
Getting started with PSoC™ 6 MCU on
ModusToolbox™ software

About this document
Scope and purpose

This application note introduces the PSoC™ 6 microcontroller (MCU), a low power, secured MCU with dual CPU
Arm® Cortex®-M4 and Cortex®-M0+ processors. This application note helps you explore the PSoC™ 6 MCU
architecture and development tools and shows you how to create your first application using ModusToolbox™

software. This application note also guides you to more resources available online to accelerate your learning
about PSoC™ 6 MCU.
Intended audience

This document is intended for the users who are new to PSoC™ 6 MCU and ModusToolbox™ software.
Associated part family

All PSoC™ 6 MCU devices
Software version

ModusToolbox™ software 3.2 or above.
More code examples? We heard you.

To access an ever-growing list of PSoC™ PSoC™ 6 code examples using ModusToolbox™, please visit the GitHub
site.

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 3
1.1 PSoC™ 6 architecture and portfolio overview . 3
1.2 Device features . 5
1.3 Target applications . 5

2 PSoC™ 6 resources . 7

3 PSoC™ 6 MCU development kits . 8

4 PSoC™ 6 software ecosystem and firmware/application development . 9
4.1 Installing the ModusToolbox™ tools package . 9
4.2 Choosing an IDE . 9

5 Getting started with PSoC™ 6 MCU design .10
5.1 Prerequisites . 10
5.1.1 Hardware .10
5.1.2 Software . 10
5.2 Using these instructions . 10
5.3 About the design . 10
5.4 Create a new application . 10

AN228571

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-28571 Rev. *J
www.infineon.com 2024-03-22

https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/
https://www.infineon.com/modustoolbox
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://www.infineon.com

5.4.1 Eclipse IDE for ModusToolbox™ .11
5.4.1.1 View and modify the design configuration . 14
5.4.1.1.1 Open the Device Configurator . 15
5.4.1.1.2 Add retarget-io middleware . 16
5.4.1.1.3 Configuration of UART, timer peripherals, pins, and system clocks . 18
5.4.1.2 Write firmware . 18
5.4.1.3 Build the application . 25
5.4.1.4 Program the device . 25
5.4.1.5 Test your design . 27
5.4.1.6 Debugging the application using KitProg3/MiniProg4 . 29
5.4.2 Visual Studio Code (VS Code) for ModusToolbox™ . 31
5.4.3 IAR Embedded Workbench for ModusToolbox™ . 31
5.4.4 Keil µVision for ModusToolbox™ . 31

6 Summary . 32

References .33

Glossary . 34

Revision history .35

Trademarks .36

Disclaimer . 37

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

Table of contents

Application note 2 002-28571 Rev. *J
2024-03-22

1 Introduction
PSoC™ 6 MCU is an ultra-low-power PSoC™ device with a dual-core architecture and low-power design
techniques tailored for battery-powered applications. The dual-core Arm® Cortex®-M4 and Cortex®-M0+
architecture lets designers optimize for power and performance simultaneously. With integrated on-chip flash/
SRAM memory, encrypted external flash memory expansion, configurable memory and peripheral protection
units, and a cryptographic accelerator, the PSoC™ 6 MCU supports standard embedded security features like
secured boot, secured provisioning, secured key storage, run-time security, and secured firmware updates.
Designers can use the MCU’s rich analog and digital peripherals to create custom analog front-ends (AFEs) or
digital interfaces for innovative system components such as MEMS sensors and electronic-ink displays. The
PSoC™ 6 MCU features the fourth generation of industry-leading CAPSENSE™ capacitive-sensing technology,
enabling modern touch and gesture-based interfaces that are robust and reliable. PSoC™ 6 MCU, paired with
Infineon’s AIROC™ Wi-Fi, AIROC™ Bluetooth®, or AIROC™ combo radio modules, is the perfect solution for secure,
low-power, feature-rich IoT products.
Due to the versatile features of the PSoC™ 6 MCU, it can be used in a wide variety of applications, spanning
consumer electronics, industrial applications, smart homes, IoT, and general-purpose embedded applications.

1.1 PSoC™ 6 architecture and portfolio overview
The PSoC™ 6 architecture block diagram, as shown in the following figure, is a unified block diagram covering
the entire PSoC™ 6 MCU portfolio. Refer to the respective product family datasheets for the features offered for a
specific device in the PSoC™ 6 portfolio. For example, Flash/SRAM memory density, IO count, peripheral
features/count, and supported packages vary based on the product family chosen in the PSoC™ 6 portfolio.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

1 Introduction

Application note 3 002-28571 Rev. *J
2024-03-22

Figure 1 PSoC™ 6 architecture

PSoC™ 6 MCU portfolio segmentation

The PSoC™ 6 MCU portfolio consists of multiple product families, which fall under four different product lines.
1. PSoC™ 61 (Programmable line) consists of product families in which only the Arm® Cortex® M4 is

available for user applications. Orderable part numbers (OPN) in the PSoC™ 61 line start with the
“CY8C61” prefix

2. PSoC™ 62 (Performance line) consists of product families in which both the Arm® Cortex® M4 and Arm®

Cortex®-M0+ are available for user applications (dual CPU architecture). Orderable part numbers (OPN) in
thePSoC™ 62 line start with the “CY8C62” prefix

3. PSoC™ 63 (Connectivity line) consists of product families that include the Bluetooth® LE radio PHY and
MAC integrated as part of the MCU. Orderable part numbers (OPN) in the PSoC™ 63 line start with the
“CY8C63” prefix

4. PSoC™ 64 (Secured line) consists of product families in which the Arm® Cortex® M0+ is configured as
a secured processing environment (SPE) and the Arm® Cortex® M4 acts as a non-secured processing
environment (NSPE). Orderable part numbers (OPN) in the PSoC™ 64 line start with the “CYB064” or
“CYS064” prefix. This product family is primarily intended for applications that require secured factory
provisioning of the firmware, including security keys and certificates

