
Getting started with PSoC™ 6 MCU with Bluetooth®

low energy connectivity on PSoC™ Creator

About this document
Scope and purpose

AN210781 introduces you to PSoC™ 6 MCU with Bluetooth® Low Energy connectivity, a dual-CPU Arm® Cortex®-M4
and Cortex®-M0+ based programmable system-on-chip that integrates a Bluetooth® Low Energy 5.0 system, the
latest-generation of CAPSENSE™ technology, and a host of security features. This application note helps you
explore the PSoC™ 6 MCU with Bluetooth® Low Energy architecture and development tool and shows you how
to create your first project using PSoC™ Creator, export the project to a third-party integrated development
environment (IDE), and continue your firmware development. It also guides you to more resources available
online to accelerate your learning about PSoC™ 6 MCU with Bluetooth® Low Energy connectivity. To get started
with the PSoC™ 6 MCU device family, see AN221774 – Getting started with PSoC™ 6 MCU.
To access an ever-growing list of hundreds of PSoC™ code examples, please visit our code examples web page.
You can also explore the PSoC™ video library here.

Table of contents

About this document . 1

Table of contents . 1

1 Introduction . 4
1.1 Prerequisites . 6
1.1.1 Hardware .6
1.1.2 Software .6

2 Development ecosystem .7
2.1 PSoC™ resources . 7
2.2 Firmware/application development .7
2.2.1 PSoC™ Creator .7
2.2.1.1 PSoC™ Creator help . 8
2.2.2 Peripheral Driver Library (PDL) .8
2.3 Support for other IDEs . 9
2.3.1 Using PSoC™ Creator to target another IDE . 9
2.4 RTOS support .12
2.5 Debugging . 12
2.6 CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit . 13
2.7 CySmart Host Emulation Tool and mobile applications . 13

3 Device features . 14

4 Development setup . 16

5 My first PSoC™ 6 MCU design with Bluetooth® LE .18
5.1 Using the instructions . 18
5.2 Before you begin . 18

AN210781

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-10781 Rev. *E
www.infineon.com 2022-03-08

https://www.infineon.com/dgdl/Infineon-AN221774_Getting_Started_with_PSoC_6_MCU_on_PSoC_Creator-ApplicationNotes-v07_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d357e356627&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/cms/en/design-support/software/code-examples/
https://www.infineon.com/cms/en/about-infineon/video-overview/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-video&utm_content=modustoolbox-101-lesson-1-1-getting-started
https://www.infineon.com

5.3 About the design . 19
5.4 Part 1. Create a new project from scratch . 19
5.5 Part 2. Implement the design . 25
5.6 Part 3. Generate source code . 42
5.7 Part 4. Write the firmware . 44
5.8 Part 5. Build the project, program the Device .55
5.9 Part 6. Test your design . 58

6 Summary . 64

7 Related application notes and code examples . 65

A Appendix A. Glossary . 67

B Appendix B. Bluetooth® LE protocol . 68
B.1 Overview . 68
B.2 Physical Layer (PHY) .68
B.3 Link Layer (LL) . 68
B.4 Host Control Interface (HCI) . 69
B.5 Logical Link Control and Adaptation protocol (L2CAP) . 69
B.6 Security manager (SM) .70
B.7 Attribute protocol (ATT) .70
B.7.1 Attribute hierarchy . 71
B.7.2 Attribute operations . 73
B.8 Generic Attribute Profile (GATT) . 73
B.9 Generic Access Profile (GAP) .74

C Appendix C. Device features . 77
C.1 System wide resources . 77
C.1.1 CPU subsystem: CM4 and CM0 . 77
C.1.2 IPC .77
C.1.3 Memory system . 77
C.1.4 DMA .77
C.1.5 Clocking system .78
C.1.6 System interrupts . 78
C.1.7 Power supply and monitoring . 78
C.1.8 Power modes . 79
C.2 Secure Boot . 80
C.3 Programmable digital peripherals . 80
C.3.1 UDB .80
C.3.2 Programmable TCPWM . 81
C.3.3 SCB . 81
C.3.4 BLESS . 81
C.3.4.1 Deep Sleep mode . 82
C.3.4.2 Sleep mode . 82

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
Table of contents

Application note 2 002-10781 Rev. *E
2022-03-08

C.3.4.3 Idle mode . 82
C.3.4.4 Transmit mode . 82
C.3.4.5 Receive mode .82
C.3.5 Audio subsystem . 82
C.3.6 Serial Memory Interface . 83
C.3.7 eFUSE . 83
C.3.8 Segment LCD . 83
C.4 Programmable analog peripherals . 83
C.4.1 Continuous Time Block Opamps . 83
C.4.2 Low-Power comparator . 83
C.4.3 SAR ADC . 84
C.4.4 DAC . 84
C.4.5 CAPSENSE™ . 84
C.5 Programmable GPIOs . 85

D Appendix D. IoT development tools . 86
D.1 CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit . 86
D.2 CySmart Host Emulation Tool . 86
D.3 CySmart mobile app .88

Revision history .90

Disclaimer . 91

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
Table of contents

Application note 3 002-10781 Rev. *E
2022-03-08

1 Introduction
PSoC™ 6 MCU with Bluetooth® LE connectivity, hereafter called as PSoC™ 6-BLE, is an ultra-low-power PSoC™

device specifically designed for wearables and Internet of Things (IoT) products. It establishes a new low-power
standard for today’s “always-on” applications. The PSoC™ 6 -BLE device is a programmable embedded system-
on-chip that integrates the following on a single chip:
• Dual-CPU microcontroller: CM4 and CM0+
• Bluetooth® LE 5.0 subsystem
• Programmable analog and digital peripherals
• Up to 1 MB of flash and 288 KB of SRAM
• Fourth-generation CAPSENSE™ technology
PSoC™ 6-BLE is suitable for a variety of power-sensitive connected applications such as:
• Smart watches and fitness trackers
• Connected medical devices
• Smart home sensors and controllers
• Smart home appliances
• Gaming controllers
• Sports, smart phone, and virtual reality (VR) accessories
• Industrial sensor nodes
• Industrial logic controllers
• Advanced remote controllers
PSoC™ 6-BLE provides a cost-effective and small-footprint alternative to the combination of an MCU and a
Bluetooth® LE radio. The programmable analog and digital subsystems allow flexibility and dynamic fine-tuning
of the design using PSoC™ Creator the schematic-based design tool for developing PSoC™ 6-BLE applications. To
develop a BLE application, you do not need a working knowledge of the complex BLE protocol stack.
PSoC™ 6-BLE is an easy-to-configure, no-cost GUI-based Bluetooth® LE component in PSoC™ Creator that
abstracts the protocol complexity.
Bluetooth® LE is an ultra-low-power wireless standard defined by the Bluetooth® Special Interest Group (SIG) for
short-range communication. PSoC™ 6-BLE integrates a Bluetooth® LE 4.2 radio and a royalty-free protocol stack
with enhanced security, privacy, and throughput compliant with the BLE 5.0 specification.
Fourth-generation capacitive touch-sensing feature in PSoC™ 6-BLE devices, known as CAPSENSE™, offers
unprecedented signal-to-noise ratio (SNR); best-in-class waterproofing; and a wide variety of sensor types
such as buttons, sliders, track pads, and proximity sensors. CAPSENSE™ user interfaces are gaining popularity
in wearable electronic devices such as activity monitors and health and fitness equipment. The CAPSENSE™

solution works in noisy environments and in the presence of liquids.
PSoC™ 6-BLE enables ultra-low-power connected applications with an integrated solution.
Figure 1 shows the application-level block diagram of a fitness tracker based on PSoC™ 6-BLE.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
1 Introduction

Application note 4 002-10781 Rev. *E
2022-03-08

Figure 1 Fitness tracker application block diagram

The device provides a one-chip solution and includes:

• A low-power Bluetooth® LE 5.0 system that can sustain up to four simultaneous connections
• A buck converter for ultra-low-power operation
• An analog front end (AFE) within the device to condition and measure heart rate sensor outputs and to

monitor battery voltage
• Serial communication blocks (SCBs) to interface with multiple digital sensors including a global positioning

system (GPS) module
• A Pulse-Density Modulation (PDM) Pulse Code Modulation (PCM) hardware engine and digital microphone

interface for voice
• CAPSENSE™ technology for reliable touch and proximity sensing
• A serial memory interface (SMIF) that supports an interface to Quad-Serial Peripheral Interface (QSPI)-

enabled external memory
• Digital logic (UDB) and peripherals (TCPWM) to drive the display and haptics
See Device features and Appendix C for more details on device features.
This application note introduces you to the capabilities of PSoC™ 6-BLE, gives an overview of the development
ecosystem, and gets you started with a simple design: a Bluetooth® SIG standard Find Me Profile (FMP) with

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
1 Introduction

Application note 5 002-10781 Rev. *E
2022-03-08

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239389

an Immediate Alert Service (IAS). This design is available as code example CE212736 for CY8CKIT-062-BLE. This
application note uses the code example extensively.
For hardware design considerations, see AN218241 – PSoC™ 6 MCU hardware design considerations.
For advanced application development, refer to the application note AN215796 – Designing PSoC™ 6-BLE
applications.

1.1 Prerequisites
Before you get started, make sure you have the development kit and have installed the required software,
including the code example.

