
Creating a ModusToolbox™ 3.x BSP

About this document
Scope and purpose

This application note describes how to create a Board Support Package (BSP) using the ModusToolbox™ BSP
Assistant tool. This document explains the basics of a BSP along with the various use cases where the BSP
Assistant tool can be useful during application development using ModusToolbox™ version 3.1 or above.

Note: Applications developed with ModusToolbox™ version 3.0 or above are not backward compatible with
earlier versions of ModusToolbox™.

Intended audience

This document is intended for anyone who needs to create a user-specific design board using an Infineon
device supported inside the ModusToolbox™ ecosystem.
Document conventions

Convention Explanation
Bold Emphasizes heading levels, column headings, menus

and sub-menus.

Italics Denotes file names and paths.

Courier New Denotes APIs, functions, interrupt handlers, events,
data types, error handlers, file names, directories,
command line inputs, code snippets, etc.

File > New Indicates that a cascading sub-menu opens when you
select a menu item.

Abbreviations and definitions

Abbreviation Meaning
BSP Board support package

MCU Microcontroller unit

MPN Manufacturer part number

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3
1.1 What is a BSP? . 3
1.2 BSP Assistant overview . 3
1.3 Overview . 4
1.4 Software requirement . 4

2 BSP design . 5
2.1 Software . 5
2.1.1 Peripheral Driver Library (PDL) .5
2.1.2 Hardware Abstraction Layer (HAL) . 5

AN235297

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-35297 Rev. *A
www.infineon.com 2023-06-09

https://www.infineon.com

2.1.3 Other libraries .5
2.2 Documentation . 5
2.3 Typical BSP contents . 6
2.3.1 Startup code and linker files . 6
2.3.2 Configuration files . 6
2.3.3 Generated source files . 7
2.3.4 Static source files .8
2.3.5 Documentation files . 8

3 Using the BSP Assistant tool . 9
3.1 Creating a new BSP .9
3.1.1 Create and configure the BSP using the existing sample board . 9
3.1.2 Create and configure the BSP using MPN .16
3.1.3 Create an application . 26
3.1.4 Code Build .31
3.2 Customizing an existing BSP . 31
3.2.1 Open and edit existing BSP on its own . 31
3.2.2 Open and edit an existing BSP from an application . 37

4 Advanced usage . 44
4.1 Differences between ModusToolbox™ BSP generations .44
4.2 Migrating the ModusToolbox™ BSP .45
4.2.1 Using the BSP Assistant tool . 45
4.2.2 Without using the BSP Assistant tool . 46

References .48

Revision history .49

Disclaimer . 50

Creating a ModusToolbox™ 3.x BSP

Table of contents

Application note 2 002-35297 Rev. *A
2023-06-09

1 Introduction

1.1 What is a BSP?
BSPs are a set of files and directories that provide the necessary functionality to develop target applications
on any given board. The board is typically a printed circuit board (PCB) used in any electronics product like
a mobile phone, laptop, digital camera, etc. These boards usually have a microcontroller (or microprocessor)
chip with various peripherals and other components that are wired together to meet the target application
requirements.
Infineon has a range of microcontroller devices belonging to various families such as PSoC™ 4, PSoC™ 6,
and XMC™, and provides development kits (or boards) for the evaluation of these devices. The BSPs for
these development boards are made available through the ModusToolbox™ ecosystem in the Infineon GitHub
website.

1.2 BSP Assistant overview
The BSP Assistant tool helps you create and manage custom BSPs for the board designed for your application
using Infineon MCUs. The tool is available in both graphical user interface (GUI) and command line interface
(CLI) versions.

Figure 1 BSP Assistant GUI

Creating a ModusToolbox™ 3.x BSP

1 Introduction

Application note 3 002-35297 Rev. *A
2023-06-09

https://github.com/orgs/Infineon/repositories?language=&page=1&q=TARGET_&sort=&type=all
https://github.com/orgs/Infineon/repositories?language=&page=1&q=TARGET_&sort=&type=all

1.3 Overview
This application note has the following sections to help you learn the following:
• BSP design - Explains the BSP architecture
• Using the BSP Assistant tool - Explains typical BSP Assistant tool use cases such as creating and

modifying BSPs using the Hello World code example
• Advanced usage - Explains advanced BSP Assistant tool use cases like BSP migration between generations

1.4 Software requirement
Software Minimum required version

ModusToolbox™ 3.1

Creating a ModusToolbox™ 3.x BSP

1 Introduction

Application note 4 002-35297 Rev. *A
2023-06-09

2 BSP design
As mentioned previously, a BSP is a set of files and directories with content specific to a target board that
enables you to develop a target application. BSPs for evaluation boards of MCUs supported by ModusToolbox™

are made available through the ModusToolbox™ ecosystem via Infineon GitHub repositories.

