the main function, up to one flash sector size of bytes is
written from SourceAddressptr to the flash memory Targetaddress. If an interrupt-controlled job is not
finished within one call cycle, the main function must be called again until one flash sector is written. If polling-
controlled job is used, on each call of the main function, a specific number of bytes is written from
SourceAddressPtr to the flash memory TargetAddress at most. The number of bytes depends on the
memory layout (such as gaps) and the configuration parameter such as
FlsConfigSet/FlsMaxWriteNormalMode.

There are two operations modes to write (ProgramRow): blocking and non-blocking modes. By default, the
flash driver uses blocking mode. If you want to use non-blocking mode for your use case, set the configuration
parameter F1sGeneral/FlsUseNonBlockingWrite to TRUE. The write operation mode for work flash
block#1 does not allow to configure and is handled as non-blocking mode.

After the total number of bytes was successfully written to the flash memory, the driver state is set back to
MEMIF_IDLE and the job result is set to MEMIF JOB OK. In addition, the driver calls the end notification
function if it was configured with the F1sConfigSet/FlsJobEndNotification parameter.

If any hardware error occurred during the write process, the driver will set the job result to MEMIF JOB FAILED
and call the error callout handler with the error code FLS E WRITE FAILED FOR CALLOUT andthe DET
runtime errors notification (If the configuration parameter F1sGeneral /Fl1sRuntimeErrorDetect is TRUE)
with the error code FLs E WRITE FAILED and the driver will abort the write job.

The written data will be verified. On each call of the main function, a specific number of bytes is verified. The
number of bytes depends on the memory layout (such as gaps) and the configuration parameter such as
FlsConfigSet/FlsMaxReadNormalMode. For verification, if the configuration parameter
FlsGeneral/FlsUseDmaForRead is TRUE (default), the flash driver reads data with DMA transfer. The DMA
channel used is specified by the configuration parameter F1sGeneral/FlsDmaChannel. The read datais
stored once in the auxiliary buffer that the flash driver has prepared and is compared with source data buffer
that you have prepared. The larger the size of the auxiliary buffer, the larger is the data read during a DMA
transfer. However, this increases RAM consumption. The auxiliary buffer size is limited to the value of
FlsConfigSet/FlsMaxReadNormalMode (Or F1sConfigSet/FlsMaxReadFastMode) or a large sector size.

If the verification fails, the driver will set the job result to MEMIF JoB FAILED. Additionally, the driver calls the
error notification function if it was configured with the parameter
FlsConfigSet/FlsJobErrorNotification. Onlyifthe upper-layer module (typically the FEE module) can
ensure data consistency by other means, the verification can be skipped by setting the configuration parameter
FlsGeneral /FlsWriteVerification to FALSE toimprove performance. Otherwise, the configuration
parameter should be set to the default setting, TRUE, to ensure safety. Moreover, only if the upper-layer
module can ensure availability of flash block for writing data by other means, verification (blank check) before
writing flash block can be skipped by setting the configuration parameter
FlsGeneral/FlsBeforeWriteVerification to FALSE toimprove performance. Otherwise, the
configuration parameter should be set to the default setting, TRUE, to ensure safety.

If there is a conflict in flash operation (writing or reading for verification while erase/write), the flash driver will
return to the upper layer (once) to wait for the earlier operation to finish, and then it will retry writing or reading
for verification on the next call of F1s MainFunction (). The maximum retry time until timeout is calculated
by dividing the value of the configuration parameter F1sGeneral/FlsArbitrationTimeout by the value of
the parameter F1sConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job

User guide 44 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

resulttoMEMIF JOB FAILED and call the error callout handler and the DET error notification with the error
code FLS E TIMEOUT.

5.1.6 Erasing data from the flash memory

The flash driver supports erasing (parts of) the flash memory with polling-controlled job and interrupt-
controlled job. The type of job used is determined by the configuration parameter
FlsGeneral/FlsUselInterrupts.

An erase job is set up via the following command:

ReturnValue = Fls Erase (TargetAddress, Length);

Note: The TargetAddress and the Length must be aligned to a flash sector. A flash sector is the
smallest amount of flash memory that can be erased in one pass. The organization of flash sectors
is architecture-dependent and outlined in Virtual flash memory layout.

If the function returns £_0x, the job was accepted and will be executed on the next call(s) of
Fls MainFunction (). Theflash driveris nowinthe MEMIF BUSY state and will not accept other commands.
The job resultis set to MEMIF JOB PENDING.

If the erase callout function was configured with the parameter F1sGeneral /Fl1sEraseCalloutFunction,
when the job was accepted, the function is called and the Targetaddress is passed as parameter.

After all the affected sectors are successfully erased, the driver state is set back to MEMIF IDLE and the job
resultis setto MEMIF JOB_OK. In addition, the driver calls the end notification function if it was configured with
the parameter F1sConfigSet/FlsJobEndNotification.

If any hardware error occurred during the erase process, the driver will set the job result to

MEMIF JOB FAILED and call the error callout handler with the error code

FLS E ERASE FAILED FOR CALLOUT and the DET runtime errors notification (if the configuration parameter
FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the errorcode FLS E ERASE FAILED and the driver
will abort the erase job.

The erase area will be verified. On each call of the main function, a specific number of bytes is verified. The
number of bytes depends on the memory layout (such as gaps) and the configuration parameter such as
FlsConfigSet/FlsMaxReadNormalMode. If the verification fails, the driver will set the job result to

MEMIF JOB FAILED. In addition, the driver calls the error notification function if it was configured with the
parameter F1sConfigSet/FlsJobErrorNotification. Only if the upper-layer module (typically the FEE
module) can ensure that flash block is blank by other means, the verification can be skipped by setting the
configuration parameter FlsGeneral /FlsEraseVerification to FALSE to improve performance.
Otherwise, the configuration parameter should be set to TRUE (default) to ensure safety.

If there is a conflict in flash operation (erasing or verifying while erase/write), the flash driver will return to the
upper layer (once) to wait for the earlier operation to finish, and then it will retry erasing or verifying on the next
callof F1s MainFunction (). The maximum retry time until timeout is calculated by dividing the value of the
configuration parameter F1sGeneral/FlsArbitrationTimeout by the value of the parameter
FlsConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job result to

MEMIF JOB FAILED and call the error callout handler and the DET error notification with the error code

FLS _E_TIMEOUT.

User guide 45 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

5.1.7 Comparing data from the flash memory

The flash driver supports comparing data between the flash memory and data in the RAM. A compare job is set
up via the command:

ReturnValue = Fls Compare (SourceAddress, TargetAddressPtr, Length);
Note: When reading for the comparing is done, it is performed without blank checking.

If the function returns £_0x, the job was accepted and will be executed on the next call(s) of
Fls MainFunction (). Theflash driveris nowinthe MEMIF BUSY state and will not accept other commands.
The job resultis set to MEMIF JOB PENDING.

On each call of the main function, a specific number of bytes is compared between the flash memory
SourceAddress and the data at TargetAddressPtr. The number of bytes depends on the memory layout
(such as gaps) and the configuration parameter such as F1sConfigSet/FlsMaxReadNormalMode. If both
SourceAddressand’TargetAddressPtr arernuhnﬂesof4,btencyofFls_MainFunction()canbe
minimized.

For comparison, if the configuration parameter F1sGeneral/FlsUseDmaForRead is TRUE (default), the flash
driver reads data with DMA transfer. The used DMA channel is specified by the configuration parameter
FlsGeneral/FlsDmaChannel. The read data is stored once in the auxiliary buffer that the flash driver has
prepared and is compared with target data buffer that you have prepared. The auxiliary buffer size is
determined by the configuration parameter F1sGeneral/FlsAuxiliaryBufferSize. The larger the size of
the auxiliary buffer, the larger is the data read during a DMA transfer. However, this increases RAM
consumption. The auxiliary buffer size is limited to the value of F1sConfigSet/FlsMaxReadNormalMode (Or
FlsConfigSet/FlsMaxReadFastMode) or a large sector size.

After the total number of bytes is successfully compared with the flash memory, the driver state is set back to
MEMIF IDLE and the job resultissetto MEMIF JOB OK.In addition, the driver calls the end notification
function if it was configured with the parameter F1sConfigSet/FlsJobEndNotification.

If the driver yielded differences between the two memory spaces, the driver will set the job result to
MEMIF BLOCK INCONSISTENT,and calls the error notification function if it was configured.

If a double-bit error was detected during the compare process, the driver regards as all OxFF data, calls the
error callout handler and the DET runtime errors notification (if the configuration parameter
FlsGeneral/FlsRuntimeErrorDetect is TRUE) with the errorcode FLS E DED FAILURE, and the driver
will continue the compare job. DED error notification also will be called if it was configured with the parameter
FlsConfigSet/FlsDedErrorNotification.In HSM (FIs_TS_T40D13M2I0RO0), the driver detects the double-
bit error as “compare failed” and will set the job result to MEMIF JoB FAILED and will call the error callout
handler with the error code FLS E COMPARE FAILED FOR CALLOUT and the DET runtime error notification (if
the configuration parameter F1sGeneral /FlsRuntimeErrorDetect is TRUE) with the error code

FLS E COMPARE FAILED, and the driver will abort the compare job.

If a single-bit error was detected during the compare process, the driver calls the error callout handler and the
DET runtime errors notification (If the configuration parameter F1sGeneral/FlsRuntimeErrorDetect is
TRUE) with the errorcode FLS E SED FAILURE and the driver will continue the compare job. SED error
notification also will be called if it was configured with the parameter
FlsConfigSet/FlsSedErrorNotification.In HSM (FIs_TS_T40D13M2I0RO0), the driver cannot detect the
single-bit error.

User guide 46 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

If there is a conflict in flash operation (reading for comparison while erase/write), the flash driver will return to
the upper layer (once) to wait for the earlier operation to finish, and then it will retry reading for comparison on
the nextcallof F1s MainFunction (). The maximum retry time until timeout is calculated by dividing the
value of the configuration parameter F1sGeneral/FlsArbitrationTimeout by the value of the parameter
FlsConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job result to

MEMIF JOB FAILED and call the error callout handler and the DET error notification with the error code
FLS_E_TIMEOUT.

If any other error occurred during the compare process, the driver will set the job result to MEMIF JOB FAILED
and call the error callout handler with the error code FL.S E COMPARE FAILED FOR CALLOUT and the DET
runtime errors notification (if the configuration parameter F1sGeneral /FlsRuntimeErrorDetect iS TRUE)
with the error code FLs E COMPARE FAILED and the driver will abort the compare job.

5.1.8 Checking blank for the flash memory

The flash driver supports checking blank for a given area in the flash memory. A blank check job is set up via the
command:

ReturnValue = Fls BlankCheck (TargetAddress, Length);

If the function returns £_0x, the job was accepted and will be executed on the next call(s) of
Fls MainFunction (). Theflash driveris nowinthe MEMIF BUSY state and will not accept other commands.
The job resultis set to MEMIF JOB PENDING.

On each call of the main function, a specific number of bytes is checked blank for the flash memory
TargetAddress. The number of bytes depends on the memory layout (such as gaps) and the configuration
parameter such as FlsConfigSet/FlsMaxReadNormalMode.

After the total number of bytes was judged blank for the flash memory, the driver state is set back to
MEMIF IDLE and thejob resultissettoMEMIF JOB OK.In addition, the driver also calls an end notification
function if it was configured with the F1sConfigSet/FlsJobEndNotification parameter.

If any area was not judged blank, the driver will set the job result to MEMIF JOB FAILED. If the configuration
parameter Fl1sGeneral/FlsReportErrorIfNotBlank issetto TRUE, the driver will call the error callout
handler and the DET error notification with the error code FLs E VERIFY ERASE FAILED. Inaddition, the
driver calls the error notification function if it was configured with the parameter
FlsConfigSet/FlsJobErrorNotification.

If there is a conflict in flash operation (checking blank while erase/write), the flash driver will return to the
upper layer (once) to wait for the earlier operation to finish, and then it will retry checking blank on the next call
of F1s MainFunction (). The maximum retry time until timeout is calculated by dividing the value of the
configuration parameter F1sGeneral/FlsArbitrationTimeout by of the value of the parameter
FlsConfigSet/FlsCallCycle. If the maximum retry time exceeds, the driver will set the job result to

MEMIF JOB FAILED and call the error callout handler and the DET error notification with the error code

FLS _E_TIMEOUT.

User guide 47 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

5.1.9 Canceling a job prior to maturity
Any ongoing flash job can be canceled by calling the function:
Fls Cancel () ;

Note: This function must not be called during the execution of the F1s MainFunction(),
Fls Suspend() or Fls Resume().

The function always cancels the ongoing job, sets the pending job result to MEMIF_JOB_CANCELED and sets
the driver back to MEMIF_IDLE. It also calls the error notification function if it was configured with the
parameter FlsConfigSet/FlsJobErrorNotification.

The driver is ready for the next job right after returning from this function call.

5.1.10 Retrieving the status information

Two API functions are offered to get the current state of the driver and the current state of the job result:
DriverState = Fls GetStatus();
JobResult = Fls GetJobResult () ;

For more information on the driver's state, see Flash driver state machine.

For more information on the job result, see Flash driver job result state.

Note: While the flash memory cells are being programmed or erased, the microcontroller shall not be
transited to low-power consumption modes. Whether the flash memory processing is ongoing can
be known by calling the F1s _GetStatusSub function (Note thatitis not F1s GetStatus)and
the microcontroller can be transited to the modes only if F1s GetStatusSub returns
FLS STATUS IDLE. The function F1s GetStatusSub has the following interface (The interface
and the macros FLS STATUS IDLE and FLS UCHAR are declaredin Fls.h.).

FLS UCHAR Fls GetStatusSub (void);

Note: The function F1s GetStatusSub does not have critical sections (exclusive area).

5.1.11 Setting the driver operation mode

The driver can be switched between slow and fast operation modes. The default mode configured with the
FlsConfigSet/FlsDefaultMode parameteris applied right after initialization. To switch to the fast mode,
the following function must be called:

Fls SetMode (MEMIF MODE FAST) ;

The driver will switch to the fast operation mode in which the configured parameters for fast mode are valid.
This affects the F1sConfigSet/FlsMaxReadFastMode parameter for read and compare jobs and the verify
process of write and erase jobs and the F1sConfigSet/FlsMaxiiriteFastMode parameter for polling
controlled write job.

Note: The mode change can only be executed when the driver is in MEMIF_IDLE state.

User guide 48 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

To return to the slow mode, the F1s_setMode function must be called with the parameter
MEMIF_MODE_SLOW while the flash driver is in MEMIF_IDLE state.

5.1.12 Suspending a job

Any ongoing flash job can be suspended by calling the function:

ReturnValue = Fls Suspend();

Note: This function must not be called during the execution of the F1s MainFunction() or
Fls Resume ().

Note: This function can be called for flash drivers for application (FIs_TS_T40D13M1I0R0) and HSM
(FIs_TS_T40D13M2I0R0). However, make sure that the arbitration is taken care, for example, make
sure that one core does not start an erase job while the other core is suspending the erase
operation.

Note: The nested erase suspend operation is not supported. Suspending an erase job while the other
erase operation is in the suspended state makes the previous erase job disappears and the erase
resume job is only applicable for the later suspended erase operation.