1.1.1 Hardware
• CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit
• PC with Windows 7 or later (if using the CySmart™ Host Emulation Tool application)
• Mobile phone with Android 5/iOS 8 or later (if using the CySmart™ iOS/Android app)

1.1.2 Software
• PSoC™ Creator 4.4 with PSoC™ Programmer 3.29
• CE212736 – the Bluetooth® LE Find Me code example for the CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit
• CySmart™ Host Emulation Tool PC application or CySmart™ iOS/Android app
Scan the following QR codes from your mobile phone to download the CySmart app.

iOS Android

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
1 Introduction

Application note 6 002-10781 Rev. *E
2022-03-08

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.immediate_alert.xml
http://www.cypress.com/ce212736
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/dgdl/Infineon-AN218241_PSoC_6_MCU_Hardware_Design_Considerations-ApplicationNotes-v10_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d314a0f653f&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN215671_PSoC_6_MCU_Firmware_Design_for_BLE_Applications-ApplicationNotes-v02_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d35d7e2664e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/dgdl/Infineon-AN215671_PSoC_6_MCU_Firmware_Design_for_BLE_Applications-ApplicationNotes-v02_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d35d7e2664e&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note
https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/cms/en/design-support/tools/utilities/wireless-connectivity/cysmart-bluetooth-le-test-and-debug-tool/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software
https://apps.apple.com/us/app/cysmart/id928939093
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
https://www.infineon.com/cms/en/design-support/tools/programming-testing/psoc-programming-solutions/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
https://www.infineon.com/cms/en/design-support/software/code-examples/psoc-6-code-examples-for-modustoolbox/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-code_example
http://www.cypress.com/CY8CKIT-062-BLE
https://www.infineon.com/cms/en/design-support/tools/utilities/wireless-connectivity/cysmart-bluetooth-le-test-and-debug-tool/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-software
https://apps.apple.com/us/app/cysmart/id928939093
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en

2 Development ecosystem

2.1 PSoC™ resources
A wealth of data is available at www.cypress.com to help you to select the right PSoC™ device and quickly and
effectively integrate it into your design. The following is an abbreviated list of resources for PSoC™ 6 MCU:
• Overview: PSoC™ Portfolio, PSoC™ Roadmap
• Product selectors PSoC™ 6 MCU
• Datasheets describe and provide electrical specifications for each device family
• Application notes and Code examples cover a broad range of topics, from basic to advanced level. Many of

the application notes include code examples. You can also browse our collection of code examples from
directly inside PSoC™ Creator — see Code examples

• Technical reference manuals (TRMs) provide detailed descriptions of the architecture and registers in each
device family

• PSoC™ 6 programming specification provide the information necessary to program the nonvolatile memory
of the PSoC™ 6 MCU devices

• CAPSENSE™ design guides: Learn how to design capacitive touch-sensing applications with PSoC™ devices
• Development Tools
• CY8CKIT-062-WiFi-BT PSoC™ 6 WiFi-BT pioneer kit is a development kit that supports the PSoC™ 62 series

MCU along with WiFi and Bluetooth® connectivity
• CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit is an easy-to-use and inexpensive development platform for

PSoC™ 6-BLE
• Training videos: Video training on our products and tools, including a dedicated series on PSoC™ 6 MCU
For a comprehensive list of PSoC™ 6 MCU resources, see KBA223067 in the Infineon community.

2.2 Firmware/application development
PSoC™ Creator and the Peripheral driver library (PDL) are at the heart of the development process.
PSoC™ Creator brings together several digital/analog/system components and firmware to build an application.
Using PSoC™ Creator, you can select, place, and configure components on a schematic; write C/assembly source
code; and program and debug the device.
The PDL is the software development kit for the PSoC™ 6 MCU family. The PDL, provided as source code, makes
it easier to develop the firmware for supported devices. It helps you quickly customize and build firmware
without the need to understand the register set. The PDL supports both PSoC™ Creator and third-party IDEs.

2.2.1 PSoC™ Creator
PSoC™ Creator is a free Windows-based Integrated Design Environment (IDE). It enables you to design hardware
and firmware systems concurrently, based on PSoC™ 6 MCU. As Figure 2 shows, with PSoC™ Creator, you can

Steps

1. Browse collection of code examples from the File > Code Example… menu.
a. Filter for examples based on Device family.
b. Select from the menu of examples offered based on the Filter by options.
c. Download the code example using the download button.
d. Create a new project based on the selection.

2. Explore the library of more than 100 components.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
2 Development ecosystem

Application note 7 002-10781 Rev. *E
2022-03-08

http://www.cypress.com
http://www.cypress.com/psoc
http://www.cypress.com/product-roadmaps/cypress-psoc-and-mcu-portfolio-roadmap
http://www.cypress.com/search/psg/114026#/?_facetShow=ss_pmain_core,ss_psecondary_core,fs_pmax_operating_frequency_mhz_,fs_pflash_kb_,fs_psram_kb_,fs_pno_of_gpios,fs_pble_maximum_data_rate_mbps_,fs_pble_power_output_dbm_,fs_pble_rx_sensitivity_dbm_,fs_pble_supported_frequency_band_ghz_,ss_pdedic
http://www.cypress.com/search/all?f%5B0%5D=meta_type%3Atechnical_documents&f%5B1%5D=resource_meta_type%3A575&f%5B2%5D=field_related_products%3A114026
http://www.cypress.com/psoc6an
http://www.cypress.com/search-results?as_q=psoc%206%20mcu%20code%20examples
https://www.infineon.com/cms/en/search.html#!term=psoc%206%20mcu%20code%20examples&view=all&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-search
http://www.cypress.com/psoc6trm
http://www.cypress.com/documentation/programming-specifications/psoc-6-programming-specifications
http://www.cypress.com/documentation/application-notes/an85951-psoc-4-capsense-design-guide
http://www.cypress.com/CY8CKIT-062-WiFi-BT
http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/training
http://www.cypress.com/training/psoc-101-video-tutorial-series-how-use-arm-cortex-m4-based-psoc-6
https://community.cypress.com/docs/DOC-14644
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families

3. Drag and drop components to build your hardware system design in the main design workspace.
4. Review the component datasheets.
5. Configure the components using configuration tools.
6. Co-design your application firmware with the PSoC™ hardware.

Configure
Components

Develop
Firmware

Open
Datasheet

Download
Button

Browse Code
Examples

Drag and Drop
Components

6

1

2

3

4

5

Explore Component
Catalog

Figure 2 PSoC™ Creator schematic entry and components

2.2.1.1 PSoC™ Creator help
Visit the PSoC™ Creator home page to download and install the latest version of PSoC™ Creator. Then launch
PSoC™ Creator and navigate to the following items:
• Quick start guides: Choose Help > Documentation > Quick Start Guide. This guide gives you the basics

for developing PSoC™ Creator projects
• Code examples: Choose File > Code Example or click the Find Code Example... link on the Start Page

tab. These code examples demonstrate how to configure and use PSoC™ resources
• Component datasheets: Right-click a Component and select Open Datasheet. Visit the PSoC™ 6 MCU

Component Datasheets page for a list of all Component datasheets

2.2.2 Peripheral Driver Library (PDL)
The PDL is the software development kit for PSoC™ 6 MCU devices. If you have experience working with PSoC™

devices but are new to PSoC™ 6 MCU, you will notice that PDL is the major addition to the development
ecosystem.
Firmware developers who wish to work at the register level should also install the PDL. The PDL includes all the
device-specific header files and startup code you need for your project. It also serves as a reference for each
driver. Because the PDL is provided as source code, you can see how it accesses the hardware at the register
level.
Some devices do not support particular peripherals. The PDL is a superset of all drivers for any supported
device. This superset design means:
• All APIs needed to initialize, configure, and use a peripheral are available

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
2 Development ecosystem

Application note 8 002-10781 Rev. *E
2022-03-08

https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/psoc-creator/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-product_families
http://www.cypress.com/?id=4749&rtID=377
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-component_datasheet
https://www.infineon.com/cms/en/design-support/tools/sdk/psoc-software/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-component_datasheet

• The PDL is useful across all PSoC™ 6 MCU devices, regardless of available peripherals
• The PDL includes error checking to ensure that the targeted peripheral is present on the selected device
This enables the code to maintain compatibility across platform as long as the peripherals are available. A
device header file specifies the peripherals that are available for a device. If you write code that attempts to
use an unsupported peripheral, you will get an error at compile time. Before writing code to use a peripheral,
consult the datasheet for the particular device to confirm support for the peripheral.
PSoC™ Creator provides components that are based on PDL for your use with PSoC™ 6 MCU devices. This retains
the essence of PSoC™ Creator in utilizing community-developed and pre-validated Components. However, the
PDL is a source code library that you can use with any development environment.
The PDL includes the following key software resources:
• Header and source files for each peripheral driver
• Header and source files for middleware libraries
• Device-specific header, startup, and configuration files
• Template projects for supported third-party IDEs
• Full documentation

The location for the documentation is <PDL install directory>\doc\. There are two key documents.
The PDL v3.x user guide covers the fundamentals of working with the PDL, such as:

- Creating a custom project using the PDL (including third-party IDEs)
- Configuring a peripheral
- Managing pins in firmware
- Using the PDL as a learning tool for register-based programming
- Using the PDL API Reference documentation
The second key document is the PDL 3.x API reference manual.html. This reference has complete
information on every driver in the PDL, including overview, configuration considerations, and details on
every function, macro, data structure, and enumerated type

2.3 Support for other IDEs
You can also develop firmware for PSoC™ 6 MCU using your favorite IDE such as IAR Embedded Workbench. You
can use the PDL with another IDE by using PSoC™ Creator to design the system and generate configuration code
and then export to a target IDE.
See the AN219434 – PSoC™ 6 MCU Importing Generated Code into an IDE for details.

