
User Manual (Volume 1)
V1.0 2012-02

Microcontrol lers

32-bit
Microcontrollers

TriCore® TC1.6P &
TC1.6E
Core Architecture
32-bit Unified Processor Core

Edition 2012-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2012 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

User Manual (Volume 1)
V1.0 2012-02

Microcontrol lers

32-bit
Microcontrollers

TriCore® TC1.6P &
TC1.6E
Core Architecture
32-bit Unified Processor Core

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

V1.0 2012-02

TriCore® User Manual (Volume 1)

Revision History: V1.0 2012-02

Trademarks
TriCore® is a trademark of Infineon Technologies AG.

User Manual (Volume 1)

Page Subjects (major changes since last revision)
*********************** TC16 Updates*****************************

6-12 Clean up of CSU trap description
8-1 PMA description
9-6 Crossing Protection Boundaries
13-32 Fixed DBGTCR.DTA reset value
13-15 Updated regsiter table withTRIG_ACC, TASK_ASI, Clean up
14-1 Added Timers, TASK_ASI, TRIG_ACC

*********************** TC1.6P/TC1.6E Updates*****************************
1-14 USER-1 mode operation configurable via SYSCON
2-22 New alignment restrictions for peripheral space
2-26 New atomic instructions CMPSWAP, SWAPMSK
2.5.6 Restrictions on circular addressing in peripheral space
3-1 Updated ENDINIT list
8-2 Context operations and cirecular addressing prohibited in Peripheral

Space
9-* Major update to memory protection system
10-* Added addition atimer protection register
3-65 Added CORE_ID
8-* Description of Global Address map and new PMA system.
3-46 PSW description

We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of our documentation.
Please send your proposal (including a reference to this document) to:
ipdoc@infineon.com

mailto:ipdoc@infineon.com

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Table of Contents

Table of Contents

Table of Contents . T-1

Preface . P-1

1 Architecture Overview . 1-1
1.1 Introduction . 1-1
1.1.1 Feature Summary . 1-2
1.2 Programming Model . 1-2
1.2.1 Architectural Registers . 1-2
1.2.2 Data Types . 1-4
1.2.3 Memory Model . 1-4
1.2.4 Addressing Modes . 1-4
1.3 Tasks and Contexts . 1-4
1.4 Interrupt System . 1-6
1.4.1 Interrupt Priority . 1-6
1.5 Trap System . 1-6
1.6 Protection System . 1-7
1.7 Core Debug Controller . 1-8
1.8 TriCore Coprocessor Interface . 1-8

2 Programming Model . 2-1
2.1 Data Types . 2-1
2.1.1 Boolean . 2-1
2.1.2 Bit String . 2-1
2.1.3 Byte . 2-1
2.1.4 Signed Fraction . 2-2
2.1.5 Address . 2-2
2.1.6 Signed and Unsigned Integers . 2-2
2.1.7 IEEE-754 Single-Precision Floating-Point Number 2-2
2.2 Data Formats . 2-2
2.2.1 Alignment Requirements . 2-4
2.2.2 Byte Ordering . 2-6
2.3 Memory Model . 2-7
2.4 Semaphores and Atomic Operations . 2-8
2.5 Addressing Modes . 2-8
2.5.1 Absolute Addressing . 2-9
2.5.2 Base + Offset Addressing . 2-10
2.5.3 Pre-Increment and Pre-Decrement Addressing 2-10
2.5.4 Post-Increment and Post-Decrement Addressing 2-10
2.5.5 Circular Addressing . 2-11
2.5.6 Bit-Reverse Addressing . 2-13
2.5.7 Synthesized Addressing Modes . 2-14
V1.0 2012-02 User Manual (Volume 1) T-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Table of Contents
3 General Purpose and System Registers . 3-1
3.1 General Purpose Registers (GPRs) . 3-2
3.2 Program State Information Registers . 3-5
3.3 Stack Management Registers . 3-14
3.4 Compatibility Mode Register (COMPAT) . 3-21
3.5 Access Control Registers . 3-22
3.6 Interrupt Registers . 3-24
3.7 Memory Protection Registers . 3-24
3.8 Trap Registers . 3-24
3.9 Memory Configuration Registers . 3-24
3.10 Core Debug Controller Registers . 3-24
3.11 Floating Point Registers . 3-24
3.12 Accessing Core Special Function Registers (CSFRs) 3-24

4 Tasks and Functions . 4-1
4.1 Context Types . 4-1
4.1.1 Context Save Area . 4-3
4.2 Task Switching Operation . 4-3
4.3 Context Save Areas (CSAs) and Context Lists . 4-5
4.4 Context Switching with Interrupts and Traps . 4-6
4.5 Context Switching for Function Calls . 4-8
4.6 Fast Function Calls with FCALL/FRET . 4-8
4.7 Context Save and Restore Examples . 4-9
4.7.1 Context Save . 4-9
4.7.2 Context Restore . 4-11
4.8 Context Management Registers . 4-13
4.8.1 Registers . 4-14
4.8.2 Free CSA List Limit Pointer Register (LCX) . 4-16
4.9 Accessing CSA Memory Locations . 4-17
4.10 Context Save Area Placement . 4-17

5 Interrupt System . 5-1
5.1 General Operation . 5-1
5.1.1 ICU Interrupt Control Register (ICR) . 5-1
5.1.2 CPU operation on an interrupt request . 5-1
5.1.3 Entering an Interrupt Service Routine (ISR) . 5-2
5.2 Exiting an Interrupt Service Routine (ISR) . 5-3
5.3 Interrupt Vector Table . 5-3
5.4 Using the TriCore Interrupt System . 5-6
5.4.1 Spanning Interrupt Service Routines across Vector Entries 5-6
5.4.2 Interrupt Priority Groups . 5-6
5.4.3 Dividing ISRs into Different Priorities . 5-8
5.4.4 Using Different Priorities for the Same Interrupt Source 5-8
5.4.5 Interrupt Control Registers . 5-10
V1.0 2012-02 User Manual (Volume 1) T-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Table of Contents
6 Trap System . 6-1
6.1 Trap Types . 6-1
6.1.1 Synchronous Traps . 6-3
6.1.2 Asynchronous Traps . 6-3
6.1.3 Hardware Traps . 6-3
6.1.4 Software Traps . 6-3
6.1.5 Unrecoverable Traps . 6-4
6.2 Trap Handling . 6-5
6.2.1 Trap Vector Format . 6-5
6.2.2 Accessing the Trap Vector Table . 6-5
6.2.3 Return Address (RA) . 6-5
6.2.4 Trap Vector Table . 6-5
6.2.5 Initial State upon a Trap . 6-6
6.3 Trap Descriptions . 6-8
6.3.1 MMU Traps (Trap Class 0) . 6-8
6.3.2 Internal Protection Traps (Trap Class 1) . 6-8
6.3.3 Instruction Errors (Trap Class 2) . 6-9
6.3.4 Context Management (Trap Class 3) . 6-11
6.3.5 System Bus and Peripheral Errors (Trap Class 4) 6-13
6.3.6 Assertion Traps (Trap Class 5) . 6-15
6.3.7 System Call (Trap Class 6) . 6-15
6.3.8 Non-Maskable Interrupt (Trap Class 7) . 6-15
6.3.9 Debug Traps . 6-15
6.4 Exception Priorities . 6-16
6.5 Trap Control Registers . 6-18

7 Memory Integrity Error Mitigation . 7-1
7.1 Memory Integrity Error Classification . 7-1
7.2 Memory Integrity Error Traps . 7-2
7.2.1 Program Memory Integrity Error (PIE) . 7-2
7.2.2 Data Memory Integrity Error (DIE) . 7-2
7.3 Registers . 7-3
7.3.1 Error Information Registers . 7-3
7.4 Summary . 7-7

8 Address Map and Memory Configuration. . 8-1
8.1 Overview . 8-1
8.2 Scratchpad RAM . 8-1
8.3 Address Segments and Memory Access Types 8-2
8.3.1 Memory Access Types . 8-2
8.3.1.1 Cached memory . 8-2
8.3.1.2 Non-cached Memory . 8-2
8.3.1.3 Peripheral Space . 8-2
8.3.2 Speculation . 8-3
V1.0 2012-02 User Manual (Volume 1) T-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Table of Contents
8.3.3 Cacheability of Segments . 8-3
8.3.4 Default Memory types for all segments . 8-3
8.4 Memory Configuration Register Definitions . 8-4
8.4.1 Programmable Memory Access Register-0 (PMA0) 8-4
8.4.2 Programmable Memory Access Register-1 (PMA1) 8-5
8.4.3 Programmable Memory Access Register-2 (PMA2) 8-6
8.4.4 Program Memory Configuration Registers (PCON0, PCON1, PCON2) 8-7
8.4.5 Data Memory Configuration Registers (DCON0, DCON1, DCON2) . . 8-9

9 Memory Protection System . 9-1
9.1 Memory Protection Subsystems . 9-1
9.2 Range Based Memory Protection . 9-3
9.2.1 Access Permissions for Intersecting Memory Ranges 9-4
9.2.2 Crossing Protection Boundaries . 9-5
9.3 Using the Range Based Memory Protection System 9-6
9.3.1 Protection Enable Bit . 9-6
9.3.2 Set Selection . 9-6
9.3.3 Address Range . 9-6
9.3.4 Traps . 9-7
9.3.5 Protection Register Naming Convention . 9-7
9.3.6 Protection Set Enable Register Naming Convention 9-7
9.4 Range Based Memory Protection Registers . 9-9

10 Temporal Protection System . 10-1
10.1 Temporal Protection System Registers . 10-2

11 Floating Point Unit (FPU) . 11-1
11.1 Functional Overview . 11-1
11.2 IEEE-754 Compliance . 11-2
11.2.1 IEEE-754 Single Precision Data Format . 11-2
11.2.2 Denormal Numbers . 11-3
11.2.3 NaNs (Not a Number) . 11-3
11.2.4 Underflow . 11-4
11.2.5 Fused MACs . 11-4
11.2.6 Traps . 11-4
11.2.7 Software Routines . 11-5
11.3 Rounding . 11-6
11.3.1 Round to Nearest: Even . 11-7
11.3.2 Round to Nearest: Denormals and Zero Substitution 11-7
11.3.3 Round Towards ± ∞: Denormals and Zero Substitution 11-8
11.4 Exceptions . 11-8
11.5 Asynchronous Traps () . 11-12
11.6 FPU CSFR Registers (TriCore 1.6) . 11-13

12 Core Debug Controller (CDC) . 12-1
V1.0 2012-02 User Manual (Volume 1) T-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Table of Contents
12.1 Run Control Features . 12-1
12.2 Debug Events . 12-3
12.2.1 External Debug Event . 12-3
12.2.2 Debug Instruction . 12-3
12.2.3 MTCR and MFCR Instructions . 12-3
12.2.4 Trigger Event Unit . 12-4
12.3 Debug Triggers . 12-5
12.3.1 Combining Debug Triggers . 12-5
12.3.2 Task Specific Debug Triggers . 12-5
12.3.3 Accumulated Debug Trigger Information . 12-6
12.4 Debug Actions . 12-7
12.4.1 Update Debug Status Register (DBGSR) . 12-7
12.4.2 Indicate on Core Break-Out Signal . 12-7
12.4.3 Indicate on Core Suspend-Out Signal . 12-7
12.4.4 Halt . 12-8
12.4.5 Breakpoint Trap . 12-8
12.4.6 Breakpoint Interrupt . 12-10
12.4.7 Suspend Out . 12-12
12.4.8 Performance Counter Start/Stop . 12-12
12.4.9 None . 12-12
12.4.10 Disabled . 12-12
12.4.11 Suspend In Halt . 12-12
12.5 Priority of Debug Events . 12-12
12.6 Call Tracing . 12-14
12.7 The CDC Control Registers . 12-14
12.8 CDC Control Registers - Summary . 12-15
12.9 CDC Control Registers . 12-17
12.10 Core Performance Measurement and Analysis 12-34
12.11 Performance Counter Registers . 12-37

13 Core Register Table . 13-1

List of Registers (by Chapter) . A-1

List of Registers (Alphabetical) . B-1

Index . I-1
V1.0 2012-02 User Manual (Volume 1) T-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Table of Contents
V1.0 2012-02 User Manual (Volume 1) T-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Preface
Preface
The TriCore® Architecture manual describes the Core Architecture and Instruction Set
for Infineon Technologies TriCore microcontroller architecture. TriCore is a unified,
32-bit microcontroller-DSP, single-core architecture optimized for real-time embedded
systems.
This document has been written for system developers and programmers, and hardware
and software engineers.
• Volume 1 (this volume) provides a detailed description of the Core Architecture and

system interaction.
• Volume 2 gives a complete description of the TriCore Instruction Set including

optional extensions for the Memory Management Unit (MMU) and Floating Point Unit
(FPU).

It is important to note that this document describes the TriCore architecture, not an
implementation. An implementation may have features and resources which are not part
of the Core Architecture. The product documentation for that implementation will
describe all implementation specific features.
When working with a specific TriCore based product always refer to the appropriate
supporting documentation.

TriCore versions
There have been several versions of the TriCore Architecture implemented in production
devices.
• This document is specific to the version(s) identified on the cover page.
• Information specific to a particular version of the architecture only, will be labelled as

such.

Additional Documentation
For the latest documentation and additional TriCore information, please visit the TriCore
home page at:
http://www.infineon.com/TriCore
The following additional documents are also available for download from the TriCore
Architecture and Core section:
TriCore® DSP Optimization Guide.
TriCore® EABI (Embedded ABI) User’s Manual
TriCore® Compiler Writer’s Guide
V1.0 2012-02 User Manual (Volume 1) P-1

http://www.infineon.com/tricore

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Preface
Text Conventions
This document uses the following text conventions:
• The default radix is decimal.

– Hexadecimal constants are suffixed with a subscript letter ‘H’, as in: FFCH.
– Binary constants are suffixed with a subscript letter ‘B’, as in: 111B.

• Register reset values are not generally architecturally defined, but require setting on
startup in a given implementation of the architecture. Only those reset values that are
architecturally defined are shown in this document. Where no value is shown, the
reset value is not defined. Refer to the documentation for a specific TriCore
implementation.

• Bit field and bits in registers are in general referenced as ‘Register name.Bit field’, for
example PSW.IS. The Interrupt Stack Control bit of the PSW register.

• Units are abbreviated as follows:
– MHz = Megahertz.
– kBaud, kBit = 1000 characters/bits per second.
– MBaud, MBit = 1,000,000 characters per second.
– KByte = 1024 bytes.
– MByte = 1048576 bytes of memory.
– GByte = 1,024 megabytes.

• Data format quantities referenced are as follows:
– Byte = 8-bit quantity.
– Half-word = 16-bit quantity.
– Word = 32-bit quantity.
– Double-word = 64-bit quantity.

• Pins using negative logic are indicated by an overbar: BRKOUT.
In tables where register bit fields are defined, the conventions shown below are used in
this document.

Note: In register layout tables, a ‘Reserved Field’ is indicated with ‘RES’ in the Field
column and ‘-’ in the Type column.

Table 0-1 Bit Type Abbreviations
Abbreviation Description
r Read-only. The bit or bit field can only be read.
w Write-only. The bit or bit field can only be written.
rw The bit or bit field can be read and written.
h The bit or bit field can be modified by hardware (such as a status bit).

‘h’ can be combined with ‘rw’ or ‘r’ bits to form ‘rwh’ or ‘rh’ bits.
- Reserved Field. Read value is undefined, must be written with 0.
V1.0 2012-02 User Manual (Volume 1) P-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview
1 Architecture Overview
This chapter gives an overview of the TriCore® architecture.

1.1 Introduction
TriCore is the first unified, single-core, 32-bit microcontroller-DSP architecture optimized
for real-time embedded systems. The TriCore Instruction Set Architecture (ISA)
combines the real-time capability of a microcontroller, the computational power of a
DSP, and the high performance/price features of a RISC load/store architecture, in a
compact re-programmable core.

Figure 1-1 TriCore Architecture Overview

The ISA supports a uniform, 32-bit address space, with optional virtual addressing and
memory-mapped I/O. The architecture allows for a wide range of implementations,
ranging from scalar through to superscalar, and is capable of interacting with different
system architectures, including multiprocessing. This flexibility at the implementation
and system levels allows for different trade-offs between performance and cost at any
point in time.
The architecture supports both 16-bit and 32-bit instruction formats. All instructions have
a 32-bit format. The 16-bit instructions are a subset of the 32-bit instructions, chosen
because of their frequency of use. These instructions significantly reduce code space,
lowering memory requirements, system and power consumption.
Real-time responsiveness is largely determined by interrupt latency and context-switch
time. The high-performance architecture minimizes interrupt latency by avoiding long
multi-cycle instructions and by providing a flexible hardware-supported interrupt
scheme. The architecture also supports fast-context switching.

Bit-field, Bit-logical
Min/Max Comparison
Branch

MAC, Saturated Math,
DSP Addressing Modes,
SIMD Packed Arithmetic

Arithmetic, Logic
Address Arithmetic
& Comparison,
Load/Store, Context Switch

Load/Store
Arithmetic
Branch

Floating
Point

MCA05096
 V1.0 2012-02 User Manual (Volume 1) 1-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview
1.1.1 Feature Summary
The key features of the TriCore Instruction Set Architecture (ISA) are:
• 32-bit architecture
• 4 GBytes of address space
• 16-bit and 32-bit instructions for reduced code size
• Most instructions executed in one cycle
• Branch instructions (using branch prediction)
• Low interrupt latency with fast automatic context switch using wide pathway to

on-chip memory
• Dedicated interface to application-specific coprocessors to allow the addition of

customised instructions
• Zero overhead loop capabilities
• Dual, single-clock-cycle, 16x16-bit multiply-accumulate unit (with optional saturation)
• Optional Floating-Point Unit (FPU) and Memory Management Unit (MMU)
• Extensive bit handling capabilities
• Single Instruction Multiple Data (SIMD) packed data operations (2x16-bit or 4x 8-bit

operands)
• Flexible interrupt prioritization scheme
• Byte and bit addressing
• Little-endian byte ordering for data memory and CPU registers
• Memory protection
• Debug support

1.2 Programming Model
This section covers aspects of the architecture that are visible to software:
• Architectural Registers Page 1-2
• Data Types Page 1-4
• Memory Model Page 1-4
• Addressing Modes Page 1-4
The Programming Model is described in detail in the chapter “Programming Model” on
Page 2-1.

1.2.1 Architectural Registers
The architectural registers consist of:
• 32 General Purpose Registers (GPRs)
• Program Counter (PC)
• Two 32-bit registers containing status flags, previous execution information and

protection information (PCXI - Previous Context Information register, and PSW -
Program Status Word)
 V1.0 2012-02 User Manual (Volume 1) 1-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview
Figure 1-2 Architectural Registers

The PCXI, PSW and PC registers are crucial to the procedure for storing and restoring
a task’s context.
The 32 General Purpose Registers (GPRs) are divided into sixteen 32-bit data registers
(D[0] through D[15]) and sixteen 32-bit address registers (A[0] through A[15]).
Four of the General Purpose Registers (GPRs) also have special functions:
• D[15] is used as an Implicit Data register
• A[10] is the Stack Pointer (SP) register
• A[11] is the Return Address (RA) register
• A[15] is the Implicit Address register
Registers [0H - 7H] are referred to as the ‘lower registers’ and registers [8H - FH] are called
the ‘upper registers’.
Registers A[0], A[1], A[8], and A[9] are defined as system global registers. These are not
included in either the upper or lower context (see “Tasks and Functions” on Page 4-1)
and are not saved and restored across calls or interrupts. They are normally used by the
operating system to reduce system overhead“Run Control Features” on Page 12-1.

MCA05246

Address Data System

31 0
D[15] (Implicit Data)

D[14]
D[13]
D[12]
D[11]
D[10]
D[9]
D[8]
D[7]
D[6]
D[5]
D[4]
D[3]
D[2]
D[1]
D[0]

31 0
PCXI
PSW
PC

31 0
A[15] (Implicit Base Address)

A[14]
A[13]
A[12]

A[11] (Return Address)
A[10] (Stack Return)

A[9] (Global Address Register)
A[8] (Global Address Register)

A[7]
A[6]
A[5]
A[4]
A[3]
A[2]

A[1] (Global Address Register)
A[0] (Global Address Register)
 V1.0 2012-02 User Manual (Volume 1) 1-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview
In addition to the General Purpose Registers (GPRs), the core registers are composed
of a certain number of Core Special Function Registers (CSFRs). See “General
Purpose and System Registers” on Page 3-1.

1.2.2 Data Types
The instruction set supports operations on:
• Boolean
• Bit String
• Byte
• Signed Fraction
• Address
• Signed / Unsigned Integer
• IEEE-754 Single-Precision Floating-Point
Most instructions work on a specific data type, while others are useful for manipulating
several data types.

1.2.3 Memory Model
The architecture can access up to 4 GBytes (address width is 32-bits) of unified program
and I/O memory.
The address space is divided into 16 regions or segments [0H - FH], each of 256 MBytes.
The upper four bits of an address select the specific segment.

1.2.4 Addressing Modes
Addressing modes allow load and store instructions to efficiently access simple data
elements within data structures such as records, randomly and sequentially accessed
arrays, stacks and circular buffers.
The TriCore architecture supports seven addressing modes. The simple data elements
are 8-bits, 16-bits, 32-bits and 64-bits wide.
These addressing modes support efficient compilation of C/C++ programs, easy access
to peripheral registers and efficient implementation of typical DSP data structures
(circular buffers for filters and bit-reversed indexing for Fast Fourier Transformations).
Addressing modes which are not directly supported in the hardware can be synthesized
through short instruction sequences.
For more information see “Synthesized Addressing Modes” on Page 2-14.

1.3 Tasks and Contexts
A task is an independent thread of control. There are two types: Software Managed
Tasks (SMTs) and Interrupt Service Routines (ISRs).
 V1.0 2012-02 User Manual (Volume 1) 1-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview
SMTs are created through the services of a real-time kernel or Operating System, and
are dispatched under the control of scheduling software. ISRs are dispatched by
hardware in response to an interrupt. An ISR is the code that is invoked directly by the
processor on receipt of an interrupt. SMTs are sometimes referred to as user tasks,
assuming that they execute in User Mode.
Each task is allocated its own mode, depending on the task’s function:
• User-0 Mode: Used for tasks that do not access peripheral devices. This mode

cannot enable or disable interrupts.
• User-1 Mode: Used for tasks that access common, unprotected peripherals.

Typically this would be a read or write access to serial port, a read access to timer,
and most I/O status registers. Tasks in this mode may disable interrupts for a short
period. (The default behaviour of this mode may be overriden by the system control
register).

• Supervisor Mode: Permits read/write access to system registers and all peripheral
devices. Tasks in this mode may disable interrupts.

Individual modes are enabled or disabled primarily through the I/O mode bits in the
Processor Status Word (PSW).
A set of state elements are associated with any task, and these are known collectively
as the task’s context. The context is everything the processor needs to define the state
of the associated task and enable its continued execution. This includes the CPU
General Registers that the task uses, the task’s Program Counter (PC), and its Program
Status Information (PCXI and PSW). The architecture efficiently manages and maintains
the context of the task through hardware. The context is subdivided into the upper
context and the lower context.

Context Save Areas
The architecture uses linked lists of fixed-size Context Save Areas (CSAs). A CSA
consists of 16 words of memory storage, aligned on a 16-word boundary. Each CSA can
hold exactly one upper or one lower context. CSAs are linked together through a Link
Word.
The architecture saves and restores context more quickly than conventional
microprocessors and microcontrollers. The unique memory subsystem design with a
wide data path allows the architecture to perform rapid data transfers between processor
registers and on-chip memory.
Context switching occurs when an event or instruction causes a break in program
execution. The CPU then needs to resolve this event before continuing with the program.
The events and instructions which cause a break in program execution are:
• Interrupt or service requests
• Traps
• Function calls
 V1.0 2012-02 User Manual (Volume 1) 1-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview

See “Tasks and Functions” on Page 4-1.

1.4 Interrupt System
A key feature of the architecture is its powerful and flexible interrupt system. The
interrupt system is built around programmable Service Request Nodes (SRNs).
A Service Request is defined as an interrupt request or a DMA (Direct Memory Access)
request. A service request may come from an on-chip peripheral, external hardware, or
software.
Conventional architectures generally take a long time to service interrupt requests, and
they are normally handled by loading a new Program Status (PS) from a vector table in
data memory. In the TriCore architecture, service requests jump to vectors in code
memory to reduce response time. The entry code for the ISR is a block within a vector
of code blocks. Each code block provides an entry for one interrupt source.

1.4.1 Interrupt Priority
Service requests are prioritized, and prioritization allows for nested interrupts. The rules
for prioritization are:
• A service request can interrupt the servicing of a lower priority interrupt
• Interrupt sources with the same priority cannot interrupt each other
• The Interrupt Control Unit (ICU) determines which source will win arbitration based

on the priority number
All Service Requests are assigned Priority Numbers (SRPNs). Every ISR has its own
priority number. Different service requests must be assigned different priority numbers.
The maximum number of interrupt sources is 255. Programmable options range from
one priority level with 255 sources, up to 255 priority levels with one source each.
Interrupt numbers are assumed to be assigned in linear order of interrupt priority. This is
feasible because interrupt numbers are not hardwired to individual sources, but are
assigned by software executed during the power-on boot sequence.
See “Interrupt System” on Page 5-1.

1.5 Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an
instruction exception or illegal access. The TriCore architecture contains eight trap
classes and these traps are further classified as synchronous or asynchronous,
hardware or software. Each trap is assigned a Trap Identification Number (TIN) that
identifies the cause of the trap within its class. The entry code for the trap handler is
comprised of a vector of code blocks. Each code block provides an entry for one trap.
When a trap is taken, the TIN is placed in data register D[15].
The trap classes are:
 V1.0 2012-02 User Manual (Volume 1) 1-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview
• MMU (Memory Management Unit)
• Internal Protection
• Instruction Error
• Context Management
• System Bus and Peripherals
• Assertion Trap
• System Call
• Non-Maskable Interrupt (NMI)
See “Trap System” on Page 6-1.

1.6 Protection System
One of the domains that TriCore supports is safety-critical embedded applications. The
architecture features a protection system designed to protect core system functionality
from the effects of software errors in less critical application tasks, and to prevent
unauthorised tasks from accessing critical system peripherals.
The protection system also facilitates debugging. It detects and traps errors that might
otherwise go unnoticed until it was too late to identify the cause of the error.
The overall protection system is composed of three main subsystems:
1. The Trap System: Described briefly in Section 1.5, but covered in detail in “Trap

System” on Page 6-1.
2. The I/O Privilege Level: TriCore supports three I/O modes: User-0 mode, User-1

mode and Supervisor mode. The User-1 mode allows application tasks to directly
access non-critical system peripherals. This allows embedded systems to be
implemented efficiently, without the loss of security inherent in the common practice
of running everything in Supervisor mode. (The default behaviour of the User-1 mode
may be overriden by the system control register).

3. The Memory Protection System: This protection system provides control over
which regions of memory a task is allowed to access, and what types of access it is
permitted.

For TriCore v1.3 and later architecture revisions, there are actually two independent
memory protection systems. For applications that require virtual memory, the optional
Memory Management Unit (MMU) supports a familiar page-based model for memory
protection. That model gives each memory page its own access permissions. The
relatively conventional MMU design and the page-based memory protection model
facilitate porting of standard operating systems that expect this model.
For applications that do not require virtual memory there is a range-based memory
protection system. This system and its interaction with I/O privilege level for access to
peripherals, is detailed in “Memory Protection System” on Page 9-1.
 V1.0 2012-02 User Manual (Volume 1) 1-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Architecture Overview
1.7 Core Debug Controller
The Core Debug Controller (CDC) is designed to support real-time systems that require
non-intrusive debugging. Most of the architectural state in the CPU Core and Core
on-chip memories can be accessed through the system Address Map. The debug
functionality is an interface of architecture, implementation and software tools.
Access to the CDC is typically provided via the On-Chip Debug Support (OCDS) of the
system containing the CPU.
A general description of the Core Debug mechanism and registers is detailed in “Core
Debug Controller (CDC)” on Page 12-1

1.8 TriCore Coprocessor Interface
TriCore implementations may choose to implement a coprocessor interface. Such
interfaces allows hardware extensions to the standard TriCore instruction set.
 V1.0 2012-02 User Manual (Volume 1) 1-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2 Programming Model
This chapter discusses the following aspects of the TriCore® architecture that are visible
to software:
• Supported data types Page 2-1
• Data formats in registers and memory Page 2-2
• The Memory model Page 2-7
• Addressing modes Page 2-8

2.1 Data Types
The instruction set supports operations on the following Data Types:
• Boolean Page 2-1
• Bit String Page 2-1
• Byte Page 2-1
• Signed Fraction Page 2-2
• Address Page 2-2
• Signed and Unsigned Integers Page 2-2
• IEEE-754 Single-precision Floating-point Number Page 2-2
Most instructions operate on a specific Data Type, while others are useful for
manipulating several Data Types.

2.1.1 Boolean
A Boolean is either TRUE or FALSE:
• TRUE is the value one (1) when generated and non-zero when tested
• FALSE is the value zero (0)
Booleans are produced as the result in comparison and logic instructions, and are used
as source operands in logical and conditional jump instructions.

2.1.2 Bit String
A bit string is a packed field of bits.
Bit strings are produced and used by logical, shift, and bit field instructions.

2.1.3 Byte
A byte is an 8-bit value that can be used for a character or a very short integer. No
specific coding is assumed.
 V1.0 2012-02 User Manual (Volume 1) 2-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2.1.4 Signed Fraction
The architecture supports 16-bit, 32-bit and 64-bit signed fractional data for DSP
arithmetic. Data values in this format have a single high-order sign bit, where 0
represents positive (+) and 1 represents negative (-), followed by an implied binary point
and fraction. Their values are therefore in the range [-1,1).

2.1.5 Address
An address is a 32-bit unsigned value.

2.1.6 Signed and Unsigned Integers
Signed and unsigned integers are normally 32 bits. Shorter signed or unsigned integers
are sign-extended or zero-extended to 32 bits when loaded from memory into a register.

Multi-precision
Multi-precision integers are supported with addition and subtraction using carry. Integers
are considered to be bit strings for shifting and masking operations. Multi-precision shifts
can be made using a combination of single-precision shifts and bit field extracts.

2.1.7 IEEE-754 Single-Precision Floating-Point Number
Depending on the particular implementation of the core architecture, IEEE-754
floating-point numbers are supported by coprocessor hardware instructions or by
software calls to a library.

2.2 Data Formats
All General Purpose Registers (GPRs) are 32 bits wide, and most instructions operate
on word (32-bit) values. When byte or half-word data elements are loaded from memory,
they are automatically sign-extended or zero-extended to fill the register. The type of
filling is implicit in the load instruction. For example, LD.B to load a byte with sign
extension, or LD.BU to load a byte with zero extension.
The supported Data Formats are:
• Bit
• Byte: signed, unsigned
• Half-word: signed, unsigned, fraction
• Word: signed, unsigned, fraction, floating-point
• 48-bit: signed, unsigned, fraction
• Double-word: signed, unsigned, fraction
 V1.0 2012-02 User Manual (Volume 1) 2-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
Figure 2-1 Supported Data Formats

0

0

0

0

0

0

0

0

0

BIT
Boolean

BYTE7
Character / Very Short Integer

HALF-WORD15

15
S

Short Integer

Short Fraction

Binary Point
WORD31

Integer

Fraction
31
S

31

31

bk...b1b0

S
30 23 22

Exponent Fraction

Bit String

Floating-Point

TC1004

63 47 46

Multi-Precision Accumulator

Binary Point

30

0
Long Integer

63 DOUBLE-WORD

0
Multi-Precision Fraction

63 62
S

Binary Point

Binary Point S = Signed Bit
 V1.0 2012-02 User Manual (Volume 1) 2-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2.2.1 Alignment Requirements
Alignment requirements differ for addresses and data (see Table 2-1). Address
variables loaded into or stored from address registers, must always be Word-aligned.
Data can be aligned on any Half-Word boundary, regardless of size, except where noted
below. This facilitates the use of packed arithmetic operations in DSP applications, by
allowing two or four packed 16-bit data elements to be loaded or stored together on any
Half-Word boundary.

Programming Restrictions
There are some restrictions of which programmers must be aware, specifically:
• The LDMST, CMPSWAP.W, SWAPMSK.W and SWAP.W instructions require their

operands to be Word-aligned.
• Byte operations LD.B, ST.B, LD.BU, ST.T may be byte aligned.
• All accesses to peripheral space must be naturally aligned

Alignment Rules

Table 2-1 Alignment rules for non-peripheral space
Access type Access size Alignment of address in

memory
Load, Store Data Register Byte Byte (1H)

 Half-Word 2 bytes (2H)
 Word 2 bytes (2H)
 Double-Word 2 bytes (2H)

Load, Store Address
Register

Word 4 bytes (4H)
 Double-Word 4 bytes (4H)

SWAP.W, LDMST Word 4 bytes (4H)
CMPSWAP.W,
SWAPMSK.W

Word 4 bytes (4H)

ST.T Byte Byte (1H)
Context Load / Store /
Restore / Save

16 x 32-bit registers 64 bytes (40H)
 V1.0 2012-02 User Manual (Volume 1) 2-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
Table 2-2 Alignment rules for peripheral space
Access type Access size Alignment of address in

memory
Load, Store Data Register Byte Byte (1H)

 Half-Word 2 bytes (2H)
 Word 4 bytes (4H)
 Double-Word 8 bytes (8H)

Load, Store Address
Register

Word 4 bytes (4H)
 Double-Word 8 bytes (8H)

SWAP.W, LDMST, ST.T Word 4 bytes (4H)
CMPSWAP.W,
SWAPMSK.W

Word 4 bytes (4H)

Context Load / Store /
Restore / Save

16 x 32-bit registers Not Permitted
 V1.0 2012-02 User Manual (Volume 1) 2-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2.2.2 Byte Ordering
The data memory and CPU registers store data in little-endian byte order (the
least-significant bytes are at lower addresses). The following figure illustrates byte
ordering. Little-endian memory referencing is used consistently for data and instructions.

Figure 2-2 Byte Ordering

Double-word

Half-word

TC1005

Byte23 Byte22 Byte21 Byte20
Byte19 Byte18 Byte17 Byte16
Byte15 Byte14 Byte13 Byte12
Byte11 Byte10 Byte9 Byte8
Byte7 Byte6 Byte5 Byte4
Byte3 Byte2 Byte1 Byte0

Word 5
Word 4
Word 3
Word 2
Word 1
Word 0

Word
Byte
 V1.0 2012-02 User Manual (Volume 1) 2-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2.3 Memory Model
The architecture has an address width of 32 bits and can access up to 4 GBytes of
memory. The address space is divided into 16 regions or segments, [0H - FH]. Each
segment is 256 MBytes. The upper 4 bits of an address select the specific segment. The
first 16 KBytes of each segment can be accessed using absolute addressing.
Many data accesses use addresses computed by adding a displacement to the value of
a base address register. Using a displacement to cross one of the segment boundaries
is not allowed and if attempted causes a MEM trap. This restriction allows direct
determination of the accessed segment from the base address.
See “Trap System” on Page 6-1 for more information on Traps.

Physical Memory Addresses
Physical memory addresses in segment FH are guaranteed to be peripheral space and
therefore all accesses are non-speculative and are not accessible to User-0 mode..
The Core Special Function Registers (CSFRs) are mapped to a 64 KBytes space in the
memory map. The base location of this 64 KBytes space is implementation-dependent.
Segments 8H to DH have further limitations placed upon them in some implementations.
For example, specific segments for program and data may be defined by device-specific
implementations. Other details of the memory mapping are implementation-specific.
For more information see “Physical Memory Attributes (PMA)” on Page 8-1.

Table 2-3 Physical Address Space
Address Segments Description
FFFF FFFFH : E000 0000H EH - FH Peripheral space.
DFFF FFFFH : 8000 0000H 8H - DH Detailed limitations are implementation

specific.
7FFF FFFFH : 0000 0000H 0H - 7H Implementation dependent.
 V1.0 2012-02 User Manual (Volume 1) 2-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2.4 Semaphores and Atomic Operations
The TriCore architecture has five instructions which read and/or write memory in atomic
fashion:
• LDMST (Load, Modify, Store)
• SWAP.W (Swap register with memory)
• ST.T (Store bit)
• CMPSWAP.W
• SWAPMSK.W
LDMST uses a mask register to write selected bits from a source register into a memory
word. However it does not return a value, so it can not be used as an atomic "test and
set" type operations for binary semaphores. The SWAP.W is provided for this purpose.
If memory protection is enabled, the effective address of the LDMST, CMPSWAP.W,
SWAPMSK.W, SWAP.W or ST.T instruction must lie within a range which has both read
and write permissions enabled.
The CMPSWAP.W instruction conditionally swaps a source register with a memory
word. The SWAPMSK.W instructions swaps through a mask the contents of a source
register with a memory word.
The execution of an atomc instruction forces the completion of all data accesses
symantically ahead of the instruction. This ensures that any buffered state is written to
memory prior to the atomic operation.

2.5 Addressing Modes
Addressing modes allow load and store instructions to access simple data elements
such as records, randomly and sequentially accessed arrays, stacks, and circular
buffers.
The simple data elements are 8-bits, 16-bits, 32-bits, or 64-bits wide. The architecture
supports seven addressing modes.
The addressing modes support efficient compilation of C/C++, give easy access to
peripheral registers, and efficient implementation of typical DSP data structures (circular
buffers for filters and bit-reversed indexing for FFTs).

Table 2-4 Addressing Modes
Addressing Mode Address Register Use
Absolute None
Base + Short Offset Address Register
Base + Long Offset Address Register
Pre-increment Address Register
 V1.0 2012-02 User Manual (Volume 1) 2-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
Table 2-4 Addressing Modes (cont’d)

Addressing modes which are not directly supported in the hardware can be synthesized
through short instruction sequences.
For more information see “Synthesized Addressing Modes” on Page 2-14.

Instruction Formats
The instruction formats provide as many bits of address as possible for absolute
addressing, and as large a range of offsets as possible for base + offset addressing.
It is possible for an address register to be both the target of a load and an update
associated with a particular addressing mode. In the following case for example, the
contents of the address register are not architecturally defined:
ld.a a0, [a0+]4

Similarly, consider the following case:
st.a [+a0]4, a0

It is not architecturally defined whether the original or updated value of A[0] is stored into
memory. This is true for all addressing modes in which there is an update of the address
register.