2.1 Software
Software is provided in source or library form and contains a set of APIs to control and configure the
microcontroller and other onboard components. A BSP specifies software that it requires as dependencies.
For Infineon BSPs provided on GitHub, dependencies are specified in a manifest file. Once a BSP is created by
the user, (either during application creation or by using the BSP Assistant) the dependencies are specified in a
set of *.mtbx files in the BSP's deps subdirectory. These dependency files contain information for downloading
the minimum set of libraries required to develop an application on the given board.

2.1.1 Peripheral Driver Library (PDL)
PDL contains a set of low-level APIs to control hardware peripherals such as UART and SPI. The interfaces are
usually specific to a particular microcontroller or microcontroller family. For some MCU families, the low-level
API library may use an alternative name for the low-level library APIs other than PDL mentioned in this section.

2.1.2 Hardware Abstraction Layer (HAL)
HAL contains a set of high-level APIs to control hardware peripherals; the interfaces are more portable than PDL
in case of the following changes:
• Changing the pin assignments for the peripherals within the same microcontroller
• Porting to another microcontroller within the same family
• Porting to another microcontroller in a different family

2.1.3 Other libraries
These libraries provide the following functionality:
• Abstraction libraries: These typically abstract the RTOS to help in porting the application across different

RTOS like FreeRTOS or to a different board.
• Base libraries: These libraries, such as core-lib, core-make, recipe-make are necessary for the build

process.
• Board utilities libraries: These are libraries supporting various utilities available on the board other than

the microcontroller, such as sensors and displays, and are used to control them.
• MCU Middleware: These include middleware that provides RTOS services, such as FreeRTOS, or peripheral

services, such as capacitive sensing.

2.2 Documentation
BSPs have the following documentation accompanying them:
• Docs/api_reference_manual.html: Provides details of the APIs, structures, and macros that are provided

as part of the BSP and details of the board design, including the available microcontroller, LEDs, buttons,
memory, and sensors.

• README.md: Provides top-level information about the BSP and usually contains links to additional
documentation.

• RELEASE.md: Provides information about various versions of the BSP and changes from one version to
another.

Creating a ModusToolbox™ 3.x BSP

2 BSP design

Application note 5 002-35297 Rev. *A
2023-06-09

https://github.com/Infineon?q=TARGET_&type=all&language=&sort=
https://github.com/Infineon/mtb-bsp-manifest/blob/v2.X/mtb-bsp-dependencies-manifest.xml

2.3 Typical BSP contents

Figure 2 BSP contents

2.3.1 Startup code and linker files
Startup code is usually in assembly format and is the code that executes after a CPU reset. These are usually
specific to a CPU and configure various microcontroller special-function registers such as the stack pointer.
Linker files are used to map various sections of the compiled source code into memory regions like flash and
SRAM. These are used by the build system to generate the final binary that is programmed onto the target.
Both startup code and linker files are specific to a build environment like GCC. BSPs that accompany the
ModusToolbox™ ecosystem provides these items for the GCC, IAR, and Arm® build environments.
Since the startup code and linker files are CPU and toolchain dependent, they are located inside COMPONENT and
TOOLCHAIN directories inside the BSP, which allows them to be included conditionally. For example, the directory
COMPONENT_CM4/TOOLCHAIN_GCC_ARM would contain startup code and linker script files that are only used when
building a project for the CM4 CPU with the GCC_ARM toolchain.