2.3.1 Using PSoC™ Creator to target another IDE
PSoC™ Creator sets up and configure PSoC™ 6 MCU system resources and peripherals. You then export
the project to your IDE and continue developing firmware in your IDE. If there is a change in the device
configuration, you edit the Topdesign schematic in PSoC™ Creator and regenerate the code for the target IDE.
Figure 3 shows the workflow.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
2 Development ecosystem

Application note 9 002-10781 Rev. *E
2022-03-08

https://www.iar.com/products#/search
https://www.infineon.com/dgdl/Infineon-AN219434_Importing_PSoC_Creator_Code_into_an_IDE_for_a_PSoC_6_Project-ApplicationNotes-v06_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d31a8f86577&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

Start

Collect Requirements

Edit TopDesign
Schematic

Generate Application
Source

Program and Debug
Application

Target IDE
Selected?

Develop Firmware

YES

In PSoC
Creator

In Third
Party IDE

Stop

Change in Device
ConfigurationYES

NO

Program and Debug
Application

Develop Firmware

Generate Application
Source

Import Generated
Code Package

NO

Figure 3 PSoC™ 6 MCU application development flowchart using PSoC™ Creator

Code generated from PSoC™ Creator includes all required header, startup, and PDL files based on your design.
Exporting the code generated from PSoC™ Creator is supported for Keil µVision, IAR Embedded Workbench,
Eclipse-based IDEs, and for GNU-based command-line tools. You select your target IDE using the Project >
Build Settings > Target IDEs panel. Enable the export package for your target IDE as shown in Figure 4. When
you generate code, PSoC™ Creator also creates the corresponding export package.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
2 Development ecosystem

Application note 10 002-10781 Rev. *E
2022-03-08

Figure 4 Target IDE selection in project > Build settings

You then import the package into your IDE. The import details vary significantly per IDE. Consult the PSoC™

Creator Help to learn the process you must follow. Choose Help > PSoC™ Creator Help Topics. See Figure 5.
The Integrating into 3rd Party IDEs topic points you to specific help files for each PSoC™ device family, and each
supported IDE.

Figure 5 PSoC™ Creator help

You can work effectively in most if not all IDEs.If your IDE is not supported in the Target IDEs panel, you
can still use PSoC™ Creator. After you generate code, add the necessary files directly to your IDE’s project.
AN219434 – PSoC™ 6 MCU Importing generated code into an IDE provide detailed steps for manually importing
the generated code into another IDE.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
2 Development ecosystem

Application note 11 002-10781 Rev. *E
2022-03-08

https://www.infineon.com/dgdl/Infineon-AN219434_Importing_PSoC_Creator_Code_into_an_IDE_for_a_PSoC_6_Project-ApplicationNotes-v06_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0d31a8f86577&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-application_note

2.4 RTOS support
The PDL includes RTOS support for PSoC™ 6 MCU development: FreeRTOS source code is fully integrated and
included with the PDL. You can import the FreeRTOS software package into your project by using the PSoC™

Creator RTOS import option. Navigate to Project > Build Settings menu and select FreeRTOS from the Software
package imports option under Peripheral Driver Library > FreeRTOS as shown in Figure 6.

Figure 6 Import FreeRTOS in PSoC™ Creator project

If you have a preferred RTOS, use the resources provided as examples on how to integrate such code with the
PDL.

2.5 Debugging
The CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit has the KitProg2 onboard programmer/debugger.
Note: Update the onboard programmer/debugger to KitProg3 using PSoC™ Programmer 3.29. KitProg3

uses industry-standard CMSIS-DAP as the transport mechanism. KitProg3 implements USB Bulk
endpoints for faster communication. It also supports HID endpoints for use cases that require them,
but communication is slower. Out of the box, KitProg3 uses Bulk endpoints. KitProg3 also supports
bridging: USB-UART; USB-I2C, and USB-SPI. This makes debugging the PSoC™ 6 MCU pioneer kit
extremely flexible. See the KitProg3 User Guide for details.

PSoC™ Creator supports debugging a single CPU (either CM4 or CM0+) at a time. Some third-party IDEs support
multi-CPU debugging. For more information on debugging PSoC™ devices with PSoC™ Creator, see the PSoC™

Creator help. To update onboard programmer/debugger to Kitprog3, plug in your kit and open.
PSoC™ Programmer 3.29 tool. The tool automatically detects an older version of KitProg2 or KitProg3 on the kit
and offers to upgrade the KitProg firmware to a newer version of KitProg3 as shown in Figure 7 and Figure 8.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
2 Development ecosystem

Application note 12 002-10781 Rev. *E
2022-03-08

https://www.infineon.com/cms/en/product/evaluation-boards/cy8ckit-062-ble/?utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-dev_kit
https://www.infineon.com/dgdl/Infineon-KitProg3_User_Guide-UserManual-v01_00-EN.pdf?fileId=8ac78c8c7d0d8da4017d0f01221f1853&utm_source=cypress&utm_medium=referral&utm_campaign=202110_globe_en_all_integration-files

Figure 7 Updating KitProg firmware

Figure 8 Firmware updates complete

2.6 CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit
The Appendix D.1 is a Bluetooth® LE development kit from Infineon that supports the PSoC™ 63BL family of
devices. See CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit in Appendix D for more information.

2.7 CySmart Host Emulation Tool and mobile applications
The CySmart Host Emulation Tool is a Windows application that emulates a Bluetooth® LE central device using
the PSoC™ 6-BLE pioneer kit’s Bluetooth® LE dongle. See Appendix D.2 in Appendix D for more information.
Similar functionality is available in the Appendix D.3 for the iOS and Android devices. This tool is extremely
useful in testing your Bluetooth® LE application.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
2 Development ecosystem

Application note 13 002-10781 Rev. *E
2022-03-08

3 Device features
The PSoC™ 6-BLE device has an extensive feature set as shown in Figure 9. The following is a list of its major
features. For more information, see the device datasheet, the Technical reference manual (TRM), and the
section on Related application notes and code examples.

MCU Subsystem

A
dv

an
ce

d
M

ic
ro

co
nt

ro
lle

r B
us

 A
rc

hi
te

ct
ur

e
(A

M
BA

-A
HB

)a
nd

 IP
C

I/O Subsystem

Pr
og

ra
m

m
ab

le
 In

te
rc

on
ne

ct
 a

nd
 R

ou
tin

g

Cortex® -M4
with SP FPU

150-MHz

I-Cache 8KB

Cortex® -M0+
100-MHz

Analog Blocks

Opamp
x2

CMP
x2

CapSense

12-bit DAC 12-bit SAR
ADC

PSoC 6 MCU with BLE Connectivity

2.4-GHz RF Transceiver

BLE 5.0 Link Layer

GPIO x6

GPIO x6

GPIO x6

GPIO x6

GPIO x6

GPIO x6

GPIO x6

GPIO x6

GPIO x8

GPIO x8

GPIO x8

GPIO x6

CRYPTO

DMAa

SRAM
288KB

Flash 1MB

eFUSE

RTCb

I-Cache 8KB

UDBc

x12
TCPWMd

x32

Digital Blocks

SCBe

x8

Communication Interfaces

SMIFf

(Quad-SPI)

I2S
PDM-PCM

Deep Sleep
SCB

Bluetooth Smart Connectivity

a: DMA - Direc t Memory A ccess
b: RTC – Real Time Clock
c : UDB – Universal Digital Block

d: TCPWM – Timer, Counter, PWM
e: SCB – Ser ial Communication Block
f : SMIF – Serial Memory InterFace

Figure 9 PSoC™ 6 MCU with Bluetooth® LE connectivity block diagram

• 32-bit dual-CPU MCU subsystem
- 150-MHz CM4 CPU with single-precision floating-point unit 100-MHz CM0+ CPU
- Up to 1 MB of user flash, with additional 32 KB for EEPROM emulation and 32 KB supervisory
- Up to 288 KB of SRAM with selectable Deep Sleep retention granularity at 32-KB retention boundaries
- Inter-processor communication supported in hardware
- Cryptography accelerators with support for hardware acceleration and true random number generator

function
- Two 32-channel DMA controllers
- eFUSE: one-time programmable bits
- Uninterruptible secure boot with hardware hash-based authentication

• I/O subsystem
- Up to 78 GPIOs that can be used for analog, digital, CAPSENSE™, or segment LCD functions
- Programmable drive modes, drive strength, and slew rates
- Two ports with smart I/Os that can implement boolean operations

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
3 Device features

Application note 14 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/psoc-6-63-series-datasheet
http://www.cypress.com/trm218176

• Programmable analog blocks
- Two opamps of 6-MHz gain bandwidth (GBW), configurable as programmable gain amplifiers (PGA),

comparators, or filters
- Two low-power comparators with less than 300 nA current consumption that are operational in Deep

Sleep and Hibernate modes
- One 12-bit, 1-Msps SAR ADC with 16-channel sequencer
- One 12-bit voltage mode DAC

• CAPSENSE™ with SmartSense™ auto-tuning
- Supports CAPSENSE™ Sigma-Delta (CSD) and CAPSENSE™ transmit/receive (CSX)
- Provides best-in-class SNR, liquid tolerance, and proximity sensing