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

1 Introduction

Application note 4 002-28571 Rev. *J
2024-03-22

1.2 Device features
PSoC™ 6 MCUs have extensive features, as shown in Figure 1. The following is a list of major features. For more
information, see the device datasheet, the technical reference manual (TRM), and References section.
High-performance, low-power compute system
• Dual-core architecture: 150-MHz Arm® Cortex®-M4, and 100-MHz Arm® Cortex®-M0+
• On-chip memory: up to 1024 KB SRAM, up to 2048 KB flash
• Ultra-low-power (0.9 V) and low-power (1.1 V) operation modes
• Multiple device low power modes: Hibernate, Deep Sleep, Sleep, and Active. Low-power analog operation
Robust security features
• Advanced cryptographic accelerator and true random number generator
• One-time programmable eFUSE for secure key storage
• Secured boot, secured provisioning, and image authentication
• Secure over-the-air (OTA) firmware update with read-while-write flash technology for firmware updates
Integration
• 4th generation CAPSENSE™ to integrate a robust touch user interface into a single MCU
• Segment LCD drive, serial interface display drivers
• Quad SPI Memory I/F for memory expansion
• Smart I/O to integrate external digital glue logic in the MCU
• Universal Digital Blocks (UDBs) to implement CPLD and mini-FPGA logic in MCU
Rich analog peripherals
• 12-bit SAR ADC, 12-bit DAC, OpAmps, low-power comparators. Low-power analog operation
Digital blocks and communication interfaces
• Highly configurable 16-bit and 32-bit timers, counters, and PWMs
• Serial Communication Blocks (I2C/SPI/UART) for digital sensor/host MCU interfaces
• I2S/TDM, PDM-PCM converter for audio applications
• SD Host Controller (SDHC), USB 2.0 full speed (host and device)
• CAN-FD for industrial applications
Wide variety of IO and package options
• 124-BGA, 100-WLCSP, 80-WLCSP, 80-M-CSP, 49-WLCSP, 68-QFN, 128-TQFP, 100-TQFP, 80-TQFP, 64-TQFP
• Up to 102 GPIOs
• -40 to 85°C operation with support for extended temperature operation (105°C) in select devices

1.3 Target applications
The versatile, secured, low-power, feature-rich offerings in the PSoC™ 6 MCU make it the ideal choice of
microcontroller for a wide variety of end applications. Some of these applications are listed below.
• Wearable devices like smart watches and fitness trackers
• Smart home devices like smart locks, thermostats, and integrated alarm systems
• Smart home appliances like washing machines, refrigerators, and cooktops
• Datacenter and computing applications for the system management function
• Power tools, e-bikes, and other motor control applications
• Industrial IoT applications
• Battery powered devices
The following figure illustrates an application-level block diagram for a real-world use case using PSoC™ 6 MCU.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

1 Introduction

Application note 5 002-28571 Rev. *J
2024-03-22

https://documentation.infineon.com/html/psoc6/bnm1651211483724.html
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html

Figure 2 Application-level block diagram using PSoC™ 6 MCU

Depending on the end application use case, the PSoC™ 6 MCU can perform a wide variety of system functions,
as listed below.
• Main system application MCU
• Wi-Fi MCU integrating analog front end (AFE), CAPSENSE™ (touch), display, and audio functionality
• Low-power sensor co-processor to Arm® A-class based SoCs and MPUs
• Motor control MCU with integration of CAPSENSE™ (touch) and other user interface features
• System management controllers like fan control, power sequencing, and server backplane management

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

1 Introduction

Application note 6 002-28571 Rev. *J
2024-03-22

2 PSoC™ 6 resources
A wealth of technical resources are available to develop applications with PSoC™ 6 MCU4. These resources are
listed below.
• PSoC™ 6 video library
• PSoC™ 6 MCU webpage
• Product selectors: PSoC™ 6 MCU
• Datasheets describe and provide electrical specifications for each device family.
• Application notes and Code examples cover a broad range of topics, from basic to advanced level. You can

also browse our collection of code examples.
• Technical reference manuals (TRMs) provide detailed descriptions of the architecture and registers in each

device family.
• PSoC™ 6 MCU programming specification provides the information necessary to program the nonvolatile

memory of PSoC™ 6 MCU devices.
• CAPSENSE™ design guides: Learn how to design capacitive touch-sensing applications with PSoC™ devices.
• Development tools: Many low-cost kits and shield boards are available for evaluation, design, and

development of different applications using PSoC™ 6 MCUs.
• Training videos: Video training on our products and tools, including a dedicated series on PSoC™ 6 MCUs.
• Technical Support: PSoC™ 6 community forum, Knowledge base articles.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

2 PSoC™ 6 resources

Application note 7 002-28571 Rev. *J
2024-03-22

https://media.infineon.com/search/psoc
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-psoc-arm-cortex-microcontroller/psoc-6-32-bit-arm-cortex-m4-mcu/#!products
https://documentation.infineon.com/html/psoc6/bnm1651211483724.html?_ga=2.200369895.89882204.1685335469-1954945834.1669208470
https://documentation.infineon.com/html/psoc6/qvm1650961668471.html?_ga=2.7898747.89882204.1685335469-1954945834.1669208470
https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://documentation.infineon.com/html/psoc6/zrs1651212645947.html?_ga=2.7373435.89882204.1685335469-1954945834.1669208470
https://www.infineon.com/dgdl/Infineon-PSoC_6_Programming_Specifications-Programming+Specifications-v12_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f66d9bf5627
https://documentation.infineon.com/html/psoc6/epf1667481159393.html
https://documentation.infineon.com/html/psoc6/hsg1651214227031.html
https://media.infineon.com/
https://media.infineon.com/search/psoc
https://community.infineon.com/t5/PSoC-6/bd-p/PSoC6MCU
https://community.infineon.com/t5/custom/page/page-id/GlobalSearch#q=psoc6&t=All&sort=relevancy&f:@infi_interactionboard=%5Btkb%5D

3 PSoC™ 6 MCU development kits
Infineon provides a wide variety of hardware development kits in various form factors to enable easy and rapid
evaluation and prototyping of PSoC™ 6 based applications. The prototyping kits are low-cost, small-form factor
evaluation kits for prototyping applications that do not need additional hardware shields to be connected to
the kit. The Pioneer/Evaluation kits are more full featured kits that provide various hardware expansion
capabilities, like the Arduino shield and M.2 interface for wireless radio interface.
The following table lists the PSoC™ 6 kits for the various product families. For a general evaluation of the PSoC™

6 MCU portfolio, it is recommended to either use the super-set PSoC™ 6 prototyping kit
(CY8CPROTO-062S2-43439) or the super-set PSoC™ 6 Pioneer kit (CY8CKIT-062S2-43012). ModusToolbox™

software is the software development platform for creating embedded applications using the development
kits.