2.3.2 Configuration files
ModusToolbox™ comes with various BSP configurator tools that enable you to configure the microcontroller
peripherals. Typically, these configure the clock, pin, and other resource-related settings in the microcontroller.
There are GUI tools like the Device Configurator to open/edit the configuration files, which are saved in XML
format with a specific file extension like design.modus. When the configuration is saved, the tool generates the
configuration code that is linked together with the application code during the build process.
The files for each BSP configurator are located in the config directory inside the BSP.
The following table summarizes the available BSP configurator tools, associated configuration file, and a brief
description.

Creating a ModusToolbox™ 3.x BSP

2 BSP design

Application note 6 002-35297 Rev. *A
2023-06-09

Table 1 BSP configuration files

Configurator tool name Configuration file
extension

Description

capsense-configurator *.cycapsense CAPSENSE™ Configurator is used to create and configure
CAPSENSE™ widgets, and generate code to control the
application firmware.

device-configurator *.modus Device Configurator is used to enable and configure device
peripherals, such as clocks and pins, as well as standard
MCU peripherals that do not require their own tool.

qspi-configurator *.cyqspi
*.cymem

The QSPI Configurator is used to open or create
configuration files, configure memory slots, and generate
code for your application when external flash devices are
connected to the MCU using a Quad Serial Peripheral
Interface (QSPI).

seglcd-configurator *.cyseglcd SegLCD Configurator is used to generate display structures
for the SegLCD Driver.

smartio-configurator *.modus Smart I/O Configurator is used to configure the smart I/O
pins in the MCU.

usbdev-configurator *.cyusbdev Universal Serial Bus(USB) configurator is used to configure
USB device descriptors.

2.3.3 Generated source files
BSP Configurators generate related source/header files in the GeneratedSource subdirectory that are then
included as part of the application build. This helps avoid writing lengthy configuration code.

Creating a ModusToolbox™ 3.x BSP

2 BSP design

Application note 7 002-35297 Rev. *A
2023-06-09

Figure 3 Sample GeneratedSource subdirectory

2.3.4 Static source files
A BSP contains static source files with initialization routines for the board. These must be called by the
application code before using any MCU peripherals. Typical BSP static source files that are included with
ModusToolbox™ BSPs are as follows:
• cybsp.c - Provides initialization code for starting up the hardware contained on the Infineon board
• cybsp.h - API header file for cybsp.c
• cybsp_doc.h - Contains code for generating BSP html documentation
• cybsp_types.h - Contains code for the states of button/pin/led on the Infineon board
• bluetooth/cybsp_bt_config.c - Provides initialization settings for the Bluetooth® module
• bluetooth/cybsp_bt_config.h - API header file for cybsp_bt_config.c

2.3.5 Documentation files
A BSP contains Doxygen/markup-based documentation for the application developer with the details of various
libraries, release notes, etc.

Creating a ModusToolbox™ 3.x BSP

2 BSP design

Application note 8 002-35297 Rev. *A
2023-06-09

3 Using the BSP Assistant tool
This section describes two basic use cases for working with the BSP Assistant tool:
• Creating a new BSP
• Customizing an existing BSP
These use cases show the tools in a Windows operating system, as well as using the Eclipse IDE. If you use
another IDE/OS combination, the steps will be similar but may not be identical.

3.1 Creating a new BSP
Use this workflow to create a new BSP for the Infineon MCU board. You can create the BSP using an existing
BSP as a starting point and then modify it for your needs, or you can create a BSP from scratch based on the
devices the board contains. For demonstration, this workflow considers creating a BSP for a board based on the
CY8C6347BZI-BLD44 MCU device. Each method is described in the following sections.

3.1.1 Create and configure the BSP using the existing sample board
1. Type bsp-assistant in the Windows search tool to open the BSP Assistant tool or look in the Window's

menu under "ModusToolbox <version>".
2. After the tool loads, select File > New > From Sample Board to open the Create New BSP From Sample

Board window.

Figure 4 Create New BSP dialog
3. Select PSOC6-GENERIC under the PSoC™ 6 BSPs category or if the board you are creating is similar to an

existing Infineon board, you can select it as the starting BSP.
4. Set the directory path where the BSP will be created in the Parent Directory text box.
5. Type a suitable name for the BSP in the New BSP name: TARGET_ text box. This example uses the name

MyBSP.
6. Click OK.