• Programmable digital blocks, Communication interfaces
- 12 UDBs for custom digital peripherals
- 32 TCPWM blocks configurable as 16-bit/32-bit timer, counter, PWM, or quadrature decoder
- Nine SCBs configurable as I2C master or slave, SPI master or slave, or UART
- Audio subsystem with one I2S interface and two PDM channels
- SMIF interface with support for execute-in-place from external quad SPI flash memory and on-the-fly

encryption and decryption
• Bluetooth® connectivity with Bluetooth® Low Energy 4.2

- 2.4-GHz Bluetooth® LE radio with integrated balun
- Bluetooth® 4.2 specification–compliant controller and host implementation
- Link layer engine that supports master/slave modes and up to four simultaneous connections
- Support for 2-Mbps LE data rate

• Operating voltage range, power domains, and low-power modes
- Device operating voltage: 1.71 V to 3.6 V
- User-selectable core logic operation at either 1.1 V or 0.9 V
- Multiple on-chip regulators: low-drop out (LDO for Active, Deep Sleep modes), single input multiple

output (SIMO) buck converter
- Active, Low-Power Active, Sleep, Low-Power Sleep, Deep Sleep, and Hibernate modes for fine power

management
- Deep Sleep mode with operational Bluetooth® LE link: 4.5-µA typical current at 3.3 V with 64-KB SRAM

retention
- An “always on” backup power domain with built-in RTC, power management integrated circuit (PMIC)

control, and limited SRAM backup

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
3 Device features

Application note 15 002-10781 Rev. *E
2022-03-08

4 Development setup
Figure 10 shows the hardware and software tools required for evaluating Bluetooth® LE peripheral designs using
the PSoC™ 6-BLE device. In a typical use case, the PSoC™ 6-BLE pioneer kit (blue board in Figure 10) is configured
as a Peripheral that can communicate with a Central device such as the CySmart iOS/Android app or CySmart
Host Emulation Tool. The CySmart Host Emulation Tool also requires a Bluetooth® LE dongle (black board in
Figure 10) for its operation. The PSoC™ 6-BLE pioneer kit includes a dongle.

Figure 10 Bluetooth LE functional setup

As shown in Figure 11, the Bluetooth® LE dongle is preprogrammed to work with the Windows CySmart Host
Emulation Tool. The PSoC™ 6-BLE pioneer kit has an onboard USB programmer that works with PSoC™ Creator
for programming or debugging your Bluetooth® LE design. The Bluetooth® LE pioneer kit can be powered
over the USB interface. Both the Bluetooth® LE dongle and the Bluetooth® LE pioneer kit can be connected
simultaneously to a common host PC for development and testing.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
4 Development setup

Application note 16 002-10781 Rev. *E
2022-03-08

Figure 11 Bluetooth® LE development setup

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
4 Development setup

Application note 17 002-10781 Rev. *E
2022-03-08

5 My first PSoC™ 6 MCU design with Bluetooth® LE
This section provides step-by-step instructions to build a simple design for the PSoC™ 6-BLE pioneer kit. A
simple Bluetooth® SIG-defined standard profile called Find Me Profile (FMP) is implemented in the design. For
creating advanced standard or custom Profile designs, refer to the Designing PSoC™ 6-BLE Applications and
Creating a BLE Custom Profile application notes.
While the PSoC™ 6-BLE pioneer kit is intended to simplify and streamline design for Bluetooth® LE based
applications, you can also use this setup to develop applications that do not use Bluetooth® LE.

5.1 Using the instructions
These instructions are grouped into several sections. Each section is devoted to a phase of the application
development workflow. The major sections are:
• Part 1. Create a new project from scratch
• Part 2. Implement the design
• Part 3. Generate source code
• Part 4. Write the firmware
• Part 5. Build the project, program the Device
• Part 6. Test your design
These instructions require that you use a code example. However, the extent to which you use the code
example depends on the path you choose to follow through these instructions.
We have defined three paths through these instructions:

Path Working from scratch
code example as
reference Only

Using code example
new to PSoC™ Creator or
Bluetooth® LE

Using code example
familiar with PSoC™

Creator and Bluetooth®

LE

Best For Someone who wants
hands-on experience to
learn about PSoC™ Creator
and/or Bluetooth® LE

Someone who is new to
the tool or technology,
and wants to see how it
all works

Someone who knows the
tools and technology, and
wants to see it work on
the PSoC™ 6 platform

What you need to do for each path is clearly defined at the start of each part of the instructions.
If you start from scratch and follow all instructions in this application note, you use the code example as a
reference while following the instructions. Working from scratch teaches you the most about the PSoC™ Creator
design process, and how BLE works. This path also takes the most time.
You can also use the code example directly. It is a complete design, with all firmware written. You can walk
through the instructions and observe how the steps are implemented in the code example. This is a particularly
useful approach if you are already familiar with PSoC™ Creator and want to see how the Bluetooth® Low Energy
Component is configured, for example. If you use the code example directly, you will be able to skip some steps.
In all cases, you should start by reading Before you begin and About the design.

5.2 Before you begin
Ensure that you have the following items installed on your host computer.
• PSoC™ Creator 4.4
• PDL v3.1.x
• The CySmart Host Emulation Tool or the CySmart iOS/Android app

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 18 002-10781 Rev. *E
2022-03-08

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239389
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl
http://www.cypress.com/go/cysmart
https://itunes.apple.com/us/app/cysmart/id928939093?mt=8
https://play.google.com/store/apps/details?id=com.cypress.cysmart&hl=en

• CE217236 – the code example used for this application note and
• The CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit with Kitprog3. Refer Debugging on how to update the

Kitprog firmware
You can download the code example from the website by clicking the link above. You can also use the PSoC™

Creator File > Code Example command. Set the Device family to PSoC™ 63. Then set the Filter by option
to Find Me. The CE212736_PSoC6BLE_FindMe code example appears. Select the code example, download by
clicking on the download icon adjacent to the example. After installation is complete, click Create Project, and
follow the on-screen instructions.
This design is developed for the CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit. If you wish to use other hardware,
you must adapt the instructions to your needs.

5.3 About the design
This design implements a Bluetooth® LE Find Me Profile (FMP) in the Target role that consists of an Immediate
Alert Service (IAS). FMP and IAS are a Bluetooth® LE standard profile and service defined by the Bluetooth® SIG.
Alert levels triggered by the Find Me Locator are indicated by varying the state of an LED on the Bluetooth® LE
Pioneer Kit, as Figure 12 shows. In addition, two status LEDs indicate the state of the Bluetooth® LE interface.
There is also an optional UART component to print debug messages to a terminal window.

(CySmart PC/Mobile App)

IAS GATT Client

Write Alert Level

(CY8CKIT-062-BLE PSoC 6 BLE Pioneer Kit)

IAS GATT Server
Service

IAS

Characteristic
Alert Level

Immediate Alert Service
Mild Alert (0x01)

LED OFF

LED BLINK

LED ONMap to PSoC Creator
Schematic

Figure 12 My first PSoC™ 6-BLE design

5.4 Part 1. Create a new project from scratch
This part takes you step-by-step through the process of creating a project file from scratch.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 19 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/CE212736
http://www.cypress.com/go/cy8ckit-062-ble
http://www.cypress.com/go/cy8ckit-062-ble
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239389
https://www.bluetooth.com/specifications/specs/immediate-alert-service-1-0/

Path Working from scratch
code example as
reference only

Using code example
new to PSoC™ Creator or
Bluetooth® LE

Using code example
familiar with PSoC™

Creator and Bluetooth®

LE

Actions Perform all steps Do Step 1
Read the rest of the steps

Do Step 1, then jump to
Part 2

Note: These instructions assume that you are using PSoC™ Creator 4.4 or higher. The overall development
process is the same for subsequent versions of PSoC™ Creator; but the user interface may change over
time.

Launch PSoC™ Creator and get started.
• Ensure that PSoC™ Creator can find the PDL

Attention: This should be set correctly automatically during installation, but nothing works if this isn’t
set up right. See Figure 13 for help with this step.

- Choose menu that is Tools > Options
- On the Project Management panel, check the path in the PDL v3 (PSoC™ 6 devices) location field
- Ensure that it is correct. If it is not, click Browse and locate the installed directory of the PDL. The

default location is C:\Program Files (x86)\Cypress\PDL\3.0.1

Figure 13 Peripheral Driver Library (PDL) location

Optional: Jump to Part 2. Implement the design
• Create a new PSoC™ Creator project

- Choose File > New > Project, as Figure 14 shows. The Create Project window appears

Figure 14 Create a new PSoC™ Creator project

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 20 002-10781 Rev. *E
2022-03-08

Note: If you are using the code example choose File > Open > Project/Workspace, as Figure 15 shows.
The Open window appears. Point to the location of the Code Example workspace and open the
workspace.

•

Figure 15 Open existing code example workspace
• Select PSoC™ 6 Bluetooth® LE as the target device

Tip: PSoC™ Creator speeds up the development process by automatically setting various project
options for specified development kits or target devices. See Figure 14 for help with this step.