Table 1 PSoC™ 6 kits

Kit MPN Applicable PSoC™ 6
product families

Kit type Board support package
GitHub repository

CY8CPROTO-062S2-43439
(Default recommended
Proto kit)

CY8C61x8, CY8C61xA,
CY8C62x8, CY8C62xA

prototyping BSP

CY8CKIT-062S2-43012
(Default recommended
Pioneer kit)

CY8C61x8, CY8C61xA,
CY8C62x8, CY8C62xA

Pioneer BSP

CY8CEVAL-062S2 CY8C61x8, CY8C61xA,
CY8C62x8, CY8C62xA

Evaluation BSP

CY8CKIT-062S4 CY8C61x4, CY8C62x4 Pioneer BSP

CY8CPROTO-062S3-4343W CY8C61x5, CY8C62x5 prototyping BSP

CY8CKIT-062-WIFI-BT CY8C61x6, CY8C61x7,
CY8C62x6, CY8C62x7

Pioneer BSP

CY8CPROTO-064B0S3 CYB064x5 prototyping BSP

CY8CPROTO-064S1-SB CYB064x7 prototyping BSP

CY8CKIT-064B0S2-4343W CYB064xA Pioneer BSP

For the complete list of kits for the PSoC™ 6 MCU along with the shield modules, see the Microcontroller (MCU)
kits page.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

3 PSoC™ 6 MCU development kits

Application note 8 002-28571 Rev. *J
2024-03-22

https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://github.com/Infineon/TARGET_CY8CPROTO-062S2-43439
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062s2-43012/
https://github.com/Infineon/TARGET_CY8CKIT-062S2-43012
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ceval-062s2/
https://github.com/Infineon/TARGET_CY8CEVAL-062S2
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062s4/
https://github.com/Infineon/TARGET_CY8CKIT-062S4
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s3-4343w/
https://github.com/Infineon/TARGET_CY8CPROTO-062S3-4343W
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-wifi-bt/
https://github.com/Infineon/TARGET_CY8CKIT-062-WIFI-BT
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-064b0s3/
https://github.com/Infineon/TARGET_CY8CPROTO-064B0S3
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-064s1-sb/
https://github.com/Infineon/TARGET_CY8CPROTO-064S1-SB
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-064b0s2-4343w/
https://github.com/Infineon/TARGET_CY8CKIT-064B0S2-4343W
https://documentation.infineon.com/html/psoc6/hsg1651214227031.html
https://documentation.infineon.com/html/psoc6/hsg1651214227031.html

4 PSoC™ 6 software ecosystem and firmware/application
development

Infineon provides the ModusToolbox™ software for firmware/application development based on PSoC™ 6 MCUs.
ModusToolbox™ Software is a modern, extensible development ecosystem supporting a wide range of Infineon
microcontroller devices, including PSoC™ Arm® Cortex® Microcontrollers,TRAVEO™ T2G Arm® Cortex®

Microcontroller, XMC™ Industrial Microcontrollers, AIROC™ Wi-Fi devices, AIROC™ Bluetooth® devices, and USB-C
Power Delivery Microcontrollers. This software includes configuration tools, low-level drivers, middleware
libraries, and other packages that enable you to create MCU and wireless applications. All tools run on
Windows, macOS, and Linux. ModusToolbox™ includes an Eclipse IDE, which provides an integrated flow with
all the ModusToolbox™ tools. Other IDEs such as Visual Studio Code, IAR Embedded Workbench and Arm® MDK
(μVision) are also supported.
ModusToolbox™ software supports stand-alone device and middleware configurators. Use the configurators to
set the configuration of different blocks in the device and generate code that can be used in firmware
development.
Libraries and enablement software are available at the GitHub site.
ModusToolbox™ tools and resources can also be used on the command line. See the build system chapter in the
ModusToolbox™ tools package user guide for detailed documentation.

4.1 Installing the ModusToolbox™ tools package
Refer to the ModusToolbox™ tools package installation guide for details.

4.2 Choosing an IDE
ModusToolbox™ software, the latest-generation toolset, is supported across Windows, Linux, and macOS
platforms. ModusToolbox™ software supports 3rd-party IDEs, including the Eclipse IDE, Visual Studio Code, Arm®

MDK (μVision), and IAR Embedded Workbench. The tools package includes an implementation for all the
supporting IDE's The tools support all PSoC™ 6 MCUs. The associated BSP and library configurators also work
on all three host operating systems.

Figure 3 ModusToolbox™ environment

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

4 PSoC™ 6 software ecosystem and firmware/application development

Application note 9 002-28571 Rev. *J
2024-03-22

https://github.com/infineon
https://www.infineon.com/ModusToolboxUserGuide
https://www.Infineon.com/ModusToolboxInstallguide

5 Getting started with PSoC™ 6 MCU design
This section provides the following:
• Demonstrate how to build a simple PSoC™ 6 MCU-based design and program it on to the development kit
• Makes it easy to learn PSoC™ 6 MCU design techniques and how to use the ModusToolbox™ software with

different IDE's.

5.1 Prerequisites
Before you get started, make sure that you have the appropriate development kit for your PSoC™ 6 MCU
product line and have installed the required software. You also need internet access to the GitHub repositories
during project creation.

5.1.1 Hardware
The example design shown below is developed for the PSoC™ 62S2 Wi-Fi Bluetooth® prototyping kit
(CY8CPROTO-062S2-43439). However, you can build the application for other development kits. See the PSoC™

6 MCU development kits section for list of kits that you can use to get started with PSoC™ 6 MCU.

5.1.2 Software
ModusToolbox™ software 3.2 or above.
After installing the software, see the ModusToolbox™ tools package user guide to get an overview of the
software.

5.2 Using these instructions
These instructions are grouped into several sections. Each section is dedicated to a phase of the application
development workflow. The major sections are:
1. Create a new application
2. View and modify the design configuration
3. Write firmware
4. Build the application
5. Program the device
6. Test your design
This design is developed for the PSoC™ 62S2 Wi-Fi Bluetooth® Prototyping Kit (CY8CPROTO-062S2-43439). You
can use other supported kits to test this example by selecting the appropriate kit while creating the application.

5.3 About the design
This design uses the CM4 core of the PSoC™ 6 MCU to execute two tasks: UART communication and LED control.
At device reset, the Infineon-supplied pre-built CM0+ application image enables the CM4 core and configures
the CM0+ core to go to sleep. The CM4 core uses the UART to print a “Hello World” message to the serial port
stream, and starts blinking the user LED on the kit. When the user presses the enter key on the serial console,
the blinking is paused or resumed.

5.4 Create a new application
This section takes you on a step-by-step guided tour of the new application process. It uses the Empty App
starter application and manually adds the functionality from the Hello World starter application.
As mentioned in section Choosing an IDE, ModusToolbox™ software supports the following third-party IDEs:

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 10 002-28571 Rev. *J
2024-03-22

https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://www.infineon.com/modustoolbox
https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/

1. Eclipse IDE
2. Visual Studio Code (VS Code)
3. IAR Embedded Workbench
4. Keil µvision
The following sections provide details on how to create a new application on different IDEs.

5.4.1 Eclipse IDE for ModusToolbox™

If you are familiar with developing projects with ModusToolbox™ software, you can use the Hello World starter
application directly. It is a complete design, with all the firmware written for the supported kits. You can walk
through the instructions and observe how the steps are implemented in the code example.
If you start from scratch and follow all the instructions in this application note, you can use the Hello World
code example as a reference while following the instructions.
Launch the Dashboard 3.2 application to get started. Please note that the Dashboard 3.2 application needs
access to the internet to successfully clone the starter application onto your machine.
The Dashboard 3.2 application helps you get started using the various tools with easy access to
documentation and training material, a simple path for creating applications and creating and editing BSPs.
1. Open the Dashboard 3.2 application.