The following is the problematic sequence:

Erase sector #0

Erase suspend

Erase sector#1

Erase suspend (HW suspended information for erase sector#0 is removed)
Erase resume (resume erasing Sector#1)

If the function returns £_ 0K, the ongoing job was suspended. The flash driver is now in MEMIF_IDLE state and
accepts other commands. The job result is set to MEMIF_JOB_OK.

Fls Write(), Fls Read(),Fls Compare(),Fls BlankCheck(), and Fls ReadImmediate () €an starta
new job after returning from this function. However, if the target address (from start address to end address
(start address + length)) for the job lies within the sector used by suspended job, the API functions reject the
request, raise the default error FLS E BUSY and return with & NOT OK.Whereas, F1s Erase () rejects for
anywhere.

If this function is called to suspend an erase job that was resumed by F1s Resume (), the call must be done at
least 250 microseconds after F1s Resume () finishes. Otherwise, the erase job cannot progress.

5.1.13 Resuming a suspended job

A suspended flash job can be resumed by calling the function:

ReturnValue = Fls Resume () ;
Note: This function must not be called during the execution of the F1s Suspend ().
Note: This function can be called for flash drivers for application (FIs_TS_T40D13M1I0R0) and HSM

(FIs_TS_T40D13M2I0R0). However, make sure that the arbitration is taken care, for example, make
sure that one core does not start an erase job while the other core is suspending the erase
operation.

User guide 49 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

If the function returns £_ 0K, the suspended job was resumed. The flash driver is now in the MEMIF BUSY state
and will not accept other commands. The job result is set to MEMIF JOB PENDING.

5.1.14 Timeout supervision

The driver provides a timeout monitoring for the deadline of read, write, erase, compare and blank check
functions.

The maximum timeout value is calculated based on the following.

o Specified length to read, write, erase or compare data, or blank check

e Cycleof F1s MainFunction () function (FlsCallCycle)

e Kind of operation (Read, write, erase, compare or blank check)

e Conflict of flash operation (Division F1sArbitrationTimeout by F1sCallCycle).

The driver can disable the timeout monitoring by setting the value of the configuration parameter
FlsCallCycle to 0.000 or calling the following function:

ReturnValue = Fls SetCycleMode (MEMIF MODE FAST) ;
Note: The mode change can only be executed when the driver is in MEMIF_IDLE state.

If the function returns £ 0K, the timeout monitoring is disabled afterward. To enable the timeout monitoring
again,the F1s setCycleMode function must be called with the parameter MEMIF MODE srLow while the flash
driverisin MEMIF IDLE state.

5.1.15 eCT flash safety mechanism

The flash driver provides the eCT flash safety mechanism which is required for multicore flash operations. This
feature allows to arbitrate the write, erase, and blank check operations from multiple cores and prevent the
simultaneous system calls and FLASHC1 register accesses. For this feature to work properly, both flash drivers
for application (Fls_TS_T40D13M1I0R0) and for HSM Fls_TS_T40D13M2I0R0 must enable safety mechanism
(FlsUseSafetyMechanism=TRUE).

The eCT flash safety mechanism supports callback function from each flash driver to notify its counterpart
running on the other core when a flash embedded (write or erase) operation is complete. The callback function
is configured with F1sWorkEmbeddedNotification and required to be implemented by the application.

5.1.15.1 Related configurations

The configuration parameters related to the eCT flash safety mechanism are below:

e FlsUseSafetyMechanism

e FlsIpcStructure

e FlsIpcInterruptStructure

e FlsIpcReleaseEventNotification

e FlsIpcNotificationEventToHsm (used for HSM communication)
e FlsWorkEmbeddedNotification

e FlsHsmPresent

e FlsArbitrationTimeout

User guide 50 002-23407 Rev. *W
2025-12-10

Flash driver user guide

TRAVEO™ T2G family
Functional description

(infineon

5.1.15.2 IPClock acquisition and release

The drivers, supporting the eCT flash safety mechanism, acquire IPC lock which is specified with the
configuration F1sIpcStructure before starting a flash operation. If the IPC lock acquisition fails, the flash
operation is not executed, and the flash driver retries to acquire it at the next opportunity (e.g. the next

Fls MainFunction () call). After finishing a flash operation, the flash driver releases the IPC lock for safety
mechanism to allow the flash operations by other flash driver(s).

Table 2 shows the IPC lock acquisition and release timing.

Table 2 IPC lock acquisition and release for eCT flash safety mechanism
Operation Acquisition timing Release timing
Erase CallFls MainFunction() |CallFls MainFunction ()
(Start erase operation) (Finish erase operation)
Write CallFls MainFunction() |CallFls MainFunction()

(Start write operation)

(Finish write operation)

Blank check (erase verify)

CallFls MainFunction ()

(Every time BlankCheck
system call is invoked)

CallF1s MainFunction ()

(Every time BlankCheck
system call is finished)

Blank check (pre-write verify)

CallF1s MainFunction ()

(Every time BlankCheck
system call is invoked)

CallFls MainFunction ()

(Every time BlankCheck
system call is finished)

Blank check (F1s_BlankCheck())

CallF1s MainFunction ()

(Every time BlankCheck
system call is invoked)

CallFls MainFunction ()

(Every time BlankCheck
system call is finished)

Blank check (read operation for
single work flash or work flash

block#0)

Blank check (read operation for work

flash block#1)

CallFls MainFunction ()

(Every time the blank check
is started)

CallF1s MainFunction ()

(Every time the blank check
is finished)

Erase suspend

CallF1s Suspend ()

Erase resume

CallF1s_Resume ()

Note: In case of the read operations for single work flash or work flash block#0, IPC lock for the eCT flash
safety mechanism is not acquired. When the error status is returned due to the system call for
erase or write by the other cores running, the flash driver suspends the read operation and retry it
atthenext F1s MainFunction () call.

Note: When the blank check is executed for the work flash block#1, IPC lock for the eCT flash safety
mechanism is acquired and released at the same timing as the system call BlankCheck.

If the flash driver fails to acquire IPC lock repeatedly, the flash operation is aborted due to the retry timeout.
The maximum retry time is configured with F1sArbitrationTimeout.

002-23407 Rev. *W
2025-12-10

User guide 51

Flash driver user guide in f| neon

TRAVEO™ T2G family
Functional description

5.1.15.3 Arbitration sequences

The sequence diagrams in this section show the arbitration behaviors for flash operations by multiple cores in
an example use case. The preconditions for sequences are below:

e CMO+: Flash driver for HSM (Fls_TS_T40D13M2I0R0)

— FlsUseSafetyMechanism=TRUE
— FlsIpcStructure =7 (IPC structure used for safety mechanism implementation)

— FlsIpcInterruptStructure =6 (IPCinterrupt structure 6 is configured to notify to flash driver for
HSM)

— FlsIpcReleaseEventNotification =0x000000CO0 (IPC release event triggers interrupts on IPC
interrupt structures #6 and #7)

e CM4: Flash driver for application (Fls_TS_T40D13M1I0R0)

— FlsUseSafetyMechanism=TRUE

— FlsIpcStructure =7 (IPC structure used for safety mechanism implementation)

— FlsIpcInterruptStructure =7 (IPCinterruptstructure 7 is configured to notify to flash driver for
application)

— FlsIpcReleaseEventNotification =0x000000CO0 (IPC release event triggers interrupts on IPC
interrupt structures #6 and #7)

— FlsHsmPresent = TRUE

- FlsIpcNotificationEventToHsm =6 (Flash driver for application should trigger interrupt on IPC
interrupt structure #6 to notify the flash driver for HSM for occurrence of notify event)

User guide 52 002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

Infineon

Functional description

Fls_TS_T40D13M2I0RO
(CcMo+)

|

Fls_TS_T40D13M1I0R0 IPCO IPC1 IPCT
(CM4)
Driver State =IDLE Driver State =IDLE
Fls Erase() B Fls Erase()
Driver State = BUSY (ERASE) Driver State = BUSY (ERASE)
Fls MainFunction() |
Fls MainFunction ()
Acquire IPC lock (success) >
Acquire IPC lock (failure) > Acquired
System call (EraseSector)
EraseSector
Fls MainFunction () B
Fls MainFunction ()
System call (EraseSector)
Acquire IPC lock (failure) EraseSector >
Fls MainFunction () B
Fls MainFunction ()
Release IPC lock >
¢ IPC release interrupt #7
IPC release interrupt #6 ’
— P
Fls Isr FlsIpc Catl()
Fls Isr FlsIpc Catl()
FlsWorkEmbeddedNotification ()
FlsWorkEmbeddedNotification ()
Acquire IPC lock (success)
Driver State =IDLE Acquired
System call (EraseSector)
| | EraseSector

Figure 6

User guide

Erase operations by multiple flash drivers

53

002-23407 Rev. *W

2025-12-10

Flash driver user guide
TRAVEO™ T2G family

Infineon

Functional description

Fls_TS_T40D13M2I0R0 Fls_TS_T40D13M1I0R0 IPCO IPC1 IPCT
(CMo+) (CM4)
Driver State =IDLE Driver State =IDLE
B Fls Write() B Fls Write()
Driver State = BUSY (WRITE) Driver State = BUSY (WRITE)
B Fls MainFunction() |
Fls MainFunction ()
Acquire IPC lock (success) >
Acquire IPC lock (failure) > Acquired
System call (ProgramRow)
| | ProgramRow
[] Fls MainFunction () B
Fls MainFunction ()
System call (ProgramRow)
Acquire IPC lock (failure) ProgramRow >
System call (ProgramRow)
ProgramRow
Release IPC lock >
¢ IPC release interrupt #7
IPC release interrupt #6 i
—=E p |
Fls Isr FlsIpc Catl()
Fls Isr FlsIpc Catl()
FlsWorkEmbeddedNotification ()
FlsWorkEmbeddedNotification ()
| Fls MainFunction ()
Driver State = IDLE
|| Acquire IPC lock (success) >
Acquired
System call (ProgramRow) >
| | ProgramRow

Figure 7

User guide

Write operations by multiple flash drivers

54

002-23407 Rev. *W

2025-12-10

Flash driver user guide

TRAVEO™ T2G family

Infineon

Functional description

Fls_TS_T40D13M2I0RO
(CcMo+)

Fls_TS_T40D13M1I0R0 IPCO IPC1 IPC7
(CM4)
Driver State =IDLE Driver State =IDLE
Fls BlankCheck () B Fls BlankCheck ()
Driver State = BUSY (BLANKCHECK) Driver State = BUSY (BLANKCHECK)
Fls MainFunction () |
Fls MainFunction ()
Acquire IPC lock (success) >
Acquire IPC lock (failure) > Acquired
System call (BlankCheck) B
BlankCheck
B Fls MainFunction ()
Fls MainFunction ()
Acquire IPC lock (failure) >
Release IPC lock
>
¢ IPC release interrupt #7
IPC release interrupt #6 P
— P
Fls Isr FlsIpc Catl()
] Fls Isr FlsIpc Catl()
Acquire IPC lock (success)
Acquired
B Fls MainFunction ()
System call (BlankCheck)
Acquire IPC lock (failure) BlankCheck >
Fls MainFunction ()
Release IPC lock
Fls MainFunction ()
¢ |PC release interrupt #7
IPC release interrupt #6 P
— P
Fls Isr FlsIpc Catl()
] Fls Isr FlsIpc Catl()
Acquire IPC lock (success)
Driver State = IDLE Acquired
System call (BlankCheck)
| | BlankCheck

Figure 8

User guide

Blank check operations by multiple flash drivers

55

002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

Infineon

Functional description

Fls Isr FlsIpc Catl()

Invalidate buffer

|PC notify interrupt #6

Fls Isr FlsIpc Catl()

Invalidate buffer

IPC release interrupt #6
e P

Fls Isr FlsIpc Catl()

FlsWorkEmbeddedNotification ()

Fls MainFunction ()

IPC notification

Fls_TS_T40D13M2I0RO Fls_TS_T40D13M1I0R0O IPCO IPC1 IPC7
(CMoO+) (cM4)

Driver State =IDLE

B Fls Erase()
Driver State = BUSY (ERASE)

B Fls MainFunction ()
Acquire IPC lock (success)

Acquired
IPC notification
IPC notify interrupt #6
@ Eenotlyinterrup
System call (EraseSector)
EraseSector

Release IPC lock

IPC release interrupt #7
— P

Fls Isr FlsIpc Catl()

FlsWorkEmbeddedNotification ()

Driver State =IDLE

:

Figure9 IPC notification and release events for HSM communication and safety mechanism

User guide

56

002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
Functional description

i

5.1.15.4 Assumptions of use

Basically, only 2 Fls instances are allowed for Fls multicore processing.
- Flash driver for HSM (Fls_TS_T40D13M2I0R0): CMO+
- Flash driver for application (Fls_TS_T40D13M1I0R0): CM4/CM7_0, CM7_1,CM7_2, or CM7_3

The following integrations are the wrong usages and are not supported:
e Multiple Flash drivers for application

- Fls_TS_T40D13M1I0R0: CM7_0
— Fls_TS_T40D13M1I0R0: CM7_1

e Implementation on the wrong core

— Fls_TS_T40D13M1I0R0: CMO+
— Fls_TS_T40D13M2I0R0: CM4 or CM7_X

Note: When non-Infineon flash drivers are integrated in the software along with flash driver for
application and/or flash driver for HSM, it is the users’ responsibility to implement and enable IPC
based safety mechanism properly for smooth and error free flash operations.

5.1.15.5 Limitations

HW does not support the nested erase operation. The erase suspend job should be run only when there is no
suspended erase job by the other cores.

5.2 Virtual flash memory layout

The flash driver always maps the available flash memory to a consecutive zero-based virtual flash address
space. The flash driver uses the work flash memory only. Every subderivative has a specific work flash memory
layout. See Hardware documentation about the physical address of the available work flash memory on each
subderivative.

5.3 Parallel flash operations for separate work flash memories

There are two work flash blocks in several devices. Work flash block#0 is controlled by a flash controller
(FLASHC registers), and system calls same as devices containing a single flash block. Flash operations for work
flash block#1 are executed by FLASHCL1 register accesses without system calls. The absence of resource
competition allows for both flash blocks to be controlled by two CPU cores in parallel.

For example,
e CMO+: Flash driver for HSM (Fls_TS_T40D13M2I0R0)

— FlsUseSafetyMechanism= FALSE
— Container FlsSector: Work flash block#0 only

e CMT7_0: Flash driver for application (Fls_TS_T40D13M1I0RO0)

— FlsUseSafetyMechanism=FALSE
— FlsHsmPresent =TRUE
— Container FlsSector: Work flash block#1 only

User guide 57 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

For parallel flash operations, F1sUseSafetyMechanism should be set to FALSE. If TRUE, a flash operation
from one core is blocked while a flash driver in another core is executing a flash process.

Work flash block#1 is controlled with FLASHC1 register accesses. These direct register accesses are equivalent
to the system calls in non-blocking mode. If the flash operations for work flash block#1 from multiple cores are
required, the safety mechanism feature is mandatory.

For example,

e CMO+: Flash driver for HSM (Fls_TS_T40D13M2I0RO0)
- FlsUseSafetyMechanism=TRUE
- Container FlsSector: Include work flash block#1
e CM7_0: Flash driver for application (Fls_TS_T40D13M1I0R0)
- FlsUseSafetyMechanism=TRUE
— FlsHsmPresent = TRUE
Container FlsSector: Include work flash block#1

5.4 Default error detection
The driver's services perform regular error checks.

When an error occurs, the error callout handler (configured via F1sErrorCalloutFunction) is called and the
error code, service ID, module ID, and instance ID are passed as parameters.