- Select Target device
- From the family drop-down list, select PSoC™ 6
- From the device drop-down menu, list PSoC™ 63
- Click Next. The Select project template panel appears

PSoC™ Creator uses CY8C6347BZI-BLD53 as the default device in the PSoC™ 6 MCU with Bluetooth® LE family.
This device is mounted on the CY8CKIT-062-BLE PSoC™-BLE Connectivity Pioneer Kit.
If you are intending to use custom hardware based on PSoC™ 6-BLE, or a different PSoC™ 6-BLE part number,
this is the place you choose to Launch device selector option in Target device and select the appropriate part
number.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 21 002-10781 Rev. *E
2022-03-08

Figure 16 Selecting target device

• Pick a project template
- Choose empty schematic
- Click Next

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 22 002-10781 Rev. *E
2022-03-08

Figure 17 Pick a project template

• Select target IDE(s)
Note: If you expect to export the code from the project, specify the target IDE. By default, all export

options are disabled. You can modify this setting later if circumstances change.

- Click Next to accept the default options

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 23 002-10781 Rev. *E
2022-03-08

Figure 18 Select target IDEs (all disabled)

• Create the project
Note: In this step, you set the name and location for your workplace, and a name for the project. See

Figure 19 for help with this step. A workspace is a container for one or more projects.

- Set the Workspace name
- Specify the Location of your workspace
- Set a Project name. The project and workspace names can be the same or different
- Click Finish

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 24 002-10781 Rev. *E
2022-03-08

Figure 19 Project naming and location

You have successfully created a new PSoC™ Creator project.

5.5 Part 2. Implement the design
Now that you have a project file, it is time to implement the hardware design using PSoC™ Creator components.
If you are using the code example directly, you already have a complete design. Perform the actions
recommended based on your chosen path through this exercise.

Path Working from scratch
code example as
reference only

Using code example
new to PSoC™ Creator or
Bluetooth® LE

Using code example
familiar with PSoC™

Creator and Bluetooth®

LE

Actions Perform all steps Read and understand all
steps

You can skip this part if
you wish. Jump to Part 3.
Generate source code

Before you implement the design, a quick tour of the PSoC™ Creator interface is in order.
Figure 20 shows the PSoC™ Creator application displaying an empty design schematic.
The project includes a project folder with a base set of files. You view these files in the Workspace Explorer
pane to the left. The project schematic opens by default. This is the TopDesign.cysch file. Double-click the file
name in the explorer pane to open the schematic at any time. In a new project, the schematic is empty. If you
are using the code example, this is the schematic for the Find Me Bluetooth® LE application.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 25 002-10781 Rev. *E
2022-03-08

The Component catalog is on the right side of the window. You can open it with the View > Component
Catalog menu item. You can search for a Component by typing the name of the Component in the Search for…
text box and then pressing the enter key. See Figure 20.

Figure 20 Schematic and component catalog

• Place components in the design
This design uses several components: the Bluetooth® Low Energy component, a digital input pin, three digital
output pins, a UART, a Watchdog Timer, and an Interrupt. In this step, you add them to the design. You
configure them in subsequent steps. Figure 21 shows the result.
• In the Component Catalog, expand the Communications group, drag a Bluetooth® Low Energy

component into the schematic, and drop it. It doesn’t matter where you put a Component. Alternatively,
you can search the Bluetooth® Low Energy Component by typing BLE in the Component Catalog search box

• Also in the Communications group, expand UART and drag a UART (SCB) Component into the design
• Expand the Ports and Pins group, drag a Digital Input Pin into the design
• From the same Ports and Pins group, drag a Digital Output Pin into the design. Repeat this twice, for a

total of three pins
• Expand the System group, drag an Interrupt Component and a MCWDT Component into the design

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 26 002-10781 Rev. *E
2022-03-08

Figure 21 Place components in the design

PSoC™ Creator gives each Component a default name and properties. Default values may or may not be suitable
for any given design. In subsequent steps you modify the name and some of the properties.
• Configure the three LED pins
One pin drives the alert status LED. The other two drive the Bluetooth® LE advertising and disconnection
indicator LEDs. An LED on the Bluetooth® LE pioneer kit is active LOW; that is, the logic high pin-drive state turns
OFF the LED, and the logic low pin-drive state turns it ON.
All three pins are configured identically, except for the name. Repeat these instructions three times, once for
each pin. Figure 22 shows the configuration.
Double-click the component placed on the schematic to open the configuration dialog. Then perform the
following steps.
• Change the name of the Component instance for each pin. The three names are Alert_LED,

Advertising_LED and Disconnect_LED
• For each pin, deselectHW connection. The firmware will drive the pin
• For each pin, set Initial drive state to High (1). Hence, by default the LEDs will be OFF

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 27 002-10781 Rev. *E
2022-03-08

A

B

C

Click to view
Component datasheet

Click to view PDL
Documentation

Figure 22 Configuring an output pin component

Make sure you configure all three pins.

Tip: Each component has an associated datasheet that can be accessed from the configuration
window. The Component datasheet provides more information on the Component configuration,
the application programming interface (API), and the electrical specifications.

Tip: You can open the API reference document of associated PDL driver of a Component by right-clicking
the component and clicking the Open PDL Documentation… link. See Figure 22.

Tip: For a pin, if you enable External terminal you can add external “off-chip” Components to a design.
External Components on the schematic are included for descriptive purposes only; they have no effect
on the generated code. Off-chip Components are optional, but can assist the hardware design team
understanding how the design works. You can also add text boxes to a design with descriptions.
Figure 23 shows how you could enhance the design for the Alert LED. In this case, the off-chip
components were configured with Instance_Name_Visible unchecked. The resistors were configured
with the Value field left blank. The power terminal was configured with the Supply_Name set to
P6_VDD.

Figure 23 An output pin with off-chip components

• Configure the Hibernate wakeup pin
Switch SW2 on the Pioneer kit is connected to one of the Hibernate wakeup pins, P0[4] and when pressed pulls
the port pin LOW. To configure this pin as the Hibernate wakeup switch, it must be configured as resistive pull
up.
Figure 24 shows the configuration. Double-click the component placed on the schematic to open the
configuration dialog, and then do the following:

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 28 002-10781 Rev. *E
2022-03-08

• Change the name of the Component instance to Hibernate_Wakeup_SW
• Deselect HW connection. The firmware application firmware does not drive this pin. However, the pin is

hard-wired to the Hibernate system. In the firmware, wakeup will be configured as active LOW
• Set Drive mode to Resistive Pull Up and Initial drive state to High (1). This will configure the device to

detect the HIGH to LOW transition and wake up the device from Hibernate

Figure 24 Configuring an input pin component

• Configure the UART component
Double-click the component placed on the schematic to open the configuration window. The design uses this
Component to display debug messages in a terminal window at a baud rate of 115200 bps. It is not related to
Bluetooth® LE functionality.
• Change the Name of the Component instance to “UART_DEBUG”
• Click OK
The design uses default values for all other settings.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 29 002-10781 Rev. *E
2022-03-08

Figure 25 Configuring the SCB-based UART component

• Set the general Bluetooth® LE options
Double-click the Bluetooth® Low Energy Component placed on the schematic to open the configuration
window. Set the General properties as shown in Figure 26. Except for the Component name and the stack
operation, this application uses default general properties.
• Change the Name to “BLE”
• Confirm that Complete BLE Protocol is selected
• Change Maximum number of BLE connections to 1. This will configure the BLE stack appropriately
• Confirm that Peripheral is selected as the GAP role. This sets the device to act as a BLE Peripheral device

and respond to Central device requests
• Select Dual core (Controller on CM0+, Host and Profiles on CM4) option for CPU core. This will split the

Bluetooth® LE stack to work on both the cores. The CM0+ core runs the BLE controller portion of the stack
and is responsible for maintaining the BLE connection. The BLE Host runs on the CM4 core and performs
application-level tasks. The main advantage of this dual-CPU setup is that the CM4 core can go into Deep
Sleep low-power mode when there are no Bluetooth® LE-related tasks pending

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 30 002-10781 Rev. *E
2022-03-08

Figure 26 Bluetooth® Low Energy component general configuration

• Specify the Generic Attribute (GATT) settings
In this step, you set the Bluetooth® LE profile as shown in Figure 27.
• Click the GATT Settings tab to display GATT options
• Click the Add Profile drop-down menu
• Select the Find Me > Find Me Target (GATT Server) option. This sets the GAP Peripheral role profile. When

the menu disappears, notice that a new service “Immediate Alert” appears, as shown in Figure 28

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 31 002-10781 Rev. *E
2022-03-08

Figure 27 Bluetooth® Low Energy component immediate alert service added

Figure 28 Bluetooth® Low Energy component immediate alert service added

Note: The code example has a Device Information Service also added in the GATT Settings to identify the
device and read the firmware version. This service is not needed for Immediate Alert to work.

• Specify the Generic Access Profile (GAP) general settings

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 32 002-10781 Rev. *E
2022-03-08

There is a series of panels to cover GAP settings. The left menu provides access to all the panels. See Figure 29.
• Click the GAP Settings tab to display GAP options. The General panel appears by default
• Enter Find Me Target as the Device name
• Set the Appearance to Generic Keyring
All other general settings use default values. This includes that the device uses Silicon generated “Company
assigned” part of device address. This configures the device name and type that appears when a Host device
attempts to discover your device, and then assigns a unique Bluetooth® LE device address to your device.