2.5.1 Absolute Addressing
Absolute addressing is useful for referencing I/O peripheral registers and global data.
Absolute addressing uses an 18-bit constant specified by the instruction as the memory
address. The full 32-bit address results from moving the most significant 4 bits of the
18-bit constant to the most significant bits of the 32-bit address (Figure 2-3). Other bits
are zero-filled.

Post-increment Address Register
Circular Address Register Pair
Bit-reverse Address Register Pair

Addressing Mode Address Register Use
 V1.0 2012-02 User Manual (Volume 1) 2-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
Figure 2-3 Translation of Absolute Address to Full Effective Address

2.5.2 Base + Offset Addressing
Base + offset addressing is useful for referencing record elements, local variables (using
Stack Pointer (SP) as the base), and static data (using an address register pointing to
the static data area). The full effective address is the sum of an address register and the
sign-extended 10-bit offset.
A subset of the memory operations are provided with a Base + Long Offset addressing
mode. In this mode the offset is a 16-bit sign-extended value. This allows any location in
memory to be addressed using a two instruction sequence.

2.5.3 Pre-Increment and Pre-Decrement Addressing
Pre-increment and pre-decrement addressing (where pre-decrement addressing is
obtained by the use of a negative offset), may be used to push onto an upward or
downward-growing stack, respectively.
The pre-increment addressing mode uses the sum of the address register and the offset
both as the effective address and as the value written back into the address register.

2.5.4 Post-Increment and Post-Decrement Addressing
Post-increment and post-decrement addressing (where post-decrement addressing is
obtained by the use of a negative offset), may be used for forward or backward
sequential access of arrays respectively. Furthermore, the two versions of the mode may
be used to pop from a downward-growing or upward-growing stack, respectively.
The post-increment addressing mode uses the value of the address register as the
effective address and then updates this register by adding the sign-extended 10-bit
offset to its previous value.

18-bit constant

32-bit address

14

14

4

144
00000000000000

TC1006
 V1.0 2012-02 User Manual (Volume 1) 2-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2.5.5 Circular Addressing
The primary use of circular addressing (Figure 2-4) is for accessing data values in
circular buffers while performing filter calculations.

Figure 2-4 Circular Addressing Mode

The circular addressing mode uses an address register pair to hold the state it requires:
• The even register is always a base address (B).
• The most significant half of the odd register is the buffer size (L).
• The least significant half holds the index into the buffer (I).
• The effective address is (B+I).
• The buffer occupies memory from addresses B to B+L-1.
The index is post-incremented using the following algorithm:

Figure 2-5 Circular Addressing Index Algorithm

The 10-bit offset is specified in the instruction word and is a byte-offset that can be either
positive or negative. Note that correct ‘wrap around’ behaviour is guaranteed as long as
the magnitude of the offset is smaller than the size of the buffer.
To illustrate the use of circular addressing, consider a circular buffer consisting of 25,
16-bit values. If the current index is 48, then the next item is obtained using an offset of
two (2-bytes per value). The new value of the index ‘wraps around’ to zero. If we are at
an index of 48 and use an offset of four, the new value of the index is two. If the current
index is four and we use an offset of -8, then the new index is 46 (4-8+50).
In the end case, where a memory access runs off the end of the circular buffer
(Figure 2-6), the data access also wraps around to the start of the buffer. For example,

LAodd

TC1008

I

BAeven

tmp = I + sign_ext(offset10);

if (tmp < 0)
I = tmp + L;

else if (tmp >= L)
I = tmp - L;

else
I = tmp; TC1009
 V1.0 2012-02 User Manual (Volume 1) 2-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
consider a circular buffer containing n+1 elements where each element is a 16-bit value.
If a load word is performed using the circular addressing mode and the effective address
of the operation points to element n, the 32-bit result contains element n in the bottom
16 bits and element 0 in the top 16 bits.

Figure 2-6 Circular Buffer End Case

The size and length of a circular buffer has the following restrictions:
• The start of the buffer must be aligned to a 64-bit boundary. An implementation is free

to advise the user of optimal alignment of circular buffers etc., but must support
alignment to the 64-bit boundary.

• The length of the buffer must be a multiple of the data size, where the data size is
determined from the instruction being used to access the buffer. For example, a
buffer accessed using a load-word instruction must be a multiple of 4 bytes in length,
and a buffer accessed using a load double-word instruction must be a multiple of
8-bytes in length.

If these restrictions are not met the implementation takes an alignment trap (ALN). An
alignment trap is also taken if the index (I) >= length (L).
Accesses to peripheral space using circular addressing are not permitted. Such
accesses will result in a MEM trap.

TC1010C

15 0 15 0

b0 b1 bn-1 bn

15 0 15 0

31 16 15 0

Result of a circular addressing load
Word with an effective address
pointing to element n

b...

Circular Buffer of n+1 16-bit Elements

b0 bn
 V1.0 2012-02 User Manual (Volume 1) 2-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
2.5.6 Bit-Reverse Addressing
Bit-reverse addressing is used to access arrays used in FFT algorithms. The most
common implementation of the FFT ends with results stored in bit-reversed order (“Bit-
Reverse Addressing” on Page 2-13).

Figure 2-7 Bit-Reverse Addressing

Bit-reverse addressing uses an address register pair to hold the required state:

Figure 2-8 Register Pair for Bit-Reverse Addressing

• The even register is the base address of the array (B).
• The least-significant half of the odd register is the index into the array (I).
• The most-significant half is the modifier (M), used to update I after every access.
• The effective address is B+I.
• The index, I, is post-incremented and its new value is reverse [reverse (I) + reverse

(M)]. The reverse(I) function exchanges bit n with bit (15–n) for n = 0, ... 7.

PASS 3PASS 2PASS 1

W3

W2

W0

W0

TC1011

W0

X(0) X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

W0

W0

W0 W2

W0

W2

W1

Key: X(n) is data point n.
Wn is twiddle factor n.

MAodd

TC1012

I

BAeven
 V1.0 2012-02 User Manual (Volume 1) 2-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
To illustrate for a 1024 point real FFT using 16-bit values, the buffer size is 2048 bytes.
Stepping through this array using a bit-reverse index would give the sequence of byte
indices: 0, 1024, 512, 1536, and so on. This sequence can be obtained by initializing I to
0 and M to 0400H.

The required value of M is given by; buffer size/2, where the buffer size is given in bytes.

2.5.7 Synthesized Addressing Modes
This section describes how addressing that is not directly supported in the hardware
addressing modes, can be synthesized through short instruction sequences.

Indexed Addressing
The Indexed addressing mode can be synthesized using the ADDSC.A instruction (Add
Scaled Index to Address), which adds a scaled data register to an address register. The
scale factor can be 1, 2, 4 or 8 for addressing indexed arrays of bytes, half-words, words,
or double-words.

Bit Indexed Addressing
To support addressing of indexed bit arrays, the ADDSC.AT instruction scales the index
value by 1/8 (shifts right 3 bits) and adds it to the address register.
The two low-order bits of the resulting byte address are cleared to give the address of
the word containing the indexed bit.
To extract the bit, the word in which it is contained, is loaded. The bit index is then used
in an EXTR.U instruction.
A bit field, beginning at the indexed bit position, can also be extracted. To store a bit or
bit field at an indexed bit position, ADDSC.AT is used in conjunction with the LDMST
(Load/Modify/Store) instruction.

Table 2-5 1024-point FFT Using 16-bit Values
I (decimal) I (binary) Reverse(I) Rev[Rev(I) + Rev(M)]
0 0000000000000000B 0000000000000000B 0000010000000000B

1024 0000010000000000B 0000000000100000B 0000001000000000B

512 0000001000000000B 0000000001000000B 0000011000000000B

1536 0000011000000000B 0000000001100000B 0000010001100000B
 V1.0 2012-02 User Manual (Volume 1) 2-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
PC-Relative Addressing
PC-relative addressing is the normal mode for branches and calls. However the
architecture does not support direct PC-relative addressing of data. This is because the
separate on-chip instruction and data memories make data access to the program
memory expensive.
When PC-relative addressing of data is required, the address of a nearby code label is
placed into an address register and used as a base register in base + offset mode to
access the data. Once the base register is loaded it can be used to address other
PC-relative data items nearby.
A code address can be loaded into an address register in various ways. If the code is
statically linked (as it almost always is for embedded systems), then the absolute
address of the code label is known and can be loaded using the LEA instruction (Load
Effective Address), or with a sequence to load an extended absolute address. The
absolute address of the PC relative data is also known, and there is no need to
synthesize PC-relative addressing.
For code that is dynamically loaded, or assembled into a binary image from position-
independent pieces without the benefit of a relocating linker, the appropriate way to load
a code address for use in PC-relative data addressing is to use the JL (Jump and Link)
instruction. A jump and link to the next instruction is executed, placing the address of that
instruction into the return address (RA) register A[11]. Before this is done though, it is
necessary to copy the actual return address of the current function to another register.
 V1.0 2012-02 User Manual (Volume 1) 2-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Programming Model
 V1.0 2012-02 User Manual (Volume 1) 2-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
3 General Purpose and System Registers
There are two types of Core Register, the General Purpose Registers (GPRs) and the
Core Special Function Registers (CSFRs). The GPRs consist of 16 general purpose
data and 16 general purpose address registers. The CSFRs control the operation of the
core and provide status information about the core.
• General Purpose Registers
• System registers (PSW, PC, PCXI)
• Stack Management registers are (A[10] and ISP)
• SYSCON and CPU_ID registers
• Trap registers
• Context Management registers
• Memory Protection registers
• Memory Management registers
• Debug registers
• Floating Point registers
• Special Function registers associated with the core

Reset Values
It should be noted that because this manual describes the TriCore® architecture, not an
implementation of that architecture, some reset values are not given. Where they are not
given, the values are implementation specific.

ENDINIT Protection
The architecture supports the concept of an initialisation state prior to an operational
state.
When in the initialisation state, all Core Special Function Registers can be modified,
using the MTCR instruction. In the operational state only a subset of CSFRs can be
modified in this way. All other functions remain identical between these states.
CSFRs that are only writable in the initialisation state are described as ENDINIT
protected.
The transition between the initialisation state and the operational state is controlled by
the system implementation. This facility adds an extra level of protection to critical
CSFRs by only allowing them to be changed in the initialisation state.
The following registers are ENDINIT protected:
• BTV, BIV, ISP, PMA0, PMA1, PMA2
A safety specific version of ENDINIT protection is provided. The following registers are
SAFETY_ENDINIT protected:
• SMACON, SYSCON, COMPAT
 V1.0 2012-02 User Manual (Volume 1) 3-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
3.1 General Purpose Registers (GPRs)
The General Purpose Registers (GPRs) are split evenly into:
• 16 Data registers (DGPRs), D[0] to D[15]
• 16 Address registers (AGPRs), A[0] to A[15]
The separation of data and address registers facilitates efficient implementations in
which arithmetic and memory operations are performed in parallel. Several instructions
allow the interchange of information between data and address registers (used for
example, to create or derive table indexes). Two consecutive even-odd data registers
can be concatenated to form eight extended-size registers (E[0], E[2], E[4], E[6], E[8],
E[10], E[12], and E[14]), in order to support 64-bit values. The address registers (P[0],
P[2], P[4], P[6], P[8], P[10], P[12], and P[14]) can be used in the same way.
Registers A[0], A[1], A[8], and A[9] are defined as system global registers. Their contents
are not saved or restored across calls, traps or interrupts.
Register A[10] is used as the Stack Pointer (SP). See “Stack Management Registers”
on Page 3-14.
Register A[11] is used to store the Return Address (RA) for calls and linked jumps, and
to store the return Program Counter (PC) value for interrupts and traps.
While the 32-bit instructions have unlimited use of the GPRs, many 16-bit instructions
implicitly use A[15] as their address register and D[15] as their data register. This implicit
use eases the encoding of these instructions into 16 bits.
Support of 64-bit data values is provided with the use of odd/even register pairs. In the
assembler syntax these register pairs are either referred to as a pair of 32-bit registers
(for example, D[9]/D[8]) or as an extended 64-bit register. For example, E[8] is the
concatenation of D[9] and D[8], where D[8] is the least significant word of E[8].
In order to support extended addressing modes, an even/odd address register pair holds
the extended address reference as a pair of 32-bit address registers (A[8]/A[9] for
example).
There are no separate floating-point registers. The data registers are used to perform
floating-point operations. The floating-point data is saved and restored automatically
using the fast context switch support.
Figure 3-1 shows the 32-bit wide GPRs.
 V1.0 2012-02 User Manual (Volume 1) 3-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
Data General Purpose Registers

Dn (n=0-15)
Data Register n
Specific

Address General Purpose Registers

(FF00H+n*4) Reset Value: Implementation

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DATA

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA

rw

Field Bits Type Description
DATA [31:0] rw Data Register n Value

An (n=0-15)
Address Register n (FF80H+n*4) Reset Value: Implementation
Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

rw

Field Bits Type Description
ADDR [31:0] rw Address Register n Value
 V1.0 2012-02 User Manual (Volume 1) 3-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
General Purpose Registers (GPRs)

Figure 3-1 General Purpose Registers (GPRs)

The GPRs are an essential part of a task’s context. When saving or restoring a task’s
context to and from memory the context is split into the upper and lower contexts:
• Registers A[2] to A[7] and D[0] to D[7] are part of the lower context.
• Registers A[10] to A[15] and D[8] to D[15] are part of the upper context.
Note: Upper and lower contexts are described in detail in Chapter 4.

TC1013C

Address General
Purpose Registers

(AGPR)

Data General
Purpose

Registers (DGPR)

E[14]

E[12]

E[10]

E[8]

E[6]

E[4]

E[2]

E[0]

P[14]

P[12]

P[10]

P[8]

P[6]

P[4]

P[2]

P[0]

A[15] (implicit address)
A[14]
A[13]
A[12]

A[11] (return address)
A[10] (stack pointer)
A[9] (global address)
A[8] (global address)

A[7]
A[6]
A[5]
A[4]
A[3]
A[2]

A[1] (global address)
A[0] (global address)

D[15] (implicit data)
D[14]
D[13]
D[12]
D[11]
D[10]
D[9]
D[8]
D[7]
D[6]
D[5]
D[4]
D[3]
D[2]
D[1]
D[0]
 V1.0 2012-02 User Manual (Volume 1) 3-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
3.2 Program State Information Registers
The PC, PSW, and PCXI registers hold and reflect program state information. These
registers are an important part of storing and restoring a task’s context, when the
contents are stored, restored or modified during this process.
• PC: Program Counter
• PSW: Program Status Word
• PCXI: Previous Context Information

Program Counter (PC)
The 32-bit Program Counter (PC) shown below, holds the address of the instruction that
is currently running. The Program Counter is part of a task’s state information. The PC
should only be written when the core is halted. If the core is not in halt a write will have
no effect.

PC
Program Counter Register (FE08H) Reset Value: Implementation
Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC RES

rw -

Field Bits Type Description
PC [31:1] rw Program Counter
RES 0 - Reserved
 V1.0 2012-02 User Manual (Volume 1) 3-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
Program Status Word Register (PSW)
The Program Status Word register (PSW) is a 32-bit register that contains a task-specific
architectural state not captured in the General Purpose Register values. The lower half
holds control values and parameters related to the protection system, including:
• The Protection Register Set (PRS)
• The I/O privilege level (IO)
• The Interrupt Stack flag (IS)
• The Global register Write permission flag (GW)
• The Call Depth Counter (CDC)
• The Call Depth Count Enable field (CDE)

PSW
Program Status Word (FE04H) Reset Value: 0000 0B80H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

USB RES

rw -

15 14 13 12 11- 10 9 8 7 6 5 4 3 2 1 0

RES S PRS IO IS GW CDE CDC

- rw rw rw rw rw rw rw

Field Bits Type Description
USB [31:24] rw User Status Bits

The eight most significant bits of the PSW are designated
as User Status Bits. These bits may be set or cleared as
execution side effects of user instructions. Refer to the
PSW User Status Bits section which follows this table.

RES [23:15] - Reserved
S 14 rw Safety Task Identifier

The current task should be identified as a Safe Task.
 V1.0 2012-02 User Manual (Volume 1) 3-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
PRS [13:12] rw Protection Register Set
Selects the active Data and Code Memory Protection
Register Set. The memory protection register values
control load, store and instruction fetches within the
current process.
00B : Protection Register Set 0
01B : Protection Register Set 1
10B : Protection Register Set 2
11B : Protection Register Set 3

IO [11:10] rw Access Privilege Level Control (I/O Privilege)
Determines the access level to special function registers
and peripheral devices.
00B : User-0 Mode
No peripheral access. Access to memory regions with the
peripheral space attribute are prohibited and results in a
PSE or MPP trap. This access level is given to tasks that
need not directly access peripheral devices. Tasks at this
level do not have permission to enable or disable
interrupts.
01B : User-1 Mode
Regular peripheral access. Enables access to common
peripheral devices that are not specially protected,
including read/write access to serial I/O ports, read access
to timers, and access to most I/O status registers. Tasks
at this level may disable interrupts.(The default behaviour
of this mode may be overriden by the system control
register).
10B : Supervisor Mode
Enables access to all peripheral devices. It enables
read/write access to core registers and protected
peripheral devices. Tasks at this level may disable
interrupts.
11B : Reserved Value

Field Bits Type Description
 V1.0 2012-02 User Manual (Volume 1) 3-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
IS 9 rw Interrupt Stack Control
Determines if the current execution thread is using the
shared global (interrupt) stack or a user stack.
0 : User Stack
If an interrupt is taken when the IS bit is 0, then the stack
pointer register is loaded from the ISP register before
execution starts at the first instruction of the Interrupt
Service Routine (ISR).
1 : Shared Global Stack
If an interrupt is taken when the PSW.IS bit is 1, then the
current value of the stack pointer is used by the Interrupt
Service Routine (ISR).

GW 8 rw Global Address Register Write Permission
Determines whether the current execution thread has
permission to modify the global address registers.
Most tasks and ISRs use the global address registers as
‘read only’ registers, pointing to the global literal pool and
key data structures. However a task or ISR can be
designated as the ‘owner’ of a particular global address
register, and is allowed to modify it. The system designer
must determine which global address variables are used
with sufficient frequency and/or in sufficiently time-critical
code to justify allocation to a global address register. By
compiler convention, global address register A[0] is
reserved as the base register for short form loads and
stores. Register A[1] is also reserved for compiler use.
Registers A[8] and A[9] are not used by the compiler, and
are available for holding critical system address variables.
0 : Write permission to global registers A[0], A[1], A[8],
A[9] is disabled.
1 : Write permission to global registers A[0], A[1], A[8],
A[9] is enabled.

Field Bits Type Description
 V1.0 2012-02 User Manual (Volume 1) 3-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
PSW User Status Bits
The eight most significant bits of the PSW are designated as User Status Bits. These bits
may be set or cleared as execution side effects of user instructions, typically recording
result status. Individual bits can also be used to condition the operation of particular
instructions. For example the ADDX (Add Extended) and ADDC (Add with Carry)
instructions use bit 31 to record the carry out from the ADD operation, and the
pre-execution value of the bit is reflected in the result of the ADDC instruction.

CDE 7 rw Call Depth Count Enable
Enables call-depth counting, provided that the PSW.CDC
mask field is not all set to 1.
0 : Call depth counting is temporarily disabled. It is
automatically re-enabled after execution of the next Call
instruction.
1 : Call depth counting is enabled.
If PSW.CDC = 1111111B, call depth counting is disabled
regardless of the setting on the PSW.CDE bit.

CDC [6:0] rw Call Depth Counter
Consists of two variable width subfields. The first subfield
consists of a string of zero or more initial 1 bits, terminated
by the first 0 bit.
The remaining bits form the second subfield
(CDC.COUNT) which constitutes the call depth count
value. The count value is incremented on each Call and is
decremented on a Return.
0ccccccB : 6-bit counter; trap on overflow.
10cccccB : 5-bit counter; trap on overflow.
110ccccB : 4-bit counter; trap on overflow.
1110cccB : 3-bit counter; trap on overflow.
11110ccB : 2-bit counter; trap on overflow.
111110cB : 1-bit counter; trap on overflow.
1111110B : Trap every call (call trace mode).
1111111B : Disable call depth counting.
When the call depth count (CDC.COUNT) overflows a trap
(CDO) is generated.
Setting the CDC to 1111110B allows no bits for the counter
and causes every call to be trapped. This is used for Call
Depth Tracing.
Setting the CDC to 1111111B disables call depth counting.

Field Bits Type Description
 V1.0 2012-02 User Manual (Volume 1) 3-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
There are two classes of instructions that employ the user status bits:
Bits [23:16] of the PSW are reserved bits with no defined use in current versions of the
architecture. They read as zero when the PSW is read via the MFCR (Move From Core
Register) instruction after a system reset. Their value after writing to the PSW via the
MTCR (Move To Core Register) instruction, is architecturally undefined and should be
written as zero.
• Arithmetic instructions that may produce carry and overflow results.
• Implementation-specific coprocessor instructions which may use any or all of the

eight bits, in a manner that is entirely implementation specific.

Access Privilege Level Control (I/O Privilege)
Software Managed Tasks (SMTs) are created through the services of a real-time kernel
or Operating System, and are dispatched under the control of scheduling software.
Interrupt Service Routines (ISRs) are dispatched by hardware in response to an
interrupt. An ISR is the code that is invoked directly by the processor on receipt of an
interrupt. SMTs are sometimes referred to as user tasks, assuming that they execute in
User Mode.
Each task is allocated its own mode, depending on the task’s function:
• User-0 Mode: Used for tasks that do not access peripheral devices. This mode may

not enable or disable interrupts.
• User-1 Mode: Used for tasks that access common, unprotected peripherals.

Typically this would be a read or write access to serial port, a read access to timer,
and most I/O status registers. Tasks in this mode may disable interrupts. (The default
behaviour of this mode may be overriden by the system control register).

• Supervisor Mode: Permits read/write access to system registers and all peripheral
devices. Tasks in this mode may disable interrupts.

A set of state elements are associated with any task, and these are known collectively
as the task’s context. The context is everything the processor needs to define the state
of the associated task and enable its continued execution. This includes the CPU

Table 3-1 PSW User Status Bits
Field Bits Type Description
C 31 rw Carry
V 30 rw Overflow
SV 29 rw Sticky Overflow
AV 28 rw Advance Overflow
SAV 27 rw Sticky Advance Overflow
RES [26:24] - Reserved Field
 V1.0 2012-02 User Manual (Volume 1) 3-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
General Registers that the task uses, the task’s Program Counter (PC), and its Program
Status Information (PCXI and PSW). The architecture efficiently manages and maintains
the context of the task through hardware.
 V1.0 2012-02 User Manual (Volume 1) 3-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
Previous Context Information and Pointer Register (PCXI)
The Previous Context Information Register (PCXI) contains linkage information to the
previous execution context, supporting interrupts and automatic context switching. The
PCXI is part of a task’s state information. The Previous Context Pointer (PCX) holds the
address of the CSA of the previous task.

PCXI. PCX
Previous Context Information and Pointer Register

(FE00H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES PCPN PIE UL PCXS

- rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rw

Field Bits Type Description
RES [31:30] - Reserved
PCPN [29:22] rw Previous CPU Priority Number

Contains the priority level number of the interrupted task.
PIE 21 rw Previous Interrupt Enable

Indicates the state of the interrupt enable bit (ICR.IE) for
the interrupted task.

UL 20 rw Upper or Lower Context Tag
Identifies the type of context saved:
0 : Lower Context
1 : Upper Context
If the type does not match the type expected when a
context restore operation is performed, a trap is
generated.

PCXS [19:16] rw PCX Segment Address
Contains the segment address portion of the PCX. This
field is used in conjunction with the PCXO field.
 V1.0 2012-02 User Manual (Volume 1) 3-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
PCXO [15:0] rw Previous Context Pointer Offset Field
The PCXO and PCXS fields form the pointer PCX, which
points to the CSA of the previous context.

Field Bits Type Description
 V1.0 2012-02 User Manual (Volume 1) 3-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
3.3 Stack Management Registers
Stack management in the architecture supports a user stack and an interrupt stack.
Address register A[10], the Interrupt Stack Pointer (ISP) and a PSW bit are used in the
management of the stack.
A[10] is used as the stack pointer. The initial contents of this register are usually set by
an RTOS when a task is created, which allows a private stack area to be assigned to
individual tasks.
The ISP helps to prevent Interrupt Service Routines (ISRs) from accessing the private
stack areas and possibly interfering with the software managed task’s context. An
automatic switch to the use of the ISP instead of the private stack pointer is implemented
in the architecture. The PSW.IS bit indicates which stack pointer is in effect. When an
interrupt is taken and the interrupted task was using its private stack (PSW.IS == 0), the
contents are saved with the upper context of the interrupted task and A[10](SP) is loaded
with the current contents of the ISP.
When an interrupt or trap is taken and the interrupted task was already using the interrupt
stack (PSW.IS == 1), then no pre-loading of A[10](SP) is performed. The Interrupt
Service Routine (ISR) continues to use the interrupt stack at the point where the
interrupted routine had left it.
Usually it is only necessary to initialize the ISP once during the initialization routine.
However, depending on application needs, the ISP can be modified during execution.
Note that there is nothing preventing an ISR or system service routine from executing on
a private stack.
Note: Use of A[10](SP) in an ISR is at the discretion of the application programmer.
 V1.0 2012-02 User Manual (Volume 1) 3-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
Address Register A[10] (SP)
The A[10] Stack Pointer (SP) register is defined as follows:

A[10](SP)
Address Register A[10] (Stack Pointer)(FFA8H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

A[10](SP)

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

A[10](SP)

rw

Field Bits Type Description
A[10](SP) [31:0] rw Address Register A[10] (Stack Pointer)
 V1.0 2012-02 User Manual (Volume 1) 3-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
Interrupt Stack Pointer Register (ISP)
The Interrupt Stack Pointer is defined as follows.
Note: This register is ENDINIT protected.

ISP
Interrupt Stack Pointer (FE28H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ISP

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ISP

rw

Field Bits Type Description
ISP [31:0] rw Interrupt Stack Pointer
 V1.0 2012-02 User Manual (Volume 1) 3-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
System Control Register (SYSCON)
The System Configuration Register provides the enable/disable bits for the temporal and
memory protection systems and a status flag for the Free Context List Depletion
condition. Also provided are bits to define the initial state of the PSW.S bit in trap and
interrupt handlers and to define the operation of User-1 IO mode.
Note: This register is SAFETY_ENDINIT protected with the exception of the FCDSF bit.

SYSCON
System Configuration Register (FE14H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES U1_I
OS

U1_I
ED

- rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES TS IS
TPR
OTE

N

PRO
TEN

FCD
SF

- rw rw rw rw rwh

Field Bits Type Description
RES [31:18] - Reserved
U1_IOS 17 rw User-1 Peripheral access as supervisor.

Allow User-1 mode tasks to access peripherals as if in
Supervisor mode. Enables User-1 access to all
peripheral registers.

U1_IED 16 rw User-1 Instruction execution disable.
Disable the execution of User-1 mode instructions in
User-1 IO mode. Disables User-1 ability to enable and
disable interrupts

RES [15:5] - Reserved
TS 4 rw Initial state of PSW.S bit in trap handler
IS 3 rw Initial state of PSW.S bit in interrupt handler
TPROTEN 2 rw Temporal Protection Enable

Enable the Temporal Protection system.
0 : Temporal Protection is disabled.
1 : Temporal Protection is enabled.
 V1.0 2012-02 User Manual (Volume 1) 3-17

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
PROTEN 1 rw Memory Protection Enable
Enables the memory protection system. Memory
protection is controlled through the memory protection
register sets. Note: Initialize the protection register sets
prior to setting PROTEN to one.
0 : Memory Protection is disabled.
1 : Memory Protection is enabled.

FCDSF 0 rwh Free Context List Depleted Sticky Flag
This sticky bit indicates that a FCD (Free Context List
Depleted) trap occurred since the bit was last cleared by
software.
0 : No FCD trap occurred since the last clear.
1 : An FCD trap occurred since the last clear.

Field Bits Type Description
 V1.0 2012-02 User Manual (Volume 1) 3-18

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
CPU Identification Register (CPU_ID)
Identification Registers identify the processor type and revision used. Only the CPU core
ID register is described here. All other ID registers are described in the product
documentation. The CPU Identification Register identifies the CPU type and revision.

CPU_ID
CPU Module Identification (FE18H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MOD

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOD_32B MOD_REV

r r

Field Bits Type Description
MOD [31:16] r Module Identification Number

Used for module identification.
MOD_32B [15:8] r 32-Bit Module Enable

A value of C0H in this field indicates a 32-bit module
with a 32-bit module ID register.

MOD_REV [7:0] r Module Revision Number
Used for revision numbering. The value of the
revision starts at 01H (first revision) up to FFH.
 V1.0 2012-02 User Manual (Volume 1) 3-19

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
Core Identification Register (CORE_ID)
In a multiprocessor system each logical processor core is given a unique identification
number. The Core Identification Register holds this number.

Core_ID
Core Identification (FE1CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES CORE_ID

- r

Field Bits Type Description
RES [31:3] - Reserved
CORE_ID [2:0] r Core Identification Number
 V1.0 2012-02 User Manual (Volume 1) 3-20

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
3.4 Compatibility Mode Register (COMPAT)
The COMPAT register is provided to allow implementations to selectively force
compatibility of features with previous versions.

Compatibility Mode Register (COMPAT)
The contents of the register are implementation specific.
Note: This register is SAFETY_ENDINIT protected.

COMPAT
Compatibility Mode Register (9400H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Implementation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 3-21

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
3.5 Access Control Registers
 V1.0 2012-02 User Manual (Volume 1) 3-22

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
SIST Mode Access Control Register (SMACON)
Implementations may control the operation of Software in System Test (SIST) systems
using the SMACON register. The contents of this register is implementation specific.
Note: This register is SAFETY_ENDINIT protected

SMACON
SIST Mode Access Control (900CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 3-23

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
3.6 Interrupt Registers
A typical Service Request Control register in the TriCore architecture holds the individual
control bits to enable or disable the request, to assign a priority number, and to direct the
request to one of the service providers. The Core Special Function Registers (CSFR)
which control the Interrupts are described in “Interrupt System” on Page 5-1.

3.7 Memory Protection Registers
The number of Memory Protection Register Sets is specific to each implementation of
the architecture. There can be a maximum number of four sets (one set includes both a
data set and a code set). Each register set is made up of several range registers (also
called Range Table Entries).
Each Range Table Entry consists of a Segment Protection register pair and a bit field
within a common Mode register. The register pair specifies the lower and upper
boundary addresses of the memory range.
The Core Special Function Registers (CSFR) which control the Memory Protection
Registers are described in “Memory Protection System” on Page 9-1.

3.8 Trap Registers
The Core Special Function Registers (CSFR) which control the Trap Registers are
described in “Trap System” on Page 6-1.

3.9 Memory Configuration Registers
The Memory Configuration Registers are defined in the architecture but the contents of
the registers are implementation specific. The Core Special Function Registers (CSFR)
which control the memoryconfiguration are described in “Physical Memory Attributes
(PMA)” on Page 8-1.

3.10 Core Debug Controller Registers
TriCore registers that support debugging are described in “Core Debug Controller
(CDC)” on Page 12-1

3.11 Floating Point Registers
The registers for the optional TriCore Floating Point Unit are described on
“FPU_TRAP_CON” on Page 11-13.

3.12 Accessing Core Special Function Registers (CSFRs)
Core Special Function registers are read with a MFCR (Move From Core Register)
instruction and written with a MTCR (Move To Core register) instruction. The need for
 V1.0 2012-02 User Manual (Volume 1) 3-24

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
software updates to CSFRs is usually infrequent. Implementations are therefore not
required to implement hardware structures to avoid hazard conditions that may result
from the update of CSFRs. Such hazard conditions are avoided by the insertion of an
ISYNC instruction immediately after the MTCR update of the CSFR. The ISYNC
instruction ensures that the effects of the CSFR update are correctly seen by all following
instructions.
A MTCR instruction that accesses an undefined register location will have no effect. A
MFCR instruction that accesses an undefined register location will return undefined data.
 V1.0 2012-02 User Manual (Volume 1) 3-25

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

General Purpose and System Registers
 V1.0 2012-02 User Manual (Volume 1) 3-26

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4 Tasks and Functions
Most embedded and real-time control systems are designed according to a model in
which interrupt handlers and software-managed tasks are each considered to be
executing on their own ‘virtual’ microcontroller. That model is generally supported by the
services of a Real-time Executive or Real-time Operating System (RTOS), layered on
top of the features and capabilities of the underlying machine architecture.
In the TriCore® architecture, the RTOS layer can be very ‘thin’ and the hardware can
efficiently handle much of the switching between one task and another. At the same time
the architecture allows for considerable flexibility in the tasking model used. System
designers can choose the real-time executive and software design approach that best
suits the needs of their application, with relatively few constraints imposed by the
architecture.
The mechanisms for low-overhead task switching and for function calling within the
TriCore architecture are closely related.

4.1 Context Types
A task is an independent thread of control. The state of a task is defined by its context.
When a task is interrupted, the processor uses that task’s context to re-enable the
continued execution of the task.
The context types are:
• Upper context: Consists of the upper address registers A[10] to A[15] and the upper

data registers D[8] to D[15]. The upper context also includes PCXI and PSW. These
registers are designated as non-volatile for purposes of function-calling (their
contents are preserved across calls).

• Lower context: Consists of the lower address registers A[2] to A[7], the lower data
registers D[0] to D[7], A[11] (Return Address) and PCXI.

Contexts, when saved to memory, occupy 16 word blocks of storage, known as Context
Save Areas (CSAs).
 V1.0 2012-02 User Manual (Volume 1) 4-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
Figure 4-1 Upper and Lower Contexts

TC1015F

D[7]
D[6]
D[5]
D[4]
A[7]
A[6]
A[5]
A[4]
D[3]
D[2]
D[1]
D[0]
A[3]
A[2]

A[11] (RA)
PCXI (Link Word)

D[15]
D[14]
D[13]
D[12]
A[15]
A[14]
A[13]
A[12]
D[11]
D[10]
D[9]
D[8]

A[11] (RA)
A[10] (SP)

PSW
PCXI (Link Word)

Lower Context

Upper Context
Example Memory

Addresses

803FFFFCH
803FFFF8H
803FFFF4H
803FFFF0H
803FFFECH
803FFFE8H
803FFFE4H
803FFFE0H
803FFFDCH
803FFFD8H
803FFFD4H
803FFFD0H
803FFFCCH
803FFFC8H
803FFFC4H
803FFFC0H

803FFB7CH
803FFB78H
803FFB74H
803FFB70H
803FFB6CH
803FFB68H
803FFB64H
803FFB60H
803FFB5CH
803FFB58H
803FFB54H
803FFB50H
803FFB4CH
803FFB48H
803FFB44H
803FFB40H

-
-
-

 V1.0 2012-02 User Manual (Volume 1) 4-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.1.1 Context Save Area
The architecture uses linked lists of fixed-size Context Save Areas. A CSA is 16 words
of memory storage, aligned on a 16 word boundary. Each CSA can hold exactly one
upper or one lower context. CSAs are linked together through a Link Word.
The Link Word includes two fields that link the given CSA to the next one in a chain. The
fields are a 4-bit segment and a 16-bit offset. The segment number and offset are used
to generate the Effective Address (EA) of the linked CSA. See Figure 4-2.
Incrementing the pointer offset value by one always increments the EA to the address
that is 16 word locations above the previous one. The total usable range in each address
segment for CSAs is 4 MBytes, resulting in storage space for 216 CSAs.

Figure 4-2 Generation of the Effective Address of a Context Save Area (CSA)

If the CSA is in use (for example, it holds an upper or lower context image for a
suspended task), then the Link Word also contains other information about the linked
context. The entire Link Word is a copy of the PCXI register for the associated task.
For further information on how linked CSAs support context switching, refer to “Context
Save Areas (CSAs) and Context Lists” on Page 4-5

4.2 Task Switching Operation
The architecture switches tasks when one of the events or instructions listed in
Table 4-1, occurs. When one of these events or instructions is encountered, the upper
or lower context of the task is saved or restored. The upper context is saved
automatically as a result of an external interrupt, trap or function call. The lower context
is saved explicitly through instructions. In Table 4-1 ‘Save’ is a store through the Free
CSA List Head Pointer register (FCX) after the next value for the FCX is read from the
Link Word. ‘Store’ is a store through the Effective Address of the instruction with no

TC1016

20 19 0

Offset

Zero fill

0 0 0 0 0 00 0 0 0 0 0Segment

21 022272831 56Left shift by six Zero fill

OffsetSegment

16 1531

Link Word
 V1.0 2012-02 User Manual (Volume 1) 4-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
change to the CSA list or the FCX register. ‘Restore’ is the converse of ‘Save’. ‘Load’ is
the converse of ‘Store’.
There is an essential difference in the treatment of registers in the upper and lower
contexts, in terms of how their contents are maintained. The lower context registers are
similar to global registers in the sense that a interrupt handler, trap handler or called
function, sees the same values that were present in the registers just before the interrupt,
trap or call. Any changes made to those registers that are made in the interrupt, trap
handler or called function, remains present after the return from the event, since they are
not automatically restored as part of the Return From Call (RET) or Return From
Exception (RFE) semantics. That means that the lower context registers can be used to
pass arguments to called functions and pass return values from those functions. It also
means that interrupt and trap handlers must save the original values they find in these
registers before using the registers, and to restore the original values before exiting.
The upper context registers are not guaranteed to be static hardware registers.
Conceptually, a function call or interrupt handler always begins execution with its own
private set of upper context registers. The upper context registers of the interrupted or
calling function are not inherited.
Only the A[10](SP), A[11](RA), PSW, PCXI and (in the case of a trap) D[15] registers
start with architecturally defined values in the called function, trap handler or interrupt
handler. A function, trap handler or interrupt handler that reads any of the other upper
context registers before writing a value into it, is performing an undefined operation.

Table 4-1 Context Related Events and Instructions
Event / Instruction Context

Operation
Complement Instruction Context

Operation
Interrupt Save Upper RFE - Return from Exception Restore Upper
Trap Save Upper RFE - Return from Exception Restore Upper
CALL - Function Call Save Upper RET - Return from Call Restore Upper
BISR - Begin Interrupt
Service Routine

Save Lower RSLCX - Restore Lower
Context

Restore Lower

SVLCX - Save Lower
Context

Save Lower RSLCX - Restore Lower
Context

Restore Lower

STLCX - Store Lower
Context

Store Lower LDLCX - Load Lower Context Load Lower

STUCX - Store Upper
Context

Store Upper LDUCX - Load Upper Context Load Upper
 V1.0 2012-02 User Manual (Volume 1) 4-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.3 Context Save Areas (CSAs) and Context Lists
The upper and lower contexts are saved in Context Save Areas (CSAs). Unused CSAs
are linked together in the Free Context List (FCX). CSAs that contain saved upper or
lower contexts are linked together in the Previous Context List (PCX). The following
figure (Figure 4-3) shows a simple configuration of CSAs within both context lists.