If default error detection is enabled, all default errors are also reported to the default error tracer, a central
error hook function within the AUTOSAR environment. The checking itself cannot be deactivated for safety
reasons.

Table 3 shows the default error checks that are performed by the services of the flash driver.

Functions explains which error codes are reported by each API function.

Table 3 Default error codes

Related error code Value | Type of error

FLS_E_PARAM CONFIG 0x01 | APl service called with wrong parameter

FLS_E_PARAM ADDRESS 0x02 | APl service called with wrong parameter

FLS_E_PARAM LENGTH 0x03 | APl service called with wrong parameter

FLS_E_PARAM DATA 0x04 | APl service called with wrong parameter

FLS_E_UNINIT 0x05 | APl service called without module initialization

FLS_E_BUSY 0x06 | APl service called while driver still busy

FLS_E_VERIFY ERASE FAILED 0x07 | Erase verification (blank check) failed

FLS_E_VERIFY WRITE_ FAILED 0x08 | Write verification (compare) failed

FLS_E_TIMEOUT 0x09 | Timeout exceeded

FLS_E_PARAM POINTER Ox0a | APl service called with NULL pointer

FLS_FE_FERASE _FATLED FOR_CALLOUT 0x81 | Flash erase failed (HW). This error id is used to call the
error callout handler.

FLS_E_WRITE_FATILED FOR_CALLOUT 0x82 | Flash write failed (HW). This error id is used to call the
error callout handler.

User guide 58 002-23407 Rev. *W

2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Functional description

Related error code Value | Type of error
FLS_E_READ_FAILED_FOR_CALLOUT 0x83 | Flash read failed (HW). This error id is used to call the
error callout handler.

FLS_E_COMPARE_FAILED FOR_CALLOUT | (x84 | Flash compare failed (HW). This errorid is used to call the
error callout handler.

FLS_E_DED_FAILURE 0x85 | Double bit error was detected (DED)
FLS_E_SED_FAILURE 0x86 | Single bit error was detected (SED)
5.5 Runtime error detection

The following errors are reported to the default error tracer as runtime errors by the flash driver:

See Functions for a correlation between API functions and reported runtime error codes.

Table 4 Runtime error codes

Related error code Value Type of error
FLS_E_ERASE FAILED 0x01 Flash erase failed (HW).
FLS_E_WRITE_FAILED 0x02 Flash write failed (HW).
FLS_E_READ_FAILED 0x03 Flash read failed (HW).
FLS_E_COMPARE_FAILED 0x04 Flash compare failed (HW).

When an error occurs, the error callout handler (configured via F1sErrorCalloutFunction) is also called and
the error code (related default error code), service ID, module ID, and instance ID are passed as parameters.

5.6 Reentrancy

The API functions Fls GetStatus(),Fls_GetJobResult (), and Fls GetVersionInfo () arereentrant.
All other API functions of the flash driver are not reentrants.

5.7 Debugging support

The flash driver does not support debugging.

User guide 59 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Hardware resources

6 Hardware resources

6.1 Registers

The flash driver for the TRAVEO™ T2G microcontroller deals with the registers listed in Appendix B - Access
register table.

Note: You should set the following registers before using the flash driver:

1. FLASHC_FLASH_CTL and FLASHCI1_FLASH_CTL (MAIN_WS[bit3:0]): FLASH macro main interface wait states)

2. FLASHC_FLASH_CTL and FLASHCI_FLASH_CTL (all bits): FLASH control register (Set all significant bits in this
register if the configuration parameter FLSGeneral/FlsSetFlashCtlRegister IS set to
FLS_FLASH_CTL_NOTSET)

Note: WORK_BANK_MODE bit must be 0. WORK_ECC_EN and WORK_ERR_SILENT bit must be 1.

3. FLASHC_WORK_FLASH_SAFETY and FLASHC1_WORK_FLASH_SAFETY (WorkFlashWriteEnable[bit0]): Work flash
security enable register (Set to 1 if the configuration parameter
FLSGeneral/FlsSetWorkFlashSafetyRegisteris FALSE.)

4. DMAC_CTL (ENABLED[bit31]): M-DMA control register (Set to 1 if the configuration parameter
FlsUseDmaForReadis TRUE.)

6.2 Interrupts

The flash driver uses the following interrupts if the configuration parameter F1sGeneral /FlsUseInterrupts
is TRUE:

e Thededicated IPC interrupt for System call (for writing)
e FLASH macro interrupt (for erasing)
e FLASH#1 macro interrupt (for erasing and writing; only devices with two work flash blocks)

If the eCT flash safety mechanism (the configuration parameter F1sGeneral/FlsUseSafetyMechanism) is
TRUE and/or the HSM communication (the configuration parameter F1sGeneral/FlsHsmPresent) is TRUE,
the following interrupt is also used:

e Configured IPC interrupt (by the configuration parameter F1sGeneral /FlsIpcInterruptStructure)

Additionally, you must DEFINE ISR for fault, which calls the fault handling function provided by the flash driver
if the configuration parameter F1sGeneral/FlsSetWorkFlashFaultMaskRegister) is TRUE.

See Fault for information about ISR for fault.

The ISR must be declared in the AUTOSAR OS as Category 1 Interrupt or Category 2 Interrupt.
Note: The interrupt number (IRQ) depends on the subderivative. See Hardware documentation.
Therefore, you need to declare the following ISRs in the interrupt vector table (*_Cat1 for Category-1 ISR) or

(OS) interrupt service routine (*_Cat2 for Category-2 ISR). The ISR is located in the generated file at the
following location: output/generated/src/Fls_Irq.c.

User guide 60 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Hardware resources

e ISR_NATIVE(FIs_Isr_lpc_Catl) or ISR(Fls_Isr_lpc_Cat2) (for IPC interrupt for System call)

e ISR_NATIVE(Fls_Isr_Flash_Cat1) or ISR(Fls_Isr_Flash_Cat2) (for flash macro interrupt)

e ISR_NATIVE(Fls_Isr_Flash1_Catl) or ISR(Fls_Isr_Flash1_Cat2) (for flash#1 macro interrupt)

e ISR_NATIVE(Fls_Isr_Flslpc_Catl) or ISR(Fls_Isr_Flslpc_Cat2) (for configured IPC interrupt)

Note: If the flash driver is used on CM0+, the priority for above-mentioned interrupts must be set to a

value more than ‘1.

Note: On the Arm® Cortex®-M4 CPU, priority inversion of interrupts may occur under specific timing
conditions in the integrated system with TRAVEO™ T2G MCAL. For more details, see the following
errata notice.

Arm® Cortex®-M4 Software Developers Errata Notice - 838869:
“Store immediate overlapping exception return operation might vector to incorrect interrupt”

If the user application cannot tolerate the priority inversion, a DSB instruction should be added at
the end of the interrupt function to avoid the priority inversion.

TRAVEO™ T2G MCAL interrupts are handled by an ISR wrapper (handler) in the integrated system.
Thus, if necessary, the DSB instruction should be added just before the end of the handler by the
integrator.

6.3 Fault

The flash driver gets the fault information such as single-bit error (SED) or double-bit error (DED) from a
centralized fault report structure. This centralized nature enables a system-wide, consistent handling of faults
and only a single fault interrupt handler is required. Therefore, the flash driver cannot directly do the
processing (such as clearing the validity bit field) for the fault report structures. If interrupt is disabled, the
errors cannot be detected.

The flash driver uses a fault structure that is specified by the configuration parameter
FlsGeneral/FlsFaultStructure.

You should implement the fault interrupt handler for the fault structure that was specified by the configuration
parameter and the handler should call a fault handing function (F1s Fault Handling()) provided by the
flash driver. The function is defined in the generated file in the following location:
output/generated/src/Fls_Irq.c.

Fls driver performs a dummy read after the write operation in non-blocking mode, and the erase operation to
make the logical bank of the work flash ready for the read operation. However, due to Silicon Errata 206, the
dummy read will trigger a bus error. Fls driver acquires the error status from FAULT struct at the appropriate
timing (read/compare/verify) and ignores the read error during the erase and write operation. The application
does not need to analyze the fault information for Fls handling. The application, in the fault handler interrupt
that occurred due to the dummy read, needs to do the following:

e CallFls Fault Handling
e Clearthe faultinterrupt cause
e Clearthe fault status

User guide 61 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon

TRAVEO™ T2G family
Hardware resources

Note: This fault handling is not applicable in the flash driver for HSM (Fls_TS_T40D13M2I0R0). It means
that the flash driver for HSM cannot detect SED, but can detect DED; therefore, handles the DED in
the same way as bus error (like HW failure).

Note: If both flash drivers of the application (FIs_TS_T40D13M1I0R0) and of HSM (Fls_TS_T40D13M2I0R0)
are used, and you cannot determine which CPU core caused the fault by checking the error-caused
address in the FAULT.DATAO register, the configuration parameter F1sGeneral/
FlsSetWorkFlashFaultMaskRegister must be setto FALSE. Otherwise, if an ECC error occurs
when FLS for HSM reads data from the work flash, the fault report interrupt can be generated at
the other core of the application.

The example of the fault interrupt handler is shown as follows.

void userIrgFaultReportHandler (void)
{
/* FAULT STRUCT is top address of fault report structure. */
if (FAULT STRUCT->STATUS.bitField.VALID == 1U)
{
/* Check if an error-caused address is within area for this core. */
/* The error-caused address is calculated by appending 0x10000000 */
/* to [bit26:0] in DATAQO register of fault report structure. */
1f (WITHIN AREA FOR THIS CORE (FAULT STRUCT->DATAOQ))
{
Fls Fault Handling(); /* Fault handling for Flash driver */

}
XxX(o..); /* Fault handling for other than Flash driver */

}
FAULT STRUCT->INTR.bitField.FAULT = 1U;
FAULT STRUCT->STATUS = 0x00000000UL;

}

6.4 IPC

The flash driver uses inter processor communication (IPC) for performing flash memory operation (writing,
erasing, blank checking, and so on) with system calls or eCT flash safety mechanism.

A dedicated IPC structure (mailbox) for system calls is associated with each CPU core and the flash driver uses
the IPC structure for CM0+, CM4/CM7_0, CM7_1, CM7_2, or CM7_3. If acquisition of the IPC structure fails, the
flash diver retries or reports hardware error. Similarly, for the IPC interrupt structure, dedicated structure for
system calls is associated with each CPU core and the flash driver uses it for CM0+, CM4/CM7_0, CM7_1, CM7_2,
or CM7_3. The used resources are summarized as follows.

e IPCstructure 0 (for invoking System call form CM0+)
e IPCstructure 1 (for invoking System call form CM4/CM7_0)

(

(
e IPCstructure 2 (for invoking System call form CM7_1)
e IPCstructure 3 (for invoking System call form CM7_2)

User guide 62 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
Hardware resources

i

e IPCstructure 4 (for invoking System call form CM7_3)

e IPCinterrupt structure 0 (for notifying System call to CM0+)

e |IPCinterrupt structure 1 (for notifying finish of System call to CM0+)

e |PCinterrupt structure 2 (for notifying finish of System call to CM4/CM7_0)

(

(

e |PCinterrupt structure 3 (for notifying finish of System call to CM7_1)

e |PCinterrupt structure 4 (for notifying finish of System call to CM7_2)
(

e |IPCinterrupt structure 5 (for notifying finish of System call to CM7_3)

For eCT flash safety mechanism and/or the HSM communication, the flash driver uses the IPC structure that is
configured by the configuration parameter, F1sGeneral/FlsIpcStructure, and the IPCinterrupt structure
that is configured by the configuration parameter, F1sGeneral/FlsIpcInterruptStructure. ForeCT flash
safety mechanism, HSM communication, or both, do not choose the IPC structures and the IPC interrupt
structures that are reserved for system calls.

6.5 System call

The system call is used for flash memory operations such as write and erase. The IPC mechanism is used to
invoke a system call in TRAVEO™ T2G. A dedicated IPC structure is associated with each core (CMO+,
CM4/CM7_0,CM7_1,CM7_2, and CM7_3) to trigger a system call. The CPU acquires this dedicated IPC structure
(used as a mailbox), writes the system call opcode and argument to the data field of the mailbox, and notifies
the IPC interrupt structure. Typically, the argument is a pointer to SRAM where the API’s parameters are stored.
This results in an IRQO interrupt in CM0+. Note that all system calls are serviced by the CMO+ core. ACM0+ IRQO
interrupt triggered by this method executes the system call. The result of the system call is passed through the
same IPC mechanism. Before running system calls, IRQ0 and IRQ1 should be enabled and IRQO priority set to
‘1’. This is to make sure that IRQ1 has higher interrupt priority than IRQO. By default, IRQ1 priority will be set to
‘0’. In addition, a part of the available SRAM is allocated for system call, and not available for users. You must
keep the power of the SRAM area in enabled or retained state. For details, see hardware documents.

In the case of devices in which work flash block#0 and bllock#1 are mounted, system calls are invoked only for
work flash block#0.

The system call can be invoked by the user’s callout function. See F1sSystemcallCalloutFunctionin
Vendor and driver specific parameters.

Note: The system call must not be used on CPU core which the flash driver runs.

Table 5 shows a summary of the system calls that the flash driver uses.

Table 5 System calls

Name Opcode | Description

SiliconID 0x00 SROM firmware version

ProgramRow 0x06 Programs the addressed flash page
ConfigureFmInterrupt 0x08 Configures FM interrupt

EraseSector 0x14 Erases the addressed flash sector

EraseSuspend 0x22 Suspends ongoing erase operation

EraseResume 0x23 Resumes an erase suspend operation

BlankCheck 0x2A Performs blank check on eCT work flash memory

User guide 63 002-23407 Rev. *W

2025-12-10

Flash driver user guide in f| neon

TRAVEO™ T2G family
Hardware resources

6.6 Memory protection unit (MPU)

As mentioned in IPC, the flash driver communicates with CMO+ via IPC for performing flash memory operation.
If the data cache in Arm® CMT processor is enabled and the areas of IPC accessed from both CM0+ and CM7_0,
CM7_1,CM7_2, or CM7_3 are allocated in cacheable region, it is impossible for the areas to be assured
coherency of the content for each core. Moreover, data to be written to flash memory is passed through certain
SRAM area referred by IPC (writing is not performed by specifying an address); so, if the data cache is enabled,
subsequent reading of written data would be incorrect because only the data held in data cache is read.
Therefore, both flash memory area and the areas for IPC must be in non-cacheable regions. MPU can be used
for setting of the region attribute. Memory protection including the region attribute should be performed on
system level, so, the flash driver does not set up the MPU. When you enable data cache, you must configure the
MPU.