Figure 29 Bluetooth® Low Energy component general GAP settings

• Specify the GAP advertisement settings
See Figure 30 for help with this step.
• Click the Advertisement settings item in the left menu. The panel appears
• Set Advertising type to Connectable undirected advertising
• Deselect the Slow advertising interval checkbox
Other than that, default values work for this application. It uses limited discovery mode with an advertising
timeout of 30 seconds and a fast advertisement interval of 20 to 30 ms. Fast advertising allows quick discovery
and connection but consumes more power due to increased RF advertisement packets.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 33 002-10781 Rev. *E
2022-03-08

Figure 30 Bluetooth® Low Energy component GAP advertisement settings

• Specify the GAP advertisement packet settings
In this step, you enable the device for the Immediate Alert Service (IAS). See Figure 31.
• Click the Advertisement packet item in the left menu. The panel appears
• Expand the Service UUID item, and select Immediate Alert
This configures the device to notify Bluetooth® Low Energy central devices that the IAS is available. As you add
items, the structure and content of the advertisement packet appears to the right of the configuration panel.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 34 002-10781 Rev. *E
2022-03-08

Figure 31 Bluetooth® Low Energy component GAP advertisement packet settings

• Specify scan response packet settings
In this step, you specify the configuration for the Scan response packet. Figure 32 shows the result. Note that as
you add values, the structure and content of the scan response packet appears to the right of the configuration
panel.
• Click the Scan response packet item in the left menu. The panel appears
• Select Local Name to include that item in the response. The default setting of Complete is OK
• Select TX Power Level to include that item in the packet
• Select Appearance to include that item in the packet

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 35 002-10781 Rev. *E
2022-03-08

Figure 32 Bluetooth® Low Energy component GAP scan response packet

• Specify security configuration settings
In this step, you configure security settings for the device. It uses a configuration that does not require
authentication, encryption, or authorization for data exchange. See Figure 33.
• Click the Security configuration 0 item in the left menu. The panel appears
• Confirm that Security mode is Mode 1 and Security level is No Security. If not, modify the settings
• Set IO capabilities to No Input No Output
• Set Bonding requirement to No Bonding
• Click OK to complete the configuration of the Bluetooth® Low Energy Component Bluetooth® Low Energy

Component

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 36 002-10781 Rev. *E
2022-03-08

Figure 33 Bluetooth® Low Energy component GAP security settings

In this design, all other settings use default values, including all options in the LDCAP Settings, Link Layer
Settings, and Advanced tabs.
See the Component datasheet to learn the significance of each setting.
• Configure the MCWDT Component to trigger an interrupt
In this step, you configure the Multi-Counter Watchdog (MCWDT) Component to trigger an interrupt every 250
ms (4 Hz). The clock source of the MCWDT is the low frequency clock (LFCLK). The LFCLK’s source is the Internal
Low Speed Oscillator (ILO) by default. The design will use this interrupt to blink the Alert LED at 2 Hz when a
MILD alert is received. See Figure 34. Double click the Component placed on the schematic and configure as
below.
• Change the Name to MCWDT
• For Counter0, change the Match value to 7999, Mode to Interrupt. Set the Clear on Match field to Clear

on match
• Click OK to complete the configuration of the MCWDT Component

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 37 002-10781 Rev. *E
2022-03-08

Figure 34 MCWDT_PDL settings

• Configure the interrupt Component to wake up the CM4 CPU in Deep Sleep mode
In this step, you configure the SysInt Component to wake up the CM4 CPU. See Figure 35.
• Change the Name to MCWDT_isr
• Select the interrupt to be Deep Sleep Capable
• Click OK to complete the configuration of the SysInt Component

Figure 35 SysInt_PDL settings

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 38 002-10781 Rev. *E
2022-03-08

As a final step, connect the interrupt output of the MCWDT Component to MCWDT_isr Component input. This
routes the watchdog interrupt to the CPU (the selection of the CM4 CPU for this interrupt will be set in the
system interrupt configuration in a later step). In the schematic, use the wire tool button or press the W key to
start wiring the components.

Figure 36 Connect MCWDT peripheral interrupt to CM4 CPU

• Set the physical pins for each pin component
One task remains to complete the design. You must associate each component with the required physical pins
on the device. The choice of which pin to use is driven by the board design. You can find this information in the
kit schematic. Figure 37 shows the end result of this step.
To set a pin, type either the port number or pin number in the corresponding field, or use the drop-down menu
to pick the port or pin. Typically, the port number is used instead of the pin number since these names are
independent of the specific package being used.
• Open the pin selector
In the Workspace Explorer pane, double-click the Pins item under the Design wide resources. The pin selector
for this device appears.
• Set each pin as shown in Table 1

Table 1 Physical pin assignments for CY8CKIT-062-BLE

Pin component name Port name

UART_DEBUG:rx P5[0]

UART_DEBUG:tx P5[1]

Advertising_LED P1[1]

Alert_LED P11[1]

Disconnect_LED P0[3]

Hibernate_Wakeup_SW P0[4]

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 39 002-10781 Rev. *E
2022-03-08

Figure 37 Pin assignment

• System clock configuration
The design uses default values for the high frequency system clock settings. Although you do not modify high
frequency clocks for this design, you should know how PSoC™ Creator manages them. If you are working with
your own board, you may need to modify these clocks.
In this step, you set the low frequency clock source to be the accurate watch crystal oscillator (WCO) on the
board. This clock is used by the Bluetooth® Low Energy Subsystem (BLESS) for timing purposes.
• In the Workspace Explorer pane, double-click the Clocks item under Design Wide Resources

(CE212736.cydwr). The list of clocks appears
• Click Edit Clock… and the Configure System Clocks dialog appears
• Here you can see the clock tree, and modify the clocks as required. Note that there are tabs for different

types of clocks such as Source Clocks, FLL/PLL, High Frequency Clocks, and Miscellaneous Clocks
• Click the Source Clocks tab
• Enable the BLE ECO by selecting the checkbox in the AltHF BLE ECO block. The parameters should match

the crystal used on the board. For the CY8CKIT-062-BLE kit, the ECO Frequency is 32 MHz, and Accuracy
is ±50 ppm. There are no load caps on the board and hence use the minimum specified Load cap (pF) of
9.900. Ensure that the Startup Time (µs) is 785 µs for a quick startup of the ECO crystal

• Enable the WCO clock by selecting the checkbox in the WCO (32.768 kHz) block
• Click the Miscellaneous Clocks tab
• Select WCO to be the source for LFClk
• Select WCO to be the source for BakClk

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 40 002-10781 Rev. *E
2022-03-08

Figure 38 Clock configuration - source clocks

Figure 39 Clock configuration - miscellaneous clocks

• System interrupt configuration
In this step, you configure the system interrupts. See Figure 40.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 41 002-10781 Rev. *E
2022-03-08

• In the Workspace Explorer pane, double-click the Interrupts item under Design Wide Resources. The list
of interrupts appears

• Confirm that the BLE_bless_isr is enabled for the CM0+ CPU, the priority is set to 1, and vector is set to 3.
This ensures that the Bluetooth® LE controller interrupts are handled by CM0+ at the highest priority, and in
Deep Sleep mode as well

• Enable MCWDT_isr for CM4
• Disable the UART_DEBUG_SCB_IRQ interrupt for both cores
• Deselect the corresponding checkboxes. You can ignore the interrupt related to UART_DEBUG Component

because the design does not use it
The interrupt numbers are generated automatically by PSoC™ Creator when you generate the code in Part 3.
Generate source code.

Figure 40 Interrupt configuration

The next part in the development process is to generate code.

Note: This exercise does not detail how to export your work to a target IDE. However, if you wish to use
a target IDE this is the point in the workflow where you would ensure that the correct target IDE is
selected, before you generate code. See Support for other IDEs.

5.6 Part 3. Generate source code
PSoC™ Creator generates source code based upon the design. The recommended workflow is to generate code
before writing firmware. PSoC™ Creator will automatically create macros, constants, and API calls that you may
then use in your firmware.
This part of the exercise is very simple, and the path is the same for everyone.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 42 002-10781 Rev. *E
2022-03-08

Path Working from scratch
code example as
reference only

Using code example new
to PSoC™ Creator or
Bluetooth® LE

Using code example
familiar with PSoC™

Creator and Bluetooth®

LE

Actions Perform the one step Perform the one step Perform the one step

• Generate the application
Choose Build > Generate application. PSoC™ Creator generates source code based on the design and puts the
files in the Generated_Source folder. See Figure 41. PSoC™ Creator will alert you to errors or problems that may
occur. If you are working from scratch and encounter errors, revisit the configuration steps in Part 2. Implement
the design to ensure you have performed them correctly.

Figure 41 Generate application

Background: PSoC™ 6-BLE is a dual-CPU platform. You can target firmware to run either on CM4 or CM0+. You
set this at the source file level by accessing the file properties. Right-click a source file and select Properties.
Figure 41 shows the Properties dialog window. This code example targets the CM4 core.
By default, the main_cm0p.c file is targeted to CM0+ and the main_cm4.c file is targeted to CM4. You do not need
to modify the properties for any other file. They are already set in the code example.
By convention, files targeted to run on the CM0+ are in the CM0p folder and files targeted to run on CM4 are in
the CM4 folder, but the properties must also be set appropriately – just putting a file in the correct folder does
not cause it to run on a specific core.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 43 002-10781 Rev. *E
2022-03-08

Figure 42 Setting target processor for a source C file

5.7 Part 4. Write the firmware
At this point in the development process you have created a project, implemented a hardware design, and
generated code. In this part, you examine the firmware that implements Bluetooth® LE functionality in the
application.
The firmware must accomplish several tasks to implement a Bluetooth® LE standard profile application,
including:
• Perform system initialization
• Implement a BLE stack event handler
• Implement a BLE service-specific event handler
• Provide the main loop
• Implement low-power performance (optional)
The steps in this part discuss the firmware for the design that you configured in Part 2. Implement the
design. The steps do not examine every single line of code but point out important elements in the code that
implement significant functionality.