Figure 4-3 CSAs in Context Lists

The contents of the FCX register always points to an available CSA in the Free Context
List. That CSAs Link Word points to the next available CSA in the free context list.
Before an upper or lower context is saved in the first available CSA, its Link Word is read,
supplying a new value for the FCX. To the memory subsystem, context saving is
therefore a read/modify/write operation. The new value of FCX, which points to the next
available CSA, is available immediately for subsequent upper or lower context saves.
The LCX register points to one of the last CSAs in the free list and is used to recognise
impending free CSA list depletion. If the value of FCX matches that of LCX when an
operation that performs a context save is attempted, the operation completes and a free
CSA list depletion trap (FCD) is taken on the next instruction; i.e., the return address of
the FCD trap is the first instruction of the trap/interrupt/called routine or the instruction
following an SVLCX or BISR instruction. See “Context Management (Trap Class 3)”
on Page 6-11.
The action taken by the trap handler depends on the software implementation. It might
issue a system reset for example, if it is determined that the CSA list depletion resulted
from an unrecoverable software error. Normally however it extends the free list, either by
allocating additional memory or by terminating one or more tasks and reclaiming their
CSA call chains. In those cases the trap handler exits with a RFE instruction.

CSAs in Memory

TC1017

Processor
SFRs

FCX Link to 4 Link to 5 Link to 6 Link

CSA 3 CSA 4 CSA 5 CSA 6

CSA 2

PCX Link to 1

CSA 1

Link

Free Context List

Previous Context List
 V1.0 2012-02 User Manual (Volume 1) 4-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
The link word in the last CSA in a free context list must be set to null before it is first used.
This is necessary to support the FCU trap. Before first use of the CSA, the PCX pointer
value should be null. This is to support CSU (Call Stack Underflow) traps.
The PCXI.PCX field points to the CSA where the previous context was saved. The
PCXI.UL bit identifies whether the saved context is upper (PCXI.UL == 1) or lower
(PCXI.UL == 0). If the type does not match the type expected when a context restore
operation is performed, a CYTP exception occurs and a context management trap is
taken.
After the context save operation has been performed the Return Address A[11](RA) is
updated:
• For a call, the A[11](RA) is updated with the function return address.
• For a synchronous trap, the A[11](RA) is updated with the PC of the instruction which

raised the trap.
• For a SYSCALL and an asynchronous trap or an interrupt, the A[11](RA) is updated

with the PC of the next instruction to be executed.
When a lower context save operation is performed the value of A[11](RA) is included in
the saved context and is placed in the second word of the CSA. This A[11](RA) is
correspondingly restored by a lower context restore.
The Call Depth Control field (PSW.CDC) consists of two subfields; A call depth counter,
and a mask that determines the width of the counter and when it overflows.
The Call Depth Counter is incremented on calls and is restored to its previous value on
returns. An exception occurs when the counter overflows. Its purpose is to prevent
software errors from causing ‘runaway recursion’ and depleting the CSA free list.

4.4 Context Switching with Interrupts and Traps
When an interrupt or trap (for example NMI or SYSTRAP) occurs, the processor saves
the upper context of the current task in memory, suspends execution of the current task
and then starts execution of the interrupt or trap handler.
If, when an interrupt or trap is taken, the processor is not using the interrupt stack
(PSW.IS bit == 0), the Stack Pointer is then loaded with the current contents of the ISP
(Interrupt Stack Pointer). The PSW.IS bit is then set to one (1) to indicate execution from
the interrupt stack.
The Interrupt Control Register (ICR) holds the Current CPU Priority Number
(ICR.CCPN), the Interrupt Enable bit (ICR.IE) and Pending Interrupt Priority Number
(ICR.PIPN). These fields, together with the Previous CPU Priority Number (PCXI.PCPN)
and Previous Interrupt Enable (PCXI.PIE) are all part of the interrupt management
system.
ICR.CCPN is typically only non-zero within Interrupt Service Routines (ISRs) where it is
used to order interrupt servicing. It is held in a register that is separate from the PSW and
 V1.0 2012-02 User Manual (Volume 1) 4-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
is not part of the context that the RTOS handles for switching among Software Managed
Tasks (SMTs).
PCXI.PIE is only typically zero within Trap handlers started within ISRs, e.g. an NMI or
SYSTRAP occurring during a peripheral service request.
For both interrupts and traps, the existing PCPN and PIE values in the current PCXI are
saved in the CSA for the upper context, and the existing IE and CCPN values in the ICR
are copied to the PCXI.PIE and PCXI.PCPN fields. Once the interrupt or trap is handled,
the saved lower context is reloaded if necessary and execution of the interrupted task is
resumed (RFE).
On an interrupt or trap the upper context of the current task context is saved by hardware
as an explicit part of the interrupt or trap sequence. For small interrupt and trap handlers
that can execute entirely within this set of registers saved on the interrupt, no further
context saving is needed. The handler can execute immediately and return. Typically
handlers that make calls or require more registers execute the BISR (Begin Interrupt
Service Routine) or SVLCX (Save Lower Context) instruction to save the lower context
registers that were not saved as part of the interrupt or trap sequence. That instruction
must be issued before any of the associated registers are modified, but it need not be
the first instruction in the handler.
Interrupt handlers with critical response time requirements can perform their initial, time-
critical processing immediately, using upper context registers. After that they can
execute a BISR and continue with less time-critical processing. The BISR re-enables
interrupts, hence its use dividing time critical from less time critical processing.
Trap handlers typically do not have critical response time requirements, however those
that can occur in an ISR or those which might hold off interrupts for too long can also
take a similar approach to distinguish between non-interruptible and interruptible
execution segments.
 V1.0 2012-02 User Manual (Volume 1) 4-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.5 Context Switching for Function Calls
When a function call is made (the CALL instruction is executed), the context of the calling
routine must be saved and then restored in order to resume the caller’s execution after
return from the function.
On a function call the entire set of upper context registers are saved by hardware.
Furthermore, the saving of the upper context by the CALL instruction happens in parallel
with the call jump. In addition, restoring the upper context is performed by the RET
(Return) instruction and takes place in parallel with the return jump. The called function
does not need to save and restore the caller’s context and is freed of any need to restrict
its usage of the upper context registers. The calling and called functions must co-operate
on the use of the lower context registers.

4.6 Fast Function Calls with FCALL/FRET
In situations where the saving and restoring of the upper context registers is not required
an FCALL instruction may be used in preference to a CALL. The FCALL instruction
performs a call jump and in parallel saves the current return address (A11) to the stack.
No other state is saved. The called function therefore starts execution with the same
context as the caller (with the exception of A10 and A11).
To return from a function called by an FCALL an FRET instruction is executed. This
performs a jump to the current return address (A11) and loads the previous A11 back
from the stack. No other state is loaded. The caller function therefore resumes execution
with a context modified by the called function. The calling and called functions must co-
operate on the use of all registers.
 V1.0 2012-02 User Manual (Volume 1) 4-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.7 Context Save and Restore Examples
This section provides an example of a context save operation and an example of a
context restore operation.

4.7.1 Context Save
Figure 4-4 shows the free and previous context lists for this example. The free context
list (FCX) contains three free CSAs (3, 4, and 5), and the previous context list (PCX)
contains two CSAs (2 and 1).
The FCX points to CSA3, the first available CSA. The Link Word of CSA3 points to
CSA4; the Link Word of CSA4 points to CSA5. The PCX points to the most recently
saved CSA in the previous context list. The Link Word of CSA2 points to CSA1. CSA1
contains the saved context prior to CSA2.
When the context save operation is performed, the first CSA in the free context list
(CSA3) is pulled off and is placed on the front of the previous context list.

Figure 4-4 CSAs and Processor State Prior to Context Save

Figure 4-5 shows the steps taken during the context save operation. The numbers in the
figure correspond to the steps listed after the figure.

TC1018

Processor
SFRs

FCX Link to 4 Link to 5 Link

CSA 3 CSA 4 CSA 5

CSA 2

PCX Link to 1

CSA 1

Link

Free Context List

Previous Context List
 V1.0 2012-02 User Manual (Volume 1) 4-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
Figure 4-5 CSA and Processor SFR Updates on a Context Save Process

1. The contents of the Link Word in CSA3 are loaded into the NEW_FCX. The
NEW_FCX now points to CSA4. The NEW_FCX is an internal buffer and is not
accessible by the user.

2. The contents of the PCX are written into the Link Word of CSA3. The Link Word of
CSA3 now points to CSA2.

3. The contents of FCX are written into the PCX. The PCX now points to CSA3, which
is at the front of the Previous Context List.

4. The NEW_FCX is loaded into the FCX.
The processor SFRs and CSAs look as shown in Figure 4-6. The processor context to
be saved is now written into the rest of CSA3.

Figure 4-6 CSAs and Processor State After Context Save

TC1019

FCX

CSA 3

Link

NEW_FCXPCX

3 4

2 1

TC1020

Processor
SFRs

FCX Link to 5 Link

Link

CSA 4 CSA 5

CSA 1CSA 3

PCX Link to 2

CSA 2

Link to 1

Free Context List

Previous Context List
 V1.0 2012-02 User Manual (Volume 1) 4-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.7.2 Context Restore
The example in Figure 4-7, shows the previous context list (PCX) with three CSAs (3, 2,
and 1) and the free context list (FCX) containing two CSAs (4 and 5).
The FCX points to CSA4, the first available CSA in the free context list. PCX points to
CSA3, the most recently saved CSA in the previous context list.
The Link Word of CSA3 points to CSA2; the Link Word of CSA2 points to CSA1; the Link
Word of CSA4 points to CSA5.

Figure 4-7 CSAs and Processor State Prior to Context Restore

When the context restore operation is performed, the first CSA in the previous context
list (CSA3) is pulled off and is placed on the front of the free context list.
Figure 4-8 shows the steps taken during the context restore operation. The numbers in
the figure correspond to the following steps:
1. The contents of the Link Word in CSA3 are loaded into the NEW_PCX. The

NEW_PCX now points to CSA2. The NEW_PCX is an internal buffer and is not
accessible by the user.

2. The contents of the FCX are written into the Link Word of CSA3. The Link Word of
CSA3 now points to CSA4.

3. The contents of the PCX are written into the FCX. The FCX now points to CSA3,
which is at the front of the free context list.

4. The NEW_PCX is loaded into the PCX.

TC1021

Processor
SFRs

FCX Link to 5 Link

Link

CSA 4 CSA 5

CSA 1CSA 3

PCX Link to 2

CSA 2

Link to 1

Free Context List

Previous Context List
 V1.0 2012-02 User Manual (Volume 1) 4-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
Figure 4-8 CSA and Processor SFR Updates on a Context Restore Process

The processor SFRs and CSAs now look as shown in Figure 4-9. The restored context
is then written into the upper or lower context registers.

Figure 4-9 CSAs and Processor State After Context Restore

TC1022

PCX

CSA 3

Link

NEW_PCXFCX

3 4

2 1

TC1023

Processor
SFRs

FCX Link to 4 Link to 5 Link

CSA 3 CSA 4 CSA 5

CSA 2

PCX Link to 1

CSA 1

Link

Free Context List

Previous Context List
 V1.0 2012-02 User Manual (Volume 1) 4-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.8 Context Management Registers
The three context management registers are pointers that are used during context save
and restore operations.
• FCX: Free CSA List Head PointerPage 4-14.
• PCX: Previous Context PointerPage 4-15.
• LCX: Free CSA List Limit PointerPage 4-16.
Each pointer consists of two fields:
• A16-bit offset.
• A 4-bit segment specifier.
Table 4-10 shows how the effective address of a Context Save Area (CSA) is generated
using these two fields. A Context Save Area is an address range containing 16 word
locations (64 bytes), which is the space required to save one upper or one lower context.
Incrementing the pointer offset value by one always increments the Effective Address
(EA) to the address that is 16 word locations above the previous one. The total usable
range in each address segment for CSAs is 4 MBytes, resulting in storage space for
64 KByte CSAs.

Figure 4-10 Generation of the Effective Address of a Context Save Area (CSA)

Note: See “Context Save Area” on Page 4-3 for additional constraints on the Effective
Address (EA).

TC1016

20 19 0

Offset

Zero fill

0 0 0 0 0 00 0 0 0 0 0Segment

21 022272831 56Left shift by six Zero fill

OffsetSegment

16 1531

Link Word
 V1.0 2012-02 User Manual (Volume 1) 4-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.8.1 Registers

Free CSA List Head Pointer Register (FCX)
The Free CSA List Head Pointer (FCX) register holds the free CSA list head pointer. This
always points to an available CSA.

FCX
Free CSA List Head Pointer (FE38H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES FCXS

- rw

15 14 13 12 11 10 19 8 7 6 5 4 3 2 1 0

FCXO

rw

Field Bits Type Description
RES [31:20] - Reserved
FCXS [19:16] rw FCX Segment Address

Used in conjunction with the FCXO field.
FCXO [15:0] rw FCX Offset Address

The FCXO and FCXS fields together form the FCX
pointer, which points to the next available CSA.
 V1.0 2012-02 User Manual (Volume 1) 4-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
Previous Context Pointer Register (PCX)
The Previous Context Pointer (PCX) holds the address of the CSA of the previous task.
The PCX is part of the PCXI register.

PCX
Previous Context Pointer Register (FE00H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES PCXS

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PCXO

rw

Field Bits Type Description
RES [31:20] - Reserved
PCXS [19:16] rw Previous Context Pointer Segment Address

This field is used in conjunction with the PCXO field.
PCXO [15:0] rw Previous Context Pointer Offset

The PCXO and PCXS fields form the pointer PCX, which
points to the CSA of the previous context.
 V1.0 2012-02 User Manual (Volume 1) 4-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.8.2 Free CSA List Limit Pointer Register (LCX)
The free CSA List Limit Pointer (LCX) register is used to recognize impending free CSA
list depletion. If a context save operation occurs and the value of FCX matches LCX then
the ‘free context depletion’ condition is recognized, which triggers an FCD trap
immediately after completion of the operation causing the context save; i.e. the return
address of the FCD trap is the first instruction of the trap/interrupt/called routine, or the
instruction following an SVLCX or BISR instruction.
Note: Please refer to the FCD trap description for details on the use and setting of LCX.

See “FCD - Free Context list Depletion (TIN 1)” on Page 6-11.

Free CSA List Limit Pointer Register (LCX)

LCX
Free CSA List Limit Pointer (FE3CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES LCXS

- rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCXO

rw

Field Bits Type Description
RES [31:20] - Reserved
LCXS [19:16] rw LCX Segment Address

This field is used in conjunction with the LCXO field.
LCXO [15:0] rw LCX Offset

The LCXO and LCXS fields form the pointer LCX, which
points to the last available CSA.
 V1.0 2012-02 User Manual (Volume 1) 4-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
4.9 Accessing CSA Memory Locations
Implementations may internally buffer context information to increase performance. To
ensure memory coherency, a DSYNC instruction must be executed prior to any access
to an active CSA memory location. The DSYNC instruction forces all internally buffered
CSA register state to be written to memory.

4.10 Context Save Area Placement
Context Save Areas (CSAs) may not be placed in memory segments which have the
peripheral space attribute (Section 8.2.1), or in memory areas that undergo address
translation (if an MMU is present and enabled).
Note: Individual TriCore implementations may place additional restrictions on CSA

placement. Such restrictions will be detailed in the documentation accompanying
a specific TriCore product.
 V1.0 2012-02 User Manual (Volume 1) 4-17

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Tasks and Functions
 V1.0 2012-02 User Manual (Volume 1) 4-18

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
5 Interrupt System
In a TriCore® system, multiple sources such as peripherals or external interrupts can
generate interrupt requests to interrupt service providers such as CPUs or a DMA
channels. This chapter describes the interrupt processing capabilities of the CPU
including the interrupt prioritisation scheme and access to the vector table.

5.1 General Operation
Each interrupt source is assigned a unique interrupt priority number known as the
Service Request Priority Number (SRPN). On receipt of an interrupt request from an
interrupt source the SRPN is used by the Interrupt Control Unit (ICU) to prioritise
between multiple concurrent interrupt requests. The SRPN of the winning request is
supplied to the CPU as a Pending Interrupt Priority Number (PIPN) along with an request
trigger. The CPU decides whether to accept a requested interrupt by comparing the
PIPN with its Current CPU Priority Number (CCPN). If the CPU decides to accept the
requested interrupt it responds with an Interrupt Acknowledge and the returns the priority
number of the taken interrupt. The ICU will then clear down the requesting interrupt
source.

5.1.1 ICU Interrupt Control Register (ICR)
The ICU Interrupt Control Register (ICR) holds the Current CPU Priority Number
(CCPN), the global Interrupt enable/disable bit (IE) and the current Pending Interrupt
Priority Number (PIPN).

5.1.2 CPU operation on an interrupt request
The CPU checks the state of the global interrupt enable bit ICR.IE, and compares the
current CPU priority number ICR.CCPN against the PIPN. The CPU can be interrupted
only if ICR.IE == 1 and PIPN is greater than CCPN. If this is true the CPU can enter the
service routine. The PIPN is used to determine the interrupt vector table entry point and
acknowledges the ICU, which in turn sends acknowledgement back to the pending
interrupt request.
Several conditions could block the CPU from immediately responding to the interrupt
request generated by the ICU. These are:
• The interrupt system is globally disabled (ICR.IE == 0).
• The current CPU priority (CCPN), is equal to or higher than the Pending Interrupt

Priority Number (PIPN).
• The CPU is in the process of entering an interrupt or trap service routine.
• The CPU is operating on non-interruptible trap services.
• The CPU is executing a multi-cycle instruction.
• The CPU is executing an instruction which modifies the ICR.
 V1.0 2012-02 User Manual (Volume 1) 5-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
The CPU responds to the interrupt request only when these conditions are no longer
true.

5.1.3 Entering an Interrupt Service Routine (ISR)
When all conditions are clear for the CPU to service an interrupt request, the following
actions are performed to enter an Interrupt Service Routine (ISR):
• The upper context of the current task is saved.
• The Return Address (A[11]) is updated with the current PC.
• If the processor was not previously using the interrupt stack (PSW.IS = 0), then the

A[10] Stack Pointer is set to the interrupt stack pointer (ISP). The stack pointer bit is
then set for using the interrupt stack: PSW.IS = 1.

• The I/O mode is set to Supervisor mode, which means all permissions are enabled:
PSW.IO = 10B.

• The current Protection Register Set is set to 0: PSW.PRS = 00B.
• The Call Depth Counter (PSW.CDC) is cleared, and the call depth limit selector is set

for 64: PSW.CDC = 0000000B.
• Call Depth Counter is enabled, PSW.CDE = 1.
• PSW Safety bit is set to value defined in the SYSCON register. PSW.S =

SYSCON.IS.
• Write permission to global registers A[0], A[1], A[8], A[9] is disabled: PSW.GW = 0.
• The interrupt system is globally disabled: ICR.IE = 0. The old ICR.IE is saved into

PCXI.PIE.
• The Current CPU Priority Number (ICR.CCPN) is saved into the Previous CPU

Priority Number (PCXI.PCPN) field.
• The Pending Interrupt Priority Number (ICR.PIPN) is saved into the Current CPU

Priority Number (ICR.CCPN) field.
• The interrupt vector table is accessed to fetch the first instruction of the ISR.
Note: Global register write permission is disabled (PSW.GW == 0) whenever an

Interrupt Service Routine or trap handler is entered. This ensures that all traps and
interrupts must assume they do not have write access to the registers controlled
by PSW.GW by default.

An Interrupt Service Routine is entered with the interrupt system globally disabled and
the current CPU priority (CCPN) set to the priority (PIPN) of the interrupt being serviced.
It is up to the user to enable the interrupt system again and optionally modify the priority
number CCPN to implement interrupt priority levels or handle special cases. See “Using
the TriCore Interrupt System” on Page 5-6.
The interrupt system can be enabled with the ENABLE instruction. ENABLE sets
ICR.IE = 1 (interrupt system enabled). The BISR (Begin Interrupt Service Routine)
instruction also enables the interrupt system, sets the ICR.CCPN to a new value, and
saves the lower context of the interrupted task. The interrupt enable bit (ICR.IE) and
 V1.0 2012-02 User Manual (Volume 1) 5-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
current CPU priority number (ICR.CCPN) can also be modified with the MTCR (Move To
Core Register) instruction.
The ENABLE, BISR, and DISABLE (disable interrupts) instructions are all executed such
that the CPU is blocked from taking interrupt requests until the instruction is completely
finished. This avoids pipeline side effects and eliminates the need for an ISYNC
(synchronize instruction stream) following these instructions. MTCR is an exception and
must be followed by an ISYNC instruction.

5.2 Exiting an Interrupt Service Routine (ISR)
When an ISR exits with an RFE (Return From Exception) instruction, the hardware
automatically restores the upper context. The upper context includes the PCXI register
which holds the Previous CPU Priority Number (PCPN) and the Previous Global
Interrupt Enable Bit (PIE). The values in these respective bits are used as follows:
• PCXI.PCPN is written to ICR.CCPN to set the CPU priority number to the value

before interruption.
• PCXI.PIE is written to ICR.IE to restore the state of this bit.
The interrupted routine then continues.

5.3 Interrupt Vector Table
Interrupt Service Routines are associated with interrupts at a particular priority by way of
the Interrupt Vector Table. The Interrupt Vector Table is an array of Interrupt Service
Routine (ISR) entry points. The Interrupt Vector Table is stored in memory.
When the CPU takes an interrupt, it calculates an address in the Interrupt Vector Table
that corresponds with the priority of the interrupt (the ICR.PIPN bit field). This address is
loaded in the program counter. The CPU begins executing instructions at this address in
the Interrupt Vector Table. The code at this address is the start of the selected Interrupt
Service Routine (ISR). Depending on the code size of the ISR, the Interrupt Vector Table
may only store the initial portion of the ISR, such as a jump instruction that vectors the
CPU to the rest of the ISR elsewhere in memory.
The Base of Interrupt Vector Table register (BIV) stores the base address of the Interrupt
Vector Table. Interrupt vectors are ordered in the table by increasing priority. The BIV
register can be modified using the MTCR instruction during the initialization phase of the
system (the BIV is ENDINIT protected), before interrupts are enabled. With this
arrangement, it is possible to have multiple Interrupt Vector Tables and switch between
them by changing the contents of the BIV register.
When interrupted, the CPU calculates the entry point of the appropriate Interrupt Service
Routine from the PIPN and the contents of the BIV register. Two vector table
configurations are available with either 32 byte to 8 byte spacing between vectors. The
spacing is selected by the Vector Size Select (VSS) bit of the BIV register.
 V1.0 2012-02 User Manual (Volume 1) 5-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
To generate a pointer into the Interrupt vector table the PIPN is left-shifted by either five
bits (VSS=0), or three bits (VSS=1) and ORed with the address in the BIV register to
generate a pointer into the Interrupt Vector Table. Execution of the ISR begins at this
address. Due to this operation, it is recommended that bits [14:5] (VSS=0) or bits[12:3]
(VSS=1) of register BIV are set to 0.
if (BIV.VSS == 1’b0)
 ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<5};
else
 ISR_Entry_PC = {BIV[31:1],1’b0} | {PIPN<<3};

If an interrupt handler is very short it may fit entirely within the words available in the
vector code segment. Otherwise the code stored at the entry location can either span
several vector entries, or should contain some initial instructions followed by a jump to
the rest of the handler. See “Spanning Interrupt Service Routines across Vector
Entries” on Page 5-6
 V1.0 2012-02 User Manual (Volume 1) 5-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
Figure 5-1 Interrupt Vector Table (VSS=0)

The BIV register allows the interrupt vector table to be located anywhere in the available
code memory. The default on power-up is fixed to 0000 0000H, however the BIV register
can be written to using the MTCR instruction during the initialization phase of the system,
before interrupts are enabled. It is also possible to have multiple interrupt vector tables
and switch between them simply by modifying the contents of the BIV register.

8 Words

8 Words

TC1025D

Interrupt Vector
Table

8 Words

8 Words

BIV PN = 0 (never used)

PN = 1

PN = 2

PN = 3

PN = 4

PN = 5

PN = 255

Priority Number

(may not be used
if spanned by ISR
with PN = 2)

Service
Routine
may span
several
entries
 V1.0 2012-02 User Manual (Volume 1) 5-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
5.4 Using the TriCore Interrupt System
The following sections contain examples showing how the TriCore architectures flexible
interrupt system can be used to solve both typical and special application requirements.

5.4.1 Spanning Interrupt Service Routines across Vector Entries
Because vector entries are not tied to the interrupt source, it is easy to span Interrupt
Service Routines (ISRs) across vector entry locations, as shown previously in
Figure 5-1 Page 5-5. Spanning eliminates the need of a jump to the rest of the interrupt
handler if it would not fit into the available eight words between entry locations.
Note that priority numbers relating to entries occupied by a spanned service routine must
not be used for any of the active Service Request Nodes (SRNs) which request service
from the same service provider.
In Figure 5-1Page 5-5, vector locations three and four are covered through the service
routine for entry two. Therefore these numbers must not be assigned to SRNs requesting
CPU service, although they can be used to request another service provider. The next
available vector entry is now entry five.
Use of this technique increases the range of priority numbers required in a given system,
but the size of the vector table must be adjusted accordingly.

5.4.2 Interrupt Priority Groups
Interrupt priority groups describe a set of interrupts which cannot interrupt each others
service routine. These groups are easily created with the TriCore interrupt system
architecture.
When the CPU starts the service of an interrupt, the interrupt system is globally disabled
and the CPU priority CCPN is set to the priority of the interrupt being serviced. This
blocks all further interrupts from being serviced until the interrupt system is either
enabled again through software, or the service routine is terminated with the RFE
(Return From Exception) instruction.
Note: The RFE instruction automatically re-installs the previous state of the ICR.IE bit.

This will be one (ICE.IE = 1), otherwise that interrupt would not have been
serviced.

When Interrupt Service Routine (ISR) software enables the interrupt system again by
setting ICR.IE without changing the CCPN, the effect is that all interrupt requests with
the same or lower priority than the CCPN are still blocked from being serviced. This
includes a re-occurrence of the current interrupt; i.e. it can not interrupt this service.
However this ISR will be interrupted by each request which has a higher priority number
than the CCPN. A potential problem (that is easily overcome in the TriCore architecture)
is that application requirements often require interrupt requests of similar significance to
 V1.0 2012-02 User Manual (Volume 1) 5-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
be grouped together in such a way that no request in that group can interrupt the ISR of
another member of the same group.
Creating these Interrupt Priority Groups is easily accomplished in the interrupt system.
For a defined group of interrupt requests, the software of their respective service routines
sets the CCPN to the number of the highest SRPN used in that group, before enabling
the interrupt system again. Figure 5-2 shows an example.

Figure 5-2 Interrupt Priority Groups

The interrupt requests with the priority numbers 11 and 12 form one group while the
requests with priority numbers 14 to 17 inclusive form another group. Every time one of
the interrupts from group one is serviced, the service routine sets the CCPN to 12, the
highest number in that group, before re-enabling the interrupt system.
Every time one of the interrupts from group two is serviced, the service routine sets the
CCPN to 17 before re-enabling the interrupt system. If interrupt 14 is serviced for

TC1026C

Interrupt Vector Table

PN = 255

PN = 18

PN = 17

PN = 16

PN = 15

PN = 14

PN = 13

PN = 12

PN = 11

PN = 10

Priority
Group 2

Priority
Group 1
 V1.0 2012-02 User Manual (Volume 1) 5-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
example, it can only be interrupted by requests with a priority number higher than 17, but
not through a request from its own priority group or requests with lower priority.
One can see the flexibility of this system and its superiority over systems with fixed
priority levels. In the example above, the interrupt request with priority number 13 forms
its own single member ‘group’. Setting the CCPN to the maximum number 255 in each
service routine has the same effect as not enabling the interrupt system again; i.e. all
interrupt requests can be considered to be in one group.
The flexibility for interrupt priority levels ranges from all interrupts being in one group, to
each interrupt request building its own group, and all possible combinations in between.

5.4.3 Dividing ISRs into Different Priorities
Interrupt Service Routines can be easily divided into parts with different priorities. For
example, an interrupt is placed on a very high priority because response time and
reaction to an event is critical, but further operations in that service routine can run on a
lower priority. In this instance the service routine would be divided into two parts, one
containing the critical actions, the other part the less critical ones.
The priority of the interrupt node is first set to the high priority, so that when the interrupt
occurs the necessary actions are carried out immediately. The priority level of this
interrupt is then lowered and the interrupt request bit is set again via software (indicating
a pending interrupt) while still in the service routine. Returning to the interrupted program
terminates the high priority service routine. The pending interrupt is serviced when the
CPU priority is lower than its own priority. After entering the service routine, which is now
at a different address in the program memory, the outstanding but low-priority actions of
the interrupt are performed.
In other instances the priority of a service request might be low because the response
time to an event is not critical, but once it has been granted service it should not be
interrupted. To prevent any interruption the TriCore architecture allows the priority level
of the service request to be raised within the ISR, and also allows interrupts to be
completely disabled.

5.4.4 Using Different Priorities for the Same Interrupt Source
For some applications the priority of an interrupt request in relation to other requests is
not fixed, but depends on the current situation in the system. This can be achieved
simply by assigning different Service Request Priority Numbers (SRPNs) at different
times to an interrupt source depending on the application needs. Usually the ISR for that
interrupt executes different code depending on its priority.
In traditional interrupt systems, the ISR would have to check the current priority of that
interrupt request and perform a branch to the appropriate code section, causing a delay
in the response to the request. In the TriCore system however, the interrupt will
 V1.0 2012-02 User Manual (Volume 1) 5-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
automatically have different vector entries for the different priorities. An extra check and
branch in the ISR is not necessary, therefore the interrupt latency is reduced.
In case the ISR is independent of the interrupt’s priority, branches need to be placed to
the common ISR code on each of the vector entries for that interrupt.
Note: The use of different priority numbers for one interrupt has to be taken into

consideration when creating the vector table.
 V1.0 2012-02 User Manual (Volume 1) 5-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
5.4.5 Interrupt Control Registers
Two CSFRs support interrupt handling:
• ICR: Interrupt Control RegisterPage 5-10
• BIV: Base Interrupt Vector Table PointerPage 5-12
The ICR holds the Current CPU Priority Number (CCPN), the enable/disable bit for the
Interrupt System (IE), the Pending Interrupt Priority Number (PIPN), and an
implementation specific control for the interrupt arbitration scheme. The BIV register
holds the base addresses for the interrupt vector tables. Special instructions control the
enabling and disabling of the interrupt system. For more information see “Interrupt
System” on Page 5-1.

ICU Interrupt Control Register (ICR)
The ICU Interrupt Control register is defined as follows:

ICR
ICU Interrupt Control (FE2CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES PIPN

- rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IE RES CCPN

rwh - rwh

Field Bits Type Function
RES [31:24] - Reserved
PIPN [23:16] rh Pending Interrupt Priority Number

A read-only bit field that is updated by the ICU at the end
of each interrupt arbitration process. It indicates the
priority number of the pending service request. ICR.PIPN
is set to 0 when no request is pending, and at the
beginning of each new arbitration process.
00H : No valid pending request.
01H : Request pending, lowest priority.
…
FFH : Request pending, highest priority.
 V1.0 2012-02 User Manual (Volume 1) 5-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
IE 15 rwh Global Interrupt Enable Bit
The interrupt enable bit globally enables the CPU service
request system. Whether a service request is delivered to
the CPU depends on the individual Service Request
Enable Bits (SRE) in the SRNs, and the current state of
the CPU.
ICR.IE is automatically updated by hardware on entry and
exit of an Interrupt Service Routine (ISR). ICR.IE is
cleared to 0 when an interrupt is taken, and is restored to
the previous value when the ISR executes an RFE
instruction to terminate itself. ICR.IE can also be updated
through the execution of the ENABLE, DISABLE, MTCR,
and BISR instructions.
0 : Interrupt system is globally disabled.
1 : Interrupt system is globally enabled.

RES [14:8] - Reserved Field
CCPN [7:0] rwh Current CPU Priority Number

The Current CPU Priority Number (CCPN) bit field
indicates the current priority level of the CPU. It is
automatically updated by hardware on entry or exit of
Interrupt Service Routines (ISRs) and through the
execution of a BISR instruction. CCPN can also be
updated through an MTCR instruction.

Field Bits Type Function
 V1.0 2012-02 User Manual (Volume 1) 5-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Interrupt System
Base Interrupt Vector Table Pointer (BIV)
The BIV register contains the base address of the interrupt vector table. When an
interrupt is accepted, the entry address into the interrupt vector table is generated from
the priority number (taken from the PIPN) of that interrupt, left shifted by either three or
five bits, and then ORd with the contents of the BIV register. The left-shift of the interrupt
priority number results in a spacing of either eight bytes or 32 bytes between the
individual entries in the vector table dependent on the vector spacing selected by the
VSS bit.

BIV
Base Interrupt Vector Table Pointer (FE20H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BIV

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIV VSS

rw rw

Field Bits Type Description
BIV [31:1] rw Base Address of Interrupt Vector Table

The address in the BIV register must be aligned to an even
byte address (halfword address). Because of the simple
ORing of the left-shifted priority number and the contents
of the BIV register, the alignment of the base address of
the vector table must be to a power of two boundary,
dependent on the number of interrupt entries used.

VSS 0 rw Vector Spacing Select
0 : 32 Byte Vector Spacing
1 : 8 Byte Vector Spacing
 V1.0 2012-02 User Manual (Volume 1) 5-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6 Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an
instruction exception, memory-management exception or an illegal access. Traps are
always active; they cannot be disabled by software action. This chapter describes the
different traps that can occur and the TriCore® architecture’s trap handling mechanism.

6.1 Trap Types
The TriCore architecture specifies eight general classes for traps. Each class has its own
trap handler, accessed through a trap vector of 32 bytes per entry, indexed by the
hardware-defined trap class number. Within each class, specific traps are distinguished
by a Trap Identification Number (TIN) that is loaded by hardware into register D[15]
before the first instruction of the trap handler is executed. The trap handler must test and
branch on the value in D[15] to reach the subhandler for a specific TIN.
Traps can be further classified as synchronous or asynchronous, and as hardware or
software generated. These are explained after the following table which lists the trap
classes, summarising and classifying the pre-defined set of specific traps within each
class.
In the following table: TIN = Trap Identification Number / Synch. = Synchronous /
Asynch. = Asynchronous / HW = Hardware / SW = Software.

Table 6-1 Supported Traps
TIN Name Synch. /

Asynch.
HW /
SW

Definition Page

Class 0 — MMU
0 VAF Synch. HW Virtual Address Fill. Page 6-8
1 VAP Synch. HW Virtual Address Protection. Page 6-8
Class 1 — Internal Protection Traps
1 PRIV Synch. HW Privileged Instruction. Page 6-8
2 MPR Synch. HW Memory Protection Read. Page 6-8
3 MPW Synch. HW Memory Protection Write. Page 6-9
4 MPX Synch. HW Memory Protection Execution. Page 6-9
5 MPP Synch. HW Memory Protection Peripheral Access. Page 6-9
6 MPN Synch. HW Memory Protection Null Address. Page 6-9
7 GRWP Synch. HW Global Register Write Protection. Page 6-9
Class 2 — Instruction Errors
1 IOPC Synch. HW Illegal Opcode. Page 6-9
 V1.0 2012-02 User Manual (Volume 1) 6-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
Table 6-1 Supported Traps (cont’d)

2 UOPC Synch. HW Unimplemented Opcode. Page 6-9
3 OPD Synch. HW Invalid Operand specification. Page 6-10
4 ALN Synch. HW Data Address Alignment. Page 6-10
5 MEM Synch. HW Invalid Local Memory Address. Page 6-10
Class 3 — Context Management
1 FCD Synch. HW Free Context List Depletion (FCX = LCX). Page 6-11
2 CDO Synch. HW Call Depth Overflow. Page 6-12
3 CDU Synch. HW Call Depth Underflow. Page 6-12
4 FCU Synch. HW Free Context List Underflow (FCX = 0). Page 6-12
5 CSU Synch. HW Call Stack Underflow (PCX = 0). Page 6-12
6 CTYP Synch. HW Context Type (PCXI.UL wrong). Page 6-12
7 NEST Synch. HW Nesting Error: RFE with non-zero call

depth.
Page 6-13

Class 4 — System Bus and Peripheral Errors
1 PSE Synch. HW Program Fetch Synchronous Error. Page 6-13
2 DSE Synch. HW Data Access Synchronous Error. Page 6-13
3 DAE Asynch. HW Data Access Asynchronous Error. Page 6-13
4 CAE Asynch HW Coprocessor Trap Asynchronous

Error.TriCore 1.6
Page 6-14

5 PIE Synch HW Program Memory Integrity Error. Page 6-14
6 DIE Asynch HW Data Memory Integrity Error. TriCore 1.6 Page 6-14
7 TAE Asynch HW Temporal Asynchronous Error Page 6-14

Class 5— Assertion Traps
1 OVF Synch. SW Arithmetic Overflow. Page 6-15
2 SOVF Synch. SW Sticky Arithmetic Overflow. Page 6-15

Class 6 — System Call1)

SYS Synch. SW System Call. Page 6-15

TIN Name Synch. /
Asynch.

HW /
SW

Definition Page
 V1.0 2012-02 User Manual (Volume 1) 6-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
Table 6-1 Supported Traps (cont’d)

6.1.1 Synchronous Traps
Synchronous traps are associated with the execution or attempted execution of specific
instructions, or with an attempt to access a virtual address that requires the intervention
of the memory-management system. The instruction causing the trap is known precisely.
The trap is taken immediately and serviced before execution can proceed beyond that
instruction.

6.1.2 Asynchronous Traps
Asynchronous traps are similar to interrupts, in that they are associated with hardware
conditions detected externally and signaled back to the core. Some result indirectly from
instructions that have been previously executed, but the direct association with those
instructions has been lost. Others, such as the Non-Maskable Interrupt (NMI), are
external events. The difference between an asynchronous trap and an interrupt is that
asynchronous traps are routed via the trap vector instead of the interrupt vector. They
can not be masked and they do not change the current CPU interrupt priority number.

6.1.3 Hardware Traps
Hardware traps are generated in response to exception conditions detected by the
hardware. In most, but not all cases, the exception conditions are associated with the
attempted execution of a particular instruction. Examples are the illegal instruction trap,
memory protection traps and data memory misalignment traps. In the case of the MMU
traps (trap class 0), the exception condition is either the failure to find a TLB (Translation
Lookaside Buffer) entry for the virtual page referenced by an instruction (VAF trap), or
an access violation for that page (VAP trap).