The BSP Assistant tool starts downloading the contents from the Infineon GitHub website; when
finished, the screen should look like the following:

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 9 002-35297 Rev. *A
2023-06-09

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/cy8c6347bzi-bld44/
https://github.com/Infineon

Figure 5 BSP Assistant finished loading content
7. Change the MCU device to CY8C6347BZI-BLD44 by selecting it from the MCU/SOC/SIP drop-down menu

under the Devices section as shown and click Save.

Note: You can start typing the MCU name in the drop-down box to filter the choices.

Figure 6 Changing MCU device

Messages appear in the output console ending with Saving changes to BSP succeeded. as follows:

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 10 002-35297 Rev. *A
2023-06-09

Figure 7 Output console messages
8. Under the Configurations section, click Device Configurator 4.10, and then click the Edit

Configuration button to open the Device Configurator tool.

Figure 8 Opening Configurator from BSP Assistant
9. For this demo, make the following changes:

• Name the pin P5[0] as CYBSP_DEBUG_UART_RX from the Pins tab.
• Name the pin P5[1] as CYBSP_DEBUG_UART_TX from the Pins tab.
• Name the pin P13[7] as CYBSP_USER_LED from the Pins tab.
• Disable CLK_ALT_SYS_TICK from the System tab, System Clocks > Miscellaneous.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 11 002-35297 Rev. *A
2023-06-09

Figure 9 Changing pin settings 1

Figure 10 Changing pin settings 2

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 12 002-35297 Rev. *A
2023-06-09

Figure 11 Changing clock settings
10. Click File > Update All Personalities and then click File > Save.
11. Close the Device Configurator tool.
12. On the BSP Assistant tool, under the Libraries section, check that the BSP includes the following

dependent libraries that will be used for an application:
• cat1cm0p

• core-lib

• core-make

• mtb-hal-cat1

• mtb-pdl-cat1

• receipe-make-cat1a

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 13 002-35297 Rev. *A
2023-06-09

Figure 12 Checking libraries
13. If you need any additional Libraries other than those listed above, click Add Library button to view the

list of available libraries. For example, the following image shows adding the emwin package.

Note: If you click the filter button, only enabled dependencies will be listed.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 14 002-35297 Rev. *A
2023-06-09

Figure 13 Adding "emwin" to the list of libraries
14. After the necessary libraries are added, click the Save button to save the BSP.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 15 002-35297 Rev. *A
2023-06-09

Figure 14 Saving the updated BSP

Otherwise, there will be a warning as shown when you exit the tool.

Figure 15 BSP saving missed warning

This completes the BSP creation; you can exit the tool now. If you changed any libraries, you might see
the following warning while leaving the tool; you can ignore the warning since the BSP is not yet being
used in any applications:

Figure 16 Warning can be ignored

3.1.2 Create and configure the BSP using MPN
1. Type bsp-assistant in the Windows search tool to open the BSP Assistant tool or look in the Windows

menu under "ModusToolbox <version>".
2. After the tool loads, select File > New > From Contained MPNs to open the Create New BSP window.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 16 002-35297 Rev. *A
2023-06-09

Figure 17 Create New BSP window
3. Enter the first few characters of the MPN CY8C6347BZI-BLD44 in the search bar and select the MPN

CY8C6347BZI-BLD44 in the pane MCU/SOC/SIP from the results.
4. Select None in the Companion paneas the BSP we create in the example does not have any connectivity

device connected to the MCU.
5. Set the directory path where the BSP will be created in the Parent Directory text box.
6. Type a suitable name for the BSP in the New BSP name: TARGET_ text box. This example uses the name

MyBSP.
7. Click OK.

The BSP Assistant tool starts downloading the contents from the Infineon GitHub website; when
finished, the screen should look like the following. Ignore any warnings in the bottom pane at this
stage, as it will be fixed in the following steps.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 17 002-35297 Rev. *A
2023-06-09

https://github.com/Infineon

Figure 18 BSP Assistant finished loading content
8. Select the Device Configurator 4.10 from the Configurations item in the left pane. Then click the Edit

Configuration button to update the MCU configuration to match that of the BSP created in section 3.1.1.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 18 002-35297 Rev. *A
2023-06-09

Figure 19 Opening the Device Configurator
9. Enable and add the name for the following pins in the Device Configurator.