Path Working from scratch
code example as
reference only

Using code example
new to PSoC™ Creator or
Bluetooth® LE

Using code example
familiar with PSoC™

Creator and Bluetooth®

LE

Actions Perform all steps Skip step one
Perform all other steps

Skip this part if you wish.
Jump to Part 5. Build
the project, program the
Device

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 44 002-10781 Rev. *E
2022-03-08

The code example has all the required code. If you are working from scratch, in step one you copy the source
files from the code example project. If you are using the code example, those files are already in your project, so
you can skip step one.
• Add files to your project
If you are using the code example, you can skip this step. The code example already has the required source
files.
If you are working from scratch, the required source code files are not in your project.
• Locate the CE212736.cydsn folder, which contains the source files for the code example. The folder is in the

Code Example workspace archive that you downloaded earlier
• Copy these files from the CE212736.cydsn folder to your project’s .cydsn folder. Replace any existing files

- BLEFindMe.h
- debug.h
- LED.h
- BLEFindMe.c
- debug.c
- main_cm0p.c
- main_cm4.c

• Add these files to your project. You can do this by dragging them from the Windows folder onto the
Workspace explorer, and dropping them in the CM4 folder location in the workspace. See Figure 43
- BLEFindMe.h
- debug.h
- LED.h
- BLEFindMe.c
- debug.c

Figure 43 Add files to your project

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 45 002-10781 Rev. *E
2022-03-08

You do not have to add main_cm0p.c or main_cm4.c. The project has these files by default. You just replaced
them in the project folder, so the project will use the newer version you just copied.
• Initialize the system
In the remaining steps, we examine code in the main_cm0p.c and main_cm4.c file. The code snippets
frequently have the debugging print statements removed for clarity. See the actual source file for a complete
understanding of the code.
Figure 44 shows the steps in the process of initializing the system. When the PSoC™ 6-BLE device is reset, the
firmware first performs system initialization, which includes setting up the CPU cores for execution, enabling
global interrupts, and enabling other Components used in the design. The initialization is split across the
CPU cores. The CM0p CPU comes out of reset and attempts to start the Bluetooth® LE controller part. If it
is successful, the CM0p CPU then enables CM4 CPU. The CM4 CPU will start the Bluetooth® LE host part and
register the necessary application side handler functions.

Figure 44 System initialization flowchart – CM4

The code in main_cm0p.c declares a local variable to hold the return value from Bluetooth® LE API calls. The key
task is to enable the Bluetooth® LE controller, and set up the CM4 for the application code to run. In the main

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 46 002-10781 Rev. *E
2022-03-08

loop, the CM0p CPU processes the Bluetooth® LE events pending on the controller. In case of no pending events,
the CM0p enters Deep Sleep mode.

int main(void)
{
 cy_en_ble_api_result_t apiResult;
 __enable_irq(); /* Enable global interrupts. */
 /* Unfreeze IO if device is waking up from hibernate */
 if(Cy_SysPm_GetIoFreezeStatus())
 {
 Cy_SysPm_IoUnfreeze();
 }
 /* Start the Controller portion of BLE. Host runs on the CM4 */
 apiResult = Cy_BLE_Start(NULL);
 if(apiResult == CY_BLE_SUCCESS)
 {
 /* Enable CM4 only if BLE Controller started successfully.
 * CY_CORTEX_M4_APPL_ADDR must be updated if CM4 memory layout
 * is changed. */
 Cy_SysEnableCM4(CY_CORTEX_M4_APPL_ADDR);
 }
 else
 {
 /* Halt CPU */
 CY_ASSERT(0u != 0u);
 }
 for(;;)
 {
 /* Place your application code here. */
 /* Put CM0p to deep sleep. */
 Cy_SysPm_DeepSleep(CY_SYSPM_WAIT_FOR_INTERRUPT);

 /* Cy_Ble_ProcessEvents() allows BLE stack to process pending events */
 /* The BLE Controller automatically wakes up host if required */
 Cy_BLE_ProcessEvents();
}

The code in main_cm4.c initializes the key Components to be used by the CM4 and continuously runs a
Bluetooth® LE application process. The BleFindMe_Init() routine initializes and starts all the Components,
including setting up the CM4 interrupt. It performs the key task of enabling the Bluetooth® LE host.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 47 002-10781 Rev. *E
2022-03-08

In the application process, the CM4 CPU processes the Bluetooth® LE events pending on the host. If there are no
events pending, the CM4 enters Deep Sleep low-power mode.

int main(void)
{
 __enable_irq(); /* Enable global interrupts. */

 /* Initialize BLE */
 BleFindMe_Init();

 for(;;)
 {
 BleFindMe_Process();
 }
}

• Start the Bluetooth® Low Energy component and register the event handlers
After the CPUs are initialized, the firmware initializes the Bluetooth® Low Energy component, which sets up
the complete Bluetooth® LE subsystem. The BleFindMe_Init() subroutine handles the work. To focus on the key
tasks, debug print statements have been removed. Examine the source file to see the full code.
As a part of the Bluetooth® Low Energy Bluetooth® Low Energy component initialization, you must pass the
event handler function, which will be called by the Bluetooth® LE stack to notify of pending events. If the
Bluetooth® Low Energy component initializes successfully, the firmware registers a second event handler for
events specific to the IAS.
The code uses PDL API function calls to configure the application. First it starts the Bluetooth® Low Energy
Component. The parameter is the address of the stack event handler function.
The code also gets the stack version. In case the debug port is enabled, the version is printed in the serial
communication window.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 48 002-10781 Rev. *E
2022-03-08

It then registers the IAS event handler to handle Immediate Alert Service related events. Finally, it configures
and enables the MCWDT to trigger interrupts once every 250 ms.

void BleFindMe_Init(void)
{
 cy_en_ble_api_result_t apiResult;
 cy_stc_ble_stack_lib_version_t stackVersion;

 /* Configure switch SW2 as hibernate wake up source */
 Cy_SysPm_SetHibWakeupSource(CY_SYSPM_HIBPIN1_LOW);

 /* Start Bluetooth® Low Energy Component and register generic event handler */
 apiResult = Cy_BLE_Start(StackEventHandler);
 apiResult = Cy_BLE_GetStackLibraryVersion(&stackVersion);

 /* Register IAS event handler */
 Cy_BLE_IAS_RegisterAttrCallback(IasEventHandler);

 /* Enable 4 Hz free-running MCWDT counter 0*/
 /* MCWDT_config structure is defined by the MCWDT_PDL component based
 on parameters entered in the customizer. */
 Cy_MCWDT_Init(MCWDT_HW, &MCWDT_config);
 Cy_MCWDT_Enable(MCWDT_HW, CY_MCWDT_CTR0, 93 /* 2 LFCLK cycles */);

 /* Unmask the MCWDT counter 0 peripheral interrupt */
 Cy_MCWDT_SetInterruptMask(MCWDT_HW, CY_MCWDT_CTR0);

 /* Configure ISR connected to MCWDT interrupt signal*/
 /* MCWDT_isr_cfg structure is defined by the SYSINT_PDL component based
 on parameters entered in the customizer. */
 Cy_SysInt_Init(&MCWDT_isr_cfg, &MCWDT_Interrupt_Handler);

 /* Clear CM4 NVIC pending interrupt for MCWDT */
 NVIC_ClearPendingIRQ(MCWDT_isr_cfg.intrSrc);

 /* Enable CM4 NVIC MCWDT interrupt */
 NVIC_EnableIRQ(MCWDT_isr_cfg.intrSrc);
}

• Implement the stack event handler
The Bluetooth® LE stack within the Bluetooth® Low component generates events. These events provide status
and data to the application firmware through the Bluetooth® LE stack event handler. Figure 45 shows a
simplified flowchart representing certain events.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 49 002-10781 Rev. *E
2022-03-08

Figure 45 BLE stack event handler flowchart

The event handler must handle a few basic events from the stack. For the Find Me Target application in this
code example, the BLE stack event handler must process the events described in Table 2. The actual code
recognizes and responds to additional events, but they are not mandatory for this application.

Table 2 Bluetooth® LE stack events

Bluetooth® LE stack event name Event description Event handler action

CY_BLE_EVT_STACK_ON Bluetooth® LE stack initialization is
completed successfully

Start advertisement and reflect the
advertisement state on the LED

CY_BLE_EVT_GAP_DEVICE_DISCON
NECTED

Bluetooth® LE link with the peer
device is disconnected

Restart advertisement and reflect
the advertisement state on the LED

CY_BLE_EVT_GAP_DEVICE_CONNEC
TED

Bluetooth® LE link with the peer
device is established

Update the BLE link state on the
LED

CY_BLE_EVT_GAPP_ADVERTISEMEN
T_START_STOP

Bluetooth® LE stack advertisement
start/stop event

Shutdown the Bluetooth® LE stack

CY_BLE_EVT_HARDWARE_ERROR Bluetooth® LE hardware error Update the LED status to reflect a
hardware error and halt the CPU

CY_BLE_EVT_STACK_SHUTDOWN_C
OMPLETE

BLE stack has been shut down Configure the device in Hibernate
mode and wait for event on
wakeup pin

The code snippets show two examples of how the event handler responds to an identified event. See the actual
source code for a complete understanding.
In this snippet, the handler responds to the “advertisement start/stop” event. The code toggles the LEDs
appropriately. If advertisement has started, the advertisement LED turns on. The disconnect LED turns off,

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 50 002-10781 Rev. *E
2022-03-08

because the device started advertisement and is ready for a connection. If advertising is stopped, the code sets
the LEDs appropriately, and sets a flag to enter Hibernate mode.