To open the Dashboard 3.2 application, click [ModusToolbox installation path]/ModusToolbox folder/
dashboard 3.2.0

2. On the Dashboard 3.2 window, in the right pane, in the Target IDE drop-down list, select Eclipse IDE for
ModusToolbox™, and click Launch Eclipse IDE for ModusToolbox™

Figure 4 Dashboard 3.2 application
3. Select a new workspace.

At launch, Eclipse IDE for ModusToolbox™ presents a dialog to choose a directory for use as the
workspace directory. The workspace directory is used to store workspace preferences and development
artifacts. You can choose an existing empty directory by clicking the Browse button, as shown in the
following figure. Alternatively, you can type in a directory name to be used as the workspace directory
along with the complete path, and the IDE will create the directory for you.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 11 002-28571 Rev. *J
2024-03-22

Figure 5 Select a directory as the workspace
4. Create a new ModusToolbox™ application.

a. Click New Application in the Start group of the Quick Panel
b. Alternatively, you can choose File > New > ModusToolbox™ Application, as shown in the

following figure
The Project Creator opens.

Figure 6 Create a new ModusToolbox™ application
5. Select a target PSoC™ 6 MCU development kit.

ModusToolbox™ speeds up the development process by providing BSPs that set various workspace/
project options for the specified development kit in the new application dialog.

a. In the Choose Board Support Package (BSP) dialog, choose the Kit Name that you have. The
steps that follow use CY8CPROTO-062S2-43439. See Figure 7 for help with this step

b. Click Next

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 12 002-28571 Rev. *J
2024-03-22

Figure 7 Choose target hardware
c. In the Select Application dialog, select Empty App starter application, as shown in the following

figure
d. In the Name field, type in a name for the application, such as Hello_World. You can choose to

leave the default name if you prefer
e. Click Create to create the application, as shown in the following figure, wait for the Project

Creator to automatically close once the project is successfully created

Figure 8 Creating a new application
You have successfully created a new ModusToolbox™ application for a PSoC™ 6 MCU.
The BSP uses CY8C624ABZI-D54 as the default device that is mounted on the PSoC™ 62S2 Wi-Fi-Bluetooth®

prototyping kit (CY8CPROTO-062S2-43439) along with the CYW43439KUBG Wi-Fi/Bluetooth® radio.
If you are using custom hardware based on PSoC™ 6 MCU or a different PSoC™ 6 MCU part number, refer to the
Custom BSP App Note or the BSP Assistant user guide.
Refer to the Eclipse IDE for ModusToolbox™ user guide for more information.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 13 002-28571 Rev. *J
2024-03-22

https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8cproto-062s2-43439/
https://www.infineon.com/ModusToolboxBSPAssistant
https://www.infineon.com/dgdl/Infineon-ModusToolbox_3.0_Eclipse_IDE_User_Guide-GettingStarted-v01_00-EN.pdf?fileId=8ac78c8c8386267f0183a8d7043b58ee

5.4.1.1 View and modify the design configuration
Figure 9 shows the Eclipse IDE Project Explorer interface displaying the structure of the application project.
A PSoC™ 6 MCU application consists of a project to develop code for the CM4 core. A project folder consists of
various subfolders – each denoting a specific aspect of the project.

Figure 9 Project Explorer view

1. The files provided by the BSP are in the bsps folder and are listed under TARGET_<bsp name> subfolders.
All the input files for the device and peripheral configurators are in the config folder inside the BSP.
The GeneratedSource folder in the BSP contains the files that are generated by the configurators and
are prefixed with cycfg_. These files contain the design configuration as defined by the BSP. From
ModusToolbox™ 3.x or later, you can directly customize configurator files of BSP for your application
rather than overriding the default design configurator files with custom design configurator files since
BSPs are completely owned by the application.
The BSP folder also contains the linker scripts and the start-up code for the PSoC™ 6 MCU used on the
board.

2. The build folder contains all the artifacts resulting from a build of the project. The output files are
organized by target BSPs.

3. The deps folder contains .mtb files, which provide the locations from which ModusToolbox™ pulls the
libraries that are directly referenced by the application. These files typically each contain the GitHub
location of a library. The .mtb files also contain a git Commit Hash or Tag that tells which version of the
library is to be fetched and a path as to where the library should be stored locally.
For example, Here, retarget-io.mtb points to mtb://retarget-io#latest-v1.X#$$ASSET_REPO$$/retarget-
io/latest-v1.X. The variable $$ASSET_REPO$$ points to the root of the shared location which defaults

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 14 002-28571 Rev. *J
2024-03-22

to mtb_shared. If the library must be local to the application instead of shared, use $$LOCAL$$ instead of
$$ASSET_REPO$$.

4. The libs folder also contains .mtb files. In this case, they point to libraries that are included indirectly
as a dependency of a BSP or another library. For each indirect dependency, the Library Manager places
a .mtb file in this folder. These files have been populated based on the targets available in deps folder.
The libs folder contains the file mtb.mk, which stores the relative paths of all the libraries required by the
application. The build system uses this file to find all the libraries required by the application.
Everything in the libs folder is generated by the Library Manager so you should not manually edit
anything in that folder.

5. An application contains a Makefile which is at the application's root folder. This file contains the set of
directives that the make tool uses to compile and link the application project. There can be more than
one project in an application. In that case there is a Makefile at the application level and one inside
each project. See AN215656 - PSoC™ 6 MCU dual-core system design for details related to multi-project
applications

6. By default, when creating a new application or adding a library to an existing application and specifying
it as shared, all libraries are placed in an mtb_shared directory adjacent to the application directories.
The mtb_shared folder is shared between different applications within a workspace. Different
applications may use different versions of shared libraries if necessary.

5.4.1.1.1 Open the Device Configurator
BSP configurator files are in the bsps/TARGET_<BSP-name>/config folder. For example, click <Application-name>
from Project Explorer then click Device Configurator link in the Quick Panel to open the file design.modus in
the Device Configurator as shown in the following figure. You can also open other configuration files in their
respective configurators or click the corresponding links in the Quick Panel.