Table 2 Adding identifier to the pin

Port and pin number Name

P5[0] CYBSP_DEBUG_UART_RX

P5[1] CYBSP_DEBUG_UART_TX

P6[4] CYBSP_SWO

P6[6] CYBSP_SWDIO

P6[7] CYBSP_SWDCK

P13[7] CYBSP_USER_LED

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 19 002-35297 Rev. *A
2023-06-09

Figure 20 Adding identifier to the pin
10. For the pin P6[4], set the Drive Mode in the Parameter pane to Strong Drive. Input buffer off.

Figure 21 Updating the pin drive mode setting
11. Update the following settings in the System > System Clocks block:

a. Enable the FLL
b. Set the Desired Frequency (MHz) as 48.000

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 20 002-35297 Rev. *A
2023-06-09

Figure 22 Updating the FLL settings
12. Update the following settings in the System > System Clocks block:

a. Enable the PLL
b. Set the Desired Frequency (MHz) as 144.000

Figure 23 Updating the PLL settings
13. On the System > System Clocks > High Frequency block, update the following settings:

a. Set the Source Clock for CLK_HF0 as CLK_PATH1
b. Set the Divider for CLK_PERI as 2

14. On the System > System Clocks > Miscellaneous block, update the following settings:
a. Enable the CLK_TIMER

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 21 002-35297 Rev. *A
2023-06-09

15. On the Peripheral-Clocks tab, update the following settings:
a. Update the name for 8 bit > 8 bit Divider 7 as CYBSP_TRACE_CLK_DIV
b. Enable the 16 bit > 16 bit Divider 15 clock

Figure 24 Updating the Clock Dividers
16. On the System > Debug tab, update the following settings:

a. Enable Trace Mode-Serial setting
b. Set the Trace Clock>Clock as 8-bit Divider 7 clk(CYBSP_TRACE_CLK_DIV) [USED]
c. Set the Trace Pins>SWO as P6[4] digital_out(CYBSP_SWO)[USED]

17. Click File > Update All Personalities and then click File > Save.
18. Close the Device Configurator tool.
19. If you need any additional Libraries other than those listed above, click the Add Library button to view

the list of available libraries. For example, the following image shows adding the emwin package.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 22 002-35297 Rev. *A
2023-06-09

Figure 25 Adding emwin to the list of libraries
20. After the necessary libraries are added, click on Save button for saving the BSP.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 23 002-35297 Rev. *A
2023-06-09

Figure 26 Saving the updated BSP
21. Click the Save button at the bottom to save the changes.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 24 002-35297 Rev. *A
2023-06-09

Figure 27 Saving the BSP
22. Otherwise, there will be a warning as below while exiting the tool.

Figure 28 Warning on missed BSP saving

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 25 002-35297 Rev. *A
2023-06-09

This completes the BSP creation; you can exit the tool now. If you changed any dependencies, you might
see the following warning while leaving the tool; you can ignore the warning since the BSP is not yet
being used in any applications.

Figure 29 Warning can be ignored

3.1.3 Create an application
With the BSP creation and configuration complete, create a Hello World application from a code example
template using the following steps.
1. Open Eclipse IDE for ModusToolbox™ from the Windows start menu and create a workspace as follows:

Figure 30 Create Eclipse IDE workspace
2. Click File > New> ModusToolbox™ Application.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 26 002-35297 Rev. *A
2023-06-09

Figure 31 Create new ModusToolbox™ application

The Project Creator tool opens on the Choose Board Support Package window.

Figure 32 Project Creator tool
3. Select the BSP created in the previous section by clicking the Browse for BSP button and navigating to

the directory containing the previously created BSP and choosing it.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 27 002-35297 Rev. *A
2023-06-09

Figure 33 Importing BSP
4. The BSP you selected is listed as shown. Select it and click Next >.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 28 002-35297 Rev. *A
2023-06-09

Figure 34 Selecting imported BSP
5. On the Select Application page, select Hello World from the template application under Getting

Started. Enter a new name to the application such as Hello_World under the New Application Name
column as shown. After that, click Create.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 29 002-35297 Rev. *A
2023-06-09

Figure 35 Select Application

The application download from GitHub starts and after successful completion, the project will be visible
in the Eclipse IDE Project Explorer as follows:

Figure 36 New application in Eclipse IDE for ModusToolbox™

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 30 002-35297 Rev. *A
2023-06-09

3.1.4 Code Build
1. Click Build Application in the Quick Panel pane as follows. If there are no errors, the build should pass

successfully.