6.1.4 Software Traps
Software traps are generated as an intentional result of executing a system call or an
assertion instruction. The supported assertion instructions are TRAPV (Trap on
overflow) and TRAPSV (Trap on sticky overflow). System calls are generated by the
SYSCALL instruction. System call traps are described further in “System Call (Trap
Class 6)” on Page 6-15.

Class 7 — Non-Maskable Interrupt
0 NMI Asynch. HW Non-Maskable Interrupt. Page 6-15
1) For the system call trap, the TIN is taken from the immediate constant specified in the SYSCALL instruction.

The range of values that can be specified is 0 to 255, inclusive.

TIN Name Synch. /
Asynch.

HW /
SW

Definition Page
 V1.0 2012-02 User Manual (Volume 1) 6-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6.1.5 Unrecoverable Traps
An unrecoverable trap is one from which software can not recover; i.e. the task that
raised the trap can not be simply restarted.
In the TriCore architecture, FCU (a fatal context trap) is an unrecoverable error. See
“FCU - Free Context List Underflow (TIN 4)” on Page 6-12 for more information.
 V1.0 2012-02 User Manual (Volume 1) 6-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6.2 Trap Handling
The actions taken on traps by the trap handling mechanisms are slightly different from
those taken on external or software interrupts. A trap does not change the CPU interrupt
priority, so the ICR.CCPN field is not updated. See “Exception Priorities” on
Page 6-16.

6.2.1 Trap Vector Format
The trap handler vectors are stored in code memory in the trap vector table. The BTV
register specifies the Base address of the Trap Vector table. The vectors are made up
of a number of short code segments, evenly spaced by eight words.
If a trap handler is very short it may fit entirely within the eight words available in the
vector code segment. If it does not fit the vector code segment then it should contain
some initial instructions, followed by a jump to the rest of the handler.

6.2.2 Accessing the Trap Vector Table
When a trap occurs, a trap identifier is generated by hardware. The trap identifier has
two components:
• The Trap Class Number (TCN) used to index into the trap vector table.
• The Trap Identification Number (TIN) which is loaded into the data register D[15].
The Trap Class Number is left shifted by five bits and ORd with the address in the BTV
register to generate the entry address of the trap handler.

6.2.3 Return Address (RA)
The return address is saved in the return address register A[11].
For a synchronous trap, the return address is the PC of the instruction that caused the
trap. Only the SYS trap and FCD trap are different. On a SYS trap, triggered by the
SYSCALL instruction, the return address points to the instruction immediately following
SYSCALL. The behaviour for the FCD trap is described in “FCD - Free Context list
Depletion (TIN 1)” on Page 6-11.
For an asynchronous trap, the return address is that of the instruction that would have
been executed next, if the asynchronous trap had not been taken. The return address
for an interrupt follows the same rule.

6.2.4 Trap Vector Table
The entry-points of all Trap Service Routines are stored in memory in the Trap Vector
Table. The BTV register specifies the base address of the Trap Vector Table in memory.
It can be assigned to any available code memory. The BTV register can be modified
using the MTCR instruction during the initialization phase of the system, (the BTV
 V1.0 2012-02 User Manual (Volume 1) 6-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
register is ENDINIT protected). This arrangement makes it possible to have multiple
Trap Vector Tables and switch between them by changing the contents of the BTV
register.
When a trap event occurs, a trap identifier is generated by the hardware detecting the
event. The trap identifier is made up of a Trap Class Number (TCN) and a Trap
Identification Number (TIN).
The TCN is left-shifted by five bits and ORd with the address in the BTV register to form
the entry address of the TSR. Because of this operation, it is recommended that bits [7:5]
of register BTV are set to 0 (see Figure 6-1). Note that bit 0 of the BTV register is always
0 and can not be written to (instructions have to be aligned on even byte boundaries).
Left-shifting the TCN by 5 bits creates entries into the Trap Vector Table which are
evenly spaced 8 words apart. If a trap handler (TSR) is very short, it may fit entirely within
the eight words available in the Trap Vector Table entry. Otherwise, the code at the entry
point must ultimately cause a jump to the rest of the TSR residing elsewhere in memory.
Unlike the Interrupt Vector Table, entries in the Trap Vector Table cannot be spanned.

Figure 6-1 Trap Vector Table Entry Address Calculation

6.2.5 Initial State upon a Trap
The initial state when a trap occurs is defined as follows:
• The upper context is saved.
• The return address in A[11] is updated.
• The TIN is loaded into D[15].
• The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) when the

processor was not previously using the interrupt stack (in case of PSW.IS = 0). The
stack pointer bit is set for using the interrupt stack: PSW.IS = 1.

• The I/O mode is set to Supervisor mode, which means all permissions are enabled:
PSW.IO = 10B.

• The current Protection Register Set is set to 0: PSW.PRS = 00B.
• The Call Depth Counter (CDC) is cleared, and the call depth limit is set for 64:

PSW.CDC = 0000000B.

MCA04783

0
0000

57831
BTV TCN

OR

Resulting Trap Vector Table Entry Address
 V1.0 2012-02 User Manual (Volume 1) 6-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
• Call Depth Counter is enabled, PSW.CDE = 1.
• PSW Safety bit is set to value defined in the SYSCON register. PSW.S =

SYSCON.TS.
• Write permission to global registers A[0], A[1], A[8], A[9] is disabled: PSW.GW = 0.
• The interrupt system is globally disabled: ICR.IE = 0. The ‘old’ ICR.IE and ICR.CCPN

are saved into PCXI.PIE and PCXI.PCPN respectively. ICR.CCPN remains
unchanged.

• The trap vector table is accessed to fetch the first instruction of the trap handler.
Although traps leave the ICR.CCPN unchanged, their handlers still begin execution with
interrupts disabled. They can therefore perform critical initial operations without
interruptions, until they specifically re-enable interrupts.
For the non-recoverable FCU trap, the initial state is different. The upper context cannot
be saved. Only the following states are guaranteed:
• The TIN is loaded into D[15].
• The stack pointer in A[10] is set to the Interrupt Stack Pointer (ISP) when the

processor was not previously using the interrupt stack (in case of PSW.IS == 0).
• The I/O mode is set to Supervisor mode (all permissions are enabled:

PSW.IO = 10B).
• The current Protection Register Set is set to 0: PSW.PRS = 00B.
• PSW Safety bit is set to value defined in the SYSCON register: PSW.S =

SYSCON.TS.
• The interrupt system is globally disabled: ICR.IE = 0. ICR.CCPN remains

unchanged.
• The trap vector table is accessed to fetch the first instruction of the FCU trap handler.
 V1.0 2012-02 User Manual (Volume 1) 6-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6.3 Trap Descriptions
The following sub-sections describe the trap classes and specific traps listed in
Table 6-1 “Supported Traps” on Page 6-1.

6.3.1 MMU Traps (Trap Class 0)
For those implementations that include a Memory Management Unit (MMU), Trap
class 0 is reserved for MMU traps. There are two traps within this class, VAF and VAP.

VAF - Virtual Address Fill (TIN 0)
The VAF trap is generated when the MMU is enabled and the virtual address referenced
by an instruction does not have a page entry in the MMU Translation Lookaside Buffer
(TLB).

VAP - Virtual Address Protection (TIN 1)
The VAP trap is generated (when the MMU is enabled) by a memory access undergoing
PTE translation that is not permitted by the PTE protection settings, or by a User-0 mode
access to an upper segment that does not have the privileged peripheral property.

6.3.2 Internal Protection Traps (Trap Class 1)
Trap class 1 is for traps related to the internal protection system. The memory protection
traps in this class, MPR, MPW, and MPX, are for the range-based protection system and
are independent of the page-based VAP protection trap of trap class 0. See the
“Memory Protection System” on Page 9-1 chapter for more details.
All memory protection traps (MPR, MPW, MPX, MPP, and MPN), are based on the
virtual addresses that undergo direct translation.
The following internal Protection Traps are defined:

PRIV - Privilege Violation (TIN 1)
A program executing in one of the User modes (User-0 or User-1 mode) attempted to
execute an instruction not allowed by that mode.
A table of instructions which are restricted to Supervisor mode or User-1 mode, is
supplied in the Instruction Set chapter of Volume 2 of this manual.

MPR - Memory Protection Read (TIN 2)
The MPR trap is generated when the memory protection system is enabled and the
effective address of a load, LDMST, SWAP or ST.T instruction does not lie within any
range with read permissions enabled. This trap is not generated when an access
violation occurs during a context save/restore operation.
 V1.0 2012-02 User Manual (Volume 1) 6-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
MPW - Memory Protection Write (TIN 3)
The MPW trap is generated when the memory protection system is enabled and the
effective address of a store, LDMST, SWAP or ST.T instruction does not lie within any
range with write permissions enabled.
This trap is not generated when an access violation occurs during a context save/restore
operation.

MPX - Memory Protection Execute (TIN 4)
The MPX trap is generated when the memory protection system is enabled and the PC
does not lie within any range with execute permissions enabled.

MPP - Memory Protection Peripheral Access (TIN 5)
A program executing in User-0 mode attempted a load or store access to a segment is
configured to be a peripheral segment. See “Physical Memory Attributes (PMA)” on
Page 8-3.

MPN - Memory Protection Null address (TIN 6)
The MPN trap is generated whenever any program attempts a load / store operation to
effective address zero.

GRWP - Global Register Write Protection (TIN 7)
A program attempted to modify one of the global address registers (A[0], A[1], A[8] or
A[9]) when it did not have permission to do so.

6.3.3 Instruction Errors (Trap Class 2)
Trap class 2 is for signalling various types of instruction errors. Instruction errors include
errors in the instruction opcode, in the instruction operand encodings, or for memory
accesses, in the operand address.

IOPC - Illegal Opcode (TIN 1)
An invalid instruction opcode was encountered. An invalid opcode is one that does not
correspond to any instruction known to the implementation.

UOPC - Unimplemented Opcode (TIN 2)
An unimplemented opcode was encountered. An unimplemented opcode corresponds
to a known instruction that is not implemented in a given hardware implementation. The
instruction may be implemented via software emulation in the trap handler.
Example UOPC conditions are:
 V1.0 2012-02 User Manual (Volume 1) 6-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
• A MMU instruction if the MMU is not present.
• A FPU instruction if the FPU is not present.
• An external coprocessor instruction if the external coprocessor is not present.

OPD - Invalid Operand (TIN 3)
The OPD trap may be raised for instructions that take an even-odd register pair as an
operand, if the operand specifier is odd. The OPD trap may also be raised for other cases
where operands are invalid.
Implementations are not architecturally required to raise this trap, and may treat invalid
operands in an implementation defined manner.

ALN - Data Address Alignment (TIN 4)
An ALN trap is raised when the address for a data memory operation does not conform
to the required alignment rules. See “Alignment Requirements” on Page 2-4, for more
information on these rules. An ALN trap is also raised when the size, length or index of
a circular buffer is incorrect. See “Circular Addressing” on Page 2-11 for more details.

MEM - Invalid Memory Address (TIN 5)
The MEM trap is raised when the address of an access can be determined to either
violate an architectural constraint or an implementation constraint.
Defined MEM trap subclasses are different segment, segment crossing, CSFR access,
CSA restriction and scratch range.
An implementation must define which implementation constraint MEM traps it will raise,
or the alternative behaviour if the MEM trap is not raised. It must also document any
other implementation specific MEM traps it will raise.
Architectural constraints which will raise the MEM trap are:
• An addressing mode that adds an offset to a base address results in an effective

address that is in a different segment to the base address (different segment).
• A data element is accessed with an address, such that the data object spans the end

of one segment and the beginning of another segment (segment crossing)
Implementation constraints which can raise the MEM trap are
• A memory address is used to access a Core SFR (CSFR) rather than using a

MTCR/MFCR instruction (CSFR access)
• A memory address is used for a CSA access and it is not valid for the implementation

to place CSA there (CSA restriction)
• An access to Scratch memory is attempted using a memory address which lies

outside the implemented region of memory (scratch range error).
 V1.0 2012-02 User Manual (Volume 1) 6-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6.3.4 Context Management (Trap Class 3)
Trap class 3 is for exception conditions detected by the context management subsystem,
in the course of performing (or attempting to perform) context save and restore
operations connected to function calls, interrupts, traps, and returns.

FCD - Free Context list Depletion (TIN 1)
The FCD trap is generated after a context save operation, when the operation causes
the free context list to become ‘almost empty’. The ‘almost empty’ condition is signaled
when the CSA used for the save operation is the one pointed to by the context list limit
register LCX. The operation responsible for the context save completes normally and
then the FCD trap is taken.
If the operation responsible for the context save was the hardware interrupt or trap entry
sequence, then the FCD trap handler will be entered before the first instruction of the
original interrupt or trap handler is executed. The return address for the FCD trap will
point to the first instruction of the interrupt or trap handler.
The FCD trap handler is normally expected to take some form of action to rectify the
context list depletion. The nature of that action is OS dependent, but the general choices
are to allocate additional memory for CSA storage, or to terminate one or more tasks,
and return the CSAs on their call chains to the free list. A third possibility is not to
terminate any tasks outright, but to copy the call chains for one or more inactive tasks to
uncached external or secondary memory that would not be directly usable for CSA
storage, and release the copied CSAs to the free list. In that instance the OS task
scheduler would need to recognize that the inactive task's call chain was not resident in
CSA storage, and restore it before dispatching the task.
The FCD trap itself uses one additional CSA beyond the one designated by the LCX
register, so LCX must not point to the actual last entry on the free context list. In addition,
it is possible that an asynchronous trap condition, such as an external bus error, will be
reported after the FCD trap has been taken, interrupting the FCD trap handler and using
one more CSA. Therefore, to avoid the possibility of a context list underflow, the free
context list must include a minimum of two CSAs beyond the one pointed to by the LCX
register. If the FCD trap handler makes any calls, then additional CSA reserves are
needed.
In order to allow the trap handlers for asynchronous traps to recognize when they have
interrupted the FCD trap handler, the FCDSF flag in the SYSCON (system configuration)
register is set whenever an FCD trap is generated. The FCDSF bit should be tested by
the handler for any asynchronous trap that could be taken while an FCD trap is being
handled. If the bit is found to be set, the asynchronous trap handler must avoid making
any calls, but should queue itself in some manner that allows the OS to recognize that
the trap occurred. It should then carry out an immediate return, back to the interrupted
FCD trap handler. See “System Control Register (SYSCON)” on Page 3-17.
 V1.0 2012-02 User Manual (Volume 1) 6-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
CDO - Call Depth Overflow (TIN 2)
A program attempted to execute a CALL instruction with the Call Depth counter enabled
and the call depth count value (PSW.CDC.COUNT) at its maximum value. Call Depth
Counting guards against context list depletion, by enabling the OS to detect ‘runaway
recursion’ in executing tasks.

CDU - Call Depth Underflow (TIN 3)
A program attempted to execute a RET (return) instruction with the Call Depth counter
enabled and the call depth count value (PSW.CDC.COUNT) at zero. A call depth
underflow does not necessarily reflect a software error in the currently executing task.
An OS can achieve finer granularity in call depth counting by using a deliberately narrow
Call Depth Counter, and incrementing or decrementing a separate software counter for
the current task on each call depth overflow or underflow trap. A program error would be
indicated only if the software counter were already zero when the CDU trap occurred.

FCU - Free Context List Underflow (TIN 4)
The FCU trap is taken when a context save operation is attempted but the free context
list is found to be empty (i.e. the FCX register contents are null). The FCU trap is also
taken if any error is encountered during a context save or restore operation. The context
operation cannot be completed. Instead a forced jump is made to the FCU trap handler
and D15 updated with the FCU TIN value.
In failing to complete the context save or restore, architectural state is lost, so the
occurrence of an FCU trap is a non-recoverable system error. The FCU trap handler
should ultimately initiate a system reset.

CSU - Call Stack Underflow (TIN 5)
Raised when a context restore operation is attempted and when the contents of the PCX
register were null.This trap indicates a system software error (kernel or OS) in task setup
or context switching among software managed tasks (SMTs). No software error or
combination of errors in a user task can generate this condition, unless the task has been
allowed write permission to the context save areas which, in itself, can be regarded as a
system software error.

CTYP - Context Type (TIN 6)
Raised when a context restore operation is attempted but the context type, as indicated
by the PCXI.UL bit, is incorrect for the type of restore attempted; i.e. a restore lower
context is attempted when PCXI.UL == 1, or a restore upper context is attempted when
PCXI.UL == 0. As with the CSU trap, this indicates a system software error in context list
management.
 V1.0 2012-02 User Manual (Volume 1) 6-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
NEST - Nesting Error (TIN 7)
A program attempted to execute an RFE (return from exception) instruction with the Call
Depth counter enabled and the call depth count value (PSW.CDC.COUNT) non-zero.
The return from an interrupt or trap handler should normally occur within the body of the
interrupt or trap handler itself, or in code to which the handler has branched, rather than
code called from the handler. If this is not the case there will be one or more saved
contexts on the residual call chain that must be popped and returned to the free list,
before the RFE can be legitimately issued.

6.3.5 System Bus and Peripheral Errors (Trap Class 4)

PSE - Program Fetch Synchronous Error (TIN 1)
The PSE trap is raised when:
• A bus error1) occurred because of an instruction fetch.
• An instruction fetch targets a segment that does not have the code fetch property.

See “Physical Memory Attributes (PMA)” on Page 8-3.

DSE - Data Access Synchronous Error (TIN 2)
The DSE trap is raised when:
• Whenever a bus error occurs because of a data load operation.
• In the case of a data load operation from Data scratchpad RAM (DSPR)

(“Scratchpad RAM” on Page 8-5) where the access is beyond the end of the
memory range.

• In the case of an error during the data load phase of a data cache refill.
Note: There are implementation-dependent registers for DSE which can be interrogated

to determine the source of the error more precisely. Refer to the User's Manual for
a specific TriCore implementation for more details.

DAE - Data Access Asynchronous Error (TIN 3)
The DAE trap is raised when the memory system reports back an error which cannot
immediately be linked to a currently executing instruction. Generally this means an error
returned on the system bus from a peripheral or external memory.
This DAE trap is raised when:
• A bus error occurred because of a data store operation.
• There is an error caused by a cache management instruction.

1) A bus fetch error is also generated for an instruction fetch to the data scratch pad RAM region (D000 0000H
to D3FF FFFFH) when the memory access is outside the range of the actual scratchpad RAMs.
 V1.0 2012-02 User Manual (Volume 1) 6-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
• There is an error caused by a cache line writeback.
Note: There are implementation-dependent registers for DAE which can be interrogated

to determine the source of the error more precisely. Refer to the User's Manual for
a specific TriCore implementation for more details.

CAE - Coprocessor Trap Asynchronous Error (TIN 4)
This CAE asynchronous trap is generated by a coprocessor to report an error.
Examples of typical errors that can cause a CAE trap are unimplemented coprocessor
instructions and arithmetic errors (as found in the Floating Point Unit for example).
CAE is shared amongst all coprocessors in a given system. A trap handler must
therefore inspect all coprocessors to determine the cause of a trap.

PIE - Program Memory Integrity Error (TIN 5)TriCore 1.6
The PIE trap is raised whenever an uncorrectable memory integrity error is detected in
an instruction fetch. The trap is synchronous to the erroneous instruction. A PIE trap is
raised if any element within the fetch group contains an unrecoverable error. Hardware
is not required to localise the error to a particular instruction.
An implementation may provide additional registers that can be interrogated to
determine the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.

DIE - Data Memory Integrity Error (TIN 6)TriCore 1.6
The DIE trap is raised whenever an uncorrectable memory integrity error is detected in
a data access.
Implementations may choose to implement the DIE trap as either an asynchronous or
synchronous trap.
A DIE trap is raised if any element accessed by a load or store contains an uncorrectable
error. Hardware is not required to localise the error to the access width of the operation.
An implementation may provide additional registers that can be interrogated to
determine the source of the error more precisely. Refer to the User manual for a specific
Tricore implementation for more details.

TAE - Temporal Asynchronous Error (TIN 7) (TriCore 1.6)
The TAE asynchronous trap is raised by the temporal protection system whenever an
active timer decrements to zero. this may b e used to guard against task overrun in time
critical applications.
 V1.0 2012-02 User Manual (Volume 1) 6-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6.3.6 Assertion Traps (Trap Class 5)

OVF - Arithmetic Overflow (TIN 1)
Raised by the TRAPV instruction, if the overflow bit in the PSW is set (PSW.V == 1).

SOVF - Sticky Arithmetic Overflow (TIN 2)
Raised by the TRAPSV instruction, if the sticky overflow bit in the PSW is set
(PSW.SV == 1).

6.3.7 System Call (Trap Class 6)

SYS - System Call (TIN = 8-bit unsigned immediate constant in SYSCALL)
The SYS trap is raised immediately after the execution of the SYSCALL instruction, to
initiate a system call. The TIN that is loaded into D[15] when the trap is taken is not fixed,
but is specified as an 8-bit unsigned immediate constant in the SYSCALL instruction.
The return address points to the instruction immediately following the SYSCALL.

6.3.8 Non-Maskable Interrupt (Trap Class 7)

NMI - Non-Maskable Interrupt (TIN 0)
The causes for raising a Non-Maskable Interrupt are implementation dependent.
Typically there is an external pin that can be used to signal the NMI, but it may also be
raised in response to such things as a watchdog timer interrupt, or an impending power
failure. Refer to the User's Manual for a specific TriCore implementation for more details.

6.3.9 Debug Traps

BBM - Break Before Make / BAM - Break After Make
Please refer to the Core Debug Controller chapter for information on debug traps. See
“Core Debug Controller (CDC)” on Page 12-1.
 V1.0 2012-02 User Manual (Volume 1) 6-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6.4 Exception Priorities
The priority order between an asynchronous trap, a synchronous trap, and an interrupt
from the software architecture model, is as follows:
1. Asynchronous trap (highest priority).
2. Synchronous trap.
3. Interrupt (lowest priority).
The following trap rules must also be considered:
1. The older the instruction in the instruction sequence which caused the trap, the

higher the priority of the trap. All potential traps with lower priorities are void.
2. Attempting to save a context with an empty free context list (FCX = 0) results in a

FCU (Free Context List Underflow) trap. This trap takes priority over all other
exceptions.

3. When the same instruction causes several synchronous traps anywhere in the
pipeline, priorities follow those shown in the table below.

Table 6-2 Synchronous Trap Priorities
Priority Type of Trap
Instruction Fetch Traps
1 Breakpoint trap or halt - BBM (Trigger on PC)
2 VAF-P1)

3 VAP-P1)

4 MPX
5 PSE
6 PIE
Instruction Format Traps
7 IOPC
8 OPD
9 UOPC
Instruction Traps
10 Breakpoint trap or halt - BBM (Trigger on Address, MxCR, Debug)
11 PRIV
12 GRWP
13 SYS
Context Traps
14 FCD
 V1.0 2012-02 User Manual (Volume 1) 6-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
Table 6-2 Synchronous Trap Priorities (cont’d)

15 FCU (Synchronous)
16 CSU
17 CDO
18 CDU
19 NEST
20 CTYP
Data Memory Access Traps
21 MEM (Data address)
22 ALN
23 MPN
24 VAF-D
25 VAP-D
26 MPR
27 MPW
28 MPP
29 DSE
General Data Traps
30 SOVF
31 OVF
32 Breakpoint trap or halt - BAM
1) Only applicable if an MMU is present and enabled.

Table 6-3 Asynchronous Trap Priorities
Priority Asynchronous Traps
1 NMI
2 DAE1)

1) DAE is used for store errors.

3 CAE
4 TAE
5 DIE

Priority Type of Trap
 V1.0 2012-02 User Manual (Volume 1) 6-17

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
6.5 Trap Control Registers

Base Trap Vector Table Pointer (BTV)
The BTV contains the base address of the trap vector table. When a trap occurs, the
entry address into the trap vector table is generated from the Trap Class of that trap,
left-shifted by 5 bits and then ORd with the contents of the BTV register. The left-shift of
the Trap Class results in a spacing of 8 words (32 bytes) between the individual entries
in the vector table.
Note: This register is ENDINIT protected.

BTV
Base Trap Vector Table Pointer (FE24H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BTV

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTV RES

rw -

Field Bits Type Description
BTV [31:1] rw Base Address of Trap Vector Table

The address in the BTV register must be aligned to an
even byte address (halfword address). Also, due to the
simple ORing of the left-shifted trap identification number
and the contents of the BTV register, the alignment of the
base address of the vector table must be to a power of two
boundary.
There are eight different trap classes, resulting in Trap
Classes from 0 to 7. The contents of BTV should therefore
be set to at least a 256 byte boundary (8 Trap Classes * 8
word spacing).

RES 0 - Reserved
 V1.0 2012-02 User Manual (Volume 1) 6-18

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
Program Synchronous Error Trap Register (PSTR)(
Implementations may provide information on the type of program synchronous error in
the PSTR register. The contents of the register are implementation specific.

PSTR
Program Synchronous Error Trap Register (9200H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 6-19

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
Data Synchronous Error Trap Register (DSTR)
Implementations may provide information on the type of data synchronous error in the
DSTR register. The contents of the register are implementation specific.

DSTR
Data Synchronous Error Trap Register (9010H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 6-20

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
Data Asynchronous Error Trap Register (DATR)
Implementations may provide information on the type of data asynchronous error in the
DATR register. The contents of the register are implementation specific.

DATR
Data Asynchronous Error Trap Register (9018H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 6-21

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Trap System
Data Error Address Register (DEADD)
Implementations may provide information on the location of the data error in the DEADD
register. The contents of the register are implementation specific.

DEADD
Data Error Address Register (901CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 6-22

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
7 Memory Integrity Error Mitigation
This chapter describes the architectural features used to support the mitigation of
memory integrity errors within the local memories of TriCore® processors.

7.1 Memory Integrity Error Classification
Memory integrity errors are classified as being either Correctable or Uncorrectable.

Uncorrectable Memory Integrity Error
If hardware is not able to provide the expected data to the core on accessing a memory
element containing a memory integrity error, the memory integrity error is defined as
being uncorrectable.

Correctable Memory Integrity Error
If hardware is able to provide the expected data to the core on accessing a memory
element containing a memory integrity error, the memory integrity error is defined as
being correctable.
Correctable memory integrity errors are further catagorised as either Resolved or
Unresolved. Correctable memory integrity errors always provide the correct data to the
core. As part of the correction process hardware may also update the erroneous source
data in memory with the corrected data. Such a memory integrity error is defined as
being Resolved. If the erroneous source data in memory is not updated the memory
integrity error is defined as being Unresolved.
 V1.0 2012-02 User Manual (Volume 1) 7-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
7.2 Memory Integrity Error Traps
When an uncorrectable memory integrity error is encountered either a PIE (Program
Memory Integrity Error) or DIE (Data Memory Integrity Error) trap is raised.

7.2.1 Program Memory Integrity Error (PIE)
The PIE trap is raised when an uncorrectable memory integrity error is detected in an
instruction fetch from a local memory. The trap is synchronous to the erroneous
instruction. The trap is of Class 4 and TIN 5.
A PIE trap is raised if any element within the fetch group contains an unrecoverable error.
Hardware is not required to localise the error to a particular instruction.
Note: Implementation specific registers that can be interrogated to more precisely

determine the source of the error. Refer to the User manual for a specific Tricore
product for details.

7.2.2 Data Memory Integrity Error (DIE)
The DIE trap is raised whenever an uncorrectable memory integrity error is detected in
a data access to a local memory. The trap is of Class 4 and TIN 6.
A TriCore implementation may choose to implement the DIE trap as either an
asynchronous or synchronous trap.
A DIE trap is raised if any element accessed by a load/store contains an uncorrectable
error. Hardware is not required to localise the error to the access width of the operation.
Note: Implementation specific registers can be interrogated to more precisely determine

the source of the error. Refer to the User manual for a specific Tricore product for
more details.
 V1.0 2012-02 User Manual (Volume 1) 7-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
7.3 Registers

7.3.1 Error Information Registers
To provide information for memory integrity error handling and debug, a number of
implementation specific registers are provided. The contents of these registers are
implementation specific.

Program Integrity Error Trap Register (PIETR)
This register contains information allowing software to localise the source of the last
detected program memory integrity error.

PIETR
Program Integrity Error Trap Register

(9214H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Implementatio
n Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 7-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
Program Integrity Error Address Register (PIEAR)
The PIEAR register contains the address accessed by the last operation that caused a
program memory integrity error.

PIEAR
Program Integrity Error Address Register

(9210H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Implementatio
n Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 7-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
Data Integrity Error Trap Register (DIETR)
The DIETR register contains information allowing software to localise the source of the
last detected data memory integrity error.

DIETR
Data Integrity Error Trap Register

(9024H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Implementatio
n Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 7-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
Data Integrity Error Address Register (DIEAR)
The DIEAR register contains the address accessed by the last operation that caused a
data memory integrity error.

DIEAR
Data Integrity Error Address Register

(9020H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Implementatio
n Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 7-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
7.4 Summary
A detected memory integrity error in local instruction memory will lead to either:
• A correctable error
• An uncorrectable error triggering a PIE trap
A detected memory integrity error in local data memory will lead to either:
• A correctable error
• An uncorrectable error triggering a DIE trap
The actual method used for the detection of memory integrity errors is implementation
dependent.
 V1.0 2012-02 User Manual (Volume 1) 7-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
 V1.0 2012-02 User Manual (Volume 1) 7-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
 V1.0 2012-02 User Manual (Volume 1) 7-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Integrity Error Mitigation
 V1.0 2012-02 User Manual (Volume 1) 7-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8 Address Map and Memory Configuration.
This chapter describes the TriCore® physical address map and the architectural aspects
of the memory system.

8.1 Overview
The Tricore Architecture treats the 4 GBytes (32-bit) of physical address space as being
divided into 16 equally sized 256MByte segments. These segments are numbered from
0H to FH and are identified by the upper 4 bits of the address. Different segments may be
configured to have different access characteristics as described in this chapter.

8.2 Scratchpad RAM
The TriCore architecture supports the use of closely coupled SRAMs known as
scratchpad RAMs. Separate SRAMs are supported for both program and data. The
program scratchpad RAMs (PSPR) are located in segment CH. The data scratchpad
RAMs (DSPR) are located in segment DH

The size of the scratchpad RAMs is implementation dependent. Access to a segment
outside of the implemented memory size will result in a trap.
In a multiprocessor system the DSPR and PSPR memories of all CPUs are accessible
via the DSPR and PSPR image regions in segments 0H to 7H.

Table 8-1 Scratchpad RAM segments
Segment Properties
DH DSPR region
CH PSPR region
7H CPU-0 PSPR and DSPR memory image region
6H CPU-1 PSPR and DSPR memory image region
5H CPU-2 PSPR and DSPR memory image region
4H CPU-3 PSPR and DSPR memory image region
3H CPU-4 PSPR and DSPR memory image region
2H CPU-5 PSPR and DSPR memory image region
1H CPU-6 PSPR and DSPR memory image region
0H CPU-7 PSPR and DSPR memory image region
 V1.0 2012-02 User Manual (Volume 1) 8-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8.3 Address Segments and Memory Access Types
The 4 GBytes (32-bit) of physical address space is divided into 16 equally sized
256MBytes segments. Each segment is selectable as being either peripheral space,
cached or non-cached memory. The cacheability of a segment is independently
selectable for code fetches and data accesses. The access characteristics (Access
Types) of each segment are selected by the Programmable Memory Access Registers
(PMA0, PMA1 and PMA2).

8.3.1 Memory Access Types
The TriCore architecture defines three possible memory access types:-

8.3.1.1 Cached memory
Features of cached memory:-
• The cacheability of a segment is independently selectable for code fetches and data

accesses
• Code fetches to the memory will be cached by the CPU if a code cache is present

and enabled.The CPU is permitted to perform speculative code fetches to the
memory

• Data accesses to the memory will be cached by the CPU if a data cache is present
and enabled.The CPU is permitted to perform speculative data fetches to the
memory.

8.3.1.2 Non-cached Memory
Features of non-cached memory:-
• The cacheability of a segment is independently selectable for code fetches and data

accesses
• Code fetches to the memory will not cached by the CPU. The CPU is permitted to

perform speculative code fetches to the memory
• Data accesses to the memory will not cached by the CPU. The CPU is permitted to

perform speculative data accesses to the memory.

8.3.1.3 Peripheral Space
Features of peripheral space :-
• Only Supervisor and User-1 mode data accesses are permitted.
• User-0 mode data accesses are not permitted and result in an MPP trap.
• Code accesses are not permitted and will result in a PSE trap
• All CPU accesses to the memory segment are non-cached.
• All CPU accesses to the memory segment are non-speculative.
• Context operations and accesses using circular addressing are not permitted.
 V1.0 2012-02 User Manual (Volume 1) 8-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8.3.2 Speculation
An implementation may perform both necessary and speculative accesses.
• Necessary accesses are those required to correctly compute the program and any

implementation or simulation of the program execution must perform these
accesses.

• Speculative accesses are those that an implementation may make in order to
improve performance either in correct or incorrect anticipation of a necessary access.

Data read accesses and Fetch accesses to both cached and non-cached memory may
be speculative. The processor may read entire cache lines in physical memory and place
them in a buffer for future access. The order of accesses is not guaranteed.
The processor never performs speculative write accesses which are visible in a memory
region.

8.3.3 Cacheability of Segments
Cacheability of segments is subject to the following restrictions.
• Peripheral space may never be cached.
• The contents of the local DSPR may never be held in the local data cache
• The contents of the local PSPR may never be held in the local program cache.
These restrictions are enforced by hardware independent of the settings of PMA0 or
PMA1.

8.3.4 Default Memory types for all segments
The default defined memory types are shown in the following table:

Table 8-2 Default Memory Access Types for all Segments
Segment Attributes
FH Peripheral Space.
EH Peripheral Space.
DH Non-cacheable Memory.
CH Non-cacheable Memory.
BH Non-cacheable Memory.
AH Non-cacheable Memory.
9H Cacheable Memory.
8H Cacheable Memory.
7H - 0H Non-cacheable Memory.
 V1.0 2012-02 User Manual (Volume 1) 8-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8.4 Memory Configuration Register Definitions

8.4.1 Programmable Memory Access Register-0 (PMA0)
The PMA0 register defines the cacheability of data accesses for each segment in the
physical address space. Segment-F is constrained to be peripheral space in all
implementations and hence is non-cacheable. Segment-D is constrained to be non-
cacheable for data accesses in all implementations. The data cacheability of all other
segments is implementation defined.
Note that when changing the value of the PMA0 register, an implementation may require
additional operations to be performed in order to maintain coherency of the processors
view of memory.
Note: This register is ENDINIT protected

PMA0
Programmable Memory Access Register-0 (8100H) Reset Value: 0000 0300

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 DAC 0 DAC

r rw r rw

Field Bits Type Description
RES [31:16] r Reserved
DAC 15 r Segment-F non-cacheable
DAC 14 rw Segment EH Data Accesses Cacheability.
DAC 13 r Segment-D non-cacheable
DAC [12:0] rw Segment CH - 0H Data Accesses Cacheability.
 V1.0 2012-02 User Manual (Volume 1) 8-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8.4.2 Programmable Memory Access Register-1 (PMA1)
The PMA1 register defines the cacheability of code accesses for each segment in the
physical address space. Segment-F is constrained to be peripheral space in all
implementations and hence is non-cacheable. Segment-C is constrained to be non-
cacheable for code accesses in all implementations. The code cacheability of all other
segments is implementation defined.
Note that when changing the value of the PMA1 register, an implementation may require
additional operations to be performed in order to maintain coherency of the processors
view of memory.
Note: This register is ENDINIT protected

PMA1
Programmable Memory Access Register-1 (8104H) Reset Value: 0000 0300

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 CAC 0 CAC

r rw r

Field Bits Type Description
RES [31:16] r Reserved
CAC [15] r Segment-F non-cacheable
CAC [14:13] rw Segment EH - DH Code Accesses Cacheability.
CAC 12 r Segment-C non-cacheable
CAC [11:0] rw Segment BH - 0H Code Accesses Cacheability
 V1.0 2012-02 User Manual (Volume 1) 8-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8.4.3 Programmable Memory Access Register-2 (PMA2)
The PMA2 register defines the Peripheral Space designator for each segment in the
physical address space. Segment-F is constrained to be peripheral space in all
implementations The Peripheral Space Designator of all other segments is
implementation defined and may be read-write or read-only.
Note that when changing the value of the PMA2 register, an implementation may require
additional operations to be performed in order to maintain coherency of the processors
view of memory.
If bit[n] of the PMA2 register is set then the segment-n will be seen as uncacheable
independent of the settings of PMA0 and PMA1.
Note: This register is ENDINIT protected

PMA2
Programable Memory Access Register-2 (8108H) Reset Value: 0000 C000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 PSD

r rw

Field Bits Type Description
RES [31:16] r Reserved
PSD [15] r Segment-F Peripheral Space
PSD [14:0] rw Segment EH - 0H Peripheral Space designator.
 V1.0 2012-02 User Manual (Volume 1) 8-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8.4.4 Program Memory Configuration Registers (PCON0, PCON1,
PCON2)

TriCore Implementations may control and provide information on the status and
configuration of the program cache and scratch memories via the program memory
configuration registers. Three registers are architecturally defined for this purpose;
PCON0, PCON1 and PCON2.
The contents of these registers (where implemented) is implementation dependent.
Implementations may ENDINIT protect these registers.

PCON0
Program Memory Configuration Register 0(920CH)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 8-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
PCON1
Program Memory Configuration Register 1(9204H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific

PCON2
Program Memory Configuration Register 2(9208H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 8-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
8.4.5 Data Memory Configuration Registers (DCON0, DCON1,
DCON2)

TriCore Implementations may control and provide information on the status and
configuration of the data cache and scratch memories via the data memory configuration
registers. Three registers are architecturally defined for this purpose; DCON0, DCON1
and DCON2.
The contents of these registers (where implemented) is implementation dependent.
Implementations may ENDINIT protect these registers.

DCON0
Data Memory Configuration Register 0(9040H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 8-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Address Map and Memory Configuration.
DCON1
Data Memory Configuration Register 1 (9008H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific

DCON2
Data Memory Configuration Register 2 (9000H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Implementation Specific

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Implementation Specific

-

Field Bits Type Description
Impleme
ntation
Specific

[31:0] - Implementation Specific
 V1.0 2012-02 User Manual (Volume 1) 8-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
9 Memory Protection System
The TriCore® protection system provides the essential features to isolate errors. The
system is unobtrusive, imposing little overhead and avoids non-deterministic run-time
behaviour.
The protection system incorporates hardware mechanisms that protect user-specified
memory ranges from unauthorized read, write, or instruction fetch accesses.
The protection hardware can also facilitate application debugging.