The following areas must be allocated to non-cacheable region by setting of MPU.

e Work flash region
e Asection FLS START SEC VAR NO INIT ASIL B UNSPECIFIEDin Fls_MemMap.h (for the areas for IPC)

e Asection FLS START SEC_SYSCALLSHARED VAR NO INIT ASIL B 32in Fls_MemMap.h
(Fls_TS_T40D13M2I0RO0)

The following is an example of the MPU setting in Arm® Cortex®-M7 processor:

/* MPU configuration sample for ARM Cortex-M7 Processor */

/* Note: This sample should be valid only for privileged accesses */

#define MPU RASR SIZE 64KB (0xOFUL << 1U) // Region size 64KB

#define MPU RASR SIZE 512KB (0x12UL << 1U) // Region size 512KB

#define MPU NORMAL NON CACHEABLE (1UL << 190) // Normal, Non-cacheable

#define MPU SHARED DEVICE (UL << 16U) // Shared device

#define MPU STRONGLY ORDERED DEVICE (OUL) // Strongly ordered

#define MPU RASR AP FULL ACCESS (0x3 << 240U) // Full access

#define MPU RASR ENABLE (1UL) // Enables this region
#define MPU CTRL ENABLE (1UL) // Enables the MPU
#define MPU CTRL PRIVDEFENA (1UL << 20) // Enables background region
#define MPU ((MPU_Type *)0xEOOOED90UL) // MPU registers base address

typedef struct

{
uint32 t rbar;
uint32 t rasr;

} stc_mpu cfg t;

const stc mpu cfg t mpuConfig[] =

User guide 64 002-23407 Rev. *W
2025-12-10

o~ _.
Flash driver user guide In f| neon
TRAVEO™ T2G family
Hardware resources

{
/* FLS bss region */ {0x28030000, (MPU RASR SIZE 64KB |

MPU NORMAL NON CACHEABLE | MPU RASR AP FULL ACCESS | MPU RASR ENABLE) },
/* Work Flash region */ {0x14000000, (MPU RASR SIZE 512KB |

MPU NORMAL NON CACHEABLE | MPU RASR AP FULL ACCESS | MPU RASR ENABLE) }
}i

#define MPU SETTING NUM (sizeof (mpuConfig) /sizeof (stc_mpu cfg t))
#define MPU MAX NUM ((MPU->TYPE == 0x00001000)? (16U): (8U))

void userMpuSetting (void)
{

volatile unsigned long 1i;

/* Cleans and Invalidates Data Cache */

__DMB(); // Make sure outstanding transfers are done
MPU->CTRL = 0; // Disable the MPU

for (i = 0; i < MPU_SETTING NUM; i++)
{

MPU->RNR i; // Select which MPU region to configure

MPU->RBAR = mpuConfig[i].rbar; // Set region base address register
MPU->RASR

mpuConfig([i].rasr; // Set region attribute and size register

/* Disabled unused regions */
for (i = MPU_SETTING NUM; i < MPU MAX NUM; i++)
{

MPU->RNR = i; // Select which MPU region to configure
MPU->RBAR = 0; // Set region base address register to 0
MPU->RASR = 0; // Set region attribute and size register to 0

/* Enable the MPU and background region (only for privileged accesses) */

MPU->CTRL = (MPU_CTRL_ENABLE | MPU_CTRL_PRIVDEFENA);
__DSB(); // Make sure outstanding transfers are done
__ISB(); // Make sure outstanding transfers are done
}
User guide 65 002-23407 Rev. *W

2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Hardware resources

6.7 DMA

The flash driver uses DMA transfer for reading from work flash if the configuration parameter
FlsGeneral/FlsUseDmaForRead is TRUE. The reading is done at following instances when
Fls MainFunction () running.

e Readjobinitiated by F1s Read () or F1s ReadImmediate ().
» Verifying after data is written by the write job initiated by F1s write ().
o Comparejob initiated by F1s Compare ().

Note: The flash driver does not enable the DMA controller. Therefore, you must enable the DMA controller
before starting the jobs by using one of the following ways if the configuration parameter
FlsGeneral/FlsUseDmaForReadis TRUE.

e Set ENABLED bit (Bit No.31) in DMAC_CTL register to 1.

e Configure the MCU module with McuDmaEnable=true and call the Mcu SetMode () function
with the configured mode.

The DMA transfer resolves the following restrictions in the TRAVEO™ T2G microcontroller.

o Work flash is always read 64-bit wide via AXl on CM7_0/CM7_1/CM7_2/CM7_3. It will result in unexpected
ECC error for 32-bit reading. DMA reads via AHB which has 32-bit width.

e ECCerror can be notified to only one CPU via the fault structure.

When DMA reads from work flash, the ECC error will be detected and informed as bus error via interrupt register
of DMA (even in the absence of fault handling). If a separate DMA channel is used for the flash driver on each
core, uncorrectable error can be detected for the flash driver on each core.

If you do not detect the ECC error, the configuration parameter FlsGeneral/FlsUseDmaForRead can be set to
FALSE.

The flash driver prepares the target (auxiliary) buffer for reading with DMA transfer on SRAM. The buffer is
located in non-cacheable region by MPU as described in Memory protection unit (MPU). It allows the driver to
copy from auxiliary buffer into user’s area with keeping cache coherency. The size of auxiliary buffer is
determined by the configuration parameter F1sGeneral/FlsAuxiliaryBufferSize. The size means
maximum size of read data by one DMA transfer, but it affects RAM consumption. You must appropriately
configure the size. The auxiliary buffer size is considered to be limited to the value of
FlsConfigSet/FlsMaxReadNormalMode (Or Fl1sConfigSet/FlsMaxReadFastMode) or a large sector size.

User guide 66 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Appendix A - API reference

7 Appendix A - API reference
7.1 Data types
7.1.1 Flash driver data types

7.1.1.1 Fls_AddressType
Type

typedef uint32 Fls AddressType;
Description

This type is used for address information.

7.1.1.2 Fls_LengthType

Type
typedef uint32 Fls LengthType;

Description

This type is used for length information.

7.1.1.3 Fls_ConfigType

Type
Hardware specific.
Description

This is the type of the external data structure containing the overall initialization data of the flash driver.

7.1.14 External data types

The flash driver imports data types from the MemIf module and AUTOSAR standard data types.

7.1.1.5 Std_ReturnType
Description

AUTOSAR standard APl return type.

7.1.1.6 Std_VersioninfoType
Description

This type is used to request the version of the flash driver usingthe F1s GetversionInfo () function.

User guide 67 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

7.1.1.7 Memlf_ModeType
Description

This type denotes the driver operation mode. It is used as the parameter value of the F1s_setMode () function.

7.1.1.8 Memlf_StatusType
Description

This type denotes the current status of the underlying abstraction module and device driver. It is used as the
returnvalue of the F1s Getstatus () function.

7.1.1.9 Memlif_JobResultType

Description

This type denotes the result of the last job.
7.2 Macros

7.2.1 Error codes

The service may return the following error codes if default error detection is enabled.

Table 6 Error codes

Name Value Description

FLS_E_PARAM CONFIG 0x01 Address of the given configuration for F1s Init ()
is not within the allowed range.

FLS_E_PARAM ADDRESS 0x02 Address parameter is not within the correct range
such as in flash memory area.

FLS_E_PARAM LENGTH 0x03 Length parameter or address + length parameter are
not within the correct range.

FLS_E_PARAM DATA 0x04 Address pointer parameter is a NULL pointer.

FLS_E_UNINIT 0x05 Flash driver is not yet initialized.

FLS_E_BUSY 0x06 Flash driver is currently busy.

FLS_E_VERIFY ERASE_FAILED 0x07 Erase or write operation failed. Data in the affected
sector was not erased properly.

FLS_E_VERIFY WRITE_FAILED 0x08 Write operation failed. Data in the affected sector
was not written properly.

FLS_E_TIMEOUT 0x09 The maximum time has been exceeded during
operation or the maximum retry time has been
exceeded when there is conflict in flash operation.

FLS_E_PARAM POINTER 0x0a Fls GetVersionInfo () function called with
NULL pointer.

FLS_E_ERASE_FAILED FOR_CALLOUT 0x81 Flash erase failed. This error ID is used to call the
error callout handler.

User guide 68 002-23407 Rev. *W

2025-12-10

Flash driver user guide
TRAVEO™ T2G family

Infineon

Appendix A - API reference

Name Value Description

FLS_E_WRITE_FAILED FOR_CALLOUT 0x82 Flash write failed. This error ID is used to call the
error callout handler.

FLS_E_READ_FAILED FOR_CALLOUT 0x83 Flash read failed. This error ID is used to call the
error callout handler.

FLS_E_COMPARE_FAILED FOR_CALLOUT | (x84 Flash compare failed. This error ID is used to call the
error callout handler.

FLS_E_DED_FAILURE 0x85 Double-bit error is detected (DED).

FLS_E_SED_FAILURE 0x86 Single-bit error is detected (SED).

7.2.2 Version information

The following version information is published in the driver's header file:

Table7 Version information
Name Value Description
FLS_SW_MAJOR_VERSION Refer to release notes | Vendor-specific major version number
FLS_SW_MINOR_VERSION Refer to release notes | Vendor-specific minor version number
FLS_SW_PATCH_VERSION Refer to release notes | Vendor-specific patch version number
7.2.3 Module information
Table 8 Module information
Name Value Description
FLS MODULE ID 92 Module ID
FLS VENDOR ID 66 Vendor ID
7.2.4 APl service IDs

The following service IDs are used to call the default error tracer in different APl functions:

Table9 APl service IDs

Name Value APl name

FLS_ID INIT 0x00 Fls Init ()

FLS ID ERASE 0x01 Fls Erase()

FLS ID WRITE 0x02 Fls Write ()

FLS ID CANCEL 0x03 Fls Cancel ()

FLS ID GETSTATUS 0x04 Fls GetStatus ()
FLS ID GETJOBRESULT 0x05 Fls GetJobResult ()
FLS ID MAINFUNCTION 0x06 Fls MainFunction/()
FLS ID READ 0x07 Fls Read()

FLS ID COMPARE 0x08 Fls Compare ()

FLS ID SETMODE 0x09 Fls SetMode ()

User guide 69 002-23407 Rev. *W

2025-12-10

Flash driver user guide in f| neon

TRAVEO™ T2G family
Appendix A - API reference

Name Value APl name
FLS ID BLANKCHECK OX0A Fls BlankCheck ()
FLS_ID GETVERSIONINFO 0x10 Fls GetVersionInfo ()
FLS ID SETCYCLEMODE OxFA Fls SetCycleMode ()
FLS ID READIMMEDIATE 0xFB Fls ReadImmediate ()
FLS ID SUSPEND 0xFC Fls Suspend()
FLS ID RESUME OxFD Fls Resume ()

7.3 Functions

7.3.1 Fls_Init

Syntax

void Fls Init (const Fls ConfigType* ConfigPtr)
Service ID

0x00

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

e ConfigPtr - pointerto FLS configuration set (Postbuild) or NULL pointer (Precompile).
Parameters (out)

None

Return value

None

Development errors

e FLS E PARAM CONFIG - If configuration variantis post-build time, address of the given configuration for
Fls_Init() is not within the allowed range where is generated for FlsConfigSet container by EB tresos Studio.
If configuration variant is pre-compile time (and there is only one FlsConfiget), pointer other than NULL is
passed. Flash driver for application (Fls_TS_T40D13M1I0R0) runs on CM0+ or flash driver for HSM
(Fls_TS_T40D13M2I0R0) runs on CM4, CM7_0,CM7_1,CM7_2, or CM7_3.

e FLS E BUSY - Thedriveris currently busy.
Runtime errors

None

User guide 70 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Description

Flash driver module initialization. This function shall be called with pointer to FLS configuration set (Postbuild)
or NULL pointer (Precompile).

Caveats

e This service shall be called before any other service of the flash driver.

7.3.2 Fls_Erase

Syntax

Std ReturnType Fls Erase (Fls AddressType TargetAddress, Fls LengthType Length)
Service ID

0x01

Sync/Async

Asynchronous

Reentrancy

Non re-entrant

Parameters (in)

e TargetAddress - Virtual target address in flash memory.
e Length- Number of bytes to erase.

Parameters (out)
None
Return value

e E OK-Erasecommand was accepted.
e E NOT OK-Erase command was not accepted.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.

e FLS E PARAM ADDRESS - Parameter TargetAddress is greater than the total flash memory size or
parameter TargetAddress is not aligned to a flash sector boundary.

e FLS E PARAM LENGTH-Parameter Lengthis 0 or parameter TargetAddress + Length is greater than the
total flash memory size or the TargetAddress parameter + Length parameter is not aligned to a flash
sector boundary.

e FLS E BUSY - Driveris currently busy or another job has been already suspended.
Runtime errors

None

Description

Sets up an erase job for the flash driver. The driver will erase the affected sectors that include the area given.

User guide 71 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Caveats

e The flash driver must be initialized before this service is called.
e Onlyoneread, write, erase, compare or blank check job can be accepted at the same time.
e Anerase job can be accepted only if another job has not been suspended.

7.3.3 Fls_Write

Syntax

Std ReturnType Fls Write(Fls AddressType TargetAddress, const uint8*
SourceAddressPtr, Fls LengthType Length)

Service ID

0x02
Sync/Async
Asynchronous
Reentrancy
Non re-entrant
Parameters (in)

e TargetAddress - Virtual target address in flash memory.
e SourceAddressPtr - Pointer to source data buffer.
e Length- Number of bytes to write.

Parameters (out)
None
Return value

e E OK-Write command was accepted.
e E NOT OK-Write command was not accepted.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.

e FLS E PARAM ADDRESS - The TargetAddress parameter is greater than the total flash memory size or the
TargetAddress parameter is not a multiple of FlsPageSize.

e FLS E PARAM LENGTH- The Length parameteris 0 or the TargetAddress parameter + Length is greater
than the total flash memory size or the TargetAddress parameter + Length is not a multiple of
FlsPageSize.

e FLS E PARAM DATA-The SourceAddressPtr parameterisa NULL pointer.

e FLS E BUSY - Driveris currently busy or the target address (from start address to end address (start
address + length)) is within the range of sector used by suspended job.

Runtime errors
None

User guide 72 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Description

Sets up a write job for the flash driver. The driver will write Length data from SourceAddressPtr to
TargetAddress.

Caveats

e The flash driver must be initialized before this service is called.
e Only one read, write, erase, compare or blank check job can be accepted at the same time.

e Awrite job can be accepted only if the target address (from start address to end address (start address +
length)) is not within the range of sector used by suspended job.

e IfFlsGeneral/FlsUseNonBlockingWrite is TRUE, the flash driver writes in non-blocking mode.
Otherwise, writes in blocking mode. This parameter is not applied for the write operation for work flash
block#1.

7.3.4 Fls_Cancel

Syntax

void Fls Cancel (void)
Service ID

0x03

Sync/Async
Synchronous
Reentrancy

Non re-entrant
Parameters (in)
None

Parameters (out)
None

Return value

None

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.
e FLS E BUSY - Thisservice was called duringarunning F1s Suspend() or Fls Resume () invocation.

Runtime errors
None
Description

This function cancels an ongoing read, write, erase, compare or blank check job immediately. The suspended
job can't be cancelled.

User guide 73 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Caveats

e The flash driver must be initialized before this service is called.
e The states and data of the affected flash memory cells are undefined.
e This function must only be called from one source (for example, flash EEPROM emulation).

e The FLS module's environment shall not call the function F1s_cancel () duringa running
Fls MainFunction () invocation.

e Thesuspended job can't be cancelled. After resume, it can be cancelled.

7.3.5 Fls_GetStatus

Syntax

MemIf StatusType Fls GetStatus (void)
Service ID

0x04

Sync/Async
Synchronous
Reentrancy
Re-entrant
Parameters (in)
None
Parameters (out)
None

Return value

e MEMIF UNINIT - Driverisnotyetinitialized.
e MEMIF IDLE-Driveriscurrentlyidle.
e MEMIF BUSY - Driveris currently busy.