Figure 37 Successful build
This completes the use case demonstration.

3.2 Customizing an existing BSP
This use case happens when you want to make changes to an existing BSP. There are two cases:
• Open and edit existing BSP on its own
• Open and edit an existing BSP from an application

3.2.1 Open and edit existing BSP on its own
The steps below show example updates to an existing BSP using the BSP created in the section Create and
configure the BSP using the existing sample board. These updates to the BSP are just for demonstration. The
user may perform updates depending on their application requirements. The following changes are made on
top of the previous BSP:
• Add the freertos and retarget-io libraries
• Add the corresponding component definition for the freertos library that was added in the above step
• Adding a new macro to enable the conversion of LF to CR&LF in STDOUT while using retarget-io library
1. Open the BSP Assistant application. Click File > Open

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 31 002-35297 Rev. *A
2023-06-09

Figure 38 Open existing BSP
2. To browse the directory containing the existing BSP, click Select Folder button to open the BSP in the

BSP Assistant application.

Figure 39 Browse Existing BSP

The following window opens:

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 32 002-35297 Rev. *A
2023-06-09

Figure 40 BSP opened in BSP Assistant
3. Click the Add Library button and select the check boxes to add freertos and retarget-io libraries. Click

OK after selecting the libraries to add them to the BSP. You can use the filter box at the top of the window
to narrow down the list of libraries.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 33 002-35297 Rev. *A
2023-06-09

Figure 41 Adding libraries
4. To add a component, do the following:

a. Click the Components section
b. Click Edit Additional Components…
c. In the Component to add field, enter FREERTOS
d. Click Add
e. If you do not have additional component to add, click OK

This closes the Edit Component window.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 34 002-35297 Rev. *A
2023-06-09

Figure 42 Add a component
5. To add a define, do the following:

a. Click the Defines section
b. Click Edit Additional Defines..
c. In the Define to add field, enter CY_RETARGET_IO_CONVERT_LF_TO_CRLF
d. Click Add
e. Since we have no additional defines to add, click OK

This closes the Edit Defines window.

Figure 43 Add a define
6. Click the Save button to save the changes.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 35 002-35297 Rev. *A
2023-06-09

Figure 44 Save updated BSP

A Saving changes to BSP succeeded. message shows in the console window.

Figure 45 Save message
7. Click the Close button to close the BSP Assistant. While exiting, a warning is displayed to update the

application using the library manager. This warning can be ignored as we are yet to create an application
from this BSP.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 36 002-35297 Rev. *A
2023-06-09

Figure 46 Library update warning

3.2.2 Open and edit an existing BSP from an application
The steps below show an example update to the BSP that is already part of an application. The application that
was created in the Create an application section will be used as the starting point. These updates to the BSP
are just for demonstration purposes. The user may choose updates depending on his/her updated application
requirements.
The following changes are made on top of the previous BSP:
• Add the freertos library
• Add the corresponding component definition for the freertos library that was added in the above step
• Add a new macro to enable the conversion of LF to CR&LF in STDOUT while using the retarget-io library
1. Open the Eclipse IDE for ModusToolbox™ from the Windows start menu. Click Browse to browse the

previously created workspace directory containing the application and then click the Launch button.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 37 002-35297 Rev. *A
2023-06-09

Figure 47 Open an application in Eclipse IDE
2. When the application finishes loading in the Eclipse IDE, you can run the BSP Assistant tool by clicking

the BSP Assistant <version> link in the Quick Panel as shown.

Figure 48 Launching BSP Assistant
3. Click the Add Library button to add the freertos library. Click OK after selecting the library to add the

library to the BSP.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 38 002-35297 Rev. *A
2023-06-09

Figure 49 Add Library
4. To add a component, do the following:

a. Click the Components section
b. Click Edit Additional Components…
c. In the Component to add field, enter FREERTOS
d. Click Add
e. If you do not have additional component to add, click OK

This closes the Edit Component window.