9.1 Memory Protection Subsystems
The following subsystems are involved with Memory Protection.

The Trap System
A trap occurs as a result of an event such as a Non-Maskable Interrupt (NMI), an
instruction exception or illegal access.
The TriCore architecture contains eight trap classes and these are further classified as
synchronous or asynchronous, hardware or software.
For more information see “Trap System” on Page 6-1.

The I/O Privilege Level
There are three I/O modes: User-0 mode, User-1 mode and Supervisor mode.
The User-1 mode allows application tasks to directly access non-critical system
peripherals. This allows systems to be implemented efficiently, without the loss of
security inherent in running in Supervisor mode. (The default behaviour of User-1 mode
may be overriden by the system control register).
For more information see “Access Privilege Level Control (I/O Privilege)” on
Page 3-10.

Memory Protection
Provides control over which regions of memory a task is allowed to access, and what
types of access is permitted.
• Range Based
The range-based memory protection system is designed for small and low cost
applications to provide coarse-grained memory protection for systems that do not require
virtual memory. This range-based system is detailed in this chapter.
• Page Based
 V1.0 2012-02 User Manual (Volume 1) 9-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
For applications that require virtual memory, the optional Memory Management Unit
(MMU) supports a familiar model that gives each memory page its own access
permissions.

Effective Addresses
Effective addresses are translated into physical addresses using one of two translation
mechanisms:
• Direct translation.
• Page Table Entry (PTE) based translation (Optional MMU only).
Memory protection for addresses that undergo direct address translation is enforced
using the range-based memory protection system described in this chapter.
 V1.0 2012-02 User Manual (Volume 1) 9-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
9.2 Range Based Memory Protection
The range-based memory protection system is designed for small and low cost
applications to provide memory protection for systems that do not require virtual
memory.
This section describes:
• Protection Ranges
• Access Permissions
• Protection Sets
• Associating Protection Ranges with Protection Sets

Protection Ranges
A Protection Range is a continuous part of address space for which access permissions
may be specified.
A Protection Range is defined by the Lower Boundary and the Upper Boundary. An
address belongs to the range if:
• Lower Boundary <= Address < Upper Boundary
There are two groups of Protection Ranges:
• Data Protection Ranges specify data access permissions
• Code Protection Ranges specify instruction fetch permissions
The number of code and data protection ranges is implementation dependent, limited to
a minimum of four and a maximum of 16 for each.
The granularity for lower and upper boundaries is 8-bytes.
The three least significant bits of the Code/Data Protection upper and lower bound
registers are not writeable and always return zero.
 V1.0 2012-02 User Manual (Volume 1) 9-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
Access Permissions
Access Permissions define the kind of access allowed to a protection range.
The available types are:
• Data Read
• Data Write
• Instruction Fetch
Each access type can be separately permitted by setting the corresponding Access Flag.

Protection Sets
A complete set of access permissions defined for the whole address space used, is
called a Protection Set.
Each Protection Set consists of:
• A selection of execute enabled Code Protection Ranges
• A selection of write enabled Data protection Ranges
• A selection of read enabled Data protection Ranges
The Protection Set defines both data access permissions and instruction fetch
permissions.
In a Protection Set each data protection range has associated Read Enable and Write
Enable flags. Each Code Protection Range has an associated Execution Enable flag.
The number of memory protection sets provided is specific to each TriCore
implementation, limited to a minimum of two and a maximum of four.
Having multiple protection sets allows for a rapid change of the whole set of access
permissions when switching between User and Supervisor mode, or between different
User tasks.
At any given time one of the sets is the current protection register set which determines
the legality of memory accesses by the current task. The PSW.PRS field determines the
current protection register set number.

9.2.1 Access Permissions for Intersecting Memory Ranges
The permission to access a memory location is the OR of the memory range
permissions.

Table 9-1 Access Types
Access Type Flag Name Short Name Affected Operation
Data Read Read Enable RE Load
Data Write Write Enable WE Store
Instruction Fetch Execution Enable XE Instruction Fetch
 V1.0 2012-02 User Manual (Volume 1) 9-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
If one of the ranges allows it, the memory access is permitted. This means that when two
ranges intersect, the intersecting regions will have the permission of the most permissive
range.
For example:
• Range A is set for read/write permission
• Range B is set for read-only permission
• Therefore the intersecting region of A and B will be read/write
Nesting of ranges can be used to allow read/write access to a subrange of a larger range
in which the current task is allowed read access.

9.2.2 Crossing Protection Boundaries
A memory access can straddle two regions defined by the protection system. The
following figure shows a memory access (code or data) crossing the boundary of a
permitted region and a ‘not permitted’ region of memory. In this situation it is
implementation defined (not architecturally defined) as to whether or not a memory
protection trap is taken.

Figure 9-1 Protection Boundaries

Note: To ensure deterministic behaviour in all implementations of TriCore, a region at
least twice the size of the largest memory accesses, minus one byte, should be
left as a buffer between each memory protection region. Some implementations
may require less spacing between buffers, please refer to implementation specific
documentation for details.

TC1030

A B C

Permitted Not Permitted
 V1.0 2012-02 User Manual (Volume 1) 9-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
9.3 Using the Range Based Memory Protection System
When the protection system is enabled, every memory access (read, write or execute)
is checked for legality before the access is performed. The legality is determined by all
of the following:
• The Protection Enable bit in the SYSCON register (SYSCON.PROTEN)
• The currently selected protection register set (PSW.PRS)
• The ranges selected in the protection register set
• The access permissions set for the ranges selected for the protection set

9.3.1 Protection Enable Bit
For the memory protection system to be active, the Protection Enable bit
(SYSCON.PROTEN) must be set to one (SYSCON.PROTEN == 1).
If the memory protection system is disabled (SYSCON.PROTEN == 0), then any access
to any memory address is permitted.

9.3.2 Set Selection
At any given time, one of the sets is the current protection register set which determines
the legality of memory accesses by the current task or Interrupt Service Routine (ISR).
The PSW.PRS field indicates the current Protection Register Set number.

9.3.3 Address Range
Data addresses (read and write accesses) are checked against the data address range
table.
Instruction fetch addresses are checked against the code address range tables.
In order for data to be read from program space, there must be an entry in the data
address range table that covers the address being read. Conversely there must be an
entry in the code address range table that covers the instruction being read.
The protection system does not differentiate between access permission levels. The
data and code protection settings have the same effect, whether the permission level is
currently set to Supervisor, User-1 or User-0 mode.
For instruction fetches, the PC value for the fetch is checked against the execute
enabled code protection ranges for the current protection set. When a PC is found to fall
outside of all of the execute enabled ranges, then permission for the access is denied.
When a PC is found to fall within an execute enabled range the access is permitted.
For load operations, data address values are checked against the read enabled data
protection ranges for the current protection set. When an address is found to fall outside
of all of the selected ranges then permission for the access is denied. When an address
is found to fall within an enabled range the access is permitted.
 V1.0 2012-02 User Manual (Volume 1) 9-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
For store operations, data address values are checked against the write enabled data
protection ranges for the current protection set. When an address is found to fall outside
of all of the selected ranges then permission for the access is denied. When an address
is found to fall within an enabled range the access is permitted.
Supervisor mode does not automatically disable memory protection. The Protection
register set that is selected for Supervisor mode tasks (Set-0) will normally be set up to
allow write access to regions of memory that are protected from User mode access. In
addition Supervisor mode tasks can execute instructions to change the protection maps,
or to disable the protection system entirely. As Supervisor mode does not implicitly
override memory protection it is possible for a Supervisor mode task to take a memory
protection trap.
Saves or restores of contexts to the context save area do not require the permission of
the protection system to proceed.

9.3.4 Traps
There are three traps generated by the range based memory protection system, each
corresponding to the three protection mode register bits:
• MPW (Memory Protection Write) trap = WE bit
• MPR (Memory Protection Read) trap = RE bit
• MPX (Memory Protection Execute) trap = XE bit
Refer to the Trap System chapter for a complete description of Traps.

9.3.5 Protection Register Naming Convention
Data Protection range registers are named as follows:
• DPRx_L - Defines the lower address boundary for data Range Pair x
• DPRx_U - Defines the upper address boundary for data Range Pair x
Code protection range registers are names as follows:
• CPRx_L- Defines the lower address boundary for code Range Pair x
• CPRx_U - Defines the upper address boundary for code Range Pair x
Note: x = implementation dependent.

9.3.6 Protection Set Enable Register Naming Convention
The protection set enable registers are named as follows:
• CPXE_n - Defines the execute permission enabled code protection ranges for set-n
• DPRE_n - Defines the read permission enabled data protection ranges for set-n
• DPWE_n - Defines the write permission enabled data protection ranges for set-n
Within each of these registers range-x has permissions enabled if bit-x of the register is
1 else permission is disabled. As the number of code and data protection ranges is
 V1.0 2012-02 User Manual (Volume 1) 9-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
implementation dependent the number of bits in these registers is also implementation
dependent
 V1.0 2012-02 User Manual (Volume 1) 9-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
9.4 Range Based Memory Protection Registers

Data Protection Range Register Upper Bound

DPRx_U (x=0-15)
Data Protection Range Register x Upper Bound

(C004H+x*8H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPPBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPPBND RES

rw r

Field Bits Type Description
UPPBND [31:3] rw DPRx_m Upper Boundary Address
RES [2:0] r Reserved

The three least significant bits are not writeable and
always return zero
 V1.0 2012-02 User Manual (Volume 1) 9-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
Data Protection Range Register Lower Bound

DPRx_L (x=0-15)
Data Protection Range Register x Lower Bound

(C000H+x*8H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOWBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOWBND RES

rw r

Field Bits Type Description
LOWBND [31:3] rw DPRx_m Lower Boundary Address
RES [2:0] r Reserved

The three least significant bits are not writeable and
always return zero
 V1.0 2012-02 User Manual (Volume 1) 9-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
Code Protection Range Register Upper Bound

CPRx_U (x=0-15)
Code Protection Range Register x Upper Bound

(D004H+x*8H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

UPPBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UPPBND RES

rw r

Field Bits Type Description
UPPBND [31:3] rw CPRx_n Upper Boundary Address

RES [2:0] r Reserved
The three least significant bits are not writeable and
always return zero
 V1.0 2012-02 User Manual (Volume 1) 9-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
Code Protection Range Register Lower Bound

CPRx_L (x=0-15)
Code Protection Range Register x Lower Bound

(D000H+x*8H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOWBND

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LOWBND RES

rw r

Field Bits Type Description
LOWBND [31:3] rw CPRx_n Lower Boundary Address
RES [2:0] r Reserved

The three least significant bits are not writeable and
always returns zero.
 V1.0 2012-02 User Manual (Volume 1) 9-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
Data Protection Read Enable Set Configuration Register

DPRE_x (x=0-3)
Data Protection Read Enable Set Configuration Register x

(E010H+x*4H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RE[n]

rw

Field Bits Type Description
RE[n] [15:0] rw Data protection Range Read Enable

0 : Data read accesses to data protection range[n]
 not permitted.
1 : Data read accesses to data protection range[n]
permitted.

RES [31:16] r Reserved
 V1.0 2012-02 User Manual (Volume 1) 9-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
Data Protection Write Enable Set Configuration Register

DPWE_x (x=0-3)
Data Protection Write Enable Set Configuration Register x

(E020H+x*4H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WE[n]

rw

Field Bits Type Description
WE[n] [15:0] rw Data protection Range Write Enable

0 : Data write accesses to data protection range[n]
 not permitted.
1 : Data write accesses to data protection range[n]
permitted.

RES [31:16] r Reserved
 V1.0 2012-02 User Manual (Volume 1) 9-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
Code Protection Execute Enable Set Configuration Register

CPXE_x (x=0-3)
Code Protection Execute Enable Set Configuration Register x

(E000H+x*4H)
Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

XE[n]

rw

Field Bits Type Description
XE[n] [15:0] rw Code protection Range Execute Enable

0 : Execute accesses to code protection range[n]
 not permitted.
1 : Execute accesses to code protection range[n]
permitted.

RES [31:16] r Reserved
 V1.0 2012-02 User Manual (Volume 1) 9-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Memory Protection System
 V1.0 2012-02 User Manual (Volume 1) 9-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Temporal Protection System
10 Temporal Protection System
The TriCore® Temporal Protection System is used to guard against run-time over-run.
The system consists of three independent decrementing 32 bit counters, arranged to
generate a Temporal Asynchronous Exception (TAE) trap (Class-4, Tin-7), on
decrement to zero.
The Temporal Protection System is enabled by setting the TPROTEN bit in the SYSCON
register.
A timer is activated by writing a non-zero value to the TPS_TIMERx register.
After activation, the timer will decrement by one on each CPU clock cycle.
The timer will continue to decrement until either the count value reaches zero, or the
timer is de-activated by writing zero to the TPS_TIMERx register. The current timer value
can be read from the TPS_TIMERx register.
On a count decrement from one to zero, the associated TEXP bit in the TPS_CON
register is set. The TEXP bit is cleared by any write to the associated TPS_TIMERx
register.
On setting any TEXP bit in the TPS_CON register, the TTRAP bit in the same register is
set. A TAE trap is raised whenever the TTRAP bit transitions from zero to one.
The TTRAP bit is cleared by any write to the TPS_CON register. However attempting to
clear the register while any TEXP bit is set will cause the TTRAP bit to be re-enabled and
a new TAE trap is generated. This ensures that no time-out event is missed during the
handling of another TAE trap.
 V1.0 2012-02 User Manual (Volume 1) 10-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Temporal Protection System
10.1 Temporal Protection System Registers

TPS Timer Register
Definition of the Temporal Protection System Timer register.

TPS_TIMERx (x=0-2)
TPS Timer Register x (E404+x*4H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Timer

rwh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Timer

rwh

Field Bits Type Description
Timer [31:0] rwh Temporal Protection Timer

Writing zero de-activates the Timer.
Writing a non-zero value starts the Timer.
Any write clears the corresponding TPS_CON.TEXP flag.
Read returns the current Timer value.
 V1.0 2012-02 User Manual (Volume 1) 10-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Temporal Protection System
TPS Control Register
Definition of the Temporal Protection System Control register.

TPS_CON
TPS Control Register (E400H) Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES TTR
AP

- rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES TEX
P2

TEX
P1

TEX
P0

- rh rh rh

Field Bits Type Description
RES [31:17] - Reserved
TTRAP 16 rh Temporal Protection Trap

If set, indicates that a TAE trap has been requested. Any
subsequent TAE traps are disabled.
A write clears the flag and re-enables TAE traps.

RES [15:2] - Reserved
TEXP2 2 rh Timer1 Expired flag

Set when the corresponding timer expires.
Cleared on any write to the TPS_TIMER2 register.

TEXP1 1 rh Timer1 Expired flag
Set when the corresponding timer expires.
Cleared on any write to the TPS_TIMER1 register.

TEXP0 0 rh Timer0 Expired flag
Set when the corresponding timer expires.
Cleared on any write to the TPS_TIMER0 register.
 V1.0 2012-02 User Manual (Volume 1) 10-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Temporal Protection System
 V1.0 2012-02 User Manual (Volume 1) 10-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11 Floating Point Unit (FPU)
This chapter describes the TriCore® Floating Point Unit (FPU) architecture. The FPU is
an optional component in TriCore configurations. It need not be present in every system
that uses the core, and even when present it can be disabled.
The optional FPU is an IEEE-754 compatible floating-point unit to accompany the
TriCore instruction set.

11.1 Functional Overview
The FPU executes single precision IEEE-754 compatible floating-point arithmetic
instructions and supports the following feature set:
• Floating-point add, subtract, multiply, MAC, and divide instructions.
• Conversion to or from IEEE-754 single precision format from or to TriCore signed and

unsigned integers and 32-bit signed fractions (Q31 format).
• QSEED.F instruction used to obtain an approximate value intended for use in

Newton-Raphson iterations to perform a square-root operation.
• Comparison of two floating-point numbers.
• All four IEEE-754 rounding modes are implemented.
• Asynchronous traps can be generated on selected IEEE-754 exceptions (TriCore

1.3.1 and TriCore 1.6).

Restrictions
The FPU has the following restrictions and usage limitations:
• Only IEEE-754 single precision format is supported.
• IEEE-754 denormalized numbers are not supported for arithmetic operations.
• IEEE-754 compliant remainder function cannot be implemented using FPU

instructions because of the effects of multiple rounding when using a sequence of
individually rounded instructions.

• Fused multiply-and-accumulate operations (MACs) are not part of the IEEE-754
standard. Using FPU MAC operations can give different results from using separate
multiply and accumulate operations because the result is only rounded once at the
end of a MAC.

• Full compliance with the IEEE-754 standard is not achieved because denormal
numbers are not supported.

• If no FPU is present, then FPU instructions will cause a UOPC (unimplemented
opcode) trap.
 V1.0 2012-02 User Manual (Volume 1) 11-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11.2 IEEE-754 Compliance

11.2.1 IEEE-754 Single Precision Data Format

Figure 1 Single Precision IEEE-754 Floating-Point Format

The single precision IEEE-754 floating-point format has three sections: a sign bit, an
8-bit biased exponent, and a 23-bit fractional mantissa with an implied binary point
before bit 22. For normal numbers the mantissa has an implied 1 immediately to the left
of the binary point. Table 1 shows the different types of number representation in
IEEE-754 single precision format. In this table:
s = bit [31]: sign bit.
e = bits [30:23]: biased exponent.
f = bits [22:0]: fractional part of mantissa.

Note: Both signed values of zero are always treated identically and never produce
different results except different signed zeros.

Table 1 IEEE-754 Single Precision Representation Types
Condition Represented Value Description
0 < e < 255 (-1)s*2(e-127)*1.f Normal number.
e == 0 AND f != 0 (-1)s*2(-126)*0.f Denormal number.
e == 0 AND f == 0 (-1)s*0 Signed zero.
s == 0 AND e == 255 AND f == 0 + ∞ + infinity.
s == 1 AND e == 255 AND f == 0 - ∞ – infinity.
e == 255 AND f != 0 AND f[22] == 0 Signalling NaN1).

1) IEEE-754 does not define how to distinguish between signalling NaNs and quiet NaNs, but bit[22] has become
the standard way of doing this.

e == 255 AND f != 0 AND f[22] == 1 Quiet NaN1).

TC1043

31 22 0

S Biased Exp. Fraction
 V1.0 2012-02 User Manual (Volume 1) 11-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11.2.2 Denormal Numbers
Denormal numbers are not supported for arithmetic operations. With the exception of the
CMP.F instruction, all instructions replace denormal operands with the appropriately
signed zero before computation. Following computation, if a denormal number would
otherwise be the result, it is replaced with the appropriately signed zero.
Conceptually, the conventional order for making IEEE-754 computations is:
1. Compute result to infinite precision.
2. Round to IEEE-754 format.
This is replaced with:
1. Substitute signed zero for all denormal operands.
2. Compute result to infinite precision.
3. Round to IEEE-754 format.
4. Substitute signed zero for all denormal results.
This procedure has a subtle effect on underflow; see Round to Nearest: Denormals
and Zero Substitution, page 11-7.
Denormal numbers are supported only by the CMP.F instruction which makes
comparisons of denormal numbers in addition to identifying denormal operands.

11.2.3 NaNs (Not a Number)
NaNs (Not a Number) are bit combinations within the IEEE-754 standard that do not
correspond to numbers. There are two types of NaNs: signalling and quiet. The FPU
defines signalling NaNs to have bit 22 = ‘0’, and quiet NaNs to have bit 22 = ‘1’.
When invalid operations are performed (including operations with a signalling NaN
operand), FI is asserted and a quiet NaN is produced as the floating-point result. The
quiet NaN contains information about the origin of the invalid operation; see Invalid
Operations and their Quiet NaN Results, page 11-9.
IEEE-754 suggests that quiet NaNs should be propagated so that the result of an
instruction receiving a quiet NaN as an operand (with no signalling NaN operands)
should be that quiet NaN. The FPU does not propagate quiet NaNs in this way. The
result of an operation that has one (or more) quiet NaN operands and no signalling NaN
operands is always the quiet NaN 7FC00000H.
 V1.0 2012-02 User Manual (Volume 1) 11-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11.2.4 Underflow
Underflow occurs when the result of a floating-point operation is too small to store in
floating-point representation.
IEEE-754 requires two conditions to occur before flagging underflow:
• The result must be ‘tiny’.

– A result is ‘tiny’ if it is non-zero and its magnitude is < 2-126 (for single precision).
IEEE-754 allows this to be detected either before or after rounding.

• There must be a loss of accuracy in the stored result.
Loss of accuracy can be detected in two ways: either as a denormalization loss, or an
inexact result.
Denormalization loss occurs when the result is calculated assuming an unbounded
exponent, but is rounded to a normalized number using 23 fractional bits. If this rounded
result must be denormalized to fit into IEEE-754 format and the resultant denormalized
number differs from the normalized result with unbounded exponent range, then a
denormalization loss occurs.
An inexact result is one where the infinitely precise result differs from the value stored.
The FPU determines tininess before rounding and inexact results to determine loss of
accuracy.
In the case of the FPU, even if a denormal result would produce no loss of accuracy,
because it is replaced with a zero, accuracy is lost and underflow must be flagged.
Any tiny number that is detected must therefore result in a loss of accuracy since it will
either be a denormal that is replaced with zero or rounded up. Therefore underflow
detection can be simplified to tiny number detection alone; i.e. any non-zero unrounded
number whose magnitude is < 2-126.

11.2.5 Fused MACs
Fused multiply-and-accumulate operations (MACs) are not supported by the IEEE-754
standard. Using FPU MAC operations (MADD.F and MSUB.F) can give different results
from using separate multiply (MUL.F) and accumulate (ADD.F or SUB.F) operations
because the result is only rounded once at the end of a MAC.

11.2.6 Traps
IEEE-754 allows optional provision for synchronous traps to occur when exception
conditions occur. Under these circumstances the results returned by arithmetic
operations may differ from IEEE-754 requirements to allow intermediate results to be
passed to the trap handling routines. These traps are provided to assist in debugging
routines and operations.
FPU traps are asynchronous and therefore are not IEEE-754 compliant traps. Since
IEEE-754 traps are optional this does not cause any IEEE-754 non compliance.
 V1.0 2012-02 User Manual (Volume 1) 11-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11.2.7 Software Routines
Operations required for IEEE-754 compliance, but not implemented in the FPU
instruction set, are detailed in Table 2.

Table 2 IEEE-754 Operations Requiring Software Implementation
IEEE-754 Operation Suggested Implementation
Square root Newton-Raphson using QSEED.F instruction.
Remainder FPU instructions cannot be used to implement the

remainder function because of the errors that can occur
from multiple rounding. For reference, the IEEE method for
calculating remainder is given below. Note that rounding
must only occur on the conversion to integer, and for the
final result.
rem = x - (d * (FTOI(x/d)1)))
rem: remainder
x: dividend
d: divisor

1) Round to nearest.

Round to integer in
Floating-point format

ITOF(FTOI(x)).

Convert between binary
and decimal

-

 V1.0 2012-02 User Manual (Volume 1) 11-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11.3 Rounding
All four rounding modes specified in IEEE-754 are supported. The rounding mode is
selected using the RM field of the PSW (PSW[25:24]).

IEEE-754 defines the rounding modes in terms of representable results, in relation to the
‘infinitely precise’ result. The infinitely precise result is the mathematically exact result
that would be computed by the operation, if the number of mantissa and exponent bits
were unlimited.
• Round to nearest is defined as returning the representable value that is nearest to

the infinitely precise result. This is the default rounding mode that should be selected
when RTOS software initializes a task. See Round to Nearest: Even, page 11-7, for
further information.

• Round toward + ∞ is defined as returning the representable value that is closest to
and no less than the infinitely precise result.

• Round toward – ∞ is defined as returning the representable value that is closest to
and no greater than the infinitely precise result.

• Round toward zero is defined as returning the representable value that is closest to
and no greater in magnitude than the infinitely precise result. It is equivalent to
truncation.

The rounding mode can be changed by the UPDFL (Update Flags) instruction.
Rounding is performed at the end of each relevant FPU instruction, followed by the
replacement of all denormal numbers with the appropriately signed 0.
IEEE-754 does not specify the MAC instructions (MADD.F and MSUB.F) that combine
multiplication and addition in a single operation. The result from the multiply part of a
MAC instruction is not rounded before it is used in the addition in the FPU. Instead the
whole MAC is calculated with infinite precision and rounded at the end of the add. It is
therefore possible that the result from a MADD.F instruction will differ from the result that
would be obtained using the same operands in a MUL.F followed by an ADD.F.

Table 3 Rounding Mode Definition(PSW.RM)
Rounding Mode Value Mode
001)

1) Round to nearest is the default rounding mode.

Round to nearest.
01 Round toward + ∞
10 Round toward - ∞
11 Round toward zero.
 V1.0 2012-02 User Manual (Volume 1) 11-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
Rounding Mode Restored
The rounding mode is not restored on a RET (Return From Call) instruction. The
rounding mode is restored on an RFE (Return From Exception) instruction or an RFM
(Return From Monitor) instruction

11.3.1 Round to Nearest: Even
‘Round to nearest’ is defined as returning the representable value that is nearest to the
infinitely precise result. If two representable values are equally close (i.e. the infinitely
precise result is exactly half way between two representable values), then the one whose
LSB (Least Significant Bit) is zero is returned. This is sometimes known as rounding to
nearest even.
This is usually straight forward, but if the infinitely precise result is half way between two
representable numbers with different exponents, the result with the larger exponent is
always selected (the LSB of its mantissa is zero).
For example, if the infinitely precise result is:
1.111 1111 1111 1111 1111 1111 1000 0000 0000B * 20
This is half way between:
1.0000 0000 0000 0000 0000 000B * 21
and:
1.111 1111 1111 1111 1111 1111B * 20
The result with the larger exponent is returned.

11.3.2 Round to Nearest: Denormals and Zero Substitution
Following computation, results are first rounded to IEEE-754 representable numbers
and then the appropriately signed zero is substituted for any denormal results that may
have occurred. This produces some results that can seem counter intuitive.
Consider an infinitely precise result that has been computed and falls between the
smallest representable positive IEEE-754 normal number (1.000 … 000 * 2-126) and the
largest representable positive IEEE-754 denormal number (0.111 … 111 * 2-126).
• If the infinitely precise result is nearer to the normal number, or halfway between the

two, then the result must be rounded to the normal number.
• If the infinitely precise result is nearer to the denormal number, then the result is

rounded to the denormal value. Zero is then substituted for the denormal result.
The FPU architecture cannot produce denormal results, however the concept of
denormal numbers is important to the FPU. It would be wrong to assume that the
infinitely precise result should be rounded to the nearest FPU representable number, in
this case (+1.000 … 000 * 2-126) or (0). Such an implementation would mean that all
 V1.0 2012-02 User Manual (Volume 1) 11-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
unrounded results between (+1.000 … 000 * 2-126) and (+0.100 … 000 * 2-126) would be
rounded to the smallest representable positive IEEE-754 normal number.

11.3.3 Round Towards ± ∞: Denormals and Zero Substitution
Following computation results are first rounded to IEEE-754 representable numbers,
then the appropriately signed zero is substituted for any denormal results that may have
occurred. See Denormal Numbers, page 11-3.
According to the IEEE-754 definition of the rounding modes, when rounding towards +∞
(- ∞ the rounded result should not be less than (greater than) the infinitely precise result.
However if a positive (negative) result would otherwise be rounded to a denormal
number, it is then substituted for a zero. Therefore the returned result of zero is less than
(greater than) the infinitely precise result. The returned result appears to contradict the
definition of these rounding modes in this case.

11.4 Exceptions
The FPU implements all five IEEE-754 exceptions (invalid operation, overflow, divide by
zero, underflow, and inexact). When one of these exceptions occur the corresponding
exception flag in the PSW is asserted.

Asynchronous Traps ()
In TriCore 1.3.1 and TriCore 1.6 an asynchronous trap may optionally be taken when an
exception occurs, however IEEE-754 compliant traps are not implemented, see
Section 11.5 Asynchronous Traps () (Page 11-12).

IEEE-754 Exception Flags
The IEEE-754 exception flags are stored as part of the PSW register as shown in the
following table. In accordance with IEEE-754, each bit is sticky so that the FPU
instructions in general assert these flags when an exception occurs and do not negate
them when the exception does not occur. The UPDFL instruction can be used to clear
the exception flags.

Table 4 FPU Exception Flags
ALU Flag FPU Flag FPU Exception PSW Bit Position
C FS Some Exception. 31
V FI Invalid Operation. 30
SV FV Overflow. 29
AV FZ Divide by Zero. 28
 V1.0 2012-02 User Manual (Volume 1) 11-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
Since the IEEE-754 exception flags are sticky, it can be impossible to tell if an exception
occurred on the last instruction if it was asserted before the last instruction executed. An
additional, non sticky, exception flag (FS) is therefore implemented to identify if the last
FPU instruction caused an IEEE-754 exception or not.
Note that the PSW bits used to store the exception flags are also used to store ALU flags
as shown in the table above. When an ALU instruction updates these flags, the
corresponding FPU exception flag is overwritten and lost.
The following conditions are true for all FPU operations asserting exception flags, with
the exception of UPDFL.
• Any FPU operation can assert only one of the FI, FV, FZ or FU exception flags.
• FX can be asserted by any operation so long as FI and FZ are negated.
• When either FV or FU are asserted, FX is also asserted.

FS - Some Exception
This bit is not sticky and is asserted or negated for all instructions that can cause
IEEE-754 exceptions to occur. If any of the IEEE-754 exceptions (FI, FV, FZ, FU, FX)
have occurred during that instruction, FS is also asserted.
Note: UPDFL can assert IEEE-754 exceptions without asserting FS.

FI - Invalid Operation
FI is asserted in three circumstances:
• When a signalling NaN (see NaNs (Not a Number), page 11-3) is an operand for a

FPU instruction.
• For invalid operations such as QSEED.F (ª1/÷ x) of a negative number.
• Conversions from floating-point to other formats where the rounded result is outside

the range of the target.
When an instruction that produces a floating-point result asserts FI as a result of a
signalling NaN or invalid operation, the result is a quiet NaN.

SAV FU Underflow. 27
- FX Inexact. 26

Table 5 Invalid Operations and their Quiet NaN Results
Invalid Operation Quiet NaN
Signalling NaN operand for arithmetic instructions.1) 7FC00000H

2)

Signalling NaN operand for CMP.F instruction. n.a.)

Table 4 FPU Exception Flags (cont’d)

ALU Flag FPU Flag FPU Exception PSW Bit Position
 V1.0 2012-02 User Manual (Volume 1) 11-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
FV - Overflow
For operations that return a floating-point result, the FV flag is set as stated in IEEE-754;
‘whenever the destination format’s largest finite number is exceeded in magnitude by
what would have been the rounded floating-point result, were the exponent range
unbounded’.

ADD.F with + ∞ and - ∞ as operands. 7FC00001H

SUB.F with (+ ∞ and + ∞) or (- ∞ and - ∞) as operands. 7FC00001H

MADD.F if the result of the multiplication is ± ∞ and the addend is the
oppositely signed ∞

7FC00001H

MSUB.F if the result of the multiplication is ± ∞ and the minuend is the
same signed ∞

7FC00001H
)

MUL.F with 0 and ± ∞ as multiplicands. 7FC00002H

MADD.F with 0 and ± ∞ as multiplicands. 7FC00002H

MSUB.F with 0 and ± ∞ as multiplicands. 7FC00002H

QSEED.F with a negative operand3). 7FC00004H

DIV.F with 0 as both operands4). 7FC00008H

DIV.F with both operands being an ∞ of either sign. 7FC00008H

FTOI, FTOU or FTOQ31 with rounded result outside the range of the
target format.

n.a.5)

FTOIZ, FTOUZ or FTOQ31Z with rounded result outside the range of
the target format.
().

n.a.5)

FTOI, FTOU or FTOQ31 with the input operand a quiet NaN, a
signalling NaN or ± ∞.

n.a.5)

FTOIZ, FTOUZ or FTOQ31Z with the input operand a quiet NaN, a
signalling NaN or ± ∞.
().

n.a.5)

1) Also see the FPU operation syntax description in the Instruction Set.
2) The quiet NaN (7FC00000H) is produced as the result of arithmetic operations that have any NaN as an

operand. FI is only asserted when one of these NaNs is signalling. See NaNs (Not a Number), page 11-3.
3) -0 is not negative, therefore QSEED.F of -0 is -∞
4) 0/0 is defined as being an invalid operation (FI) rather than a divide by zero (FZ).
5) The result is not in floating-point format and therefore cannot be a quiet NaN. Refer to the instruction

description for what the result should be.

Table 5 Invalid Operations and their Quiet NaN Results (cont’d)

Invalid Operation Quiet NaN
 V1.0 2012-02 User Manual (Volume 1) 11-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
The result returned is determined by the rounding mode and the sign of the unrounded
result:
• Round to nearest carries all overflows to infinity, with the sign of the unrounded result.
• Round toward zero carries all overflows to the format’s largest finite number with the

sign of the unrounded result.
• Round toward minus infinity carries positive overflows to the format’s largest finite

number, and carries negative overflows to minus infinity.
• Round toward plus infinity carries negative overflows to the format’s most negative

finite number, and carries positive overflows to plus infinity.
When overflow is flagged (FV asserted), the returned result can not be exactly equal to
the unrounded result. Therefore whenever FV is asserted FX is also asserted.

FZ - Divide by Zero
The FZ flag is set by DIV.F if the divisor operand is zero and the dividend operand is a
finite non zero number. The result is an infinity with sign determined by the usual rules.
Note that:
• 0/0 is defined as an invalid operation, so FI is asserted rather than FZ.
• All arithmetic with ± ∞ as an operand is defined as being exact, except for invalid

operations where FI is asserted. Therefore for ± ∞/ ± 0 FZ is not asserted, the
appropriately signed ∞ is returned as the result with no other exceptions occurring.

FU - Underflow
As discussed in Underflow, page 11-4, underflow is detected and so FU is asserted,
when the unrounded result is smaller in magnitude than the smallest representable
normal number (2-126).
The Q31TOF instruction can cause an underflow as well as the arithmetic instructions
ADD.F, SUB.F, MUL.F, MADD.F, MSUB.F, and DIV.F.
The return result for instructions flagging an underflow are complicated by the way that
FPU treats denormal numbers. This is described in detail in Round to Nearest:
Denormals and Zero Substitution, page 11-7.

FX - Inexact
If the rounded result of an operation is not exactly equal to the unrounded result, then
the FX flag is set.
The result delivered is the rounded result, unless either overflow (FV) or underflow (FU)
has also occurred during this instruction, when the overflow or denormalization return
result rules are followed.
 V1.0 2012-02 User Manual (Volume 1) 11-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11.5 Asynchronous Traps ()
The FPU can be configured such that a trap is signalled to the TriCore core when an FPU
instruction causes an IEEE-754 exception. The trap generated is a Co-Processor
Asynchronous Error (CAE), Trap Class 4 - TIN 4. FPU CAE traps should not be confused
with the synchronous exception traps optional to IEEE-754 which allow software routines
to correct arithmetic overflow or underflow.
The FPU CAE trap is intended for debug purposes only and has no effect on either the
exceptional instruction or any other instruction which may be executing within the FPU.
The result returned by an exceptional instruction causing a CAE trap is identical to that
which would be returned if no trap were taken. The CAE trap is signalled after instruction
completion.
The specific exception conditions which cause FPU CAE traps to be generated are
under software control. To enable the trap generation for a specific exception type the
appropriate enable bit in the FPU_TRAP_CON register must be asserted (FIE, FVE,
FZE, FUE or FXE). Any number of these enable bits may be set to allow traps to be taken
if any of a range of exceptions occur. FX is a regularly occurring condition, care should
be taken in enabling this trap.
When an instruction causes one of the enabled exceptions, information about the
exceptional instruction including the instruction PC, opcode and source operands are
captured in the FPU special function registers. At the same time the Trap Status flag
(TST) is set within the FPU_TRAP_CON register, denoting that the contents of the FPU
trap capture registers are valid. In addition, so long as FPU_TRAP_CON.TST remains
set, further FPU CAE trap generation is inhibited. This avoids multiple traps being
generated from the same root problem and the original information being lost. Once the
trap handler has interrogated the FPU to determine the cause of the trap, the
FPU_TRAP_CON.TST bit may be cleared to enable further traps.
The result of the exceptional instruction causing a trap is not stored in an FPU register.
The result will be available in the instruction’s destination register as long as it has not
been overwritten before the asynchronous trap is taken.
 V1.0 2012-02 User Manual (Volume 1) 11-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
11.6 FPU CSFR Registers (TriCore 1.6)
The FPU CSFR registers are used to store the details of instructions causing traps

FPU Trap Control Register

FPU_TRAP_CON
Trap Control Register (A000H) Reset value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES FI FV FZ FU FX RES FIE FVE FZE FUE FXE RES

- rh rh rh rh rh - rw rw rw rw rw -

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES RM RES TCL TST

- rh - w rh

Field Bits Type Description
RES 31 - Reserved
FI 30 rh Captured FI

Asserted if the captured instruction asserted FI. Only
valid when TST is asserted.

FV 29 rh Captured FV
Asserted if the captured instruction asserted FV. Only
valid when TST is asserted.

FZ 28 rh Captured FZ
Asserted if the captured instruction asserted FZ. Only
valid when TST is asserted.

FU 27 rh Captured FU
Asserted if the captured instruction asserted FU.
Only valid when TST is asserted.

FX 26 rh Captured FX
Asserted if the captured instruction asserted FX. Only
valid when TST is asserted.

RES [25:23] - Reserved
FIE 22 rw FI Trap Enable

When set, an instruction generating an FI exception
will trigger a trap.
 V1.0 2012-02 User Manual (Volume 1) 11-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
FVE 21 rw FV Trap Enable
When set, an instruction generating an FV exception
will trigger a trap.

FZE 20 rw FZ Trap Enable
When set, an instruction generating an FZ exception
will trigger a trap.

FUE 19 rw FU Trap Enable
When set, an instruction generating an FU exception
will trigger a trap.

FXE 18 rw FX Trap Enable
When set, an instruction generating an FX exception
will trigger a trap.

RES [17:10] - Reserved
RM [9:8] rh Captured Rounding Mode

The rounding mode of the captured instruction. Only
valid when TST is asserted.
Note that this is the rounding mode supplied to the
FPU for the exceptional instruction. UPDFL
instructions may cause a trap and change the
rounding mode. In this case the RM bits capture the
input rounding mode.