Development errors

None

Runtime errors

None

Description

This function returns the current state of the driver.
Caveats

e Ifajob hasbeen suspended and new job doesn’t run, this function returns MEMIF IDLE.

User guide 74 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

7.3.6 Fls_GetJobResult

Syntax

MemIf JobResultType Fls GetJobResult (void)
Service ID

0x05

Sync/Async
Synchronous
Reentrancy
Re-entrant
Parameters (in)
None
Parameters (out)
None

Return value

e MEMIF JOB OK - Lastjob was successful.

e MEMIF JOB PENDING - Job is currently pending.

e MEMIF JOB FAILED - Lastjob was failed.

e MEMIF JOB CANCELED - Lastjob was canceled.

e MEMIF BLOCK INCONSISTENT - Last compare job yielded differences.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.
Runtime errors

None

Description

This function returns the last job result of the driver.
Caveats

e The flash driver must be initialized before this service is called.
e Ifajob has been suspended and new job doesn’t run, this function returns MEMIF JOB OK.

User guide 75 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

7.3.7 Fls_Read

Syntax

Std ReturnType Fls Read(Fls AddressType SourceAddress, uint8* TargetAddressPtr,
Fls LengthType Length)

Service ID

0x07
Sync/Async
Asynchronous
Reentrancy
Non re-entrant
Parameters (in)

e SourceAddress - Virtual source address in flash memory.
e Length- Number of bytes to read.

Parameters (out)
e TargetAddressPtr -Pointerto target data buffer.
Return value

e E OK-Read command was accepted.
e E NOT OK-Read command was not accepted.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.
e FLS E PARAM ADDRESS-The SourceAddress parameter is greater than the total flash memory size.

e FLS E PARAM LENGTH-The Length parameteris 0 orthe SourceAddress parameter + Length is greater
than the total flash memory size.

e FLS E PARAM DATA-The TargetAddressPtr parameterisaNULL pointer.

e FLS E BUSY - Driveris currently busy or the source address (from start address to end address (start
address + length)) is within the range of sector used by suspended job.

Runtime errors
None
Description

Sets up a read job for the flash driver. The driver will read the Length data from SourceaAddress to
TargetAddressPtr (with performing a blank check before reading).

Caveats

e The flash driver must be initialized before this service is called.
e Only one read, write, erase, compare or blank check job can be accepted at the same time.

User guide 76 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

e Aread job can be accepted only if the source address (from start address to end address (start address +
length)) is not within the range of sector used by suspended job.

e Ifblank areais read, this function writes OxFF.. to target data buffer.

7.3.8 Fls_Compare

Syntax

Std ReturnType Fls Compare(Fls AddressType SourceAddress, const uint8*
TargetAddressPtr, Fls LengthType Length)

Service ID

0x08
Sync/Async
Asynchronous
Reentrancy
Non re-entrant
Parameters (in)

e SourceAddress - Virtualsource addressin flash memory.
e TargetAddressPtr -Pointerto target data buffer.
e Length- Number of bytes to compare.

Parameters (out)
None
Return value

e E OK-Compare command was accepted.
e E NOT OK-Comparecommand was not accepted.

Development errors

e FLS E UNINIT- Driveris notyetinitialized.
e FLS E PARAM ADDRESS-The SourceAddress parameter is greater than the total flash memory size.

e FLS E PARAM LENGTH-The Length parameteris0orthe sourceAddress parameter + Length is greater
than the total flash memory size.

e FLS E PARAM DATA-The TargetAddressPtr parameterisaNULL pointer.

e FLS E BUSY - Driveris currently busy or the source address (from start address to end address (start
address + length)) is within the range of sector used by suspended job.

Runtime errors
None
Description

Sets up a compare job for the flash driver. The driver will compare the Length data between sourceaddress
and TargetAddressPtr.

User guide 77 002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

Appendix A - API reference

Caveats

The flash driver must be initialized before this service is called.

Only one read, write, erase, compare or blank check job can be accepted at the same time.

(infineon

A compare job can be accepted only if the source address (from start address to end address (start address

+ length)) is not within the range of sector used by suspended job.

When reading for the comparing is done, it is performed without blank checking.

7.3.9 Fls_SetMode

Syntax

void Fls SetMode (MemIf ModeType Mode)

Service ID

0x09

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

Mode - Mode to set the flash driver to.

Parameters (out)

None

Return value

None

Development errors

FLS E UNINIT - Driveris notyetinitialized.
FLS_E BUSY - Driver is currently busy.

Runtime errors

None

Description

This function sets the flash driver to either SLOW or FAST mode.

Caveats

The flash driver must be initialized before this service is called.
This service shall not be called during a running operation.

User guide 78

002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

7.3.10 Fls_GetVersioninfo

Syntax

void Fls GetVersionInfo (Std VersionInfoType* VersioninfoPtr)
Service ID

0x10

Sync/Async

Synchronous

Reentrancy

Re-entrant

Parameters (in)

None

Parameters (out)

e VersioninfoPtr -Pointerto store the version information of this module to.
Return value

None

Development errors

e FLS E PARAM POINTER-ParameterversionInfoPtr isaNULL pointer.
Runtime errors

None

Description

This function returns the version information of this module.

Caveats

None

7.3.11 Fls_BlankCheck

Syntax

Std ReturnType Fls BlankCheck(Fls AddressType TargetAddress, Fls LengthType Length)
Service ID

0x0A

Sync/Async

Asynchronous

User guide 79 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Reentrancy
Non re-entrant
Parameters (in)

e TargetAddress - Virtual target address in flash memory.
e Length- Number of bytes to be checked blank.

Parameters (out)
None
Return value

e E OK-Blank check command was accepted.
e E NOT OK-Blank check command was not accepted.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.
e FLS E PARAM ADDRESS - The TargetAddress parameter is greater than the total flash memory size.

e FLS E PARAM LENGTH-The Length parameteris 0 or the TargetAddress parameter + Length is greater
than the total flash memory size.

e FLS E BUSY-Driveris currently busy or the target address (from start address to end address (start
address + length)) is within the range of sector used by suspended job.

Runtime errors
None
Description

Sets up a blank check job for the flash driver. The driver will check if the Length data from Targetaddress is
blank (it has been erased but not yet been programmed).

Caveats

e The flash driver must be initialized before this service is called.
e Only one read, write, erase, compare or blank check job can be accepted at the same time.

e Ablank check job can be accepted only if the target address (from start address to end address (start
address + length)) is not within the range of sector used by suspended job.

7.3.12 Fls_Readlmmediate

Syntax

Std ReturnType Fls ReadImmediate(Fls AddressType SourceAddress, uint8x*
TargetAddressPtr, Fls LengthType Length)

Service ID
OxFB
Sync/Async
Asynchronous

User guide 80 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Reentrancy
Non re-entrant
Parameters (in)

e SourceAddress - Virtual source address in flash memory.
e Length- Number of bytes to read.

Parameters (out)
e TargetAddressPtr - Pointer to target data buffer.
Return value

e E OK-Read immediate command was accepted.
e E NOT OK-Read immediate command was not accepted.

Development errors

e FLS E UNINIT -Driverisnotyetinitialized.
e FLS E PARAM ADDRESS - The SourceAddress parameter is greater than the total flash memory size.

e FLS E PARAM LENGTH-The Length parameteris 0 or the SourceAddress parameter + Length is greater
than the total flash memory size.

e FLS E PARAM DATA-The TargetAddressPtr parameterisaNULL pointer.

e FLS E BUSY - Driveris currently busy or the source address (from start address to end address (start
address + length)) is within the range of sector used by suspended job.

Runtime errors
None
Description

Sets up a read job for the flash driver. The driver will read the Length data from sourceaddress to
TargetAddressPtr without performing a blank check before reading.

Caveats

e The flash driver must be initialized before this service is called.
e Onlyone read, write, erase, compare or blank check job can be accepted at the same time.

e Aread job can be accepted only if the source address (from start address to end address (start address +
length)) is not within the range of sector used by suspended job.

e Ifblank areais read, this function will read undefined value.

7.3.13 Fls_Suspend

Syntax
Std ReturnType Fls Suspend(void)
Service ID

OxFC

User guide 81 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Sync/Async
Synchronous
Reentrancy

Non re-entrant
Parameters (in)
None
Parameters (out)
None

Return value

e E_OK-awrite oran erase wasin progress and could be suspended.

e E NOT OK-awriteoran erase was in progress and could not be suspended because another job was
already suspended or no job operation was in progress.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.
Runtime errors

None

Description

This function suspends a job in progress.
Caveats

e The flash driver must be initialized before this service is called.
o After this service, the FLS module status is MEMIF_IDLE and the job result is MEMIF JOB OX.

e The FLS module's environment shall not call the function F1s Suspend() during a running
Fls MainFunction()or Fls Resume() invocation.

e If this function is called to suspend an erase job that was resumed by F1s Resume(), the call must be done
at least 250 microseconds after F1s_Resume() finishes. Otherwise, the erase job cannot progress.

7.3.14 Fls_Resume

Syntax

Std ReturnType Fls Resume (void)
Service ID

OxFD

Sync/Async

Synchronous

User guide 82 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Reentrancy

Non re-entrant
Parameters (in)
None
Parameters (out)
None

Return value

e E OK -anoperation had been suspended and could be resumed.

e E NOT OK-nojob wassuspended or the suspended job cannot be resumed because thereis a job in
progress already.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.
Runtime errors

None

Description

This function resumes a suspended job, erase or write. Only the operation previously suspended can be
resumed.

Caveats

o The flash driver must be initialized before this service is called.
o After this service, the FLS module status is MEMIF_BUSY and the job result is MEMIF JOB PENDING.

e TheFLS module's environment shall not call the function F1s Resume () duringarunning F1s Suspend ()
invocation.

7.3.15 Fls_SetCycleMode

Syntax

void Fls SetCycleMode (MemIf ModeType Mode)
Service ID

OxFA

Sync/Async

Synchronous

Reentrancy

Non re-entrant

Parameters (in)

e Mode - Indicates whether the flash driver checks timeout. If Mode is MEMIF MODE FAST, timeout monitoring
is disabled. Otherwise, timeout monitoring is enabled.

User guide 83 002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

Infineon

Appendix A - API reference

Parameters (out)
None
Return value

e E_OK-This setting was accepted.
e E NOT_ OK- This setting was not accepted.

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.
e FLS E BUSY - Driveris currently busy.

Runtime errors
None

Description

This function determines whether the flash driver checks timeout.

Caveats

e The flash driver must be initialized before this service is called.

e This service must not be called during a running operation.

7.4 Scheduled functions

7.4.1 Fls_MainFunction

Syntax

void Fls MainFunction (void)
Service ID

0x06

Timing
FIXED_CYCLIC
Reentrancy

Non re-entrant
Parameters (in)
None
Parameters (out)
None

Return value

None

User guide 84

002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Development errors

e FLS E UNINIT-Driverisnotyetinitialized.

e FLS E VERIFY ERASE FAILED - Verification of erase, before write or blank check yielded a non-erased
area. (If F1sGeneral/FlsReportErrorIfNotBlank is FALSE, blank check does not report the error.)

e FLS E VERIFY WRITE FAILED - Verification of write yielded incorrect written data.

e FLS E TIMEOUT - Read, write, erase, compare, or blank check job operation exceeded the maximum
timeout or the maximum retry time when there is conflict in flash operation.

Runtime errors

e FLS E ERASE FAILED: Erase failed due to a hardware error.

e FLS E WRITE FAILED: Write failed due to a hardware error.

e FLS E COMPARE FAILED: Compare failed due to a hardware error.
e FLS E READ FAILED: Read failed due to a hardware error.

e FLS E DED FAILURE: Double biterroris detected (DED).

e FLS E SED FAILURE:Single biterroris detected (SED).

Description
This function performs the asynchronous processing of the flash read, write, erase, compare or blank check job.
Caveats

e The flash driver must be initialized before this service is called.
7.5 Expected interfaces

7.5.1 Mandatory interface

There are no mandatory interfaces that is expected by the flash driver.

7.5.2 Optional interfaces

If default error detection is enabled, the flash driver uses the following callback function that is provided by the
default error tracer. If the default error tracer is not used, this function must be implemented separately.

7.5.2.1 Det_ReportError

Syntax

Std ReturnType Det ReportError (uintl6 ModuleId, uint8 Instanceld, uint8 Apild,
uint8 ErrorId)

Sync/Async
Synchronous
Reentrancy

Re-entrant

User guide 85 002-23407 Rev. *W
2025-12-10

Flash driver user guide in f| neon ,

TRAVEO™ T2G family
Appendix A - API reference

Parameters (in)

e ModuleId -Module ID of the flash driver.

e InstanceId -Instance ID of the flash driver.

e ApiId-ID ofthe APIservice that calls this function.
e ErrorId -ID ofthe detected default error.

Return value

Returns always E_OK (is required for services).
Description

Service for reporting default errors.

If runtime error detection is enabled, the flash driver uses the following callback function that is provided by
the default error tracer. If the default error tracer is not used, this function must be implemented separately.

7.5.2.2 Det_ReportRuntimeError

Syntax

Std ReturnType Det ReportRuntimeError (uintl6 ModuleId, uint8 Instanceld, uint$
ApiId, uint8 ErrorId)

Sync/Async
Synchronous
Reentrancy
Re-entrant
Parameters (in)

e ModuleId-Module ID of the flash driver.

e Instanceld- Instance ID of the flash driver.

e ApiId-ID ofthe APl service that calls this function.
e ErrorId-ID ofthe detected runtime error.

Return value
Returns always E_OK (is required for services).
Description

Service for reporting runtime errors.

7.5.3 Configurable interfaces

The following callback functions are configurable and usually provided by the flash EEPROM emulation.

User guide 86 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
Appendix A - API reference

i

7.5.3.1 Fee_JobEndNotification

Syntax

void Fee JobEndNotification (void)

Reentrancy

Don't care

Parameters (in)

None

Return value

None

Description

This callback function shall be called when a job has been completed with a positive result:

e Read job finished & OK

e Write job finished & OK

e Erasejob finished & OK

e Compare job finished & memory blocks are the same
e Blank check job finished & OK

Configurable

If a function name is configured for the F1sConfigSet/FlsJobEndNotification parameter, the functionis
called.

7.5.3.2 Fee_JobErrorNotification

Syntax

void Fee JobErrorNotification (void)

Reentrancy

Don't care

Parameters (in)

None

Return value

None

Description

This callback function shall be called when a job has been canceled or finished with negative result:

e Readjob aborted or failed
o Write job aborted or failed
o Erasejob aborted or failed

User guide 87 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Appendix A - API reference

e Compare job aborted or failed
e Compare job finished & memory blocks differ
e Blank check job aborted or failed

Configurable

If a function name is configured for the F1sConfigSet/FlsJobErrorNotification parameter, the function
is called.

7.5.3.3 Fee_DedErrorNotification

Syntax

void Fee DedErrorNotification (void)

Reentrancy

Don't care

Parameters (in)

None

Return value

None

Description

This callback function is called when 2 bit or more ECC error is detected.
Configurable

If a function name is configured for the F1sConfigSet/FlsDedErrorNotification parameter, the function
is called.

7.5.3.4 Fee_SedErrorNotification

Syntax

void Fee SedErrorNotification (void)
Reentrancy

Don't care

Parameters (in)

None

Return value

None
Description
This callback function is called when single bit ECC error is detected.