Figure 50 Add a component
5. To add a define, do the following:

a. Click the Defines section

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 39 002-35297 Rev. *A
2023-06-09

b. Click Edit Additional Defines..
c. In the Define to add field, enter CY_RETARGET_IO_CONVERT_LF_TO_CRLF
d. Click Add
e. Since we have no additional defines to add, click OK

This closes the Edit Defines window.

Figure 51 Add a define
6. Click the Save button to save the changes.

Figure 52 Save Updated BSP

A Saving changes to BSP succeeded. message shows in the console window.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 40 002-35297 Rev. *A
2023-06-09

Figure 53 Save message
7. Click the Close button to close the BSP Assistant. While exiting, a warning is displayed to update the

application using the library manager. You can run library manager after closing the BSP Assistant tool.

Figure 54 Library update warning

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 41 002-35297 Rev. *A
2023-06-09

8. Click the Library Manager link in the Quick Panel.

Figure 55 Launch Library Manager
9. On the Library Manager window, click the Update button.

Figure 56 Update libraries

When the library updates complete, the message Successfully Updated Application shows in the
console.

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 42 002-35297 Rev. *A
2023-06-09

Figure 57 Library Manager update status

Creating a ModusToolbox™ 3.x BSP

3 Using the BSP Assistant tool

Application note 43 002-35297 Rev. *A
2023-06-09

4 Advanced usage
ModusToolbox™ BSPs that are either custom to a user application or preconfigured made available in GitHub
can belong to different generations. You can find out the generation the BSP through the following:

Table 3 BSP generations

BSP root directory contains the
file

BSP Generation

version.xml and not props.json 3

props.json and not version.xml 4

The BSP Assistant is only available for generation 4 BSPs using ModusToolbox™ version 3.0 or later.
Please note that BSP generation and BSP version have different meaning and should not be used
interchangeably.

4.1 Differences between ModusToolbox™ BSP generations
BSP generation tools version 3 and 4 differ in the following ways:

Table 4 BSP generation 3 and 4 differences

Property BSP generation 3 BSP generation 4

BSP configuration directory
name

COMPONENT_BSP_DESIGN_MODUS Config

BSP build toolchain linker file
name

<platform>_<cpu>.sct for Arm®

<platform>_<cpu>.ld for GCC
<platform>_<cpu>.icf for IAR

linker.sct for Arm®

linker.ld for GCC
linker.icf for IAR

BSP version information version tag in version.xml file in the
BSP root directory

version field in props.json file in the
BSP root directory

BSP makefile name <bsp_name>.mk bsp.mk

BSP locate_receipe.mk file Present Not present

Further, the contents of the Makefile differs significantly between the generations and the below figure shows a
sample comparison:

Creating a ModusToolbox™ 3.x BSP

4 Advanced usage

Application note 44 002-35297 Rev. *A
2023-06-09

https://github.com/orgs/Infineon/repositories?language=&page=1&q=TARGET_&sort=&type=all

Figure 58 BSP Makefile Differences

4.2 Migrating the ModusToolbox™ BSP
ModusToolbox™ custom BSPs generated through version 2.x tools can be migrated to version 3.x tools using
one of the following two methods so that the user application can take advantage of the latest features of the
ModusToolbox™ ecosystem.

4.2.1 Using the BSP Assistant tool
1. Create a new BSP with the BSP Assistant tool by following the steps described in the Creating a new BSP

section of this document.
2. Update the following files in the newly created custom BSP with the settings from the corresponding

version 2.x files:
• BSP configuration files including design.modus, etc.
• BSP linker files
• Add any other dependencies for the BSP other than the default dependencies by using the Add

Library button in the BSP Assistant tool
3. Import the newly created custom BSP into your ModusToolbox™ application by running the Library

Manager tool in your ModusToolbox™ application directory by clicking Add BSP and then clicking
Browse on the Add or Import BSP dialog as follows:

Creating a ModusToolbox™ 3.x BSP

4 Advanced usage

Application note 45 002-35297 Rev. *A
2023-06-09

Figure 59 Browsing to the BSP folder Caption
4. Make the new BSP active and click Update.