RES [7:2] - Reserved
TCL 1 w Trap Clear

1 : Clears the trapped instruction (TST will be
negated).
0 : Does nothing.
Read: always reads as 0.

TST 0 rh Trap Status
0 : No instruction captured:
The next enabled exception will cause the
exceptional instruction to be captured.
1 : Instruction captured:
No further enabled exceptions will be captured until
TST is cleared.

Field Bits Type Description
 V1.0 2012-02 User Manual (Volume 1) 11-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
FPU Trapping Instruction Program Counter Register

FPU_TRAP_PC
Trapping Instruction Program Counter (A004H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC

rh

Field Bits Type Description
PC [31:0] rh Captured Program Counter

The program counter (virtual address) of the
captured instruction. Only valid when
FPU_TRAP_CON.TST is asserted.
 V1.0 2012-02 User Manual (Volume 1) 11-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
FPU Trapping Instruction Opcode Register

FPU_TRAP_OPC
Trapping Instruction Opcode (A008H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES DREG

- rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES FMT OPC

- rh rh

Field Bits Type Description
RES [31:20] - Reserved
DREG [19:16] rh Captured Destination Register

The destination register of the captured instruction.
0H : Data general purpose register 0.
…H
FH : Data general purpose register 15.
Only valid when FPU_TRAP_CON.TST is asserted.

RES [15:9] - Reserved
FMT 8 rh Captured Instruction Format

The format of the captured instruction’s opcode.
0 : RRR.
1 : RR.
Only valid when FPU_TRAP_CON.TST is asserted.

OPC [7:0] rh Captured Opcode
The secondary opcode of the captured instruction.
When FPU_TRAP_OPC.FMT=0 only bits [3:0] are
defined. OPC is valid only when
FPU_TRAP_CON.TST is asserted.
 V1.0 2012-02 User Manual (Volume 1) 11-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
FPU Trapping Instruction Operand SRC1 Register

FPU_TRAP_SRC1
Trapping Instruction Operand (A010H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC1

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC1

rh

Field Bits Type Description
SRC1 [31:0] rh Captured SRC1 Operand

The SRC1 operand of the captured instruction. Only
valid when FPU_TRAP_CON.TST is asserted.
 V1.0 2012-02 User Manual (Volume 1) 11-17

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
FPU Trapping Instruction Operand SRC2 Register

FPU_TRAP_SRC2
Trapping Instruction Operand (A014H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC2

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC2

rh

Field Bits Type Description
SRC2 [31:0] rh Captured SRC2 Operand

The SRC2 operand of the captured instruction. Only
valid when FPU_TRAP_CON.TST is asserted.
 V1.0 2012-02 User Manual (Volume 1) 11-18

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
FPU Trapping Instruction Operand SRC3 Register

FPU_TRAP_SRC3
Trapping Instruction Operand (A018H)

Reset value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SRC3

rh

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SRC3

rh

Field Bits Type Description
SRC3 [31:0] rh Captured SRC3 Operand

The SRC3 operand of the captured instruction. Only
valid when FPU_TRAP_CON.TST is asserted.
 V1.0 2012-02 User Manual (Volume 1) 11-19

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Floating Point Unit (FPU)
 V1.0 2012-02 User Manual (Volume 1) 11-20

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12 Core Debug Controller (CDC)
The TriCore® debug functionality is an interface of architecture, implementation and
software tools. Users are advised that mechanisms may differ in subsequent
architecture generations.
The Core Debug Controller (CDC) is designed to support real-time systems that require
non-intrusive debugging. Most of the architectural state in the CPU Core and Core
on-chip memories can be accessed through the system Address Map.
Access to the CDC is typically provided via the On-Chip Debug Support (OCDS) of the
system containing the CPU.

CDC Features
CDC features are aimed predominantly at the software development environment. It
offers real-time run control and internal visibility of resources such as data and
memories. Features include:
• Real-time run control (Halt and Restart the CPU).
• Access and update internal registers and core local memory.
• Setting breakpoints and watchpoints with complex trigger conditions.

Enabling the CDC
To enable the CDC, the system containing the core must set the Debug Enable bit (DE)
in the Debug Status Register (DBGSR). The CDC is disabled when DBGSR.DE == 0,
and enabled when DBGSR.DE == 1. How the DBGSR.DE bit is controlled and how the
CDC is enabled or disabled, is system dependent. When the CDC is enabled, the core
is said to be in debug mode.

12.1 Run Control Features
Real-time run control functions are accessed and controlled by address mapped reads
and writes, typically by the OCDS or by any other bus master that has the appropriate
authorization. The CDC provides hardware hooks into the core allowing the detection of
Debug Events which result in Debug Actions.
Four signals are provided by the CDC for communication with the OCDS:
• Core Break-In.

– An indication from the OCDS to the Core of a condition of interest.
• Core Break-Out.

– An indication from the Core to the OCDS of a condition of interest.
• Core Suspend-In.

– An indication from the OCDS to the Core to enter Halt mode.
• Core Suspend-Out.
V1.0 2012-02 User Manual (Volume 1) 12-1
 ,

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
– An indication from the Core to the OCDS of the state of the Debug Status register
(DBGSR) SUSP field (DBGSR.SUSP). This signal can be controlled by writes to
the Debug Status register, whereas the Core Break-Out signal can not.

Features
• Single-Step support in hardware.
• Debug Events that can cause a Debug Action:

– Assertion of the external Core Break-In signal to the core.
– Execution of the DEBUG instruction.
– Execution of the MTCR (Move To Core Register) or the MFCR (Move From Core

Register) instruction.
– Events raised by the Trigger Event Unit (see “Trigger Event Unit” on Page 12-4).

• Debug Actions can be one or more of the following:
– Update Debug Status register.
– Indicate event on Core Break-Out signal and/or Core Suspend-Out signal.
– Halt CPU execution.
– Take Breakpoint Trap.
– Raise Breakpoint Interrupt.
– Control performance counters.

• Real-time features:
– Read and write of core memory and register while the core is running, with

minimum intrusion (may steal cycles).
– The service of high priority interrupt routines by use of the Breakpoint Interrupt

Debug Action.
Note: The reading and writing of other system memory while the CPU is running can be

intrusive, depending on the number of cycles that are required to perform the
operation. When this happens, cycle stealing occurs.

The programming of Debug Events and Debug Actions can occur while the CPU is
running with little or no intrusion. The detection of Debug Events has no effect on
real-time execution.
V1.0 2012-02 User Manual (Volume 1) 12-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.2 Debug Events
When the CDC is enabled, a Debug Event can be generated by:
• Core Break-In signal.

– See “External Debug Event” on Page 12-3.
• Execution of a DEBUG instruction.

– See “Debug Instruction” on Page 12-3.
• Execution of the MTCR or MFCR instruction.

– See “MTCR and MFCR Instructions” on Page 12-3.
• A hardware Event generation unit.

– See “Trigger Event Unit” on Page 12-4.

12.2.1 External Debug Event
An External Debug Event is not correlated in any way to the instruction flow, but it
provides the ability to stop and gain control of the CPU without having to reset. It may
take several clocks for the Debug Event to be recognized by the CPU if it is currently
executing a multi-cycle, non-cancellable instruction (such as a context save and restore
for example).
The Debug Action taken on the assertion of the Core Break-In signal is specified in the
EXEVT (External Event) register (see “EXEVT” on Page 12-19).

12.2.2 Debug Instruction
TriCore supports a User mode DEBUG instruction which can generate a Debug Event
when the CDC is enabled. When the CDC is disabled it is treated as a NOP (No
Operation). Both 16-bit and 32-bit forms of the DEBUG instruction are provided. This
feature facilitates software debug, which allows a jump to a monitor program and
provides a relatively inexpensive software instrumentation and interrogation mechanism.
The Debug Action taken on the Debug Event is specified in the SWEVT (Software Debug
Event) register (See “SWEVT” on Page 12-23).

12.2.3 MTCR and MFCR Instructions
A Debug Event is raised when a MTCR (Move To Core Register) or MFCR (Move From
Core Register) instruction is used to read or modify a user Core Special Function
Register (CSFR). This gives the debug software the ability to monitor, detect and modify
changes to CSFRs. A Debug Event is not raised when a MTCR or MFCR is performed
to a register in the range F000H to FDFFH. This range contains all dedicated Debug SFRs
(Special Function Registers):
• Debug Status Register (“DBGSR” on Page 12-17).
• Core Register Access Event Register (“CREVT” on Page 12-21).
• Software Debug Event Register (“SWEVT” on Page 12-23).
V1.0 2012-02 User Manual (Volume 1) 12-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
• External Event Register (“EXEVT” on Page 12-19).
• Trigger Event Register (TRnEVT) (“TRxEVT” on Page 12-25).
• Debug Monitor Start Register (“DMS” on Page 12-30).
• Debug Context Pointer Register (“DCX” on Page 12-31).
• Debug Trap Control Register (“DBGTCR” on Page 12-32).
• Accumulated Trigger Information Register (“TRIG_ACC” on Page 12-29).

Additional Counter Registers
• Counter Control Register - “Counter Control Register” on Page 12-38.
• CPU Clock Count Register - “CPU Clock Cycle Count Register” on Page 12-39.
• Instruction Count Register - “Instruction Count Register” on Page 12-40.
• Multi-Count Register 1 - “Multi-Count Register 1” on Page 12-41.
• Multi-Count Register 2 - “Multi-Count Register 2” on Page 12-42.
• Multi-Count Register 3 - “Multi-Count Register 3” on Page 12-43.
In TriCore 1.6, the Debug Action taken when the Debug Event is raised is specified in
the CREVT register (See “CREVT” on Page 12-21). Configuring the Debug Controller
or accessing Performance counters will not cause a debug event.

12.2.4 Trigger Event Unit
The Trigger Event Unit is responsible for generating Debug Events when a
programmable set of Debug Triggers are active. Debug Triggers are either:
• Code Addresses.
• Data Accesses.
Note: Compared addresses are virtual addresses.

These Debug Triggers provide the inputs to a programmable block of logic which
produces Debug Events as its output (seeDebug Triggers (pg 5)).
The Debug Action taken when the Debug Event is raised, is specified in the Trigger
Event register (TRnEVT). See “Trigger Event Registers” on Page 12-25 for the
register definition.
V1.0 2012-02 User Manual (Volume 1) 12-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.3 Debug Triggers
Each debug trigger consists of a trigger address register (TRnADR) and an associate
trigger event register (TRnEVT). Pairs of debug trigger addresses are used to define
address ranges.
The CDC can generate the following types of Debug Triggers:
• Execution of an instruction at a specific address.
• Execution of an instruction within a range of addresses.
• Loading a value from a specific address.
• Loading a value from within a range of addresses.
• Storing a value to a specific address.
• Storing a value to within a range of addresses.
The number of available debug triggers is implementation dependent.

12.3.1 Combining Debug Triggers
Pairs of odd and even trigger address registers may be combined to define address
ranges. A trigger will be generated for an address in the range.
• Even Address Register >= Address < Odd Address Register
A pair of registers is defined as a range pair, by setting the RNG bit in the event EVT
trigger of the pair.
When the RNG bit of the even EVT trigger is set, all settings for the range are taken from
the even EVT register and the odd EVT register is ignored.
• Range0 defined by TR0ADR and TR1ADR, enabled by TR0EVT.RNG
• Range1 defined by TR2ADR and TR3ADR, enabled by TR2EVT.RNG
• Range2 defined by TR4ADR and TR5ADR, enabled by TR4EVT.RNG
• Range3 defined by TR6ADR and TR7ADR, enabled by TR6EVT.RNG
Note: The RNG bit of ‘odd’ numbered Trigger Event registers (TR1EVT, TR3EVT, etc.)

is always reserved.

12.3.2 Task Specific Debug Triggers
In some instances it may be desirable to assert a debug trigger only when the target
address is generated by a particular task. This is achieved by use of the Application
Space Identifier (ASI) comparison feature.
If the ASI_EN bit in the Trigger Event register (TRnEVT) is set, then the trigger will only
be asserted if both the address matches and the TRnEVT.ASI field matches the current
task ASI (Programmed in the TASK_ASI register).
V1.0 2012-02 User Manual (Volume 1) 12-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.3.3 Accumulated Debug Trigger Information
To further aid debug the TRIG_ACC register is provided. This register contains the
accumulated state of the debug triggers since the register was last cleared. Whenever a
trigger is activated - whether or not it leads to a debug event - it is recorded in the
TRIG_ACC register. (For range comparisons only the lower trigger activation is
recorded).
For example if TRIG_ACC.T[n] is set, then trigger-n has activated since the TRIG_ACC
register was last cleared.
The TRIG_ACC register is read only and is cleared by any read, all writes are ignored.
V1.0 2012-02 User Manual (Volume 1) 12-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.4 Debug Actions
When a Debug Event occurs, one or more of the following Debug Actions are taken
depending upon the programming of the relevant Event Register:
• “Update Debug Status Register (DBGSR)” on Page 12-7.
• “Indicate on Core Break-Out Signal” on Page 12-7.
• “Indicate on Core Suspend-Out Signal” on Page 12-7.
• “Halt” on Page 12-8.
• “Breakpoint Trap” on Page 12-8.
• “Breakpoint Interrupt” on Page 12-10.
• “Suspend Out” on Page 12-12.
• “Performance Counter Start/Stop” on Page 12-12
• “None” on Page 12-12.
• “Disabled” on Page 12-12.
• “Suspend In Halt” on Page 12-12.

12.4.1 Update Debug Status Register (DBGSR)
When a Debug Event occurs the EVTSRC (Event Source), PEVT (Posted Event),
PREVSUSP (Previous State of Suspend Signal) and SUSP (Current State of Suspend
Signal) fields of the Debug Status Register (DBGSR) are always updated.
The PREVSUSP field is updated from the contents of the SUSP field.
SUSP is updated from the EVTA field of the register that prompted the Debug Event
(EXEVT, CREVT, SWEVT or TRnEVT).

12.4.2 Indicate on Core Break-Out Signal
A Debug Event can indicate to the OCDS that the Event has occurred. Note that it is
implementation dependent whether or not this signal is connected to an external pin.

12.4.3 Indicate on Core Suspend-Out Signal
On a Core Suspend-Out action, the value of the SUSP field in the Debug Status Register
(DBGSR) is copied to the PREVSUSP field (DBGSR.PREVSUSP).
The DBGSR.SUSP field is updated with the contents of the SUSP field from the register
that prompted the Debug Event (EXEVT, CREVT, SWEVT or TRnEVT).
Modification of the DBGSR.SUSP bit will be reflected in the Core Suspend-Out Signal.
When writing to the DBGSR.SUSP bit, PREVSUSP is not updated.
When a debug event causes a breakpoint interrupt to be posted, DBGSR.SUSP,
DBGSR.PREVSUSP and the Core Suspend-Out signal remain unchanged.
V1.0 2012-02 User Manual (Volume 1) 12-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.4.4 Halt
The Debug Action Halt, causes the Halt mode to be entered. Halt mode performs a
cancel of:
• All instructions after and including the instruction that caused the breakpoint if Break

Before Make (BBM) is set.
• All instructions after the instruction that caused the breakpoint if BBM is clear.
Once these instructions have been cancelled the CPU enters Halt mode, where no more
instructions are fetched or executed. Halt mode is entered when the DBGSR.HALT bit
field is set to 01B. On entering Halt mode the DBGSR.EVTSRC bit field is updated.
Once in Halt mode the external Debug system is used to interrogate the target through
the mapping of the architectural state into the FPI address space.
While halted, the CPU does not respond to any interrupts and only resumes execution
once the Debug Status register HALT bit is clear (DBGSR.HALT). The bit is cleared by
writing 10B to the HALT field.
It is also possible to enter halt by writing the DBGSTR.HALT field. This is treated as
external event and will result in the DBGSTR fields being updated accordingly.

12.4.5 Breakpoint Trap
The Breakpoint Trap enters a Debug Monitor without using any user resource. It relies
upon the following emulator resources:
• A Debug Monitor which is executed commencing at the address defined in the DMS

(Debug Monitor Start Address) register.
• A 4-word area of RAM is available at the address defined in the DCX (Debug Context

Save Area Pointer) register. This is used to store the critical state during the Debug
Monitor entry sequence.

When a Breakpoint Trap is taken, the following actions are performed:
• Write PSW to DCX + 4H
• Write PCXI to DCX + 0H
• Write A[10] to DCX + 8H
• Write A[11] to DCX + CH
• A[11] = PC
• Write A10 with the contents of ISP if PSW.IS==0;
• PCXI.PIE = ICR.IE
• PCXI.PCPN = ICR.CCPN
• PC = DMS
• PSW.PRS = 0H
• PSW.IO = 2H
• PSW.GW = 0H
• PSW.IS = 1H
V1.0 2012-02 User Manual (Volume 1) 12-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
• PSW.CDE = 0H
• PSW.CDC = 0000000B
• ICR.IE = 0H
• DBGTCR.DTA = 1H

The corresponding return sequence is provided through the privileged instruction RFM
(Return From Monitor).
This provides an automated route into the Debug Monitor which does not take any User
resource. The RFM (Return From Monitor) instruction is then used to return control to
the original task. The RFM instruction is a NOP (No Operation) when not in debug mode
(i.e. DBGSR.DE == 0).
Note: The generation of breakpont traps on the load or store address of any CSA access

caused by a trap or interrupt is inhibited.

Emulator Space
To enable the debug monitor to operate without requiring the modification of the current
memory protection settings, the following protection modifications are applied in debug
mode:
• The 16 MByte region containing the DMS pointer (Base address ==

{DMS[31:24],24’h000000}] will have MPX and peripheral space PSE traps disabled
for instruction fetches in debug mode.

• The 16 MByte region containing the DCX pointer (Base Address ==
{DCX[31:24],24’h000000}] will have MPR and PMW traps disabled for load and store
operations in debug mode.

These two memory regions are referred to as emulator space.
The cacheability of emulator space depends on the memory attributes assigned to the
segments in which they reside, by the PMA registers.

Multiple Breakpoint Traps
On taking a breakpoint trap TriCore saves a debug context (PCX, PSW, A10, A11) at the
location indicated by the DCX register. At the end of the debug trap handler an RFM
instruction is used to restore this state.
The DCX location is only able to store a single debug context. Problems therefore arise
if multiple breakpoint traps are triggered. Only the state saved by the final breakpoint trap
is retained, all state from the previous breakpoint traps is lost.
To prevent this situation occurring the breakpoint trap entry sequence sets the Debug
Trap Active (DTA) bit in the Debug Trap Control Register (DBGTCR). This bit is used to
inhibit further breakpoint traps.
The DTA bit is cleared on an RFM instruction and set on a breakpoint trap (It may also
be set and cleared by MTCR).
V1.0 2012-02 User Manual (Volume 1) 12-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
A breakpoint trap may only be taken in the condition DTA==0. Taking a breakpoint trap
sets the DTA bit to one. Further breakpoint traps are therefore disabled until such time
as the breakpoint trap handler clears the DTA bit or until the breakpoint trap handler
terminates with a RFM.
After an application reset the DTA bit is set to one. The register must therefore be cleared
before a debug trap may be taken.

12.4.6 Breakpoint Interrupt
One of the possible Debug Actions to be taken on a Debug Event, is to raise a Breakpoint
Interrupt. The interrupt priority is programmable and is defined in the control register
associated with the breakpoint interrupt.
The architecture allows a Debug Event to raise one of four Breakpoint Interrupts, each
of which can have its own interrupt priority. The number of Breakpoint Interrupts is
implementation dependant.
The Breakpoint Interrupt allows a flexible Debug environment to be defined which is
capable of satisfying many of the requirements for efficient debugging of a real-time
system. For example, the execution of safety critical code can be preserved while the
debugger is active.
Breakpoint Interrupts can be used to provide the conventional Debug Model available in
traditional microcontrollers, where a Breakpoint stops the processor, by simply assigning
the highest interrupt priority level to the Debug Monitor or by ensuring interrupts are
disabled in the Debug Monitor. It also provides the flexibility for critical interrupts to be
programmed with a higher priority than the Debug Monitor. The advantages of this are
that:
• The Debug Monitor can be interrupted in an identical manner to any other interrupt

by a higher level interrupt. This allows the CPU to service critical interrupts while the
Debug Monitor is running.

• Any Debug Events posted in a critical routine are postponed until the CPU priority
drops below that of the Debug Monitor.
V1.0 2012-02 User Manual (Volume 1) 12-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Figure 12-1 Debug Monitor - Simple and Advanced Models

Posted Breakpoint Interrupts
The situation needs to be considered where a Breakpoint Interrupt targeted at the CPU
is at an interrupt priority level below the current CPU priority. In the Advanced Model in
Figure 12-1 for example, if a Breakpoint Interrupt is set in Interrupt Routine 'A' it is a
problem, because the Debug Monitor is programmed to be at a lower priority than the
current Task.
This scenario is indicated by posting a software interrupt at the interrupt level associated
with the Breakpoint. Therefore, when the CPU interrupt priority level falls below that of
the Debug Monitor, the Debug Monitor routine is entered. In order to indicate to the
Monitor routine that the Breakpoint was postponed, the Posted Event bit (PEVT) in the
Debug Status register is set when the software interrupt is posted. It is the responsibility
of the Breakpoint Interrupt handler to check this bit in the Debug Status register and to
subsequently clear that bit if necessary.
Note: DBGSR.SUSP and DBGSR.PREVSUSP are not updated when a breakpoint

interrupt is posted.

1. DBGSR.EVTSRC is always updated regardless of whether or not a breakpoint
interrupt is posted.

Interrupts to Other Targets
As well as being targeted at the CPU, a breakpoint interrupt can be targeted at other
cores in the system.

TC1042

Highest Priority

Background Task

Interrupt Routine B

Interrupt Routine A

Debug Monitor

Advanced Debug Model
In this model the Debug
Monitor is at a lower
priority than Interrupt A.
This means that the
Debug Monitor can be
interrupted to service
Interrupt A, while it is
processing a Breakpoint
in either the Background
Task or Interrupt Routine
B.

Simple Debug Model

Lowest Priority

Background Task

Interrupt Routine B

Interrupt Routine A

Debug Monitor
In this model the Debug
Monitor has the highest
priority in the system
and so it can not be
interrupted.

Highest Priority

Lowest Priority
V1.0 2012-02 User Manual (Volume 1) 12-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.4.7 Suspend Out
The suspend out signal will either be asserted or negated when a debug event occurs.
The previous state of the suspend out signal is recorded in DBGSR.PREVSUSP.

12.4.8 Performance Counter Start/Stop
When the performance counter is operating in task mode, the counters are started and
stopped by debug actions. All event registers allow the counters to either be started or
stopped.
The trigger event registers also allow the mode to be toggled to active (start) or inactive
(stop). This allows a single RTE to be used to control the performance counter, in certain
applications.

12.4.9 None
No action is implemented through the EVTA field of the event’s register, however the
suspend out signal, performance count and DBGSR register updates still occur as
normal for an event.

12.4.10 Disabled
The event is disabled and no actions occur: the suspend out signal, performance counter
control and DBGSR register ignore the event.

12.4.11 Suspend In Halt
When the Suspend In signal is asserted, halt mode is always entered so long as debug
is enabled. The CPU remains in halt mode so long as Suspend In is asserted. When
Suspend In is negated, the CPU is released from halt.
This facility is implemented so that in a multi core system, several cores can be halted
and released from halt simultaneously.

12.5 Priority of Debug Events
It is possible for multiple trigger points to be activated simultaneously. TriCore 1.6
ensures that the trigger associated with the oldest instruction in the pipeline is dealt with
first. In addition, simultaneous Trigger points associated with the same point in the
pipeline are prioritized from highest to lowest as.
• Assertion of External Input (asynchronous).
• Programmable bank triggers on PC

– When multiple triggers are active, 0 has the highest priority and 7 the lowest.
• MTCR/MFCR Instruction.
• Debug Instruction.
V1.0 2012-02 User Manual (Volume 1) 12-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
• Programmable triggers on Address
– When multiple triggers are active, 0 has the highest priority and 7 the lowest.
V1.0 2012-02 User Manual (Volume 1) 12-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.6 Call Tracing
The tracing of subroutine calls in a TriCore system is performed using the PSW based
call depth counter and the CDO trap handler.
The sequence followed for call tracing is as follows:
1. The PSW based Call Depth Counter is set so as to generate a CDO trap on every

subroutine call. (PSW.CDC = 1111110B)
2. The Call Depth counting system is enabled. (PSW.CDE = 1)
3. When the next CALL is attempted, a CDO trap will be taken instead of the subroutine

call.
4. The CDO trap handler then performs the required trace function.
5. The CDO trap handler clears the PSW.CDE bit of the trapping context in memory.
6. The CDO trap handler executes a Return from Exception (RFE). This restores the

trapping context from memory, this time with the call depth tracing disabled.
(PSW.CDE=0).

7. The original CALL is executed. As the call depth tracing system is now disabled
(PSW.CDE=0) the subroutine call will be successful.

• Whenever the PSW is saved by a CALL instruction the CDE bit is forced to “1”.
• The state of the PSW.CDE bit at the start of a subroutine is "1".
In a Call Tracing sequence the PSW.CDE bit has a "one-shot" operation, being disabled
for a single subroutine call after being cleared by the CDO trap.
For more information, please refer to the CALL instruction in the Instruction Set volume
of this manual (volume 2).

12.7 The CDC Control Registers
The Debug Status Register (DBGSR) contains information about the current status of
the Core Debug Controller (CDC) hardware in the CPU core:
• A bit to indicate whether the CDC is enabled.
• The source of the last Debug Event.
Each source of a Debug Event has an associated register which defines the Debug
Actions to be taken when the Debug Event is raised. These registers may contain extra
information about the criteria that must be met for the Debug Event to be raised, such as
the combination of Debug Triggers for example.
V1.0 2012-02 User Manual (Volume 1) 12-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.8 CDC Control Registers - Summary
Core Debug Controller (CDC) Registers.

Table 12-1 CDC Registers Summary
Register Description Offset Address
DBGSR Debug Status Register FD00H

EXEVT External Event Register FD08H

CREVT Core Register Access Event Register FD0CH

SWEVT Software Debug Event Register FD10H

TRIG_ACC Trigger Accumulator Register FD30H

DMS Debug Monitor Start Address Register FD40H

DCX Debug Context Save Area Pointer Register FD44H

DBGTCR Debug Trap Control Register FD48H

TASK_ASI Application Space Idenitifier Register 8004H

SBSRC0 Software Breakpoint Service Request Control 0
Register

FFBCH

SBSRC1 Software Breakpoint Service Request Control 1
Register

FFB8H

SBSRC2 Software Breakpoint Service Request Control 2
Register

FFB4H

SSBRC3 Software Breakpoint Service Request Control 3
Register

FFB0H

TR0EVT Trigger Event 0 Configuration Register F000H

TR0ADR Trigger Event 0 Address Register F004H

TR1EVT Trigger Event 1 Configuration Register F008H

TR1ADR Trigger Event 1 Address Register F00CH

TR2EVT Trigger Event 2 Configuration Register F010H

TR2ADR Trigger Event 2 Address Register F014H

TR3EVT Trigger Event 3 Configuration Register F018H

TR3ADR Trigger Event 3 Address Register F01CH

TR4EVT Trigger Event 4 Configuration Register F020H

TR4ADR Trigger Event 4 Address Register F024H

TR5EVT Trigger Event 5 Configuration Register F028H

TR5ADR Trigger Event 5 Address Register F02CH
V1.0 2012-02 User Manual (Volume 1) 12-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Table 12-1 CDC Registers Summary (cont’d)

TR6EVT Trigger Event 6 Configuration Register F030H

TR6ADR Trigger Event 6 Address Register F034H

TR7EVT Trigger Event 7 Configuration Register F038H

TR7ADR Trigger Event 7 Address Register F03CH

Register Description Offset Address
V1.0 2012-02 User Manual (Volume 1) 12-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.9 CDC Control Registers

Debug Status Register

DBGSR
Debug Status Register (FD00H)

Reset Value: 0000 0000H (Boot Execute)
0000 0002H (Boot Halt)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES EVTSRC P
EVT

PRE
VSU
SP

RES SU
SP SIH HALT DE

- rh rwh rh - rwh rh rwh rh

Field Bits Type Description
RES [31:13] - Reserved
EVTSRC [12:8] rh Event Source

0 : EXEVT.
1 : CREVT.
2 : SWEVT.
16 + n TRnEVT (n = 0,).
Other = Reserved.

PEVT 7 rwh Posted Event
0 : No posted event.
1 : Posted event.

PREVSUSP 6 rh Previous State of Core Suspend-Out Signal
0 : Previous core suspend-out inactive.
1 : Previous core suspend-out active.
Updated when a Debug Event causes a hardware
update of DBGSR.SUSP. This field is not updated for
writes to DBGSR.SUSP.

RES 5 - Reserved
V1.0 2012-02 User Manual (Volume 1) 12-17

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
SUSP 4 rwh Current State of the Core Suspend-Out Signal
0 : Core suspend-out inactive.
1 : Core suspend-out active.

SIH 3 rh Suspend-in Halt
State of the Suspend-In signal.
1 : The Suspend-In signal is asserted. The CPU is in
Halt Mode.
0 : The Suspend-In signal is negated. The CPU is not
in Halt Mode, (except when the Halt mechanism is set
following a Debug Event or a write to DBGSR.HALT).

HALT [2:1] rwh CPU Halt Request / Status Field
HALT can be set or cleared by software.
HALT[0] is the actual Halt bit. HALT[1] is a mask bit to
specify whether or not HALT[0] is to be updated on a
software write. HALT[1] is always read as 0. HALT[1]
must be set to 1 in order to update HALT[0] by
software (R: read; W: write).
00B R: CPU running.
W: HALT[0] unchanged.
01B R: CPU halted.
W: HALT[0] unchanged.
10B R: Not Applicable.
W: reset HALT[0].
11B R: Not Applicable.
W: If DBGSR.DE == 1 (The CDC is enabled), set
HALT[0]. If DBGSR.DE == 0 (The CDC is not
enabled), HALT[0] is left unchanged.

DE 0 rh Debug Enable
Determines whether the CDC is enabled or not.
0 : The CDC is disabled.
1 : The CDC is enabled.

Field Bits Type Description
V1.0 2012-02 User Manual (Volume 1) 12-18

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
External Event Register

EXEVT
External Event Register (FD08H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES CNT SU
SP BOD BBM EVTA

- rw rw rw rw rw

Field Bits Type Description
RES [31:8] - Reserved
CNT [7:6] rw Counter

When this event occurs adjust the control of the
performance counters in task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e.
start it if it is currently stopped, stop it if it is
currently running).

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out
signal when the Debug Event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the
Debug Action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes
priority over any assertion generated by the EVTA
field.

BBM 3 rw Break Before Make (BBM) or Break After Make
(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).
V1.0 2012-02 User Manual (Volume 1) 12-19

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT
Signal.
101B : If implemented, breakpoint interrupt 1 and
pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and
pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and
pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
V1.0 2012-02 User Manual (Volume 1) 12-20

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Core Register Access Event Register
Note: TriCore 1.3.1 and TriCore 1.6 Architecture only.

CREVT
Core Register Access Event (FD0CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES CNT SU
SP BOD BBM EVTA

- rw rw rw rw rw

Field Bits Type Description
RES [31:8] - Reserved
CNT [7:6] rw Counter

When this event occurs adjust the control of the
performance counters in task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e.
start it if it is currently stopped, stop it if it is
currently running).

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out
signal when the Debug Event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the
action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes
priority over any assertion generated by the EVTA
field.
V1.0 2012-02 User Manual (Volume 1) 12-21

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
BBM 3 rw Break Before Make (BBM) or Break After Make
(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).

EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT
Signal.
101B : If implemented, breakpoint interrupt 1 and
pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and
pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and
pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
V1.0 2012-02 User Manual (Volume 1) 12-22

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Software Debug Event Register

SWEVT
Software Debug Event (FD10H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES CNT SU
SP BOD BBM EVTA

- rw rw rw rw rw

Field Bits Type Description
RES [31:8] - Reserved
CNT [7:6] rw Counter

When this event occurs adjust the control of the
performance counters in task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e.
start it if it is currently stopped, stop it if it is
currently running).

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out
signal when the event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the
action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes
priority over any assertion generated by the EVTA
field.

BBM 3 rw Break Before Make (BBM) or Break After Make
(BAM) Selection
0 : Break after make (BAM).
1 : Break before make (BBM).
V1.0 2012-02 User Manual (Volume 1) 12-23

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
EVTA [2:0] rw Event Associated
Debug Action associated with the Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT
Signal.
101B : If implemented, breakpoint interrupt 1 and
pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and
pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and
pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
V1.0 2012-02 User Manual (Volume 1) 12-24

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Trigger Event Registers
TRxEVT stores the configuration of each trigger.
TRxEVT will be duplicated as many times as there are comparators.
Note: The RNG bit of ‘odd’ numbered Trigger Event registers (TR1EVT, TR3EVT, etc.)

is always reserved.

TRxEVT
Trigger Event x (F0XXH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES ALD AST RES ASI

- rw rw - rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASI_
EN RES RNG TYP RES CNT SU

SP BOD BBM EVTA

rw - rw rw - rw rw rw rw rw

Field Bits Type Description
RES [31:29] - Reserved
ALD 28 rw Address Load

Used in conjunction with TYP=0
AST 27 rw Address Store

Used in conjunction with TYP=0
RES [26:21] - Reserved
ASI [20:16] rw Address Space Identifier

The ASI of the Debug Trigger process.
ASI_EN 15 rw Enable ASI Comparison

0 : No ASI comparison performed. Debug Trigger
is valid for all processes.
1 : Enable ASI comparison. Debug Events are
only triggered when the current process ASI
matches TRnEVT.ASI.

RES 14 - Reserved
V1.0 2012-02 User Manual (Volume 1) 12-25

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
RNG 13 rw Compare Type
Note: The RNG bit of ‘odd’ numbered Trigger

Event registers (TR1EVT, TR3EVT, etc.) is
always reserved. The following definition
only applies to ‘even’ numbered Trigger
Event registers (i.e. TR0EVT, TR2EVT,
etc.).

1B Range
0B Equality
Once an even numbered comparator has been
set to range, the EVTR settings of its associated
upper neighbour will be ignored.

TYP 12 rw Input Selection
0B Address
1B PC

RES [11:8] - Reserved
CNT [7:6] rw Counter

When this event occurs adjust the control of the
performance counters in task mode as follows:
00: No change.
01: Start the performance counters.
10: Stop the performance counters.
11: Toggle the performance counter control (i.e.
start it if it is currently stopped, stop it if it is
currently running).

SUSP 5 rw CDC Suspend-Out Signal State
Value to be assigned to the CDC suspend-out
signal when the Debug Event is raised.

BOD 4 rw Breakout Disable
0 : BRKOUT signal asserted according to the
action specified in the EVTA field.
1 : BRKOUT signal not asserted. This takes
priority over any assertion generated by the EVTA
field.

Field Bits Type Description
V1.0 2012-02 User Manual (Volume 1) 12-26

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
BBM 3 rw Break Before Make (BBM) or Break After Make
(BAM) Selection
Trigger BBM or BAM selection.
0 : Triggers is Break After Make (BAM).
1 : Triggers is Break Before Make (BBM).

EVTA [2:0] rw Event Associated
Specifies the Debug Action associated with the
Debug Event:
When field BOD = 0
000B : Disabled.
001B : Pulse BRKOUT Signal.
010B : Halt and pulse BRKOUT Signal.
011B : Breakpoint trap and pulse BRKOUT Signal.
100B : Breakpoint interrupt 0 and pulse BRKOUT
Signal.
101B : If implemented, breakpoint interrupt 1 and
pulse BRKOUT Signal1).
110B : If implemented, breakpoint interrupt 2 and
pulse BRKOUT Signal1).
111B : If implemented, breakpoint interrupt 3 and
pulse BRKOUT Signal1).
When field BOD = 1
000B : Disabled.
001B : None.
010B : Halt.
011B : Breakpoint trap.
100B : Breakpoint interrupt 0.
101B : If implemented, breakpoint interrupt 11).
110B : If implemented, breakpoint interrupt 21).
111B : If implemented, breakpoint interrupt 31).

1) If not implemented, None

Field Bits Type Description
V1.0 2012-02 User Manual (Volume 1) 12-27

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Trigger Address Register
TRxADR stores the comparison address value for each trigger.

TRxADR
Trigger Address x (F0XXH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADDR

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDR

rw

Field Bits Type Description
ADDR [31:0] rw Comparison Address

Note: For PC comparison, bit[0] is always zero.
V1.0 2012-02 User Manual (Volume 1) 12-28

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Trigger Accumulator Register
TRIG_ACC stores the accumulated debug trigger state since the register was last
cleared.
Note: This register is cleared by any read operation, write operations are ignored.

TRIG_ACC
CDC Trigger Accumulator (FD30H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES T7 T6 T5 T4 T3 T2 T1 T0
r

- rh rh rh rh rh rh rh rh

Field Bits Type Description
RES [31:8] - Reserved
T7 7 rh Trigger-7 active since last cleared
T6 6 rh Trigger-6 active since last cleared
T5 5 rh Trigger-5 active since last cleared
T4 4 rh Trigger-4 active since last cleared
T3 3 rh Trigger-3 active since last cleared
T2 2 rh Trigger-2 active since last cleared
T1 [1 rh Trigger-1 active since last cleared
T0 0 rh Trigger-0 active since last cleared
V1.0 2012-02 User Manual (Volume 1) 12-29

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Debug Monitor Start Address Register
The DMS reset value is {20’hA0000,3’B0001,CORE_ID,6’B000000}.

DMS
Debug Monitor Start Address (FD40H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DMS Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMS Value RES

rw -

Field Bits Type Description
DMS Value [31:1] rw Debug Monitor Start Address

The address at which monitor code execution
begins when a breakpoint trap is taken.

RES 0 - Reserved
V1.0 2012-02 User Manual (Volume 1) 12-30

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Debug Context Save Area Pointer Register
The reset value of the DCX register is {20’hA0000,3’b010,core_id,6’b000000}.

DCX
Debug Context Save Area Pointer (FD44H)

Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DCX Value

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DCX Value RES

rw -

Field Bits Type Description
DCX Value [31:6] rw Debug Context Save Area Pointer

Address where the debug context is stored
following a breakpoint trap.

RES [5:0] - Reserved
V1.0 2012-02 User Manual (Volume 1) 12-31

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Debug Trap Control Register
The Debug Trap Control Register contains the DTA (Debug Trap Active) bit.
The DTA bit is defined as being cleared on an RFM instruction and set on a breakpoint
trap. It may also be set and cleared by MTCR.
After an application reset the DTA bit is set to one. The register must therefore be cleared
before a debug trap may be taken.