User guide 88 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Appendix A - API reference

Configurable

If a function name is configured for the F1sConfigSet/FlsSedErrorNotification parameter, the function
is called.

7.5.3.5 Systemcall callout function

Syntax

Std ReturnType Systemcall Callout Function Name
(

uint32 *Fls IpcContext
)
Reentrancy
Non re-entrant

Parameters (in)

e Fls IpcContext-SRAM address (SRAM_SCRATCH_ADDR) where the system-call parameters have been
stored. This can be used to initiate the system-call request by such S-LLD IPC driver.

Return value

e E _OK-The callout function calls system-call successfully.
e E NOT OK-The callout function fails to call system-call.

Description
The callback function is called whenever the flash driver calls the system-call.
Configurable

If a function name is configured for the F1sGeneral/FlsSystemcallCalloutFunction parameter,the
function is called.

The following callback function is configurable and usually provided by the user, if required.

7.5.3.6 Erase callout API

Syntax

void Erase Handler Name

(Fls AddressType TargetAddress

)

Reentrancy

Don't care

Parameters (in)

e TargetAddress - Virtual target address in flash memory (that was passed to F1s Erase()).
Return value

None

User guide 89 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Appendix A - API reference

Description
This callback function is called after an erase job is accepted.
Configurable

If a function name is configured for the F1sGeneral/FlsEraseCalloutFunction parameter, the functionis
called.

7.6 Required callback functions
7.6.1 Callout functions
7.6.2 Error callout API

The AUTOSAR FLS module requires an error callout handler. Each error is reported to this handler; error
checking cannot be switched off. The name of the function to be called can be configured by the
FlsErrorCalloutFunction parameter.

Syntax

void Error Handler Name

(
uintl6 Moduleld,
uint8 Instanceld,
uint8 ApiIld,
uint8 ErrorId

)

Reentrancy

Re-entrant

Parameters (in)

e ModuleId-Module ID of calling module.

e Instanceld-Instance ID of calling module.

e ApiId -ID ofthe APl service that calls this function.
e ErrorId-ID ofthe detected error.

Return value
None
Description

Service for reporting errors.

User guide 90 002-23407 Rev. *W
2025-12-10

0T-¢T-520¢C

apIng Jasn

16

My "A9Y LO¥ET-200

8 Appendix B - Access register table
8.1 FLASHC
Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
FLASH CTL 31:0 | Word [FlsSetFlashCtlRegisteris | Control Fls_Init 0x0070220F 0x00500000 |
(32 bits) | FLS_FLASH_CTL_WORK MAIN_WS[3:0]
ONLY] (After F1s Tnit)
0x00500000 |
MAIN_WS[3:0]
FLASH_PWR_CTL 31:0 | Word - Flash power | Not used 0x00000000 0x00000000
(32 bits) Control (Monitoring is not (Monitoring is not
needed.) needed.)
FLASH_CMD 31:0 | Word 0x00000002 Command Fls_MainFunction | 0x00000000 0x00000000
X Fl 1
(32 bits) Flz_gizgind (Monitoring is not (Monitoring is not
Fls Resume needed.) needed.)
CM4_CA_CTL<n> 31:0 | Word - CM4 cache Not used 0x00000000 0x00000000
(<n>=0,1,2) (32 bits) control (Monitoring is not (Monitoring is not
needed.) needed.)
CM4_CA_STATUS<n> |31:0 | Word - CM4 cache | Notused 0x00000000 0x00000000
(<n>=0,1,2) (32 bits) status (Monitoring is not (Monitoring is not
needed.) needed.)
CMO_STATUS 31:0 | Word 0x00000002 CMO+ Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM4_STATUS 31:0 | Word 0x00000002 CM4 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM7_0_STATUS 31:0 | Word 0x00000002 CMT #0 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status

needed.)

needed.)

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

6

My "A9Y LO¥ET-200

Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
CM7_1_STATUS 31:0 | Word 0x00000002 CMT #1 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM7_2_STATUS 31:0 | Word 0x00000002 CMT #2 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM7_3_STATUS 31:0 | Word 0x00000002 CMT #3 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
Note: The registers relevant to only DFT (BIST), CM0+, CRYPTO, Datawire, DMAC and external master are omitted from above table.

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

C
£ 8.2 FLASHC_FM_CTL_ECT
(1)}
c
S Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
MAIN_FLASH_SAFETY |31:0 | Word - Main (Code) | Not used 0x00000000 0x00000000
(32 bits) flash (Monitoringisnot | (Monitoring is not
Security needed.) needed.)
enable
STATUS 31:0 | Word - Statusread | Read-only 0x00000000 0x00000000
(32 bits) from (Monitoringisnot | (Monitoring is not
flash macro needed.) needed.)
WORK_FLASH_SAFETY |31:0 | Word [FlsSetWorkFlashSafetyR | Work flash | F1s_Init . 0x00000000 0x00000000
(32 bits) | egisteris TRUE] security iz—giigzggcuon (Monitoringisnot | (Monitoring is not
0x00000001 enable - needed.) needed.)

(Before start of writing,
Before start of erasing
After F1s Resume)

Fls Resume

3
0x00000000
(After F1s Init,
After finish of writing,
After finish of erasing,
After F1s Suspend)

Note: The registers used only by System call are omitted from above table.

o

S

&

S

~

P

2

=

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

¥6

My "A9Y LO¥ET-200

8.3 FLASHC1
Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
FLASH CTL 31:0 | Word [FIsSetFlashCtlRegisteris | Control Fls_Init 0x0070220F 0x00500000 |
(32 bits) | FLS_FLASH_CTL_WORK MAIN_WS[3:0]
ONLY] (After F1s Init)
0x00500000 |
MAIN_WSI3:0]
FLASH PWR_CTL 31:0 | Word - Flash power | Not used 0x00000000 0x00000000
(32 bits) Control (Monitoring is not (Monitoring is not
needed.) needed.)
FLASH_CMD 31:0 | Word 0x00000002 Command Fls_MainFunction | 0x00000000 0x00000000
. ls C 1 e . N
(32 bits) glz_sirsl;ind (Monitoring is not (Monitoring is not
Fls Resume needed.) needed.)
CM4_CA_CTL<n> 31:0 | Word - CM4 cache | Notused 0x00000000 0x00000000
(<n>=0,1,2) (32 bits) control (Monitoring is not (Monitoring is not
needed.) needed.)
CM4_CA_STATUS<n> |31:0 |Word - CM4 cache Not used 0x00000000 0x00000000
(<n>=0,1,2) (32 bits) status (Monitoring is not (Monitoring is not
needed.) needed.)
CMO_STATUS 31:0 | Word 0x00000002 CMO+ Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM4_STATUS 31:0 | Word 0x00000002 CM4 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM7_0_STATUS 31:0 | Word 0x00000002 CMT #0 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM7_1_STATUS 31:0 | Word 0x00000002 CMT #1 Fls_MainFunction | (0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

S6

My "A9Y LO¥ET-200

Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
CM7_2_STATUS 31:0 | Word 0x00000002 CMT #2 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
CM7_3_STATUS 31:0 | Word 0x00000002 CMT #3 Fls_MainFunction | 0x00000000 0x00000000
(32 bits) interface (Monitoring is not (Monitoring is not
status needed.) needed.)
Note: The registers relevant to only DFT (BIST), CM0+, CRYPTO, Datawire, DMAC, and external master. are omitted from above table.

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

96

My "A9Y LO¥ET-200

8.4

FLASHC1_FM_CTL_ECT

Register

Bit
No.

Access
size

Value

Description

Timing

Mask value

Monitoring value

FM CTL

31:0

Word
(32 bits)

0x00000000 (when a
flash operation is
finished)

0x80000007 (perform
flash writing)
0x8000000C (perform
sector erasing)
0x8000000D (start blank
check)

0x8000000E (perform
blank check)
0x8000000F (finish blank
check)

0x80000011 (perform
erase suspending)
0x80000012 (perform
erase resuming)

Flash Macro
Control

Fls MainFunction
Fls Suspend

Fls Resume

Fls Cancel

0x00000000

(Monitoring is not
needed.)

0x00000000

(Monitoring is not
needed.)

FM CODE_MARGIN

31:0

Word
(32 bits)

Flash Macro
Margin
Mode on
Code Flash

Not used

0x00000000

(Monitoring is not
needed.)

0x00000000

(Monitoring is not
needed.)

FM ADDR

31:0

Word
(32 bits)

Target work flash
address (before start of
writing, before start of
erasing and before
performing blank check)

Flash Macro
Address

Fls MainFunction

0x00000000

(Monitoring is not
needed.)

0x00000000

(Monitoring is not
needed.)

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

16

My "A9Y LO¥ET-200

Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
INTR 31:0 | Word 0x00000001 (clear Interrupt Fls_MainFunction | 0x00000000 0x00000000
. . Fls S d Y N
(32 bits) | flash#1 macro interrupt) Flz_RiE;Z (Monitoringis not | (Monitoringis not
Fls Cancel needed.) needed.)
Fls GetStatusSub
Fls Isr Flashl C
atl
Fls Isr Flashl C
at2
INTR_SET 31:0 | Word - Interrupt Not used 0x00000000 0x00000000
(32 bits) Set (Monitoringisnot | (Monitoring is not
needed.) needed.)
INTR_MASK 31:0 | Word 0x00000001 (enable Interrupt Fls_Init 0x00000000 0x00000000
(32 bits) | flash#1 macrointerrupt) | Mask glz—giigggcuon (Monitoringisnot | (Monitoring is not
0x00000000 (disable Fls_Resume needed.) needed.)
flash#1 macro interrupt) Fls Cancel
Fls GetStatusSub
INTR_MASKED 31:0 | Word - Interrupt Not used 0x00000000 0x00000000
(32 bits) Masked (Monitoringisnot | (Monitoring is not
needed.) needed.)
ECC_OVERRIDE 31:0 | Word - ECCDataln | Notused 0x00000000 0x00000000
(32 bits) override (Monitoringisnot | (Monitoring is not
information needed.) needed.)
and control
bits
FM_DATA 31:0 | Word Flash write value (before | Flash macro | Fls_MainFunction | 0x00000000 0x00000000
(32 bits) | start of writing) data_in [31 (Monitoringisnot | (Monitoring is not
to 0] both needed.) needed.)
Code and
Work Flash

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

86

My "A9Y LO¥ET-200

Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
BOOKMARK 31:0 | Word Address of sector erase Bookmark |Fls_MainFunction |(0x00000000 0x00000000
(32 bits) | (after start of erasing) register - (Monitoringisnot | (Monitoring is not
keeps the needed.) needed.)
current FW
HV seq
MAIN_FLASH SAFETY |31:0 | Word - Main (Code) | Not used 0x00000000 0x00000000
(32 bits) flash (Monitoringisnot | (Monitoring is not
Security needed.) needed.)
enable
STATUS 31:0 | Word - Statusread | Read-only 0x00000000 0x00000000
(32 bits) from (Monitoringis not | (Monitoring is not
flash macro needed.) needed.)
WORK_FLASH SAFETY |31:0 | Word [FIsSetWorkFlashSafetyR | Work flash Fls_Init 0x00000000 0x00000000
. o) Fls MainF i Y N
(32 bits) | egisteris TRUE] security Flz:si;;eigcuon (Monitoringisnot | (Monitoringis not
0x00000001 enable needed.) needed.)

(Before start of writing,
Before start of erasing
After F1s Resume)

0x00000000
(After F1s Init,

After finish of writing,
After finish of erasing,
After F1s Suspend)

Fls Resume

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

[
£ 8.5 FAULT
(1)}
% Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
CTL 31:0 | Word - Fault Not used. 0x00000000 0x00000000
(32 bits) control (Monitoring is not (Monitoring is not
needed.) needed.)
STATUS 31:0 | Word - Fault status | Read-only 0x00000000 0x00000000
(32 bits) (Monitoring is not (Monitoring is not
needed.) needed.)
DATA 31:0 | Word - Fault data Not used. 0x00000000 0x00000000
(32 bits) (Monitoring is not (Monitoring is not
needed.) needed.)
PENDING<n> 31:0 | Word - Fault Not used. 0x00000000 0x00000000
(<n>=0,1,2) (32 bits) pending (Monitoring is not (Monitoring is not
needed.) needed.)
@ MASKO 31:0 | Word - Fault mask | Not used. 0x00000000 0x00000000
(32 bits) 0 (Monitoring is not (Monitoring is not
needed.) needed.)
MASK1 31:0 | Word [FIsSetWorkFlashFaultM | Fault mask | Fls_Init 0x00380000 0x00380000
(32 bits) | askRegister is TRUE] 1 (Fls_TS_T40D13M1lI
0x00380000 ORO)
(FIs_TS_T40D13M1I0R0) 0x00000000
0x00000000 (Fls_TS_T40D13M2I
(Fls_TS_T40D13M2I0R0) ORO)
(AfterFls Init)
o
S
&
S
~
P
2
=

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

00T

My "A9Y LO¥ET-200

Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
MASK2 31:0 | Word [FlsSetWorkFlashFaultM | Fault mask | Fls_Init 0x00308000 0x00308000
(32 bits) | askRegisteris TRUE and |2 (Fls_TS_T40D13M1I
the target device has two ORO)
flash blocks] 0x00000000
0x00308000 (Fls_TS_T40D13M2I
(FIs_TS_T40D13M1I0R0) ORO)
0x00000000 (After Fls Init)
(Fls_TS_T40D13M2I0R0)
INTR 31:0 | Word - Interrupt Not used. 0x00000000 0x00000000
(32 bits) (Monitoring is not (Monitoring is not
needed.) needed.)
INTR_SET 31:0 | Word - Interrupt Not used. 0x00000000 0x00000000
(32 bits) set (Monitoring is not (Monitoring is not
needed.) needed.)
INTR_MASK 31:0 | Word - Interrupt Not used. 0x00000000 0x00000000
(32 bits) mask (Monitoring is not (Monitoring is not
needed.) needed.)
INTR_MASKED 31:0 | Word - Interrupt Not used. 0x00000000 0x00000000
(32 bits) masked (Monitoring is not (Monitoring is not

needed.)

needed.)

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

T0T

My "A9Y LO¥ET-200

8.6 IPC
Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
IPC_ACQUIRE 31:0 | Word - IPC lock Read-only 0x00000000 0x00000000
(32 bits) acquire (Monitoring is not (Monitoring is not
register needed.) needed.)
IPC_RELEASE 31:0 | Word Release event IPC lock Fls_MainFunction 0x00000000 0x00000000
(32 bits) | (After finish of writing, release Fls_Suspend (Monitoring is not (Monitoring is not
After finish of erasing register needed.) needed.)
After finish of blank
check
After F1s Suspend)
IPC_NOTIFY 31:0 | Word Notification event IPC Fls_MainFunction 0x00000000 0x00000000
. P Fl 1 . .
(32 bits) | (When call of System not}flcatlon Flz—gizgind (Monitoring is not (Monitoring is not
call, register Fls Resume needed.) needed.)
When communication Fls_Isr_Flash Catl
with HSM) Fls Isr Flash Cat2
IPC_DATAD 31:0 | Word Address of SRAM where | IPC data Fls_MainFunction 0x00000000 0x00000000
. . Fls C 1 . .
(32 bits) | the System call (API) register 0 Flzisizgind (Monitoring is not (Monitoring is not
parameters Fls_Resume needed.) needed.)