Figure 10 Device Configurator

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 15 002-28571 Rev. *J
2024-03-22

https://documentation.infineon.com/html/psoc6/yvt1667482437523.html

The DeviceConfigurator provides a set of Resources Categories tabs. Here you can choose between different
resources available in the device such as peripherals, pins, and clocks from the List of Resources.
You can choose how a resource behaves by choosing a Personality for the resource. For example, a serial
communication block (SCB) resource can have EZI2C, I2C, SPI, or UART personalities. The Alias is your name
for the resource, which is used in firmware development. One or more aliases can be specified by using a
comma to separate them (with no spaces).
The Parameters pane is where you enter the configuration parameters for each enabled resource and the
selected personality. The Code Preview pane shows the configuration code generated per the configuration
parameters selected. This code is populated in the cycfg_ files in the GeneratedSource folder. The Parameters
pane and Code Preview pane may be displayed as tabs instead of separate windows but the contents will be
the same.
Any errors, warnings, and information messages arising out of the configuration are displayed in the Notices
pane.
Currently, the Device Configurator supports configurations using the PDL source. If you choose to use HAL
libraries in your application, then you do not need to do any device configuration changes in here. The
application project contains source files that help you create an application for the CM4 core (for example,
main.c), while the CM0+ application is supplied as a default C file (psoc6_02_cm0p_sleep.c for the CY8C624ABZI-
D44 device). See the cat1cm0p library. This C file is compiled and linked with the CM4 image as part of the
normal build process.
At this point in the development process, the required middleware is ready to be added to the design. The only
middleware required for the Hello World application is the retarget-io library.

5.4.1.1.2 Add retarget-io middleware
In this section, you will add the retarget-io middleware to redirect standard input and output streams to the
UART configured by the BSP. The initialization of the middleware will be done in main.c file.
1. In the Quick Panel, click the Library Manager link.
2. In the subsequent dialog, click Add Libraries.
3. Under Peripherals, select and enable retarget-io.
4. Click OK and then Update.
The files necessary to use the retarget-io middleware are added in the mtb_shared > retarget_io folder, and
the .mtb file is added to the deps folder, as shown in the following figure.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 16 002-28571 Rev. *J
2024-03-22

https://github.com/Infineon/cat1cm0p
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

Figure 11 Add the retarget-io middleware

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 17 002-28571 Rev. *J
2024-03-22

5.4.1.1.3 Configuration of UART, timer peripherals, pins, and system clocks
The configuration of the debug UART peripheral, timer peripheral, pins, and system clocks can be done directly
in the code using the function APIs provided by the BSP and HAL. Therefore, it is not necessary to configure
them with the Device Configurator. See Write firmware section for more details.

5.4.1.2 Write firmware
At this point in the development process, you have created an application with the assistance of an application
template and modified it to add the retarget-io middleware. In this section, you will write the firmware that
implements the design functionality.
If you are working from scratch using the Empty PSoC™ 6 starter application, you can copy the respective source
code to the main.c file of the application project from the code snippet provided in this section. If you are using
the Hello World code example, all the required files are already in the application.

Firmware flow

Examine the code in the main.c file of the application. Figure 12 shows the firmware flowchart.
The CM0+ core comes out of reset and enables the CM4 core. The CM0+ core is then configured to go to sleep by
the provided CM0+ application. Resource initialization for this example is performed by the CM4 core. It
configures the system clocks, pins, clock to peripheral connections, and other platform resources.
When the CM4 core is enabled, the clocks and system resources are initialized by the BSP initialization function.
The retarget-io middleware is configured to use the debug UART, and the user LED is initialized. The debug
UART prints a “Hello World!” message on the terminal emulator – the on-board KitProg3 acts the USB-UART
bridge to create the virtual COM port. A timer object is configured to generate an interrupt every 1000
milliseconds. At each Timer interrupt, the CM4 core toggles the LED state on the kit.
The firmware is designed to accept the 'Enter' key as an input and on every press of the 'Enter' key the firmware
starts or stops the blinking of the LED.
Note that the application code uses BSP/HAL/middleware functions to execute the intended functionality.
cybsp_init()- This BSP function sets up the HAL hardware manager and initializes all the system resources of
the device including but not limited to the system clocks and power regulators.
cy_retarget_io_init()- This function from the retarget-io middleware uses the aliases set up in the BSP for the
debug UART pins to configure the debug UART with a standard baud rate of 115200 and also redirects the input/
output stream to the debug UART.

Note: You can open the Device Configurator to view the aliases that are set up in the BSP.

cyhal_gpio_init()- This function from the GPIO HAL initializes the physical pin to drive the LED. The LED used is
derived from the alias for the pin set up in the BSP.
timer_init()- This function wraps a set of timer HAL function calls to instantiate and configure a hardware
timer. It also sets up a callback for the timer interrupt.
Copy the following code snippet to themain.c file of your application project.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 18 002-28571 Rev. *J
2024-03-22

https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X
https://github.com/Infineon/retarget-io#latest-v1.X

Code listing 1: main.c file

#include "cyhal.h"
#include "cybsp.h"
#include "cy_retarget_io.h"

/***
* Macros
***/

/* LED blink timer clock value in Hz */
#define LED_BLINK_TIMER_CLOCK_HZ (10000)

/* LED blink timer period value */
#define LED_BLINK_TIMER_PERIOD (9999)

/***
* Function Prototypes
***/
void timer_init(void);
static void isr_timer(void *callback_arg, cyhal_timer_event_t event);

/***
* Global Variables
***/
bool timer_interrupt_flag = false;
bool led_blink_active_flag = true;

/* Variable for storing character read from terminal */
uint8_t uart_read_value;

/* Timer object used for blinking the LED */
cyhal_timer_t led_blink_timer;

/***
* Function Name: main
**
* Summary:
* This is the main functionfor CM4 core. It sets up a timer to trigger a
* periodic interrupt. The main while loop checks for the status of a flag set
* by the interrupt and toggles an LED at 1Hz to create an LED blinky. The
* while loop also checks whether the 'Enter' key was pressed and
* stops/restarts LED blinking.
*
* Parameters:
* none
*
* Return:
* int

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 19 002-28571 Rev. *J
2024-03-22

*
***/
int main(void)
{
 cy_rslt_t result;

 /* Initialize the device and board peripherals */
 result = cybsp_init();

 /* Board init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Enable global interrupts */
 __enable_irq();

 /* Initialize retarget-io to use the debug UART port */
 result = cy_retarget_io_init(CYBSP_DEBUG_UART_TX, CYBSP_DEBUG_UART_RX,
 CY_RETARGET_IO_BAUDRATE);

 /* retarget-io init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Initialize the User LED */
 result = cyhal_gpio_init(CYBSP_USER_LED, CYHAL_GPIO_DIR_OUTPUT,
 CYHAL_GPIO_DRIVE_STRONG, CYBSP_LED_STATE_OFF);

 /* GPIO init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* \x1b[2J\x1b[;H - ANSI ESC sequence for clear screen */
 printf("\x1b[2J\x1b[;H");

 printf("****************** "
 "Hello World! Example "
 "****************** \r\n\n");

 printf("Hello World!!!\r\n\n");

 printf("For more projects, "
 "visit our code examples repositories:\r\n\n");

 printf("https://github.com/Infineon/"
 "Code-Examples-for-ModusToolbox-Software\r\n\n");

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 20 002-28571 Rev. *J
2024-03-22