Figure 60 Selecting the BSP Caption
This completes the migration of the BSP from version 2.x to 3.x using the BSP Assistant tool.

4.2.2 Without using the BSP Assistant tool
1. Delete the version.xml file.
2. Delete the deps directory.

Creating a ModusToolbox™ 3.x BSP

4 Advanced usage

Application note 46 002-35297 Rev. *A
2023-06-09

3. Create a new file called props.json and add the various properties by looking into a similar file from
preconfigured 3.x BSPs in GitHub.

4. Rename the BSP configuration directory COMPONENT_BSP_DESIGN_MODUS to config.
5. Rename the BSP makefile <bsp_name>.mk to bsp.mk.
6. Update the bsp.mk file by comparing with an existing 3.x format bsp.mk file because there are significant

changes between the 2 generations.
7. Rename the linker files in the directory COMPONENT_CM0P and COMPONENT_CM4 as follows:

• <platform>_<cpu>.sct to linker.sct for Arm®

• <platform>_<cpu>.ld to linker.ld for GCC
• <platform>_<cpu>.icf to linker.icf for IAR

8. Delete the locate_recipe.mk file.
9. Follow the steps in Create an application to import the new BSP to the application.
This completes the migration of the BSP from version 2.x to 3.x without using the BSP Assistant tool.

Creating a ModusToolbox™ 3.x BSP

4 Advanced usage

Application note 47 002-35297 Rev. *A
2023-06-09

https://github.com/orgs/Infineon/repositories?language=&page=1&q=TARGET_&sort=&type=all

References
1. ModusToolbox™ home page
2. AN228571 - Getting started with PSoC™ 6 MCU on ModusToolbox™ software
3. ModusToolbox™ tools package user guide
4. ModusToolbox™ BSP Assistant user guide
5. Creating Custom BSPs in ModusToolbox - KBA230822 (Specific to version 2. x BSPs)
6. Migrating ModusToolbox™ applications from version 2.x to version 3.x - KBA236134

Creating a ModusToolbox™ 3.x BSP

References

Application note 48 002-35297 Rev. *A
2023-06-09

https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software
https://www.infineon.com/dgdl/Infineon-AN228571_Getting_started_with_PSoC_6_MCU_on_ModusToolbox_software-ApplicationNotes-v06_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d36de1f66d1
https://www.infineon.com/MTBEclipseIDEUserGuide
https://www.infineon.com/dgdl/Infineon-ModusToolbox_BSP_Assistant_1.0_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c8386267f0183a972f45c59af
https://community.infineon.com/t5/Knowledge-Base-Articles/Creating-Custom-BSPs-in-ModusToolbox-KBA230822/ta-p/251741
https://www.infineon.com/kba236134

Revision history
Document
version

Date of release Description of changes

** 2022-10-18 Initial release.

*A 2023-06-09 Updated for ModusToolbox™ version 3.1.

Creating a ModusToolbox™ 3.x BSP

Revision history

Application note 49 002-35297 Rev. *A
2023-06-09

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-06-09
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2023 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-wjd1663224730002

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 What is a BSP?
	1.2 BSP Assistant overview
	1.3 Overview
	1.4 Software requirement

	2 BSP design
	2.1 Software
	2.1.1 Peripheral Driver Library (PDL)
	2.1.2 Hardware Abstraction Layer (HAL)
	2.1.3 Other libraries

	2.2 Documentation
	2.3 Typical BSP contents
	2.3.1 Startup code and linker files
	2.3.2 Configuration files
	2.3.3 Generated source files
	2.3.4 Static source files
	2.3.5 Documentation files

	3 Using the BSP Assistant tool
	3.1 Creating a new BSP
	3.1.1 Create and configure the BSP using the existing sample board
	3.1.2 Create and configure the BSP using MPN
	3.1.3 Create an application
	3.1.4 Code Build

	3.2 Customizing an existing BSP
	3.2.1 Open and edit existing BSP on its own
	3.2.2 Open and edit an existing BSP from an application

	4 Advanced usage
	4.1 Differences between ModusToolbox™ BSP generations
	4.2 Migrating the ModusToolbox™ BSP
	4.2.1 Using the BSP Assistant tool
	4.2.2 Without using the BSP Assistant tool

	References
	Revision history
	Disclaimer