DBGTCR
Debug Trap Control Register (FD48H) Reset Value: 0000 0001H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES DTA

- rwh

Field Bits Type Description
RES [31:1] - Reserved
DTA 0 rwh Debug Trap Active Bit

1: A breakpoint Trap is active
0: No breakpoint trap is active.
A breakpoint trap may only be taken in the condition
DTA == 0. Taking a breakpoint trap sets the DTA bit
to one. Further breakpoint traps are therefore
disabled until such time as the breakpoint trap
handler clears the DTA bit or until the breakpoint
trap handler terminates with a RFM.
V1.0 2012-02 User Manual (Volume 1) 12-32

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Address Space Identifier Register (TASK_ASI)
The Address Space Identifier (ASI) register description.

TASK_ASI
Address Space Identifier Register (8004H)

 Reset Value: Implementation Specific

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES ASI

- rw

Field Bits Type Description
RES [31:5] - Reserved
ASI [4:0] rw Address Space Identifier

The ASI register contains the Address Space Identifier of
the current process.
V1.0 2012-02 User Manual (Volume 1) 12-33

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.10 Core Performance Measurement and Analysis
Real-time measurement of core performance provides useful insights to system
developers, architects, compiler developers, application developers, OS developers,
and so on.
TriCore includes the ability to measure different performance aspects of the processor
without any real-time effect on its execution. The performance measurement hardware
is configured so that only a subset of performance measurements can be taken
simultaneously.
The performance measurement block can be used to measure basic parameters such
as:
• CPU Clocks.
• Instruction Count.
• Instruction Cache Hit / Miss.
• Data Cache Hit / Miss (clean or dirty).
The actual parameters that may be measured are implementation specific.
The performance counters can be used in a free running manner, enabled to acquire
aggregate information. Alternatively they can be used in conjunction with the debug
event logic to control ‘windows’ of operation for an individual task, for example starting
and stopping the counters dynamically to filter the measured information on some
desired event.

Typical Performance Counter Usage
The Performance counters are controlled by the CCTRL CSFR register.
The performance counters can be enabled or disabled by writing the appropriate value
to the counter enable CCTRL.CE bit.
Typically two parameters are always counted for base line measurement:
• The clock count.
• The number of instructions issued.
One of:
• Instruction Cache Hits.
• Data Cache Hits.
One of:
• Instruction Cache Misses.
• Data Cache Clean Misses.
Additionally:
• Data Cache Dirty Misses (cache write-back / eviction was required).
Note: Counters can only be written when they are disabled (i.e. not in ‘counting mode’).

Any attempt to write during counting-mode will have no effect.
V1.0 2012-02 User Manual (Volume 1) 12-34

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Note: The counters are free running incrementors once enabled, and will roll over to zero
after the maximum value is reached.

The grouping of counter functions allows typical measurements to be clustered; i.e. Data
Cache performance and Instruction Cache performance.
These can all be measured against the background statistics of clock cycles and
instructions issued.
The start of counters is not precisely synchronized to any pipeline stage. For example,
once the instruction counter is enabled to count, it starts counting all retiring instructions
from that clock cycle onward. Similarly, once the instruction cache miss counter is
started, it will count all the instruction cache misses from that clock cycle onward.
There are two ways to enable counters: Normal mode and Task mode (CCTRL.CM).
Normal (default mode) or Task mode are configured by CCTRL.CM:
• Normal mode - The counters start counting as soon as they are enabled, and will

keep counting until they are disabled.
• Task mode - The counters will only count if the processor detected a debug event

with the action to start the performance counters.

Writing of the Counters
Counters can be read any time, but they can only be written when they are not actively
counting (i.e. when they are disabled). If the counters are disabled, then they are not
considered to be in counting mode and so they can be written.
A counter is said to be in the counting mode if:
• The Normal or Task mode is selected.
• The mode is active (Normal mode is always active).
• The counter enable CE bit (in the Counter Control register - CCTRL) is enabled.

Counter Modes
The Counter Mode (CM) bit in the Counter Control CSFR (i.e. CCTRL.CM) determines
the operating mode of all the counters.
In the Normal mode of operation the counter increments on their respective triggers if the
Count enable bit in the CCTRL is set (CCTRL.CE). In Task mode there is additional
gating control from the debug unit which allows the data gathered in the performance
counters to be filtered by some specific criteria, such as a single task for example.

Wrapping of the counters / Sticky bit
The performance counters give the user some indication that the counters had wrapped
(by use of a sticky bit.) This helps to tell whether the counter has wrapped between two
measured values.
V1.0 2012-02 User Manual (Volume 1) 12-35

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
• All performance counters are 31 bit counters with free wrapping operation.
• Bit 31 of each counter is sticky. It gets set when bits 30:0 wrap. It stays set until

written by software.
V1.0 2012-02 User Manual (Volume 1) 12-36

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
12.11 Performance Counter Registers
The performance counter registers are:

Table 12-2 OCDS Control Registers

Register Description Offset
Address

Reference

CCTRL Counter Control Register. FC00H Page 12-38
CCNT CPU Clock Count Register. FC04H Page 12-39
ICNT Instruction Count Register. FC08H Page 12-40
M1CNT Multi Count Register 1. FC0CH Page 12-41
M2CNT Multi Count Register 2. FC10H Page 12-42
M3CNT Multi Count Register 3. FC14H Page 12-43
V1.0 2012-02 User Manual (Volume 1) 12-37

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Counter Control Register

CCTRL
Counter Control (FC00H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RES

-

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES M3 M2 M1 CE CM

- rw rw rw rw rw

Field Bits Type Description
RES [31:11] - Reserved
M3 [10:8] rw M3CNT configuration - Implementation Specific
M2 [7:5] rw M2CNT configuration - Implementation Specific
M1 [4:2] rw M1CNT configuration - Implementation Specific
CE 1 rw Count Enable

0 : Disable the counters: CCNT, ICNT, M1CNT,
M2CNT, M3CNT.
1 : Enable the counters: CCNT, ICNT, M1CNT,
M2CNT, M3CNT.

CM 0 rw Counter Mode
0 : Normal Mode.
1 : Task Mode.
V1.0 2012-02 User Manual (Volume 1) 12-38

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
CPU Clock Cycle Count Register

CCNT
CPU Clock Cycle Count (FC04H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

Set by hardware when count value [30:0] =
31’h7FFF_FFFF.
It can only be cleared by software.

Count Value [30:0] rw Count Value
Current Count of the CPU Clock Cycles.
V1.0 2012-02 User Manual (Volume 1) 12-39

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Instruction Count Register

ICNT
Instruction Count (FC08H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

 rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

Set by hardware when count value [30:0] =
31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Instructions Executed.
V1.0 2012-02 User Manual (Volume 1) 12-40

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Multi-Count Register 1

M1CNT
Multi-Count Register 1 (FC0CH) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

Set by hardware when count value [30:0] =
31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Selected Event.
V1.0 2012-02 User Manual (Volume 1) 12-41

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Multi-Count Register 2

M2CNT
Multi-Count Register 2 (FC10H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

Set by hardware when count value [30:0] =
31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Selected Event.
V1.0 2012-02 User Manual (Volume 1) 12-42

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
Multi-Count Register 3

M3CNT
Multi-Count Register 3 (FC14H) Reset Value: 0000 0000H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SOvf Count Value

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Count Value

rw

Field Bits Type Description
SOvf 31 rw Sticky Overflow bit

Set by hardware when count value [30:0] =
31’h7FFF_FFFF.
 It can only be cleared by software.

Count Value [30:0] rw Count Value
Count of the Selected Event.
V1.0 2012-02 User Manual (Volume 1) 12-43

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Debug Controller (CDC)
V1.0 2012-02 User Manual (Volume 1) 12-44

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Register Table
13 Core Register Table
The following tables list all the TriCore® CSFRs and GPRs. The memory protection
system is modular and the actual number of registers is implementation-specific.

Table 13-1 General Purpose Registers (GPR)
Register Name Description Address

Offset
D[0]
D[1]
D[2]
D[3]
D[4]
D[5]
D[6]
D[7]
D[8]
D[9]
D[10]
D[11]
D[12]
D[13]
D[14]
D[15]

Data Register 0.
Data Register 1.
Data Register 2.
Data Register 3.
Data Register 4.
Data Register 5.
Data Register 6.
Data Register 7.
Data Register 8.
Data Register 9.
Data Register 10.
Data Register 11.
Data Register 12.
Data Register 13.
Data Register 14.
Data Register 15 - Implicit Data Register.

FF00H
1)

FF04H
FF08H
FF0CH
FF10H
FF14H
FF18H
FF1CH
FF20H
FF24H
FF28H
FF2CH
FF30H
FF34H
FF38H
FF3CH

1) These address offsets are not used by the MTCR instruction.

A[0]
A[1]
A[2]
A[3]
A[4]
A[5]
A[6]
A[7]
A[8]
A[9]
A[10] (SP)
A[11] (RA)
A[12]
A[13]
A[14]
A[15]

Address Register 0 - Global Address Register.
Address Register 1 - Global Address Register.
Address Register 2.
Address Register 3.
Address Register 4.
Address Register 5.
Address Register 6.
Address Register 7.
Address Register 8 - Global Address Register.
Address Register 9 - Global Address Register.
Address Register 10 - Stack Pointer Register.
Address Register 11 - Return Address Register.
Address Register 12.
Address Register 13.
Address Register 14.
Address Register 15 - Implicit Address Register.

FF80H
1)

FF84H
FF88H
FF8CH
FF90H
FF94H
FF98H
FF9CH
FFA0H
FFA4H
FFA8H
FFACH
FFB0H
FFB4H
FFB8H
FFBCH
 V1.0 2012-02 User Manual (Volume 1) 13-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Register Table
Table 13-2 Core Special Function Registers (CSFR)
Register Name Description Address

Offset
PCXI
PCX

Previous Context Information Register.
Previous Context Pointer Register.

FE00H

PSW Program Status Word Register. FE04H

PC Program Counter Register. FE08H

SYSCON2) System Configuration Register. FE14H

CPU_ID CPU Identification Register (Read Only). FE18H

CORE_ID Core Identification Register FE1CH

BIV 1) Base Address of Interrupt Vector Table Register. FE20H

BTV 1) Base Address of Trap Vector Table Register. FE24H

ISP 1) Interrupt Stack Pointer Register. FE28H

ICR ICU Interrupt Control Register. FE2CH

FCX Free Context List Head Pointer Register. FE38H

LCX Free Context List Limit Pointer Register. FE3CH

COMPAT1)2) Compatibility Mode Register. 9400H

DPR0_L
DPR0_U
DPR1_L
DPR1_U
DPR2_L
DPR2_U
DPR3_L
DPR3_U

Data Segment Protection Range 0, Lower.
Data Segment Protection Range 0, Upper.
Data Segment Protection Range 1, Lower.
Data Segment Protection Range 1, Upper.
Data Segment Protection Range 2, Lower.
Data Segment Protection Range 2, Upper.
Data Segment Protection Range 3, Lower.
Data Segment Protection Range 3, Upper.

C000H
C004H
C008H
C00CH
C010H
C014H
C018H
C01CH

DPR4_L
DPR4_U
DPR5_L
DPR5_U
DPR6_L
DPR6_U
DPR7_L
DPR7_U

Data Segment Protection Range 4, Lower.
Data Segment Protection Range 4, Upper.
Data Segment Protection Range 5, Lower.
Data Segment Protection Range 5, Upper.
Data Segment Protection Range 6, Lower.
Data Segment Protection Range 6, Upper.
Data Segment Protection Range 7, Lower.
Data Segment Protection Range 7, Upper.

C020H
C024H
C028H
C02CH
C030H
C034H
C038H
C03CH
 V1.0 2012-02 User Manual (Volume 1) 13-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Register Table
Table 13-2 Core Special Function Registers (CSFR) (cont’d)

DPR8_L
DPR8_U
DPR9_L
DPR9_U
DPR10_L
DPR10_U
DPR11_L
DPR11_U

Data Segment Protection Range 8, Lower.
Data Segment Protection Range 8, Upper.
Data Segment Protection Range 9, Lower.
Data Segment Protection Range 9, Upper.
Data Segment Protection Range 10, Lower.
Data Segment Protection Range 10, Upper.
Data Segment Protection Range 11, Lower.
Data Segment Protection Range 11, Upper.

C040H
C044H
C048H
C04CH
C050H
C054H
C058H
C05CH

DPR12_L
DPR12_U
DPR13_L
DPR13_U
DPR14_L
DPR14_U
DPR15_L
DPR15_U

Data Segment Protection Range 12, Lower.
Data Segment Protection Range 12, Upper.
Data Segment Protection Range 13, Lower.
Data Segment Protection Range 13, Upper.
Data Segment Protection Range 14, Lower.
Data Segment Protection Range 14, Upper.
Data Segment Protection Range 15, Lower.
Data Segment Protection Range 15, Upper.

C060H
C064H
C068H
C06CH
C070H
C074H
C078H
C07CH

CPR0_L
CPR0_U
CPR1_L
CPR1_U
CPR2_L
CPR2_U
CPR3_L
CPR3_U

Code Segment Protection Range 0, Lower.
Code Segment Protection Range 0, Upper.
Code Segment Protection Range 1, Lower.
Code Segment Protection Range 1, Upper.
Code Segment Protection Range 2, Lower.
Code Segment Protection Range 2, Upper.
Code Segment Protection Range 3, Lower.
Code Segment Protection Range 3, Upper.

D000H
D004H
D008H
D00CH
D010H
D014H
D018H
D01CH

CPR4_L
CPR4_U
CPR5_L
CPR5_U
CPR6_L
CPR6_U
CPR7_L
CPR7_U

Code Segment Protection Range 4, Lower.
Code Segment Protection Range 4, Upper.
Code Segment Protection Range 5, Lower.
Code Segment Protection Range 5, Upper.
Code Segment Protection Range 6, Lower.
Code Segment Protection Range 6, Upper.
Code Segment Protection Range 7, Lower.
Code Segment Protection Range 7, Upper.

D020H
D024H
D028H
D02CH
D030H
D034H
D038H
D03CH

Register Name Description Address
Offset
 V1.0 2012-02 User Manual (Volume 1) 13-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Register Table
Table 13-2 Core Special Function Registers (CSFR) (cont’d)

CPR8_L
CPR8_U
CPR9_L
CPR9_U
CPR10_L
CPR10_U
CPR11_L
CPR11_U

Code Segment Protection Range 8, Lower.
Code Segment Protection Range 8, Upper.
Code Segment Protection Range 9, Lower.
Code Segment Protection Range 9, Upper.
Code Segment Protection Range 10, Lower.
Code Segment Protection Range 10, Upper.
Code Segment Protection Range 11, Lower.
Code Segment Protection Range 11, Upper.

D040H
D044H
D048H
D04CH
D050H
D054H
D058H
D05CH

CPR12_L
CPR12_U
CPR13_L
CPR13_U
CPR14_L
CPR14_U
CPR15_L
CPR15_U

Code Segment Protection Range 12, Lower.
Code Segment Protection Range 12, Upper.
Code Segment Protection Range 13, Lower.
Code Segment Protection Range 13, Upper.
Code Segment Protection Range 14, Lower.
Code Segment Protection Range 14, Upper.
Code Segment Protection Range 15, Lower.
Code Segment Protection Range 15, Upper.

D060H
D064H
D068H
D06CH
D070H
D074H
D078H
D07CH

CPXE_0
CPXE_1
CPXE_2
CPXE_3

Code Protection Execute Enable Set-0.
Code Protection Execute Enable Set-1.
Code Protection Execute Enable Set-2.
Code Protection Execute Enable Set-3.

E000H
E004H
E008H
E00CH

DPRE_0
DPRE_1
DPRE_2
DPRE_3

Data Protection Read Enable Set-0.
Data Protection Read Enable Set-1.
Data Protection Read Enable Set-2.
Data Protection Read Enable Set-3.

E010H
E014H
E018H
E01CH

DPWE_0
DPWE_1
DPWE_2
DPWE_3

Data Protection Write Enable Set-0.
Data Protection Write Enable Set-1.
Data Protection Write Enable Set-2.
Data Protection Write Enable Set-3.

E020H
E024H
E028H
E02CH

TPS_CON Timer Protection Configuration Register E400H
TPS_TIMER0 Temporal Protection Timer 0 E404H
TPS_TIMER1 Temporal Protection Timer 1 E408H
TPS_TIMER2 Temporal Protection Timer 2 E40CH
Memory Management Registers
PMA01) Physical Memory Attributes Register 0. 8100H

PMA11) Physical Memory Attributes Register 1. 8104H

Register Name Description Address
Offset
 V1.0 2012-02 User Manual (Volume 1) 13-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Register Table
Table 13-2 Core Special Function Registers (CSFR) (cont’d)

PMA21) Physical Memory Attributes Register 2. 8108H

DCON2 Data Memory Configuration Register-2. 9000H

DCON1 Data memory Configuration Register-1. 9008H

SMACON2) SIST mode Control Register. 900CH

DSTR Data Synchronous Error Trap Register. 9010H

DATR Data Asynchronous Error Trap Register. 9018H

DEADD Data Error Address Register. 901CH

DIEAR Data Integrity Error Address Register. 9020H

DIETR Data Integrity Error Trap Register. 9024H

DCON0 Data Memory Configuration Register-0. 9040H

PSTR Program Synchronous Error Trap Register. 9200H

PCON1 Program Memory Configuration Register-1. 9204H

PCON2 Program Memory Configuration Register-2. 9208H

PCON0 Program Memory Configuration Register-0. 920CH

PIEAR Program Integrity Error Address Register. 9210H

PIETR Program Integrity Error Trap Register. 9214H

Debug Registers
DBGSR Debug Status Register. FD00H

EXEVT External Event Register. FD08H

CREVT Core Register Event Register. FD0CH

SWEVT Software Event Register. FD10H

TR0EVT Trigger Event 0 Register. F000H

TR0ADR Trigger Address 0 Register. F004H

TR1EVT Trigger Event 1 Register F008H

TR1ADR Trigger Address 1 Register. F00CH

TR2EVT Trigger Event 2 Register F010H

TR2ADR Trigger Address 2 Register. F014H

TR3EVT Trigger Event 3 Register F018H

TR3ADR Trigger Address 3 Register. F01CH

TR4EVT Trigger Event 4 Register F020H

Register Name Description Address
Offset
 V1.0 2012-02 User Manual (Volume 1) 13-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Core Register Table
Table 13-2 Core Special Function Registers (CSFR) (cont’d)

TR4ADR Trigger Address 4 Register. F024H

TR5EVT Trigger Event 5 Register F028H

TR5ADR Trigger Address 5 Register. F02CH

TR6EVT Trigger Event 6 Register F030H

TR6ADR Trigger Address 6 Register. F034H

TR7EVT Trigger Event 7 Register F038H

TR7ADR Trigger Address 7 Register. F03CH

TRIG_ACC Trigger Accumulator Register. FD30H
DMS Debug Monitor Start Address Register. FD40H

DCX Debug Context Save Address Register. FD44H

TASK_ASI TASK Address Space Identifier Register. 8004H
DBGTCR Debug Trap Control Register. FD48H

CCTRL Counter Control Register FC00
CCNT CPU Clock Count Register FC04
ICNT Instruction Count Register FC08
M1CNT Multi Count Register 1 FC0C
M2CNT Multi Count Register 2 FC10
M3CNT Multi Count Register 3 FC14
FPU_TRAP_CON Trap Control Register. A000H

FPU_TRAP_PC Trapping Instruction Program Control Register. A004H

FPU_TRAP_OPC Trapping Instruction Opcode Register. A008H

FPU_TRAP_SRC
1

Trapping Instruction SRC1 Operand Register. A010H

FPU_TRAP_SRC
2

Trapping Instruction SRC2 Operand Register. A014H

FPU_TRAP_SRC
3

Trapping Instruction SRC3 Operand Register. A018H

1) These registers are ENDINIT protected.
2) These registers are SAFETY_ENDINIT protected.

Register Name Description Address
Offset
 V1.0 2012-02 User Manual (Volume 1) 13-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

List of Registers (by Chapter)

List of Registers (by Chapter)

Dn. 3-3
An. 3-3
PC . 3-5
PSW . 3-6
PSW . 3-6
PCXI. 3-12
A[10]SP 3-15
ISP . 3-16
SYSCON 3-17
CPU_ID 3-19
Core_ID 3-20
COMPAT 3-21
SMACON 3-23
FCX . 4-14
PCX . 4-15
LCX . 4-16
ICR . 5-10
BIV . 5-12
BTV . 6-18
PSTR 6-19
DSTR 6-20
DATR 6-21
DEADD. 6-22
PIETR. 7-3
PIEAR 7-4
DIETR 7-5
DIEAR 7-6
PMA0 8-4
PMA1 8-5
PMA2 8-6
PCON0. 8-7
PCON1. 8-8
PCON2. 8-8
DCON0. 8-9
DCON1. 8-10
DCON2. 8-10
DPRx_mU 9-9

DPRx_mL. 9-10
CPRx_mU 9-11
CPRx_mL. 9-12
DPSx 9-13
DPSx 9-14
DPSx 9-15
TPS_TIMERx 10-2
TPS_CON 10-3
FPU_TRAP_CON 11-13
FPU_TRAP_PC 11-15
FPU_TRAP_OPC. 11-16
FPU_TRAP_SRC1. 11-17
FPU_TRAP_SRC2. 11-18
FPU_TRAP_SRC3. 11-19
EXEVT 12-19
CREVT 12-21
SWEVT 12-23
TRxEVT 12-25
TRxADR 12-28
TRIG_ACC 12-29
DMS . 12-30
DCX . 12-31
DBGTCR 12-32
TASK_ASI 12-33
CCTRL 12-38
CCNT 12-39
ICNT. 12-40
M1CNT. 12-41
M2CNT. 12-42
M3CNT. 12-43
V1.0 2012-02 User Manual (Volume 1) A-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

List of Registers (by Chapter)
V1.0 2012-02 User Manual (Volume 1) A-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

List of Registers (Alphabetical)

List of Registers (Alphabetical)
A[10]SP 3-15
An. .3-3
BIV .5-12
BTV .6-18
CCNT12-39
CCTRL12-38
COMPAT3-21
Core_ID3-20
CPRx_mL.9-12
CPRx_mU 9-11
CPU_ID 3-19
CREVT12-21
DATR6-21
DBGTCR 12-32
DCON0.8-9
DCON1.8-10
DCON2.8-10
DCX .12-31
DEADD.6-22
DIEAR 7-6
DIETR 7-5
DMS .12-30
Dn. .3-3
DPRx_mL.9-10
DPRx_mU 9-9
DPSx 9-13
DPSx 9-14
DPSx 9-15
DSTR6-20
EXEVT12-19
FCX .4-14
FPU_TRAP_CON 11-13
FPU_TRAP_OPC.11-16
FPU_TRAP_PC11-15
FPU_TRAP_SRC1.11-17
FPU_TRAP_SRC2.11-18
FPU_TRAP_SRC3.11-19

ICNT.12-40
ICR .5-10
ISP .3-16
LCX .4-16
M1CNT.12-41
M2CNT.12-42
M3CNT.12-43
PC .3-5
PCON0.8-7
PCON1.8-8
PCON2.8-8
PCX .4-15
PCXI.3-12
PIEAR 7-4
PIETR.7-3
PMA08-4
PMA18-5
PMA28-6
PSTR6-19
PSW .3-6
PSW .3-6
SMACON3-23
SWEVT 12-23
SYSCON 3-17
TASK_ASI 12-33
TPS_CON 10-3
TPS_TIMERx10-2
TRIG_ACC12-29
TRxADR12-28
TRxEVT12-25
V1.0 2012-02 User Manual (Volume 1) B-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

List of Registers (Alphabetical)
V1.0 2012-02 User Manual (Volume 1) B-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index

Index

Numerics
16-bit Instructions 1-1
32-bit Instructions 1-1

A
A0

Address Register 0 1-3
A0, A1, A8, A9

System Global Registers
GPRs 3-2

A0-A15
Address Registers 0-15 13-1

A1
Address Register 1 1-3

A10
A10SP

register field 3-15
Address Register 10 3-15

Stack Pointer (SP) 1-3,
3-14

A10SP
register field 3-15

A11
Address Register 11

Return Address (RA) 1-3
CSA. 4-6
Return Address Register. 1-3

A15
Address Register 15

Implicit Address 1-3
A8

Address Register 8 1-3
A9

Address Register 9 1-3
Absolute Address

PC-Relative Addressing 2-15
Translation of 2-10

Absolute Addressing. 2-9
Access Privilege 3-7
Accesses

Necessary

Physcial Memory Properties 8-3
Speculative

Physical Memory Properties 8-3
ADDR

An register field 3-3
TRxADR register field 12-28

Address
Base Address of Vector Table . 5-12
Data Types 2-2
Displacement 2-7
Effective 4-13
Half-word 6-18
Register A10 3-14
Return Address A11 3-2
Width . 2-7

Address Map 1-8
Physical Memory Attributes . . . 8-3

Address Registers 3-2
Addressing. 2-10
General Purpose Registers . . . 3-2

Address Space 1-1,
1-2, 1-4

Addressing
Base + Offset 2-10
Bit Indexed. 2-14
Bit-Reverse 2-13
Circular 2-11
Indexed Arrays. 2-14
PC-relative 2-15
Post-decrement 2-10
Post-increment. 2-10
Pre-Decrement. 2-10
Pre-Increment 2-10

Addressing Modes. 1-4
Absolute Addressing 2-9
Programming Model. 2-8
Synthesized 1-4,
2-14

ADDSC.A Instruction
Indexed Addressing 2-14

ADDSC.AT Instruction
V1.0 2012-02 User Manual (Volume 1) I-1

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Bit Indexed Addressing 2-14
ALD

TRxEVT register field 12-25
Alignment Requirements 2-4

Programming Restrictions. 2-4
Rules. 2-4

Alignment Rules 2-4
Alignment Trap (ALN) 2-12
ALN Trap

Data Address Alignment 6-10
Architectural Registers 1-2

Diagram of 1-3
Architecture

Addressing Data 2-15
Overview 1-1
Traps. 6-1

Array
Base Address 2-13
Index . 2-13

ASI
TASK_ASI register field 12-33
TRxEVT register field 12-25

ASI_EN
TRxEVT register field 12-25

Assertion Traps. 6-15
AST

TRxEVT register field 12-25
Asynchronous Traps. 6-3,

11-12
FPU. 11-1

Atomic Operations 2-8
ATT

PMA0 register field 8-4
Automatic Switch

Stack Management 3-14
AV

Advanced Overflow
PSW User Status Bit 3-10

B
BAM Trap

Break After Make 6-15
Base + Offset

Addressing. 2-10
Base Address

Array . 2-13
Base Register

Base + Offset Mode 2-15
BBM

CREVT register field 12-22
Debug Halt Action 12-8
EXEVT register field. 12-19
SWEVT register field 12-23
TRxEVT register field. 12-27

BBM Trap
Break Before Make 6-15

BISR
Context Events & Instructions . 4-4
Context Switching 4-7

Bit
Enable and Disable 5-10
Indexed Addressing 2-14
String

Data Types 2-1
Bit Type . P-2

Abbreviations P-2
Text Conventions P-2

Definitions
- . P-2
h P-2
r . P-2
Reserved Field P-2
rw P-2
rwh P-2
w P-2

Bit-Reverse Addressing. 2-13
FFT . 2-13
Figure. 2-13
Register Pair 2-13

Bit-Reverse Index 2-14
BIV

BIV register field 5-12
Interrupt Vector Table Location 5-5
Register

Address Offset 13-2
Definition 5-12
V1.0 2012-02 User Manual (Volume 1) I-2

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Interrupt and Trap Handling 5-10
BOD

CREVT register field 12-21
EXEVT register field 12-19
SWEVT register field. 12-23
TRxEVT register field 12-26

Boolean
Data Types 2-1

Breakpoint
CDC Features 12-1
Interrupt Debug Action 12-10
Trap. 12-8

BTV
Base Trap Vector Table Pointer 6-18
BTV register field 6-18
Register

Address Offset 13-2
Definition 6-18

Byte
Data Types 2-1
Definition P-2
Indices. 2-14
Ordering 2-6

C
C

Carry
PSW User Status Bit 3-10

CAC
PMA1 register field 8-5

CALL
Context Switching 4-8

Call Depth Counter
CSAs and Context Lists 4-6

CCNT . 12-39
Address Offset 13-6
CPU Clock Cycle Count Register
12-39

CCPN
Context Switching 4-6
CPU Priority

Interrupt Priority Groups . . 5-6
Current CPU Priority Number . . 5-10

ICR register field 5-11
CCTRL.

12-34, 12-38
Address Offset 13-6
Counter Control Register 12-38

CCTRL.CM 12-35
CDC

Control Registers 12-14
Core Debug Controller 1-8,
12-1
CSA . 4-6
Debug Triggers 12-5
Enabling. 12-1
Features. 12-1
PSW register field 3-9

CDE
PSW register field 3-9

CDO Trap
Call Depth Overflow. 6-12

CDU Trap
Call Depth Underflow. 6-12

CE
CCTRL register field 12-38

Circular Addressing 2-11
Figure. 2-11
Index Algorithm 2-11
Load Word 2-12

Circular Buffer
End Case 2-12
Restrictions 2-12

Circular Buffers 2-11
CM

CCTRL register field 12-38
CMPSWAP.W Instruction

Alignment Requirements 2-4
Semaphores and Atomic Operation
2-8

CNT
CREVT register field 12-21
EXEVT register field. 12-19
SWEVT register field 12-23
TRxEVT register field. 12-26

Code
V1.0 2012-02 User Manual (Volume 1) I-3

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Address
PC-Relative Addressing . . 2-15

Code Protection
Mode (CPM) Register

Address Offset 13-4
Range Register Lower Bound
(CPRx_mL) 9-12
Range Register Upper Bound
(CPRx_mU). 9-11 Context Save Area (CSA) 1-5,

COMPAT
Compatibility Register 13-2

Compatibility Mode Register. 3-21
Context

Events and Instructions. 4-4
Information Register 3-12
List Management

CTYP Trap 6-12
Lower . 4-1
Lower Context

PCXI register Field 3-12
Registers 3-4
Task Switching Operation 4-3

Management Traps. 6-11
Of Task 1-5,
3-10
Restore

CTYP Trap 6-12
Save

FCU Trap 6-12
Switching. 1-5
Upper . 4-1
Upper Context

Registers 3-4
Task Switching Operation 4-3

Upper Context UL
PCXI register field 3-12

Context Lists
Description 4-5

Context Management Registers . . . 4-13
Context Restore

Example 4-9
FCX. 4-11
Internal Buffer 4-11

Link Word. 4-11
PCX . 4-11

Context Save 4-6,
4-9

Example. 4-9
FCX . 4-9
Link Word. 4-10
PCX . 4-9

4-1
Context Lists 4-5
Context Management Registers 4-13
Description. 4-3
Effective Address. 4-3
Effective Address diagram. . . . 4-3

Context Switching
BISR . 4-7
CALL . 4-8
Function Calls 4-8
ICR.CCPN 4-6
ICR.IE 4-6
ICR.PIPN 4-6
RET . 4-8
SVLCX 4-7
With Interrupts & Traps 4-6

Coprocessor 1-8
Core

Break-Out Signal 12-7
Debug Controller (CDC). 12-1
Special Function Registers (CSFRs)

Core Registers 1-4
Suspend-Out Signal. 12-7

Core Debug Controller (CDC) 1-8
Core Register Table 13-1
Core Special Function Registers (CSFRs)

2-7, 13-2
Core Registers. 3-1

CORE_ID
CPU_ID register field 3-20

Count Value
CCNT register field 12-39
ICNT register field 12-40
M2CNT register field 12-42
V1.0 2012-02 User Manual (Volume 1) I-4

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
M3CNT register field 12-43
Counter Control Register

CCTRL 12-38
Counters

Normal Mode 12-35
Task Mode 12-35 CSFR

CPR
Code Segment Protection (CPR) Reg-
ister

Address Offset 13-3
CPRx_mL

Code Protection Range Register Low-
er Bound 9-12

CPRx_mU
Code Protection Range Register Up-
per Bound 9-11

CPRx_nL
Code Segment Protection Register

Lower Bound 9-12
CPU

Current Priority Number 5-2
Priority Number 4-6

CPU Clock Cycle Count Register
CCNT . 12-39

CPU_ID
CPU Identification Register

Address Offset 13-2
CREVT

Address Offset 13-5
Core Register Access Event Register

Definition 12-21
CSA

A11(RA) 4-6
Context Lists 4-5
Context Save Area 1-5,
4-1
Description 4-3
DSYNC 4-17
Effective Address diagram 4-3
in Context Lists figure 4-5
Link Word 4-3,
4-5
List Head Pointer 4-13

List Limit Pointer 4-13
List Underflow 4-16
PCXI.PCX 4-6
PCXI.UL. 4-6
PSW.CDC 4-6

Core Registers. 1-4
Core Special Function Registers 2-7
Register Table 13-1

CSU Trap
Call Stack Underflow 6-12

CTYP Trap
Context Type 6-12

D
D0-D15

Data Registers 0-15. 13-1
D15

Data Register 15 1-6
DAE Trap

Data Asynchronous Error. 6-13
DAEAR

Address Offset 13-5
DAETR

Address Offset 13-5
DATA

Dn register field 3-3
Data

Data Registers (D0 to D15) . . . 3-2
DPR Data Segment Protection Regis-
ter

Address Offset 13-2
General Purpose Registers . . . 3-2
Types

List of. 1-4
Data Formats

Overview Figure. 2-3
Programming Model. 2-2

Data Integrity Error Address Register 7-6
Data Integrity Error Trap Register . 7-5
Data Memory Configuration Register

DCON0 8-9
DCON1 8-10
V1.0 2012-02 User Manual (Volume 1) I-5

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
DCON2 8-10
Data Memory Configuration Registers

DCON0, DCON1, DCON2 8-9
Data Protection Mode Register (DPM)

Address Offset 13-4
Data Protection Range Register Lower

Bound (DPRx_mL) 9-10
Data Protection Register Upper Bound

(DPBx_mU) 9-9
Data Protection Set Configuration Register

DPSx. 9-13,
9-14, 9-15

Data Protection Set Configuration Register
(DPSx) 9-13,
9-14, 9-15

Data Register 1-3,
1-6

Data Types
Address. 2-2
Bit String 2-1
Boolean. 2-1
Byte. 2-1
IEEE-754. 2-2
Programming Model 2-1
Signed Fraction. 2-2
Signed Integers. 2-2
Unsigned Integers. 2-2

DBGSR
Address Offset 13-5
Debug Status Register

CDC Control Registers. . . 12-14
Enabling CDC 12-1

DBGTCR
Address Offset 13-6
Debug Trap Control Register . . 12-32

DCACHE_CON
Address Offset 13-5

DCON0
Data Memory Configuration Register
8-9

DCON1
Data Memory Configuration Register
8-10

DCON2
Data Memory Configuration Register
8-10

DCX
Address Offset 13-6
Debug Context Save Area Pointer
Register

Definition 12-31
DCX Value

DCX register field. 12-31
DE

DBGSR register field 12-18
Debug

Monitor Start Address Register (DMS)
Breakpoint Trap. 12-8

Traps . 6-15
Debug Action

Description. 12-7
EXEVT 12-7
Halt . 12-8
Run Control Features. 12-1
TRnEVT 12-4

Debug Event 12-1
Description. 12-3
External 12-3
MTCR and MFCR 12-3

DEBUG Instruction 12-2,
12-3

Debug Monitor Start Address Register
(DMS) 12-8

Debug Registers 13-5
Debug System. 1-8
Debug Trap Control Register

DBGTCR 12-32
Debug Triggers 12-5
Debugging

Registers that support 3-24
Denormal Numbers 11-3
DIE

Data Memory Integrity Error. . . 7-2
Trap . 7-2

DIEAR . 7-6
Address Offset 13-5
V1.0 2012-02 User Manual (Volume 1) I-6

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
DIETR. 7-5
Address Offset 13-5

Direct Memory Access (DMA) 1-6
Direct Translation

Memory Protection System. . . . 9-2
DMA

Direct Memory Access 1-6
DMS . 12-30

Address Offset 13-6
Debug Monitor Start Address Register

Breakpoint Trap 12-8
DMS Value

DMS register field 12-30
Double-word

Definition P-2
DPR

Data Segment Protection Register
13-2

Definition 9-9
DPRx_mL

Data Protection Range Lower Bound
9-10

DPRx_mU. 9-9
DPSx

Data Protection Set Configuration Reg-
ister . 9-13,
9-14, 9-15

DREG
FPU_TRAP_OPC register field . 11-16

DSE Trap
Data Access Synchronous Error 6-13

DSP
Architecture Overview. 1-1

DSPR_CON
Address Offset 13-5

DSYNC
CSA Memory Locations 4-17

DTA
DBGTCR register field 12-32

E
EA

Effective Address 4-3

Effective Address
Absolute Addressing 2-10
Context Save Area (CSA) 4-3,
4-13
Memory Protection. 9-2

ENABLE Instruction. 5-2
ENDINIT

Protection. 3-1
ENDINIT Protected 13-2
EVT . 12-32
EVTA

CREVT register field 12-22
EXEVT register field. 12-20
SWEVT register field 12-24
TRxEVT register field. 12-27

EVTSRC
DBGSR register field 12-17

Exceptions
FPU . 11-8

EXEVT
Address Offset 13-5
Register Definition 12-19

Extended-Size Registers 3-2
EXTR.U Instruction

Bit Indexed Addressing 2-14

F
FCD Trap. 4-16

Free Context List Depletion . . . 6-11
FCDSF

SYSCON register field 3-18
FCU Trap

Free Context List Underflow . . 6-12
FCX

Context Management Register 4-13
Context Restore. 4-11
Context Save 4-9
CSA

Context List 4-5
Free CSA List Head Pointer Register
4-14
Offset Address 4-14
Pointer 4-14
V1.0 2012-02 User Manual (Volume 1) I-7

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Register. 4-14
Address Offset 13-2
FCU Trap 6-12

Segment Address Field. 4-14
FCXO

FCX Offset Address
Field in FCX Register 4-14

FCX register field 4-14
FCXS

FCX register field 4-14
Feature Summary 1-2
FFT

Bit-Reverse Addressing 2-13,
2-14

FI
FPU

Invalid Operation 11-9
FPU Exception Flag 11-9
FPU_TRAP_CON register field. 11-13