 /* Initialize timer to toggle the LED */
 timer_init();

 printf("Press 'Enter' key to pause or "
 "resume blinking the user LED \r\n\r\n");

 for (;;)
 {
 /* Check if 'Enter' key was pressed */
 if (cyhal_uart_getc(&cy_retarget_io_uart_obj, &uart_read_value, 1)
 == CY_RSLT_SUCCESS)
 {
 if (uart_read_value == '\r')
 {
 /* Pause LED blinking by stopping the timer */
 if (led_blink_active_flag)
 {
 cyhal_timer_stop(&led_blink_timer);

 printf("LED blinking paused \r\n");
 }
 else /* Resume LED blinking by starting the timer */
 {
 cyhal_timer_start(&led_blink_timer);

 printf("LED blinking resumed\r\n");
 }

 /* Move cursor to previous line */
 printf("\x1b[1F");

 led_blink_active_flag ^= 1;
 }
 }

 /* Check if timer elapsed (interrupt fired) and toggle the LED */
 if (timer_interrupt_flag)
 {
 /* Clear the flag */
 timer_interrupt_flag = false;

 /* Invert the USER LED state */
 cyhal_gpio_toggle(CYBSP_USER_LED);
 }
 }
}

/***
* Function Name: timer_init
**
* Summary:
* This function creates and configures a Timer object. The timer ticks

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 21 002-28571 Rev. *J
2024-03-22

* continuously and produces a periodic interrupt on every terminal count
* event. The period is defined by the 'period' and 'compare_value' of the
* timer configuration structure 'led_blink_timer_cfg'. Without any changes,
* this application is designed to produce an interrupt every 1 second.
*
* Parameters:
* none
*
***/
 void timer_init(void)
 {
 cy_rslt_t result;

 const cyhal_timer_cfg_t led_blink_timer_cfg =
 {
 .compare_value = 0, /* Timer compare value, not used */
 .period = LED_BLINK_TIMER_PERIOD, /* Defines the timer period */
 .direction = CYHAL_TIMER_DIR_UP, /* Timer counts up */
 .is_compare = false, /* Don't use compare mode */
 .is_continuous = true, /* Run timer indefinitely */
 .value = 0 /* Initial value of counter */
 };

 /* Initialize the timer object. Does not use input pin ('pin' is NC) and
 * does not use a pre-configured clock source ('clk' is NULL). */
 result = cyhal_timer_init(&led_blink_timer, NC, NULL);

 /* timer init failed. Stop program execution */
 if (result != CY_RSLT_SUCCESS)
 {
 CY_ASSERT(0);
 }

 /* Configure timer period and operation mode such as count direction,
 duration */
 cyhal_timer_configure(&led_blink_timer, &led_blink_timer_cfg);

 /* Set the frequency of timer's clock source */
 cyhal_timer_set_frequency(&led_blink_timer, LED_BLINK_TIMER_CLOCK_HZ);

 /* Assign the ISR to execute on timer interrupt */
 cyhal_timer_register_callback(&led_blink_timer, isr_timer, NULL);

 /* Set the event on which timer interrupt occurs and enable it */
 cyhal_timer_enable_event(&led_blink_timer, CYHAL_TIMER_IRQ_TERMINAL_COUNT,
 7, true);

 /* Start the timer with the configured settings */
 cyhal_timer_start(&led_blink_timer);
 }

/***

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 22 002-28571 Rev. *J
2024-03-22

* Function Name: isr_timer
**
* Summary:
* This is the interrupt handler function for the timer interrupt.
*
* Parameters:
* callback_arg Arguments passed to the interrupt callback
* event Timer/counter interrupt triggers
*
***/
static void isr_timer(void *callback_arg, cyhal_timer_event_t event)
{
 (void) callback_arg;
 (void) event;

 /* Set the interrupt flag and process it from the main while(1) loop */
 timer_interrupt_flag = true;
}

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 23 002-28571 Rev. *J
2024-03-22

Figure 12 Firmware flowchart

This completes the summary of how the firmware works in the code example. Feel free to explore the source
files for a deeper understanding.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 24 002-28571 Rev. *J
2024-03-22

5.4.1.3 Build the application
This section shows how to build the application.
1. Select the application project in the Project Explorer view.
2. Click Build Application shortcut under the <name> group in the Quick Panel.

It selects the build configuration from the Makefile and compiles/links all projects that constitute the
application. By default, Debug configurations are selected.

3. The Console view lists the results of the build operation, as Figure 13 shows.

Figure 13 Build the application

If you encounter errors, revisit earlier steps to ensure that you completed all the required tasks.

Note: You can also use the command-line interface (CLI) to build the application. See the Build system
section in the ModusToolbox™ tools package user guide. This document is located in the /
docs_<version>/ folder in the ModusToolbox™ installation.

5.4.1.4 Program the device
This section shows how to program the PSoC™ 6 MCU.
ModusToolbox™ software uses the OpenOCD protocol to program and debug applications on PSoC™ 6 MCUs.
The kit must be running KitProg3. Some kits are shipped with KitProg2 firmware instead of KitProg3. See
Debugging the application using KitProg3/MiniProg4 for details. The ModusToolbox™ tools package includes the
fw-loader command-line tool to switch the KitProg firmware from KitProg2 to KitProg3. See the PSoC™ 6 MCU
KitProg Firmware Loader section in the Eclipse IDE for ModusToolbox™ user guide for more details.
If you are using a development kit with a built-in programmer connect the board to your computer using the
USB cable.
If you are developing on your own hardware, you can use a hardware programmer/debugger; for example, a ,
https://www.segger.com/products/debug-probes/j-link/, or https://www2.keil.com/mdk5/ulink/ulinkpro/.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 25 002-28571 Rev. *J
2024-03-22

https://www.infineon.com/ModusToolboxUserGuide
http://www.infineon.com/MTBEclipseIDEUserGuide

Select the application project and click the <application name> Program (KitProg3_MiniProg4) shortcut
under the Launches group in the Quick Panel, as Figure 14 shows. The IDE will select and run the appropriate
run configuration.

Note: This step also performs a build if any files have been modified since the last build.

Figure 14 Programming an application to a device

The Console view lists the results of the programming operation, as shown in the following figure.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 26 002-28571 Rev. *J
2024-03-22

Figure 15 Programming an application to a device

5.4.1.5 Test your design
This section describes how to test your design.
Follow these steps to observe the output of your design. This note uses Tera Term as the UART terminal
emulator to view the results, but you can use any terminal of your choice to view the output.
1. Select the serial port

Launch Tera Term and select the USB-UART COM port as Figure 16 shows. Note that your COM port
number may be different.