(When call of System
call,

When communication
with HSM)

eCT flash safety
mechanism information
(for eCT flash safety
mechanism)

Fls Isr Flash Catl
Fls Isr Flash Cat2

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

(408

My "A9Y LO¥ET-200

Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
IPC_DATAL 31:0 | Word Flash control requestto | IPC data Fls_MainFunction 0x00000000 0x00000000
(32 bitS) flash driver for HSM register 1 giz_gi;];:rlld (Monitoring is not (Monitoring is not
(FIS_TS_T4OD13M2|0R0) Fls:Resume needed.) needed.)
Fls Isr Flash Catl
Fls Isr Flash Cat2
IPC_LOCK_STA |31:0 | Word - IPC lock Not used. 0x00000000 0x00000000
oS (32 bits) status (Monitoring is not (Monitoring is not
register needed.) needed.)
IPC_INTR 31:0 | Word IPC release event clear IPC Fls_MainFunction 0x00000000 0x00000000
. . Fl 1 o o
(32 bits) interrupt Flzigizgind (Monitoring is not (Monitoring is not
status F1s Resume needed.) needed.)
register Fls Isr Ipc Catl
Fls Isr Ipc Cat2
Fls Isr FlsIpc Catl
Fls Isr FlsIpc Cat2
IPC_INTR_SET 31:0 | Word - IPC Not used 0x00000000 0x00000000
(32 bits) interrupt (Monitoring is not (Monitoring is not
set register needed.) needed.)
IPC_INTR_MAS |31:0 |Word IPC release event mask IPC Fls_Init 0x00000000 0x00000000
. . . : Fls MainF i o o
K (32 bits) | (Enable interruption) interrupt FlE:ClelZellmCtlon (Monitoring is not (Monitoring is not
ma§k Fls_Suspend needed.) needed.)
000000000 register Fls_Resume
(Disable interruption)
IPC_INTR_MAS 31:0 | Word - IPC masked | Not used. 0x00000000 0x00000000
KED (32 bits) interrupt (Monitoring is not (Monitoring is not
register needed.) needed.)

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

=

€0

My "A9Y LO¥ET-200

8.7 CPUSS
Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
IDENTITY 31:0 | Word - Identity Read-only 0x00000000 0x00000000
(32 bits) (Bus (Monitoring is not (Monitoring is not
master needed.) needed.)
identifier)
8.8 M-DMA (DMAC)
Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
CTL 31:0 | Word - Control User must set Bit 0x00000000 0x00000000
(32 bits) No.3lto1l (if (Monitoring is not (Monitoring is not
FlsUseDmaForRead needed) needed)
is TRUE)
ACTIVE 31:0 | Word - Active Not used 0x00000000 0x00000000
(32 bits) channels (Monitoring is not (Monitoring is not
needed.) needed.)

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

0T

My "A9Y LO¥ET-200

8.9 DMAC_CH
Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
CTL 31:0 | Word 0x80000000 Channel F.ls_MainFunction 0x00000000 0x00000000
(32 bits) | (Before start of reading) | control (if FlsUsebmaFor— | (Monitoring is not (Monitoring is not
Read is TRUE) needed.) needed.)
0x00000000
(After finish of reading)
IDX 31:0 | Word - Channel Not used 0x00000000 0x00000000
(32 bits) current (Monitoring is not (Monitoring is not
indices needed.) needed.)
SRC 31:0 | Word - Channel Not used 0x00000000 0x00000000
(32 bits) current (Monitoring is not (Monitoring is not
source needed.) needed.)
address
DST 31:0 | Word - Channel Not used 0x00000000 0x00000000
(32 bits) current (Monitoring is not (Monitoring is not
destination needed.) needed.)
address
CURR 31:0 | Word Channel descriptor Channel Fls_MainFunction | 0x00000000 0x00000000
(32 bits) | pointer current (if FlsUsebmaFor= | (\onitoring is not (Monitoring is not
(Before start of reading) | descriptor | R€adIs TRUE) needed.) needed.)
pointer
0x00000000
(After finish of reading)
TR_CMD 31:0 | Word 0x00000001 Channel F.ls_MainFunction 0x00000000 0x00000000
(32 bits) | (Trigger for reading) software (ifFisUseDmaFor- | (yonitoring s not (Monitoring is not
trigger Read is TRUE) needed.) needed.)
INTR 31:0 | Word 0x000000FF (Clearing) Interrupt F.lsiMainFunction 0x00000000 0x00000000
(32 bits) | (Before start of reading, (if FlsUsebmaFor= | (Monitoring is not (Monitoring is not
After finish of reading) Read is TRUE) needed.) needed.)

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

0T-¢T-520¢C

apIng Jasn

SOT

My "A9Y LO¥ET-200

Register Bit |Access |Value Description | Timing Mask value Monitoring value
No. |size
INTR_SET 31:0 | Word - Interrupt Not used 0x00000000 0x00000000
(32 bits) set (Monitoring is not (Monitoring is not
needed.) needed.)
INTR_MASK 31:0 | Word 0x00000000 Interrupt Fls_MainFunction | 0x00000000 0x00000000
(32 bits) | (Before start of reading, | mask (if F1sUseDmaFor- (Monitoring is not (Monitoring is not
After finish of reading) Read is TRUE) needed.) needed.)
INTR_MASKED 31:0 | Word - Interrupt Not used 0x00000000 0x00000000
(32 bits) masked (Monitoring is not (Monitoring is not
needed.) needed.)
Note: Registers relevant to the channel descriptor are omitted from this table.

91qe) 49351891 sS9I0Y - g Xipuaddy

Allwe) 971 ,,03IAVYL
apiIng 1asn JaALIp yse)d4

uoauljul

e

Flash driver user guide
TRAVEO™ T2G family

(infineon

Revision history

Revision history

Document
revision

Date

Description of changes

* %

2018-05-17

Initial release

*A

2018-10-04

Added some acronyms relevant to Arm® Cortex®-M7 CPU in Table 1.
Glossary.

Added two TRAVEO™ T2G Automotive Body Controller High Family
TRMs in Hardware Documentation.

Added “Platforms” as required modules in 1.5 Development
Environment.

Added or modified description about APl which cannot execute
concurrently in followings sections.

5.1.9 Canceling a Job Prior to Maturity

5.1.12 Suspending a Job

5.1.13 Resuming a Suspended Job

A.1.3 Functions (Fls_Cancel, Fls_Suspend and Fls_Resume)

Added or modified description relevant to Arm® Cortex®-M7 CPU in
followings sections.

6.4 1PC
6.5 System Call (NMI exception)
B.1.1 FLASHC (CM7_0_STATUS and CM7_1_STATUS)

*B

2018-12-13

Modified the Value and the Monitoing Value of FLASH_CTL register in
B.1.1 FLASHC.

Modified the Value, the Mask Value and the Monitoing Value of MASK1
registerin B.1.3 FAULT.

*C

2019-02-21

Added an acronyms relevant to GHS in Table 1. Glossary.

Added description in the case of enabling data cache in following
sections.

2.3 Adapting Your Application
2.6 Memory Mapping

Changed the Range and the Annotation for following parameters to
new minimum and multiple of 4 in 4.2.1 Parameter Constraints.

FlsMaxReadFastMode
FlsMaxReadNormalMode
FlsMaxWriteFastMode
FlsMaxWriteNormalMode

Added a section 6.6 Memory Protection Unit (MPU) for use of Flash
driver in the case of enabling data cache.

*D

2019-06-11

Updated hardware documentation information.

“E

2019-11-14

Changed title to 6.5 System Call.
Updated description in 6.5 System Call.

*F

2020-03-08

Added description regarding suspending.
5.1.12 Suspending a Job

User guide

106 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
Revision history

i

Document Date Description of changes
revision

A.1.3 Functions (Fls_Suspend)

*G 2020-06-25 Added configuration parameterin 2.2.1 Architecture Details.
FlsSetFlashCtlRegister

FlsSetWorkFlashSafetyRegister

FlsDefineWdgClear

Changed description regarding Fls_WdgClear() in 2.2.1 Architecture
Details.

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific
Parametersails.

FlsSetFlashCtlRegister
FlsUserValueForFlashCtlRegister
FlsSetWorkFlashSafetyRegister
FlsDefineWdgClear
FlsFaultStructure

Added description of registers that is set before using the Flash driver
in 6.1 Registers.

FLASH_CTL
WORK_FLASH_SAFETY

Added description of fault structure that is specified by the
configuration parameter FlsFaultStructure in 6.3 Fault.

Added description of condition for setting registers to value.
B.1.1 FLASH_CTL
B.1.2 FM_CTL_ECT

Deleted sentence that SourceAddressPtr must be an address on
SRAM.

5.1.5 Writing Data to the Flash Memory
A.1.3 Functions (Fls_Write)

*H 2020-09-07 Added Words and Terms in Glossary.
DMA

HSM

Non-blocking mode

S-LLD

Added 1.7 HSM Support.

Added configuration parameter in 2.2.1 Architecture Details.
FlsDmaChannel

FlsAuxiliaryBufferSize
FlsUseNonBlockingWrite
FlsArbitrationTimeout
FlsSystemcallCalloutFunction

Added description of FlsSystemcallCalloutFunction and section
FLS_START_SEC_SYSCALLSHARED_VAR_NO_INIT in 2.3 Adapting Your
Application.

User guide 107 002-23407 Rev. *W
2025-12-10

o _.
Flash driver user guide < In f| neon ,
TRAVEO™ T2G family

Revision history

Document Date Description of changes
revision

Changed a memmap file include folder in chapter 2.6.

Added configuration parameter in 2.6 Memory Mapping and 6.6
Memory Protection Unit (MPU).

FLS_START_SEC_SYSCALLSHARED_VAR_NO_INIT_32
FLS_STOP_SEC_SYSCALLSHARED_VAR_NO_INIT_32

Added description of configuration parameterin 4.2.1 Parameter
Constraints.

FlsUselnterrupts

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific
Parametersails.

FlsDmaChannel
FlsAuxiliaryBufferSize
FlsUseNonBlockingWrite
FlsArbitrationTimeout
FlsSystemcallCalloutFunction

Added description of configuration parameter in 4.2.2 Vendor- and
Driver-Specific Parametersails.

FlsUseSafetyMechanism

FlslpcStructure

FlslpcInterruptStructure

Added description regarding DMA transfer.

5.1.4 Reading Data from the Flash Memory

5.1.5 Writing Data to the Flash Memory

5.1.7 Comparing Data from the Flash Memory
Added description regarding Fls_TS_T40D13M2I0RO0 (Flash driver for
HSM).

5.1.4 Reading Data from the Flash Memory

5.1.7 Comparing Data from the Flash Memory
Added description regarding conflict of flash operation.
5.1.4 Reading Data from the Flash Memory

5.1.5 Writing Data to the Flash Memory

5.1.6 Erasing Data from the Flash Memory

5.1.7 Comparing Data from the Flash Memory
5.1.8 Checking Blank for the Flash Memory
Added description regarding non-blocking mode.
5.1.5 Writing Data to the Flash Memory

Added note.

5.1.12 Suspending a Job

5.1.13 Resuming a Suspended Job

6.2 Interrupts

6.3 Fault

6.5 System Call

User guide 108 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
Revision history

i

Document Date Description of changes
revision

Added description of Conflict of flash operation in 5.1.14 Timeout
Supervision.

Changed example in 6.3 Fault.

Added description regarding CMO+ and restriction in 6.4 IPC.

Added description regarding FlsSystemcallCalloutFunction in 6.4 IPC.
Added 6.7 DMA.

Added description reagrding maximum retry time in Error Codes, A.1.2
Macros.

Added Development Errors in A.1.3 Functions.

Fls_Init

Added Caveats in A.1.3 Functions.

Fls_Write

Added Development Errors in A.1.4 Scheduled Functions.
Fls_MainFunction

Added Configurable Interfaces in A.1.5 Expected Interfaces.
Systemcall callout function

Added description of value for setting registers to value.
B.1.3 FAULT

Added B.1.6 M-DMA (DMAC)

Added B.1.7 DMAC_CH

*| 2020-11-20 Added configuration parameter in 2.2.1 Architecture Details.
FlsUseDmaForRead
FlsSetCycleModeApi

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific
Parametersails.

4.2.2.1.24 FlsSetCycleModeApi
4,2.2.1.25 FlsUseDmaForRead

Added description of configuration parameter in 4.2.2 Vendor- and
Driver-Specific Parametersails.

4.2.2.1.9 FlsDmaChannel

4.2.2.1.10 FlsAuxiliaryBufferSize

4.2.2.2.3 FlsNumberOfDelayLoop

Added description regarding condition for DMA transfer.
5.1.4 Reading Data from the Flash Memory

5.1.5 Writing Data to the Flash Memory

5.1.7 Comparing Data from the Flash Memory

6.7 DMA

Added description regarding the disabling of timeout monitoring.
5.1.14 Timeout Supervision

Added function in 7.1.3Functions.

7.1.3.15 Fls_SetCycleMode

Added description regarding the Fls_SetCycleMode function.

User guide 109 002-23407 Rev. *W
2025-12-10

Infineon

Flash driver user guide

TRAVEO™ T2G family
Revision history

i

Document Date Description of changes
revision

7.1.2.4 API Service IDs

Added description regarding condition for setting registers condition.
8.1.6 M-DMA (DMAC)

8.1.7 DMAC_CH

Fixed typo.

5.4 Runtime Error Detection

Updated to Infineon template.

*J 2020-11-25 Updated 6.1 Registers.

*K 2021-03-01 Added configuration parameter in 2.2.1 Architecture Details.
FlsSetWorkFlashFaultMaskRegister
FlsReportErrorlfNotBlank

Added description regarding enabling DMA controller in 2.3 Adapting
Your Application.

Added configuration parameter in 4.2.2 Vendor- and Driver-Specific
Parametersails.

4.2.2.1.26 FlsSetWorkFlashFaultMaskRegister
4.2.2.1.27 FIlsReportErrorlfNotBlank

Deleted description regarding other error and added description
regarding FIsReportErrorlfNotBlank in 5.1.8 Checking Blank for the
Flash Memory.

Added 4. DMAC_CTL register in 6.1 Registers.

Added description regarding FlsSetWorkFlashFaultMaskRegister in 6.2
Interrupts.

Added note regarding use of both Flash drivers and modified example
in 6.3 Fault.

Added note regarding enabling DMA controller in 6.7 DMA.

Added description regarding FlsReportErrorlfNotBlank for
FLS_E_VERIFY_ERASE_FAILED in 7.4.1 Fls_MainFunction

Modified Value of MASK1 register in 8.3 FAULT.
Modified Value and Timing of CTL register in 8.6 M-DMA (DMAC).