FIE
FPU_TRAP_CON register field. 11-13

Floating Point
Registers. 3-2
Unit (FPU) 11-1

Floating Point Unit (FPU) 11-1
FMT

FPU_TRAP_OPC register field . 11-16
FPU

Asynchronous Traps 11-1,
11-12
Denormal Numbers. 11-3
Exception Flags 11-8
Exceptions 11-8
FI Exception Flag 11-9
Floating Point Unit. 11-1
FS Exception Flag. 11-9
FU Exception Flag 11-11
FV Exception Flag. 11-10
FX Exception Flag. 11-11
FZ Exception Flag. 11-11
IEEE-754. 11-1
Invalid Operations 11-9
NaN. 11-3

Rounding 11-6
Trap Control Register. 11-13

FPU_TRAP_CON 11-13
Trapping Instruction Opcode Register

FPU_TRAP_OPC 11-16
Trapping Instruction Program Counter
Register

FPU_TRAP_PC 11-15
Trapping Operand Register

FPU_TRAP_SRC1 11-17
FPU_TRAP_SRC2 11-18
FPU_TRAP_SRC3 11-19

FPU_TRAP_CON
Address Offset 13-6
FPU Trap Control register 11-13

FPU_TRAP_OPC
Address Offset 13-6
FPU Trapping Instruction Opcode reg-
ister . 11-16

FPU_TRAP_PC
Address Offset 13-6
FPU Trapping Instruction Program
Counter register 11-15

FPU_TRAP_SCR1
Address Offset 13-6

FPU_TRAP_SCR2
Address Offset 13-6

FPU_TRAP_SCR3
Address Offset 13-6

FPU_TRAP_SRC1
FPU Trapping Instruction Operand reg-
ister . 11-17

FPU_TRAP_SRC2
FPU Trapping Instruction Operand reg-
ister . 11-18

FPU_TRAP_SRC3
FPU Trapping Instruction Operand reg-
ister . 11-19

Free Context List
Available CSA 4-5
Context Restore. 4-11
Context Save 4-9
FCD Trap 6-11
V1.0 2012-02 User Manual (Volume 1) I-8

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Free CSA List Pointer Register. . . . 4-16
FS

FPU Exception 11-9
FU

FPU Exception Flag 11-11
FPU_TRAP_CON register field. 11-13

FUE
FPU_TRAP_CON register field. 11-14

Function Calls
Context Switching 4-8

FV
FPU Exception Flag 11-10

FVE
FPU_TRAP_CON register field. 11-14

FW
FPU_TRAP_CON register field. 11-13

FX
FPU Exception Flag 11-11
FPU_TRAP_CON register field. 11-13

FXE
FPU_TRAP_CON register field. 11-14

FZ
FPU Exception Flag 11-11
FPU_TRAP_CON register field. 11-13

FZE
FPU_TRAP_CON register field. 11-14

G
GByte

Definition P-2
General Purpose Registers (GPR) . 1-2,

3-1, 13-1
Global

Register Write Permission. 5-2
Registers. 3-8

GPR . 3-1
16-bit Instructions 3-2
Architecture Overview. 1-3
General Purpose Registers. . . . 1-2,
2-2

Architectural Registers . . . 1-2
Register Table. 3-4,
13-1

GRWP Trap
Global Register Write Protection 6-9

GW
PSW register field 3-8

H
h

Bit Type P-2
Half-word

Definition P-2
Half-Word Boundary

Alignment Requirements 2-4
HALT

DBGSR register field 12-18
Halt

Debug Action 12-8
Hardware Traps. 6-3

I
I/O Privilege Level

Protection. 1-7
ICNT . 12-40

Address Offset 13-6
ICR

Context Switching 4-6
Initial State upon a Trap. 6-7
Interrupt Control Register

Address Offset 13-2
Definition 5-10
Description 5-1

ICU
Interrupt Control Unit 1-6
Operation 5-1

ID Registers. 3-19,
3-20

IE
Context Switching 4-6
ICR register field 5-11

IEEE-754
Data Types 2-2
FPU . 11-1

Implicit
Address
V1.0 2012-02 User Manual (Volume 1) I-9

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Register A15. 1-3
Data Register 1-3

Index
Algorithm

Circular Addressing 2-11
Array . 2-13

Indexed Addressing
Synthesized Addressing Modes 2-14

Indexed Arrays
Addressing 2-14

Indexes
Table Indexes

GPRs 3-2
Instruction Fetch 9-6
Instruction Formats 2-9
Instruction Set Architecture (ISA)

Features 1-2
Integers. 2-2

Multi-Precision 2-2
Internal Buffer

Context Restore 4-11
Interrupt

Control Register 5-10
Definition 5-10

Enable/Disable Bit. 5-1
Nested. 1-6
Priority . 1-6
Priority Groups 5-6
Register A11 3-2
Request

Priority Numbers. 5-7
Service Routine (ISR) 3-10,
3-14
Stack Management 3-14
Stack Pointer. 3-14
Vector Table 5-10,
5-12

Interrupt Control Register (ICR) . . . 5-1
Context Switching 4-6

Interrupt Control Unit (ICU). 1-6
Interrupt Enable 4-6
Interrupt Handler. 4-4,

4-6

Interrupt Priority 1-6
ICU. 1-6

Interrupt Service
Request 5-2

Interrupt Service Routine (ISR) . . . 1-4
Dividing into Priorities 5-8
Entering an ISR 5-2
Exiting an ISR 5-3
Stack Management 3-14
Tasks and Functions 4-6

Interrupt System
Chapter 5-1
Description. 1-6
Interrupt Priority 1-6
SRN . 1-6
Using the Interrupt System . . . 5-6

Interrupts
Context Switching 4-6

IO
PSW register field 3-7

IOPC Trap
Illegal Opcode 6-9

IS
PSW register field 3-8
SYSCON register field 3-17

ISA
Adress Space 1-1
Feature Summary 1-2
Virtual Addressing 1-1

ISP
Initialize 3-14
Interrupt Stack Pointer Register

Address Offset 13-2
Interrupt Stack Pointer Register Defini-
tion . 3-16
register field 3-16

ISR
Entering an ISR 5-2
Exiting an ISR 5-3
Interrupt

Service Routine (ISR) . . . 1-4
Splitting on to Different Priorities 5-8
Stack Management 3-14
V1.0 2012-02 User Manual (Volume 1) I-10

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Tasks and Contexts 3-10
Tasks and Functions. 4-6

ISYNC Instruction 3-25
Entering an ISR. 5-3

J
JL Instruction

PC-Relative Addressing 2-15

K
kBaud

Definition P-2
KByte

Definition P-2

L
LCX

Context Management Registers 4-13
FCD Trap 6-11
Free CSA List Limit Pointer Register
4-16

Address Offset 13-2
Free CSA List Pointer Register . 4-16
Offset . 4-16
Segment Address 4-16

LCXO
LCX register field 4-16

LCXS
LCX register field 4-16

LD.B Instruction
Alignment Requirements. 2-4

LD.BU Instruction
Alignment Requirements. 2-4

LDMST Instruction 2-14
Alignment Requirements. 2-4
Semaphores and Atomic Operations
2-8

LEA Instruction
PC-Relative Addressing 2-15

Link Word
Context Restore 4-11
Context Save 4-10
Context Save Areas (CSAs) . . . 4-5
CSA. 4-3

CSAs . 1-5
Little-Endian. 2-6
Load

Task Switching Operations . . . 4-4
Load Word

Circular Addressing 2-12
Local Variables 2-10
LOWBND

CPRx_nL register field 9-12
DPRx_nL register field 9-10

Lower Context 4-1
PCXI register Field. 3-12
Registers 3-4
Task Switching Operation 4-3

Lower Registers. 1-3

M
M1

CCTRL register field 12-38
M1CNT

Address Offset 13-6
Multi-Count Register 12-41

M2
CCTRL register field 12-38

M2CNT
Address Offset 13-6
Multi-Count Register 12-42

M3
CCTRL register field 12-38

M3CNT . 12-43
Address Offset 13-6
Multi-Count Register 12-43

MBaud
Definition P-2

MByte
Definition P-2

MEM Trap
Invalid Local Memory Address. 6-10

MEMAR
Address Offset 13-5

Memory
Memory Protection Enable (SYS-
CON.PROTEN) 3-18
V1.0 2012-02 User Manual (Volume 1) I-11

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Protection
Model 9-10 MOD

Protection Model 9-9
Protection Registers

Active Set 3-7
Overview 3-24
PSW.PRS Field 3-7

Protection System. 9-1
Memory Access

Circular Addressing. 2-11
Memory Integrity

DIE . 7-2
PIE . 7-2

Memory Integrity Error
Classification. 7-1
Data . 7-2
Mitigation. 7-1
Program 7-2

Memory Management Registers. . . 13-4
Memory Management Unit (MMU)

Memory Protection 9-2
Memory Model

Description 1-4,
2-7
Physical Address Space 2-7
Physical Memory Addresses. . . 2-7

Memory Protection
I/O . 9-1
Trap System 9-1

Memory Protection Registers
Description 3-24

Memory Protection System. 1-7,
9-1

MEMTR
Address Offset 13-5

MFCR Instruction
Debug Events 12-3
Run-Control Features 12-2

MHz
Definition P-2

MMU . 1-7
Protection System. 1-7,
9-2

Traps . 6-8

CPU_ID register field 3-19
MOD_32B

CPU_ID register field 3-19
MOD_REV

CPU_ID register field 3-19
Mode

Supervisor 1-5,
3-10
User-0 1-5,
3-10
User-1 1-5,
3-10

Module Identification Number
CPU_ID.MOD Field 3-19,
3-20, 3-21

MPN Trap
Memory Protection Null Address 6-9

MPP Trap
Memory Protection Access . . . 6-9

MPR Trap 9-7
Memory Protection Read 6-8

MPW Trap 9-7
Memory Protection Write 6-9

MPX Trap 9-7
Memory Protection Execute. . . 6-9

MTCR Instruction
Debug Events 12-3
ICR.CCPN Update. 5-11
Modifying ICR.IE and ICR.CCPN 5-3
Run Control Features. 12-2
Writing to the BIV Register. . . . 5-5

MTCR update 3-25
Multi-Count Register

M1CNT 12-41
M2CNT 12-42
M3CNT 12-43

Multi-Precision Integers 2-2

N
Negative Logic

Text Conventions. P-2
V1.0 2012-02 User Manual (Volume 1) I-12

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
NEST Trap
Nesting Error 6-13

NMI
Asynchronous Traps 6-3
Non-Maskable Interrupt 1-6

Trap Class 6-3
Trap

Non-Maskable Interrupt . . 6-15
Trap System 1-6,
9-1
Trap System Overview 6-1

Non-Maskable Interrupt (NMI) 9-1
NMI . 1-6

Normal Mode 12-35
Not a Number (NaN)

FPU. 11-3

O
OCDS . 1-8

Control Registers 12-14
On-Chip Debug Support (OCDS) . . 1-8
OPC

FPU_TRAP_OPC register field . 11-16
OPD Trap

Invalid Operand. 6-10
Overflow

Arithmetic Overflow
OVF Trap 6-2

OVF Trap
Arithmetic Overflow. 6-15

P
Packed Arithmetic. 2-4
Page Table Entry (PTE)

Memory Protection System. . . . 9-2
PC

Architecture Overview. 1-3
FPU_TRAP_PC register field . . 11-15
PC register field 3-5
Program Counter Register 1-2

Address Offset 13-2
Definition 3-5

Register A11 3-2

PCACHE_CON
Address Offset 13-5

PCON
Address Offset 13-5

PCON0
Program Memory Configuration Regis-
ter. 8-7

PCON1
Program Memory Configuration Regis-
ter. 8-8

PCON2
Program Memory Configuration Regis-
ter. 8-8

PCPN
PCXI register field 3-12

PC-Relative
Addressing. 2-15

PCX
Context Management Registers 4-13
Context Restore. 4-11
Context Save 4-9
CSA . 4-6
CSU Trap. 6-12
Offset . 4-15
Previous Context Pointer Register
4-15, 13-2
Segment Address 4-15

PCXI
Architectural Registers. 1-2
Architecture Overview 1-3
Exiting an Interrupt Service Routine
5-3
Previous Context Information Register

Address Offset 13-2
Definition 3-12

Task Switching. 4-4
PCXO

PCX register field 4-15
PCXI register field 3-13

PCXS
PCX register field 4-15
PCXI register field 3-12

Pending
V1.0 2012-02 User Manual (Volume 1) I-13

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Interrupt Priority Number (PIPN)
Context Switching. 4-6
Entering an ISR 5-2
Interrupt Control Register . 5-10

PEVT
DBGSR register field. 12-17

Physical Address Map 8-1
Physical Address Space

Memory Model 2-7
Physical Memory Addresse

Memory Model 2-7
Physical Memory Attributes 8-4,

8-5, 8-6
Address Map. 8-3
for all Segments 8-3
PMA . 8-1
Registers. 8-4

Physical Memory Attributes Register
PMA0 . 8-4
PMA1 . 8-5
PMA2 . 8-6

Physical Memory Properties 8-3
Necessary Accesses. 8-3

PIE
PCXI register field 3-12
Program Memory Integrity Error 7-2
Trap. 7-2

PIEAR. 7-4
Address Offset 13-5

PIETR . 7-3
Address Offset 13-5

PIPN
Context Switching 4-6
Field in ICR Register 5-10
ICR register field 5-10
ICU Operation 5-1
Used with BIV Register 5-12

PMA
Physical Memory Attributes. . . . 8-1
Register Definitions. 8-4

PMA0 . 8-4
Address Offset 13-4
Physical Memory Attributes Register

8-4
PMA1. 8-5

Physical Memory Attributes Register
8-5

PMA2. 8-6
Physical Memory Attributes Register
8-6

Pointer
Interrupt Vector Table 5-10

Post-Decrement Addressing 2-10
Posted Software Events

Debug Actions 12-11
Post-Increment Addressing 2-10
Pre-Decrement Addressing 2-10
Pre-Increment Addressing. 2-10
Previous Context Information (PCXI)

Register Definition 3-12
Previous Context List. 4-5

Context Restore. 4-11
Context Save 4-9

Previous Context Pointer (PCX)
Context Management Registers 4-13
Register 4-15

Previous Context Pointer Register 4-15
Previous CPU Priority Number (PCPN)

Field in PCXI Register 3-12
Previous Interrupt Enable (PIE)

Field in PCXI Register 3-12
PREVSUSP

DBGSR register field 12-17
Priority Number

CPU . 4-6
of Interrupt Task. 3-12
Pending Interrupt

Context Switching 4-6
PRIV Trap

Privilege Violation 6-8
Privilege Level 3-7,

9-1
Program

Counter
Architectural Registers . . 1-2
Register A11 3-2
V1.0 2012-02 User Manual (Volume 1) I-14

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
State Information. 3-5
Program Integrity Error Address Register

7-4
Program Integrity Error Trap Register 7-3
Program Memory Configuration Register

PCON . 8-8
PCON0 8-7
PCON1 8-8

Program Memory Configuration Registers
PCON0, PCON1, PCON2. 8-7

Program Status Word Register
PSW . 3-6

Programming Model 2-1
Data Formats 2-2
Data Types 2-1
Instruction Formats 2-9

Protection
I/O Privilege Level 1-7,
9-1
Internal Protection Traps. 6-8
Memory Protection System. . . . 1-7
Page-Based 1-7
Range-Based 1-7
Register Set 9-6,
9-9, 9-10
Trap System 1-7

Protection System. 1-7,
9-1

PROTEN
SYSCON register field 3-18

PRS
PSW register field 3-7

PSE Trap
Program Fetch Synchronous Error
6-13

PSPR_CON
Address Offset 13-5

PSW
Architectural Registers 1-2
Architecture Overview. 1-3
FPU Exceptions 11-8
Initial State upon a Trap 6-6
Interrupt Service Routine 5-2

Processor Status Word 1-5
Program Status Word Register

Address Offset 13-2
Program Status Word register . 3-6
Supervisor Mode 3-7
Task Switching. 4-4
USB . 3-6
User Status Bit

AV (Overflow) 3-10
C (Carry) 3-10
SAV (Sticky Advance Overflow)

3-10
SV (Sticky Overflow) 3-10
V (Overflow) 3-10

User Status Bits 3-9
Definition 3-9

User-0 Mode 3-7
User-1 Mode 3-7

PTE . 9-2

Q
Q31 format

FPU . 11-1

R
r

Bit Type P-2
RA

A11
Task Switching 4-4

Return Address 3-2
Range Table Entry

Mode Register 3-24
Segment Protection 3-24

RE
DPMx register field. 9-13,
9-14, 9-15

Real Time Operating System (RTOS)
Tasks and Functions 4-1

Record Elements 2-10
Register

A10(SP) 3-15
Address Registers A0 to A15. . 3-2
V1.0 2012-02 User Manual (Volume 1) I-15

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Architectural Registers 1-2
BIV . 5-12
BTV . 6-18
CCNT . 12-39
CCTRL 12-38
CDC . 3-24
COMPAT. 3-21
Context Management 4-13
CPRx_mL 9-12
CPRx_mU 9-11
CREVT 12-21
CSFR . 3-1
D15

Data Register 15 1-6
Data Registers (D0 to D15). . . . 3-2
DBGTCR. 12-32
DCON0 8-9
DCON1 8-10
DCON2 8-10
DCX . 12-31
DIEAR . 7-6
DIETR . 7-5
DMS . 12-30
DPRx_mL 9-10
DPRx_mU 9-9
DPSx. 9-13,
9-14, 9-15
ENDINIT Protection 3-1
EXEVT 12-19
Extended-Size. 3-2
FCX. 4-14
Floating Point 3-2
FPU_TRAP_CON 11-13
FPU_TRAP_OPC 11-16
FPU_TRAP_PC 11-15
FPU_TRAP_SRC1 11-17
FPU_TRAP_SRC2 11-18
FPU_TRAP_SRC23 11-19
Free CSA List Limit Register. . . 4-16
Free CSA List Pointer 4-14,
4-16
Global . 3-8
GPR . 2-2,

3-1
ICNT . 12-40
ICR. 5-10
LCX . 4-16
M1CNT 12-41
M2CNT 12-42
M3CNT 12-43
Memory Protection Overview. . 3-24
Mode . 3-24
PCON0 8-7
PCON1 8-8
PCON2 8-8
PCX . 4-15
PCXI . 3-12
PIEAR 7-4
PIETR 7-3
PMA0 . 8-4
PMA1 . 8-5
PMA2 . 8-6
Previous Context Pointer 4-15
PSW. 3-6
Reset Values 3-1
Scaled Data Register 2-14
SWEVT 12-23
SYSCON 3-17
System Global Registers 1-3
TASK_ASI 12-33
TPS_CON 10-3
TPS_TIMERx. 10-2
TRIG_ACC. 12-29
TRxADR. 12-28
TRxEVT 12-25

RES
PMA1 register field. 8-5
PMA2 register field. 8-6
Reserved P-2

Reserved Field
Bit Type P-2

Reset Values
Registers 3-1

Restore
Task Switching Operation 4-4

Restored
V1.0 2012-02 User Manual (Volume 1) I-16

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Rounding Mode. 11-7
RET

Context Switching 4-8
Rounding Mode. 11-7
Task Switching 4-4

Return Address (RA) 3-2,
6-5

PC-Relative Addressing 2-15
Register A11 1-3
Trap System 6-5

Return From Call (RET)
Task Switching 4-4

Return From Exception (RFE)
Exiting an ISR 5-3
Interrupt Priority Groups 5-6
Task Switching 4-4

RFE
Task Switching 4-4

RFM
Rounding Mode. 11-7

RISC
Architecture Overview. 1-1

RM
Floating Point Rounding 11-6
FPU_TRAP_CON register field. 11-14
Rounding

FPU 11-6
RNG

TRxEVT register field 12-26
Rounding

FPU. 11-6
Rounding Mode

Restored 11-7
RS

Field in DMPx Register 9-13,
9-14, 9-15

RTOS
Context Switching 4-7

Run-control Features
Core Debug Controller (CDC). . 12-2

rw
Bit Type. P-2

rwh

Bit Type P-2

S
S

PSW register field 3-6
SAV

Sticky Advance Overflow
PSW User Status Bit 3-10

Scaled Data Register
Indexed Addressing 2-14

Scratchpad RAM
Physical Memory Attributes . . . 8-1

Segments
Address Space 1-4
Memory Model

Address Space 2-7
Physical Memory Attributes . . . 8-3

Semaphores 2-8
Service Request Control Register (SRC)

Interrupt Registers 3-24
Service Request Node (SRN)

Interrupt System 1-6
Service Request Priority Number (SRPN)

Interrupt Priority 1-6
Service Requests

Interrupt Priority 1-6
Signed

Fraction
Data Types 2-2

Integers
Data Types 2-2

SIH
DBGSR register field 12-18

SIMD
Single Instruction Multiple Data 1-2

SMACON
Address Offset 13-5

SMT
CSU Trap. 6-12
Software Managed Task 4-1
Software Managed Tasks 1-4

Software Managed Tasks (SMT)
Overview 1-4,
V1.0 2012-02 User Manual (Volume 1) I-17

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
3-10
SOvf

CCNT register field
12-39, 12-43
ICNT register field 12-40
M1CNT register field 12-41 Static Data 2-10
M2CNT register field 12-42
M3CNT register field 12-43

SOVF Trap
Sticky Arithmetic Overflow 6-15

SP
A10

Task Switching 4-4
Stack Pointer. 3-15
Stack Pointer A10 Register

General Purpose Registers 3-2
Spanned Service Routine

Spanning ISRs 5-6
Speculative

Accesses. 8-3
SRC1

FPU_TRAP_SRC1 register field 11-17
SRC2

FPU_TRAP_SRC2 register field 11-18
SRC3

FPU_TRAP_SRC3 register field 11-19
SRN

Service Request Node 1-6
SRPN

Different Priorities for same Interrupt
Source. 5-8
Service Request Priority Number 1-6

ST.B Instruction
Alignment Requirements. 2-4

ST.T Instruction
Alignment Requirements. 2-4
Semaphoes and Atomic Operations
2-8

Stack
Pointer Register 10

General Purpose Registers 3-2
Stack Management

Description 3-14

Stack Pointer (SP) 2-10
A10 Register 1-3

State Information
PCXI Register 3-12
Program Counter (PC) 3-5

Sticky Overflow
SOVF

Supported Traps 6-2
STLCX

Context Events & Instructions . 4-4
STUCX

Context Events & Instructions . 4-4
Supervisor Mode 1-5,

1-7, 3-7, 8-2
Overview 3-10

SUSP
CREVT register field 12-21
DBGSR register field 12-18
EXEVT register field. 12-19
SWEVT register field 12-23
TRnEVT register field. 12-26

SV
Sticky Overflow

PSW User Status Bit 3-10
SVLCX

Context Events & Instructions . 4-4
Context Switching 4-7

SWAP Instruction
Alignment Requirements 2-4

SWAP.W Instruction
Semaphones and Atomic Operation
2-8

SWAPMSK.W Instruction
Alignment Requirements 2-4
Semaphores and Atomic Operation
2-8

SWEVT
Address Offset 13-5

SWEVT Register
Debug Action 12-3
Software Debug Event Register

Definition 12-23
V1.0 2012-02 User Manual (Volume 1) I-18

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Synchronous Trap
Overview 6-3

Synthesised Addressing Modes . . . 2-14
SYS Trap

System Call Trap 6-15
SYSCALL Instruction

SYS Trap Description 6-15
SYSCON

Free Context List Depletion Trap 6-11
Register. 3-17

Address Offset 13-2
Memory Protection System 9-6

System
Global Registers (A0, A1, A8, A9) 3-2
System Call - SYS Trap

Supported Traps. 6-2
System Call Traps. 6-15

T
T0

TRIG_ACC register field 12-29
T1

TRIG_ACC register field 12-29
T2

TRIG_ACC register field 12-29
T3

TRIG_ACC register field 12-29
T4

TRIG_ACC register field 12-29
T6

TRIG_ACC register field 12-29
T7

TRIG_ACC register field 12-29
Table Indexes

General Purpose Registers. . . . 3-2
TAE Trap

Temporal Asynchronous Error . 6-14
Task

Context 1-5
Current

Context Switching. 4-7
Mode . 12-35
Switching. 4-3

Task Switching
PSW. 4-4
RA

A11 4-4
RFE . 4-4
SP

A10 4-4
TASK_ASI

Address Offset 13-6
Address Space Identifier Register Def-
inition . 12-33

Tasks and Functions
Overview 4-1
RTOS. 4-1
SMT . 4-1

TCL
FPU_TRAP_CON register field 11-14

Temporal Protection System
Control Register 10-3
Timer Register 10-2

TEXP0
TPS_CON register field 10-3

TEXP1
TPS_CON register field 10-3

Text Conventions. P-2
Timer

TPS register field 10-2
TIN. 1-6

SYS Trap (System Call). 6-15
TIN-0

VAF 6-8
TIN0

NMI 6-15
TIN-1

PRIV 6-8
VAP. 6-8

TIN1
FCD. 6-11
IOPC 6-9
OVF. 6-15
PSE. 6-13

TIN-2
MPR 6-8
V1.0 2012-02 User Manual (Volume 1) I-19

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
TIN2
CDO 6-12
DSE 6-13
SOVF 6-15
UOPC. 6-9

TIN3
CDU 6-12
DAE 6-13
MPW. 6-9
OPD 6-10

TIN4
ALN 6-10
CAE 6-14
FCU 6-12
MPX 6-9

TIN5
CSU 6-12
MEM. 6-10
MPP 6-9
PIE 6-14

TIN6
CTYP 6-12
DIE 6-14
MPN 6-9

TIN7
GRWP 6-9
NEST 6-13
TAE 6-14

TIN8
SYS 6-15

Trap Identification Number
Trap Types 6-1

TLB (Translation Lookaside Buffer)
Hardware Traps 6-3
VAF Trap. 6-8

TPROTEN
SYSCON register field 3-17

TPS_CON. 10-3
TPS_TIMERx 10-2
Trap . 1-6

Accessing the Trap Vector Table 6-5
ALN

Data Address Alignment. . 6-10

Assertion 6-15
Asynchronous 6-3
BAM

Break After Make 6-15
Base Trap Vector Table Pointer (BTV)
Register Definition 6-18
BBM

Break Before Make 6-15
CAE

Coprocessor Asynchronous Error
6-14

CDO
Call Depth Overflow 6-12

CDU
Call Depth Underflow . . . 6-12

Class 0. 6-8
Class 1. 6-8
Class 2. 6-9
Class 3. 6-11
Class 4. 6-13
Class 5. 6-15
Class 6. 6-15
Class 7. 6-15
Class Number 6-5
Classes 1-6,
6-18
Context Management 6-11
CSU

Call Stack Underflow. . . . 6-12
CTYP

Context Type. 6-12
DAE

Data Asynchronous Error 6-13
Debug 6-15
Descriptions 6-8
DIE. 7-2

Data Memory Integrity Error 6-14
DSE

Data Synchronous Error . 6-13
FCD . 4-16

Free Context List Depletion 6-11
FCU

Free Context List Underflow 6-12
V1.0 2012-02 User Manual (Volume 1) I-20

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
GRWP
Global Register Write Protection

6-9
Handler Vector 6-5
Identification Number (TIN) 1-6

Trap Types 6-1
Initial State 6-6
Internal Protection. 6-8
IOPC

Illegal Opcode 6-9
MEM

Invalid Memory Address. . 6-10
Memory Protection Traps 9-7
MPN . 6-9

Memory Protection Peripheral
Access 6-9

MPP
Memory Protection Peripheral

Access 6-9
MPR

Memory Protection Read . 6-8
MPW

Memory Protection Write . 6-9
MPX

Memory Protection Execute 6-9
NEST

Nesting Error 6-13
NMI

Non-Maskable Interrupt . . 6-15
OPD

Invalid Operand 6-10
OVF

Arithmetic Overflow 6-15
PCXI Register

UL Field 3-12
PIE . 7-2

Program Integrity Error. . . 6-14
Priorities 6-16
PRIV

Privilege Violation. 6-8
PSE

Program Fetch Synchronous Er-
ror. 6-13

Register A11 (RA) use with Traps 3-2
Return Address 6-5
SOVF

Sticky Arithmetic Overflow 6-15
Synchronous Overview 6-3
SYS

System Call 6-15
System Call (SYS) 6-15
TAE

Temporal Asynchronous Error
6-14

Trap Handler 6-1
Trap System 6-1
Types . 6-1
UOPC

Unimplemented Opcode . 6-9
VAF

Virtual Address Fill 6-8
VAP

Virtual Address Protection 6-8
Trap Classes 1-6
Trap Registers 3-24
Trap System 1-6

Memory Protection. 9-1
Protection. 1-7
Trap Vector Table 6-5

Traps
Context Switching 4-6
MMU . 6-8

TRAPSV Instruction
SOVF Trap. 6-15

TRAPV Instruction
OVF Trap 6-15

TriCore
Features. 1-2

TRIG_ACC
Trigger Address Register 12-29

Trigger Address Register
TRIG_ACC. 12-29
TRxADR. 12-28

Trigger Event Register (TRnEVT)
Definition
12-25, 12-28, 12-29
V1.0 2012-02 User Manual (Volume 1) I-21

TriCore® TC1.6P & TC1.6E
32-bit Unified Processor Core

Index
Trigger Event Unit

TRnEVT
Description 12-4 V
Debug Action 12-4
Register Definition.
12-25, 12-28, 12-29

TRxADR
Trigger Address Register 12-28

TS
SYSCON register field 3-17

TST
FPU_TRAP_CON register field. 11-14

TTRAP
TPS_CON register field 10-3

TYP
TRxEVT register field 12-26

U
UL

CSA. 4-6
PCXI register field 3-12

Unsigned Integers
Data Types 2-2

UOPC Trap
Unimplemented Opcode 6-9

UPDFL
Changing the Rounding Mode . 11-6

UPPBND
CPRx_nU register field 9-11
DPRx_nU register field 9-9

Upper Context. 4-1
Registers. 3-4
Task Switching Operation 4-3
UL

PCXI register field 3-12
Upper Registers 1-3
USB . 3-6

PSW register field 3-6
User Status Bits 3-6,

3-9
User-0 Mode 1-5,

1-7, 3-7, 3-10
User-1 Mode 1-5,

1-7, 3-7, 3-10, 8-2

V
Overflow

PSW User Status Bit 3-10
VAF Trap

Hardware Traps 6-3
Virtual Address Fill 6-8

VAP Trap
Hardware Traps 6-3
Virtual Address Protection 6-8

Vector Table
Base Address 5-12

Virtual
Addressing. 1-1

VSS
BIV register field 5-12

W
w

Bit Type P-2
Watchpoints

CDC Features 12-1
Word

Definition P-2
V1.0 2012-02 User Manual (Volume 1) I-22

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

http://www.infineon.com

	Table of Contents
	Preface
	1 Architecture Overview
	1.1 Introduction
	1.1.1 Feature Summary

	1.2 Programming Model
	1.2.1 Architectural Registers
	1.2.2 Data Types
	1.2.3 Memory Model
	1.2.4 Addressing Modes

	1.3 Tasks and Contexts
	1.4 Interrupt System
	1.4.1 Interrupt Priority

	1.5 Trap System
	1.6 Protection System
	1.7 Core Debug Controller
	1.8 TriCore Coprocessor Interface

	2 Programming Model
	2.1 Data Types
	2.1.1 Boolean
	2.1.2 Bit String
	2.1.3 Byte
	2.1.4 Signed Fraction
	2.1.5 Address
	2.1.6 Signed and Unsigned Integers
	2.1.7 IEEE-754 Single-Precision Floating-Point Number

	2.2 Data Formats
	2.2.1 Alignment Requirements
	2.2.2 Byte Ordering

	2.3 Memory Model
	2.4 Semaphores and Atomic Operations
	2.5 Addressing Modes
	2.5.1 Absolute Addressing
	2.5.2 Base + Offset Addressing
	2.5.3 Pre-Increment and Pre-Decrement Addressing
	2.5.4 Post-Increment and Post-Decrement Addressing
	2.5.5 Circular Addressing
	2.5.6 Bit-Reverse Addressing
	2.5.7 Synthesized Addressing Modes

	3 General Purpose and System Registers
	3.1 General Purpose Registers (GPRs)
	3.2 Program State Information Registers
	3.3 Stack Management Registers
	3.4 Compatibility Mode Register (COMPAT)
	3.5 Access Control Registers
	3.6 Interrupt Registers
	3.7 Memory Protection Registers
	3.8 Trap Registers
	3.9 Memory Configuration Registers
	3.10 Core Debug Controller Registers
	3.11 Floating Point Registers
	3.12 Accessing Core Special Function Registers (CSFRs)

	4 Tasks and Functions
	4.1 Context Types
	4.1.1 Context Save Area

	4.2 Task Switching Operation
	4.3 Context Save Areas (CSAs) and Context Lists
	4.4 Context Switching with Interrupts and Traps
	4.5 Context Switching for Function Calls
	4.6 Fast Function Calls with FCALL/FRET
	4.7 Context Save and Restore Examples
	4.7.1 Context Save
	4.7.2 Context Restore

	4.8 Context Management Registers
	4.8.1 Registers
	4.8.2 Free CSA List Limit Pointer Register (LCX)

	4.9 Accessing CSA Memory Locations
	4.10 Context Save Area Placement

	5 Interrupt System
	5.1 General Operation
	5.1.1 ICU Interrupt Control Register (ICR)
	5.1.2 CPU operation on an interrupt request
	5.1.3 Entering an Interrupt Service Routine (ISR)

	5.2 Exiting an Interrupt Service Routine (ISR)
	5.3 Interrupt Vector Table
	5.4 Using the TriCore Interrupt System
	5.4.1 Spanning Interrupt Service Routines across Vector Entries
	5.4.2 Interrupt Priority Groups
	5.4.3 Dividing ISRs into Different Priorities
	5.4.4 Using Different Priorities for the Same Interrupt Source
	5.4.5 Interrupt Control Registers

	6 Trap System
	6.1 Trap Types
	6.1.1 Synchronous Traps
	6.1.2 Asynchronous Traps
	6.1.3 Hardware Traps
	6.1.4 Software Traps
	6.1.5 Unrecoverable Traps

	6.2 Trap Handling
	6.2.1 Trap Vector Format
	6.2.2 Accessing the Trap Vector Table
	6.2.3 Return Address (RA)
	6.2.4 Trap Vector Table
	6.2.5 Initial State upon a Trap

	6.3 Trap Descriptions
	6.3.1 MMU Traps (Trap Class 0)
	6.3.2 Internal Protection Traps (Trap Class 1)
	6.3.3 Instruction Errors (Trap Class 2)
	6.3.4 Context Management (Trap Class 3)
	6.3.5 System Bus and Peripheral Errors (Trap Class 4)
	6.3.6 Assertion Traps (Trap Class 5)
	6.3.7 System Call (Trap Class 6)
	6.3.8 Non-Maskable Interrupt (Trap Class 7)
	6.3.9 Debug Traps

	6.4 Exception Priorities
	6.5 Trap Control Registers

	7 Memory Integrity Error Mitigation
	7.1 Memory Integrity Error Classification
	7.2 Memory Integrity Error Traps
	7.2.1 Program Memory Integrity Error (PIE)
	7.2.2 Data Memory Integrity Error (DIE)

	7.3 Registers
	7.3.1 Error Information Registers

	7.4 Summary

	8 Address Map and Memory Configuration.
	8.1 Overview
	8.2 Scratchpad RAM
	8.3 Address Segments and Memory Access Types
	8.3.1 Memory Access Types
	8.3.1.1 Cached memory
	8.3.1.2 Non-cached Memory
	8.3.1.3 Peripheral Space

	8.3.2 Speculation
	8.3.3 Cacheability of Segments
	8.3.4 Default Memory types for all segments

	8.4 Memory Configuration Register Definitions
	8.4.1 Programmable Memory Access Register-0 (PMA0)
	8.4.2 Programmable Memory Access Register-1 (PMA1)
	8.4.3 Programmable Memory Access Register-2 (PMA2)
	8.4.4 Program Memory Configuration Registers (PCON0, PCON1, PCON2)
	8.4.5 Data Memory Configuration Registers (DCON0, DCON1, DCON2)

	9 Memory Protection System
	9.1 Memory Protection Subsystems
	9.2 Range Based Memory Protection
	9.2.1 Access Permissions for Intersecting Memory Ranges
	9.2.2 Crossing Protection Boundaries

	9.3 Using the Range Based Memory Protection System
	9.3.1 Protection Enable Bit
	9.3.2 Set Selection
	9.3.3 Address Range
	9.3.4 Traps
	9.3.5 Protection Register Naming Convention
	9.3.6 Protection Set Enable Register Naming Convention

	9.4 Range Based Memory Protection Registers

	10 Temporal Protection System
	10.1 Temporal Protection System Registers

	11 Floating Point Unit (FPU)
	11.1 Functional Overview
	11.2 IEEE-754 Compliance
	11.2.1 IEEE-754 Single Precision Data Format
	11.2.2 Denormal Numbers
	11.2.3 NaNs (Not a Number)
	11.2.4 Underflow
	11.2.5 Fused MACs
	11.2.6 Traps
	11.2.7 Software Routines

	11.3 Rounding
	11.3.1 Round to Nearest: Even
	11.3.2 Round to Nearest: Denormals and Zero Substitution
	11.3.3 Round Towards ± ∞: Denormals and Zero Substitution

	11.4 Exceptions
	11.5 Asynchronous Traps ()
	11.6 FPU CSFR Registers (TriCore 1.6)

	12 Core Debug Controller (CDC)
	12.1 Run Control Features
	12.2 Debug Events
	12.2.1 External Debug Event
	12.2.2 Debug Instruction
	12.2.3 MTCR and MFCR Instructions
	12.2.4 Trigger Event Unit

	12.3 Debug Triggers
	12.3.1 Combining Debug Triggers
	12.3.2 Task Specific Debug Triggers
	12.3.3 Accumulated Debug Trigger Information

	12.4 Debug Actions
	12.4.1 Update Debug Status Register (DBGSR)
	12.4.2 Indicate on Core Break-Out Signal
	12.4.3 Indicate on Core Suspend-Out Signal
	12.4.4 Halt
	12.4.5 Breakpoint Trap
	12.4.6 Breakpoint Interrupt
	12.4.7 Suspend Out
	12.4.8 Performance Counter Start/Stop
	12.4.9 None
	12.4.10 Disabled
	12.4.11 Suspend In Halt

	12.5 Priority of Debug Events
	12.6 Call Tracing
	12.7 The CDC Control Registers
	12.8 CDC Control Registers - Summary
	12.9 CDC Control Registers
	12.10 Core Performance Measurement and Analysis
	12.11 Performance Counter Registers

	13 Core Register Table
	List of Registers (by Chapter)
	List of Registers (Alphabetical)
	Index