Figure 16 Selecting the KitProg3 COM port in Tera Term
2. Set the baud rate

Set the baud rate to 115200 under Setup > Serial port as Figure 17 shows.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 27 002-28571 Rev. *J
2024-03-22

Figure 17 Configuring the baud rate in Tera Term
3. Reset the device

Press the reset switch (SW1) on the kit. A message appears on the terminal as Figure 18 shows. The user
LED on the kit will start blinking.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 28 002-28571 Rev. *J
2024-03-22

Figure 18 Printed UART message
4. Pause/resume LED blinking functionality

Press the Enter key to pause/resume blinking the LED. When the LED blinking is paused, a
corresponding message will be displayed on the terminal as Figure 19 shows.

Figure 19 Printed UART message

5.4.1.6 Debugging the application using KitProg3/MiniProg4
All PSoC™ 6 kits have a KitProg3 on-board programmer/debugger. It supports Cortex® Microcontroller Software
Interface Standard - Debug Access Port (CMSIS-DAP). See the KitProg3 user guide for details. The Eclipse IDE
requires KitProg3 and uses the OpenOCD protocol for debugging PSoC™ 6 MCU applications.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 29 002-28571 Rev. *J
2024-03-22

https://www.infineon.com/dgdl/Infineon-KitProg3_User_Guide-UserManual-v17_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f01221f1853

Note: The PSoC™ 6 Wi-Fi-Bluetooth® pioneer kit (CY8CKIT-062-WiFi-BT) and PSoC™ 6 Bluetooth® LE pioneer
kit (CY8CKIT-062-BLE) have the KitProg2 onboard programmer/debugger firmware pre-installed. To
work with ModusToolbox™, upgrade the firmware to KitProg3 using the fw-loader command-line tool
included in the ModusToolbox™ software. Refer to the "PSoC™ 6 Programming/Debugging - KitProg
Firmware Loader" section in the Eclipse IDE for ModusToolbox™ user guide for more details.

The Eclipse IDE contains several launch configurations that control various settings for programming the
devices and launching the debugger. Depending on the kit and the type of applications you are using, there are
various launch configurations available. Once such configuration is KitProg3/MiniProg4 launch configuration.
Refer to the "PSoC™ MCU programming/debugging" section in the Eclipse IDE for ModusToolbox™ user guide for
more details on the launch configurations.
When an application is created, the tool generates the launch configurations for KitProg3_MiniProg4 under
Launches in the Quick Panel, as shown in the following figure.

Figure 20 KitProg3/MiniProg4 launch configuration

Connect the device to the host machine and click on the Hello_World Debug (KitProg3_MiniProg4) launch to
start debugging, as shown in Figure 20. Once the debugging starts, the execution halts at the main() function,
and the user can start debugging from the start of main(), as shown in the following figure.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 30 002-28571 Rev. *J
2024-03-22

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-wifi-bt/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/
https://www.infineon.com/dgdl/Infineon-ModusToolbox_3.1_Eclipse_IDE_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c88704c7a0188a18b5cc24e4c&redirId=188241
https://www.infineon.com/dgdl/Infineon-ModusToolbox_3.1_Eclipse_IDE_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c88704c7a0188a18b5cc24e4c&redirId=188241

Figure 21 Debug main()

5.4.2 Visual Studio Code (VS Code) for ModusToolbox™

Refer to the Visual Studio Code for ModusToolbox™ user guide for creating a new application on VS Code.

5.4.3 IAR Embedded Workbench for ModusToolbox™

Refer to the IAR Embedded Workbench for ModusToolbox™ user guide for creating a new application on IAR.

5.4.4 Keil µVision for ModusToolbox™

Refer to the Keil µVision for ModusToolbox™ user guide for creating a new application on Keil uVision.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

5 Getting started with PSoC™ 6 MCU design

Application note 31 002-28571 Rev. *J
2024-03-22

https://www.infineon.com/dgdl/Infineon-ModusToolbox_3.1_Visual_Studio_Code_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c88704c7a0188a18b83824e58
https://www.infineon.com/dgdl/Infineon-ModusToolbox_3.1_IAR_Embedded_Workbench_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c88704c7a0188a18b696e4e50
https://www.infineon.com/dgdl/Infineon-ModusToolbox_3.1_Keil_uVision_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c88704c7a0188a18b78c24e54

6 Summary
This application note explored the PSoC™ 6 MCU device architecture and the associated development tools.
PSoC™ 6 MCU is a truly programmable embedded system-on-chip with configurable analog and digital
peripheral functions, memory, and a dual-core system on a single chip. The integrated features, embedded
security, and low-power modes make PSoC™ 6 MCU an ideal choice for smart home, IoT gateways, and other
related applications.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

6 Summary

Application note 32 002-28571 Rev. *J
2024-03-22

References
For a complete and updated list of PSoC™ 6 MCU code examples, please visit our GitHub. For more PSoC™ 6
MCU-related documents, please visit our PSoC™ 6 MCU Digital Documentation Portal.
Table 2 lists the system-level and general application notes that are recommended for the next steps in learning
about PSoC™ 6 MCU and ModusToolbox™.

Table 2 General and system-level application notes

Document Document name
AN218241 PSoC™ 6 MCU hardware design considerations

Table 3 lists the application notes (AN) for specific peripherals and applications.

Table 3 Documents related to PSoC™ 6 MCU features

Document Document name
System resources, CPU, and interrupts
AN215656 PSoC™ 6 MCU dual-core system design

AN217666 PSoC™ 6 MCU interrupts

AN235279 Performing ETM and ITM Trace on PSoC™ 6 MCU

CAPSENSE™

AN92239 Proximity sensing with CAPSENSE™

AN85951 PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide

Device Firmware Update
AN213924 PSoC™ 6 MCU device firmware update software development kit guide