*L 2021-05-18 Modified Note in 5.1.12 Suspending a Job.
Modified Note in 5.1.13 Resuming a Suspended Job.
*M 2021-08-19 Added a note in 6.2 Interrupts.
*N 2021-12-07 Updated to the latest branding guidelines.
*0 2022-09-28 Added “Data buffer” in Abbreviation.
Modified Annotation in 4.2.1.1.12 FlsTotalSize.
*P 2022-12-13 Modified Value and Timing of the IPC_RELEASE register in 8.6 IPC.
*Q 2023-03-03 Added terms in Abbreviation.
CMT7_2
CM7_3

Work flash block#0

User guide 110 002-23407 Rev. *W
2025-12-10

Flash driver user guide
TRAVEO™ T2G family

(infineon

Revision history

Document Date Description of changes
revision
Work flash block#1
Added CM7_2 and CM7_3 in 1.7 HSM support, 6.6 Memory protection
unit (MPU), 6.7 DMA, 7.3.1 Fls_Init.
Added 5.3 Parallel flash operations for separate work flash memories.
Added FLASHC1 registers in 6.1 Registers.
Added flash#1 macro interrupt and ISRs in 6.2 Interrupts.
Added IPC resources for CM7_2 and CM7_3in 6.4 IPC.
Added the description for work flash blocks in 6.5 System call.
Added CM7_2_STATUS and CM7_3_STATUS registers in 8.1 FLASHC.
Changed the section name of 8.2 FLASHC_FM_CTL_ECT to distinguish
two FM_CTL_ECT registers.
Added 8.3 FLASHC1 and 8.4 FLASHC1_FM_CTL_ECT.
*R 2023-05-31 Modified the description of F1sSetWorkFlashFaultMaskRegister
in 2.2.1 Architecture details and 4.2.2.1.28
FlsSetWorkFlashFaultMaskRegister.
Modified the description of F1sUseNonBlockingWrite in2.2.1
Architecture details, 4.2.2.1.15 FlsUseNonBlockingWrite, 5.1.5 Writing
data to the flash memory and 7.3.3 Fls_Write.
Added the usecase for FLASHC1 operations from multiple cores in 5.3
Parallel flash operations for separate work flash memories.
Modified IPC resources for CM7_2 and CM7_3in 6.4 IPC.
Modified MASK2 register in 8.5 FAULT.
*S 2023-10-06 Added the annotationsin 4.2.2.1.18 FlslpcStructure and 4.2.2.1.19
FlslpcinterruptStructure.
Added the configuration parameters 4.2.2.1.20
FlslpcReleaseEventNotification and 4.2.2.1.21
FlslpcNotificationEventToHsm
Added the note for nested erase suspend in 5.1.12 Suspending a job.
Added the description for eCT flash safety mechanism in 5.1.15 eCT
flash safety mechanism.
Modified DATAO and DATAL registers in 8.6 IPC.
*T 2023-12-08 Web release. No content updates.
*U 2025-04-24 Added a note in section 2.6.1 Memory allocation keyword.
*V 2025-08-12 Added detailed description about the dummy read and the error
detection with Fault interrupt into section 6.3 Fault.
*W 2025-12-10 Modified decsription in 2.3 Adapting your application, 2.6.1 Memory
allocation keyword and 6.6 Memory protection unit (MPU)
User guide 111 002-23407 Rev. *W

2025-12-10

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-12-10
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email:

erratum@infineon.com

Document Reference Number
002-23407 Rev. *W

Important Notice

Products which may also include samples and may be
comprised of hardware or software or both (“Product(s)”) are
sold or provided and delivered by Infineon Technologies AG
and its affiliates (“Infineon”) subject to the terms and
conditions of the frame supply contract or other written
agreement(s) executed by a customer and Infineon or, in the
absence of the foregoing, the applicable Sales Conditions of
Infineon. General terms and conditions of a customer or
deviations from applicable Sales Conditions of Infineon shall
only be binding for Infineon if and to the extent Infineon has
given its express written consent.

For the avoidance of doubt, Infineon disclaims all warranties of
non-infringement of third-party rights and implied warranties
such as warranties of fitness for a specific use/purpose or
merchantability.

Infineon shall not be responsible for any information with
respect to samples, the application or customer’s specific use
of any Product or for any examples or typical values given in
this document.

The data contained in this document is exclusively intended for
technically qualified and skilled customer representatives. It is
the responsibility of the customer to evaluate the suitability of
the Product for the intended application and the customer’s
specific use and to verify all relevant technical data contained
in this document in the intended application and the
customer’s specific use. The customer is responsible for
properly designing, programming, and testing the functionality
and safety of the intended application, as well as complying
with any legal requirements related to its use.

Unless otherwise explicitly approved by Infineon, Products
may not be used in any application where a failure of the
Products or any consequences of the use thereof can
reasonably be expected to result in personal injury. However,
the foregoing shall not prevent the customer from using any
Product in such fields of use that Infineon has explicitly
designed and sold it for, provided that the overall responsibility
for the application lies with the customer.

Infineon expressly reserves the right to use its content for
commercial text and data mining (TDM) according to applicable
laws, e.g. Section 44b of the German Copyright Act (UrhG).If the
Product includes security features:

Because no computing device can be absolutely secure, and
despite security measures implemented in the Product, Infineon
does not guarantee that the Product will be free from intrusion,
data theft or loss, or other breaches (“Security Breaches”), and
Infineon shall have no liability arising out of any Security
Breaches.

If this document includes or references software:

The software is owned by Infineon under the intellectual
property laws and treaties of the United States, Germany, and
other countries worldwide. All rights reserved. Therefore, you
may use the software only as provided in the software license
agreement accompanying the software.

If no software license agreement applies, Infineon hereby grants
you a personal, non-exclusive, non-transferable license (without
the right to sublicense) under its intellectual property rights in
the software (a) for software provided in source code form, to
modify and reproduce the software solely for use with Infineon
hardware products, only internally within your organization, and
(b) to distribute the software in binary code form externally to
end users, solely for use on Infineon hardware products. Any
other use, reproduction, modification, translation, or
compilation of the software is prohibited. For further information
on the Product, technology, delivery terms and conditions, and
prices, please contact your nearest Infineon office or visit
https://www.infineon.com

mailto:erratum@infineon.com
https://www.infineon.com/

	About this document
	Table of contents
	1 General overview
	1.1 Introduction to the AUTOSAR flash driver
	1.2 User profile
	1.3 Embedding in the AUTOSAR environment
	1.4 Supported hardware
	1.5 Development environment
	1.6 Character set and encoding
	1.7 HSM support

	2 Using the flash driver
	2.1 Installation and prerequisites
	2.2 Configuring the flash driver
	2.2.1 Architecture details

	2.3 Adapting your application
	2.4 Starting the build process
	2.5 Measuring stack consumption
	2.6 Memory mapping
	2.6.1 Memory allocation keyword

	3 Structure and dependencies
	3.1 Static files
	3.2 Configuration files
	3.3 Generated files
	3.4 Dependencies
	3.4.1 Flash EEPROM emulation (FEE)
	3.4.2 DET
	3.4.3 BSW scheduler
	3.4.4 Error callout handler

	4 EB tresos Studio configuration interface
	4.1 General configuration
	4.2 Vendor specific configuration
	4.2.1 Parameter constraints
	4.2.1.1 Container FlsGeneral
	4.2.1.1.1 FlsAcLoadOnJobStart
	4.2.1.1.2 FlsBaseAddress
	4.2.1.1.3 FlsBlankCheckApi
	4.2.1.1.4 FlsCancelApi
	4.2.1.1.5 FlsCompareApi
	4.2.1.1.6 FlsDevErrorDetect
	4.2.1.1.7 FlsDriverIndex
	4.2.1.1.8 FlsGetJobResultApi
	4.2.1.1.9 FlsGetStatusApi
	4.2.1.1.10 FlsRuntimeErrorDetect
	4.2.1.1.11 FlsSetModeApi
	4.2.1.1.12 FlsTotalSize
	4.2.1.1.13 FlsUseInterrupts
	4.2.1.1.14 FlsVersionInfoApi

	4.2.1.2 Container FlsConfigSet
	4.2.1.2.1 FlsAcErase
	4.2.1.2.2 FlsAcWrite
	4.2.1.2.3 FlsCallCycle
	4.2.1.2.4 FlsDefaultMode
	4.2.1.2.5 FlsJobEndNotification
	4.2.1.2.6 FlsJobErrorNotification
	4.2.1.2.7 FlsMaxReadFastMode
	4.2.1.2.8 FlsMaxReadNormalMode
	4.2.1.2.9 FlsMaxWriteFastMode
	4.2.1.2.10 FlsMaxWriteNormalMode
	4.2.1.2.11 FlsProtection

	4.2.1.3 Container FlsDemEventParameterRefs
	4.2.1.4 Container FlsExternalDriver
	4.2.1.5 Container FlsSector
	4.2.1.5.1 FlsNumberOfSectors
	4.2.1.5.2 FlsPageSize
	4.2.1.5.3 FlsSectorSize
	4.2.1.5.4 FlsSectorStartaddress

	4.2.1.6 Container FlsPublishedInformation
	4.2.1.6.1 FlsAcLocationErase
	4.2.1.6.2 FlsAcLocationWrite
	4.2.1.6.3 FlsAcSizeErase
	4.2.1.6.4 FlsAcSizeWrite
	4.2.1.6.5 FlsEraseTime
	4.2.1.6.6 FlsErasedValue
	4.2.1.6.7 FlsExpectedHwId
	4.2.1.6.8 FlsSpecifiedEraseCycles
	4.2.1.6.9 FlsWriteTime

	4.2.2 Vendor and driver specific parameters
	4.2.2.1 Container FlsGeneral
	4.2.2.1.1 FlsErrorCalloutFunction
	4.2.2.1.2 FlsIncludeFile
	4.2.2.1.3 FlsEraseVerification
	4.2.2.1.4 FlsBeforeWriteVerification
	4.2.2.1.5 FlsWriteVerification
	4.2.2.1.6 FlsEraseCalloutFunction
	4.2.2.1.7 FlsReadImmediateApi
	4.2.2.1.8 FlsSuspendResumeApi
	4.2.2.1.9 FlsDmaChannel
	4.2.2.1.10 FlsAuxiliaryBufferSize
	4.2.2.1.11 FlsSetFlashCtlRegister
	4.2.2.1.12 FlsUserValueForFlashCtlRegister
	4.2.2.1.13 FlsSetWorkFlashSafetyRegister
	4.2.2.1.14 FlsDefineWdgClear
	4.2.2.1.15 FlsUseNonBlockingWrite
	4.2.2.1.16 FlsHsmPresent
	4.2.2.1.17 FlsUseSafetyMechanism
	4.2.2.1.18 FlsIpcStructure
	4.2.2.1.19 FlsIpcInterruptStructure
	4.2.2.1.20 FlsIpcReleaseEventNotification
	4.2.2.1.21 FlsIpcNotificationEventToHsm
	4.2.2.1.22 FlsWorkEmbeddedNotification
	4.2.2.1.23 FlsArbitrationTimeout
	4.2.2.1.24 FlsSystemcallCalloutFunction
	4.2.2.1.25 FlsFaultStructure
	4.2.2.1.26 FlsSetCycleModeApi
	4.2.2.1.27 FlsUseDmaForRead
	4.2.2.1.28 FlsSetWorkFlashFaultMaskRegister
	4.2.2.1.29 FlsReportErrorIfNotBlank

	4.2.2.2 Container FlsConfigSet
	4.2.2.2.1 FlsDedErrorNotification
	4.2.2.2.2 FlsSedErrorNotification
	4.2.2.2.3 FlsNumberOfDelayLoop

	4.2.2.3 Container FlsSector
	4.2.2.3.1 FlsSectorIdentifier

	4.2.3 Other modules
	4.2.3.1 Flash EEPROM emulation
	4.2.3.2 DET
	4.2.3.3 BSW scheduler

	5 Functional description
	5.1 Function of the flash driver
	5.1.1 Flash driver state machine
	5.1.1.1 State MEMIF_UNINIT
	5.1.1.2 State MEMIF_IDLE
	5.1.1.3 State MEMIF_BUSY

	5.1.2 Flash driver job result state
	5.1.2.1 MEMIF_JOB_OK
	5.1.2.2 MEMIF_JOB_PENDING
	5.1.2.3 MEMIF_JOB_CANCELED
	5.1.2.4 MEMIF_JOB_FAILED
	5.1.2.5 MEMIF_BLOCK_INCONSISTENT

	5.1.3 Initialization
	5.1.4 Reading data from the flash memory
	5.1.5 Writing data to the flash memory
	5.1.6 Erasing data from the flash memory
	5.1.7 Comparing data from the flash memory
	5.1.8 Checking blank for the flash memory
	5.1.9 Canceling a job prior to maturity
	5.1.10 Retrieving the status information
	5.1.11 Setting the driver operation mode
	5.1.12 Suspending a job
	5.1.13 Resuming a suspended job
	5.1.14 Timeout supervision
	5.1.15 eCT flash safety mechanism
	5.1.15.1 Related configurations
	5.1.15.2 IPC lock acquisition and release
	5.1.15.3 Arbitration sequences
	5.1.15.4 Assumptions of use
	5.1.15.5 Limitations

	5.2 Virtual flash memory layout
	5.3 Parallel flash operations for separate work flash memories
	5.4 Default error detection
	5.5 Runtime error detection
	5.6 Reentrancy
	5.7 Debugging support

	6 Hardware resources
	6.1 Registers
	6.2 Interrupts
	6.3 Fault
	6.4 IPC
	6.5 System call
	6.6 Memory protection unit (MPU)
	6.7 DMA

	7 Appendix A – API reference
	7.1 Data types
	7.1.1 Flash driver data types
	7.1.1.1 Fls_AddressType
	7.1.1.2 Fls_LengthType
	7.1.1.3 Fls_ConfigType
	7.1.1.4 External data types
	7.1.1.5 Std_ReturnType
	7.1.1.6 Std_VersionInfoType
	7.1.1.7 MemIf_ModeType
	7.1.1.8 MemIf_StatusType
	7.1.1.9 MemIf_JobResultType

	7.2 Macros
	7.2.1 Error codes
	7.2.2 Version information
	7.2.3 Module information
	7.2.4 API service IDs

	7.3 Functions
	7.3.1 Fls_Init
	7.3.2 Fls_Erase
	7.3.3 Fls_Write
	7.3.4 Fls_Cancel
	7.3.5 Fls_GetStatus
	7.3.6 Fls_GetJobResult
	7.3.7 Fls_Read
	7.3.8 Fls_Compare
	7.3.9 Fls_SetMode
	7.3.10 Fls_GetVersionInfo
	7.3.11 Fls_BlankCheck
	7.3.12 Fls_ReadImmediate
	7.3.13 Fls_Suspend
	7.3.14 Fls_Resume
	7.3.15 Fls_SetCycleMode

	7.4 Scheduled functions
	7.4.1 Fls_MainFunction

	7.5 Expected interfaces
	7.5.1 Mandatory interface
	7.5.2 Optional interfaces
	7.5.2.1 Det_ReportError
	7.5.2.2 Det_ReportRuntimeError

	7.5.3 Configurable interfaces
	7.5.3.1 Fee_JobEndNotification
	7.5.3.2 Fee_JobErrorNotification
	7.5.3.3 Fee_DedErrorNotification
	7.5.3.4 Fee_SedErrorNotification
	7.5.3.5 Systemcall callout function
	7.5.3.6 Erase callout API

	7.6 Required callback functions
	7.6.1 Callout functions
	7.6.2 Error callout API

	8 Appendix B – Access register table
	8.1 FLASHC
	8.2 FLASHC_FM_CTL_ECT
	8.3 FLASHC1
	8.4 FLASHC1_FM_CTL_ECT
	8.5 FAULT
	8.6 IPC
	8.7 CPUSS
	8.8 M-DMA (DMAC)
	8.9 DMAC_CH

	Revision history
	Disclaimer