Low-power
AN230938 PSoC™ 6 MCU low-power analog

AN219528 PSoC™ 6 MCU low-power modes and power reduction techniques

Security
AN221111 PSoC™ 6 MCU MCU designing a custom secured system

AN227860 PSoC™ 64 Secure MCU Secure Boot SDK User Guide

AN239061 PSoC™ 64 security getting started guide

ModusToolbox™

ModusToolbox™ tools package installation

ModusToolbox™ tools package release notes

ModusToolbox™ tools package quick start guide

ModusToolbox™ tools package user guide

Eclipse IDE for ModusToolbox™ user guide

Visual Studio Code for ModusToolbox™ user guide

Keil µVision for ModusToolbox™ user guide

IAR Embedded Workbench for ModusToolbox™ user guide

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

References

Application note 33 002-28571 Rev. *J
2024-03-22

https://github.com/Infineon/Code-Examples-for-ModusToolbox-Software
https://documentation.infineon.com/html/psoc6/index.html
http://www.infineon.com/an218241
http://www.infineon.com/an215656
http://www.infineon.com/an217666
http://www.infineon.com/an235279
https://www.infineon.com/an92239
http://www.infineon.com/an85951
http://www.infineon.com/an213924
https://www.infineon.com/PSoC6LPAnalogAN
http://www.infineon.com/an219528
https://documentation.infineon.com/html/psoc6/isi1667483210870.html
https://www.infineon.com/cms/en/product/gated-document/psoc-64-secure-mcu-secure-boot-sdk-user-guide-8ac78c8c7d0d8da4017d0f8c361a7666/
https://www.infineon.com/dgdl/Infineon-Getting_started_psoc_64_security-ApplicationNotes-v01_00-EN.pdf?fileId=8ac78c8c8c3de074018c8b7604153604#:~:text=To%20develop%20with%20a%20PSoC,debug%20ports%2C%20and%20so%20on.
https://www.Infineon.com/ModusToolboxInstallguide
https://www.Infineon.com/ModusToolboxReleaseNotes
https://www.Infineon.com/ModusToolboxQSG
https://www.Infineon.com/ModusToolboxUserguide
https://www.Infineon.com/MTBEclipseIDEUserguide
https://www.Infineon.com/MTBVSCodeUserGuide
https://www.Infineon.com/MTBuVisionUserGuide
https://www.Infineon.com/MTBIARUserGuide

Glossary
This section lists the most commonly used terms that you might encounter while working with PSoC™ family of
devices.
• Board support package (BSP): A BSP is the layer of firmware containing board-specific drivers and other

functions. The board support package is a set of libraries that provide firmware APIs to initialize the board
and provide access to board level peripherals.

• Cypress Programmer: Cypress Programmer is a flexible, cross-platform application for programming
Cypress devices. It can Program, Erase, Verify, and Read the flash of the target device.

• Hardware abstraction layer (HAL): The HAL wraps the lower level drivers (like MTB-PDL-CAT1) and provides
a high-level interface to the MCU. The interface is abstracted to work on any MCU.

• KitProg: The KitProg is an onboard programmer/debugger with USB-I2C and USB-UART bridge
functionality. The KitProg is integrated onto most PSoC™ development kits.

• MiniProg3/MiniProg4: Programming hardware for development that is used to program PSoC™ devices on
your custom board or PSoC™ development kits that do not support a built-in programmer.

• Personality: A personality expresses the configurability of a resource for a functionality. For example, the
SCB resource can be configured to be an UART, SPI or I2C personalities.

• PSoC™: A programmable, embedded design platform that includes a CPU, such as the 32-bit Arm® Cortex®-
M0, with both analog and digital programmable blocks. It accelerates embedded system design with
reliable, easy-to-use solutions, such as touch sensing, and enables low-power designs.

• Middleware: Middleware is a set of firmware modules that provide specific capabilities to an application.
Some middleware may provide network protocols (e.g. MQTT), and some may provide high level software
interfaces to device features (e.g. USB, audio).

• ModusToolbox™: An Eclipse based embedded design platform for IoT designers that provides a single,
coherent, and familiar design experience combining the industry's most deployed Wi-Fi and Bluetooth®

technologies, and the lowest power, most flexible MCUs with best-in-class sensing.
• Peripheral driver library (PDL): The peripheral driver library (PDL) simplifies software development for the

PSoC™ 6 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus
easing software development for the extensive set of peripherals available.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

Glossary

Application note 34 002-28571 Rev. *J
2024-03-22

https://github.com/infineon?q=TARGET+NOT+Deprecated
https://www.infineon.com/cypressprogrammer
https://github.com/Infineon/mtb-hal-cat1
https://github.com/Infineon/mtb-pdl-cat1
http://www.infineon.com/cy8ckit-002
http://www.infineon.com/cy8ckit-005
http://www.infineon.com/psoc
https://github.com/Infineon/modustoolbox-software#mcu-middleware-libraries
http://www.infineon.com/modustoolbox
https://www.infineon.com/pdl

Revision history
Document
version

Date of release Description of changes

** 2017-07-26 New application note

*A 2018-01-09 Updated screenshots with latest release of ModusToolbox™

Added new supported PSoC™ 6 MCU devices
Added AnyCloud description under ModusToolbox™ software

*B 2019-04-16 Added new supported PSoC™ 6 MCU device – PSoC™ 62S4
Added information on PSoC™ 6 product lines and development kits
available for each product line

*C 2020-05-06 Updated Figure 2
Updated Screenshots with MTB v2.2
Added mtb_shared folder description, updated application creation
process with MTB flow

*D 2021-03-11 Updated to Infineon template

*E 2021-07-09 Updated the GitHub links
Added reference to new PSoC™ 6 MCU low-power analog
Updated Figure 16 to Figure 19
Firmware updated to the latest version

*F 2022-07-21 Template update

*G 2022-09-12 Updated the development flow as per MTB v3.0 software
Updated link references
Updated configurator info
Added new Figure 2 and Figure 7
Updated Figure 8 and Figure 14
Added reference to new AN235279
Added a new section for ModusToolbox™ Applications
Removed reference to deprecated AN225588
Updated Figure 17 to Figure 19

*H 2023-06-09 Updated content with latest release of c™ 3.1

*I 2023-12-04 Updated with kit CY8CPROTO-062S2-43439

*J 2024-03-22 Added references to all the supporting IDEs on ModusToolbox™ and
restructured the content as per the MKTG need.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

Revision history

Application note 35 002-28571 Rev. *J
2024-03-22

Trademarks
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.

Getting started with PSoC™ 6 MCU on ModusToolbox™ software

Trademarks

Application note 36 002-28571 Rev. *J
2024-03-22

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-03-22
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2024 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-ofg1649405242329

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 PSoC™ 6 architecture and portfolio overview
	1.2 Device features
	1.3 Target applications

	2 PSoC™ 6 resources
	3 PSoC™ 6 MCU development kits
	4 PSoC™ 6 software ecosystem and firmware/application development
	4.1 Installing the ModusToolbox™ tools package
	4.2 Choosing an IDE

	5 Getting started with PSoC™ 6 MCU design
	5.1 Prerequisites
	5.1.1 Hardware
	5.1.2 Software

	5.2 Using these instructions
	5.3 About the design
	5.4 Create a new application
	5.4.1 Eclipse IDE for ModusToolbox™
	5.4.1.1 View and modify the design configuration
	5.4.1.1.1 Open the Device Configurator
	5.4.1.1.2 Add retarget-io middleware
	5.4.1.1.3 Configuration of UART, timer peripherals, pins, and system clocks

	5.4.1.2 Write firmware
	5.4.1.3 Build the application
	5.4.1.4 Program the device
	5.4.1.5 Test your design
	5.4.1.6 Debugging the application using KitProg3/MiniProg4

	5.4.2 Visual Studio Code (VS Code) for ModusToolbox™
	5.4.3 IAR Embedded Workbench for ModusToolbox™
	5.4.4 Keil µVision for ModusToolbox™

	6 Summary
	References
	Glossary
	Revision history
	Trademarks
	Disclaimer