/* This event indicates peripheral device has started/stopped advertising */
case CY_BLE_EVT_GAPP_ADVERTISEMENT_START_STOP:
 DEBUG_PRINTF("CY_BLE_EVT_GAPP_ADVERTISEMENT_START_STOP: ");
 if(Cy_BLE_GetAdvertisementState() == CY_BLE_ADV_STATE_ADVERTISING)
 {
 DEBUG_PRINTF("Advertisement started \r\n");
 Cy_GPIO_Write(Advertising_LED_0_PORT, Advertising_LED_0_NUM, LED_ON);
 Cy_GPIO_Write(Disconnect_LED_0_PORT, Disconnect_LED_0_NUM, LED_OFF);
 }
 else if(Cy_BLE_GetAdvertisementState() == CY_BLE_ADV_STATE_STOPPED)
 {
 DEBUG_PRINTF("Advertisement stopped \r\n");
 Cy_GPIO_Write(Advertising_LED_0_PORT, Advertising_LED_0_NUM, LED_OFF);
 Cy_GPIO_Write(Disconnect_LED_0_PORT, Disconnect_LED_0_NUM, LED_ON);

 /* Advertisement event timed out before connection, shutdown BLE
 * stack to enter hibernate mode and wait for device reset event
 * or SW2 press to wake up the device */
 Cy_BLE_Stop();
 }
break;

In this snippet, the handler responds to the “disconnected” event. It sets the LEDs correctly, and sets the
Hibernate flag.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 51 002-10781 Rev. *E
2022-03-08

These snippets give you a sense for how the event handler responds to events. Examine the actual function to
see how each event is handled.

/* This event is generated when disconnected from remote device or
failed to establish connection. */

case CY_BLE_EVT_GAP_DEVICE_DISCONNECTED:
 if(Cy_BLE_GetConnectionState(appConnHandle) == CY_BLE_CONN_STATE_DISCONNECTED)
 {
 DEBUG_PRINTF("CY_BLE_EVT_GAP_DEVICE_DISCONNECTED %d\r\n", CY_BLE_CONN_STATE_DISCONNECTED);
 alertLevel = CY_BLE_NO_ALERT;
 Cy_GPIO_Write(Advertising_LED_0_PORT, Advertising_LED_0_NUM, LED_OFF);
 Cy_GPIO_Write(Disconnect_LED_0_PORT, Disconnect_LED_0_NUM, LED_ON);

 /* Enter into discoverable mode so that remote device can search it */
 apiResult = Cy_BLE_GAPP_StartAdvertisement(CY_BLE_ADVERTISING_FAST,
CY_BLE_PERIPHERAL_CONFIGURATION_0_INDEX);
 if(apiResult != CY_BLE_SUCCESS)
 {
 DEBUG_PRINTF("Start Advertisement API Error: %d \r\n", apiResult);
 ShowError();

 /* Execution does not continue beyond this point */
 }
 else
 {
 DEBUG_PRINTF("Start Advertisement API Success: %d \r\n", apiResult);
 Cy_GPIO_Write(Advertising_LED_0_PORT, Advertising_LED_0_NUM, LED_ON);
 Cy_GPIO_Write(Disconnect_LED_0_PORT, Disconnect_LED_0_NUM, LED_OFF);
 }
 }
break;

• Implement the service-specific event handler
The Bluetooth® Low Energy Component also generates events corresponding to each of the services supported
by the design. For the Find Me Target application, the Bluetooth® Low Energy Component generates IAS events
that let the application know that the Alert Level characteristic has been updated with a new value. The event
handler gets the new value and stores it in the variable alertLevel. The main loop toggles the alert LED based on
the current alert level.
Figure 46 shows the IAS event handler flowchart.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 52 002-10781 Rev. *E
2022-03-08

IAS
Event

Alert Level
updated?

Yes

No

Return from IAS Event
Handler

IA
S

Ev
en

t H
an

dl
er

Store updated Alert
Level Characteristic

Value

Figure 46 Bluetooth® LE IAS event handler flowchart

The code snippet shows how the firmware accomplishes this task.

void IasEventHandler(uint32 event, void *eventParam)
{

 /* Alert Level Characteristic write event */
 if(event == CY_BLE_EVT_IASS_WRITE_CHAR_CMD)
 {
 /* Read the updated Alert Level value from the GATT database */
 Cy_BLE_IASS_GetCharacteristicValue(CY_BLE_IAS_ALERT_LEVEL,
 sizeof(alertLevel), &alertLevel);
 }

 /* To remove unused parameter warning */
 eventParam = eventParam;
}

• Process events as they occur (main loop)
The main loop simply calls BleFindMe_Process(). Figure 47 shows the BleFindMe_Process() flowchart.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 53 002-10781 Rev. *E
2022-03-08

Figure 47 Firmware main loop flowchart

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 54 002-10781 Rev. *E
2022-03-08

If there are no pending Bluetooth® LE host events and there is no active interaction, the application goes into
low-power mode. It then tells the Bluetooth® LE to process events, and updates the LEDs based on the alert
level.

 /* The call to EnterLowPowerMode also causes the device to enter hibernate mode if the
BLE is disconnected. */

 EnterLowPowerMode();
 /* Cy_Ble_ProcessEvents() allows BLE stack to process pending events */
 Cy_BLE_ProcessEvents();
 /* Update Alert Level value on the Blue LED */
 switch(alertLevel)
 {
 case CY_BLE_NO_ALERT:
 /* Disable MCWDT interrupt at NVIC */
 NVIC_DisableIRQ(MCWDT_isr_cfg.intrSrc);
 /* Turn the Blue LED OFF in case of no alert */
 Cy_GPIO_Write(Alert_LED_0, LED_OFF);
 break;

/* Use the MCWDT to blink the Blue LED in case of mild alert */
case CY_BLE_MILD_ALERT:
 /* Enable MCWDT interrupt at NVIC */
 NVIC_EnableIRQ(MCWDT_isr_cfg.intrSrc);
 /* The MCWDT interrupt handler will take care of LED blinking */
 break;
case CY_BLE_HIGH_ALERT:
 /* Disable MCWDT interrupt at NVIC */
 NVIC_DisableIRQ(MCWDT_isr_cfg.intrSrc);
 /* Turn the Blue LED ON in case of high alert */
 Cy_GPIO_Write(Alert_LED_0, LED_ON);
 break;
/* Do nothing in all other cases */
default:
 break;
}

This completes the summary of how the firmware works in the code example. Feel free to explore the source
files for a deeper understanding.

5.8 Part 5. Build the project, program the Device
This section shows how to program the PSoC™ 6-BLE device. If you are using a development kit with a built-in
programmer (the CY8CKIT-062-BLE PSoC™ 6-BLE Pioneer Kit, for example), connect the board to your computer
using the USB cable. If you are developing on your own hardware, you may need a hardware programmer/
debugger; for example, a CY8CKIT-002 MiniProg3.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 55 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/cy8ckit-062-ble
http://www.cypress.com/?rID=38154&source=an79953

Path Working from scratch
code example as
reference only

Using code example
new to PSoC™ Creator or
Bluetooth® LE

Using code example
familiar with PSoC™

Creator and Bluetooth®

LE

Actions Perform all steps

If you are working from scratch and encounter errors, revisit prior steps to ensure that you accomplished all the
required tasks. You can work to resolve errors or switch to the code example for these final steps.

Note: CY8CKIT-062-BLE kit ships with Kitprog2. Before programming the kit, ensure that the board is
updated with latest Kitprog3 firmware. Refer Debugging section on how to update the Kitprog
firmware.

• Select the debug target
PSoC™ Creator can debug one core at a time.
• In PSoC™ Creator, choose Debug > Select Debug Target, as Figure 48 shows

Figure 48 Selecting debug target

• Connect to the board
In the Select Debug Target dialog box, select the CM4 target, then click OK or Connect, as Figure 49 shows.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 56 002-10781 Rev. *E
2022-03-08

Figure 49 Connecting to a device

Tip: For programming the board you can pick either target. The cores share the same memory space.
Programming either core programs both cores. However, if you are debugging this choice matters.
The debugger will see only the core you connect to. These instructions do not use the debugger.

• Program the board
Choose Debug > Program to program the device with the project, as Figure 50 shows.

Figure 50 Programming the device

You can view the programming status in the lower left corner of the window PSoC™ Creator window, as Figure 51
shows.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 57 002-10781 Rev. *E
2022-03-08

Figure 51 Programming status

In a dual core application, the linker files put each executable at the correct location in memory. Execution
begins on the CM0+ core, which enables the CM4 core.
When programming is complete, the application runs. The LED turns green, indicating that the target is
advertising. After the advertising timeout occurs it turns red, indicating that it is disconnected.

Tip: The Debug > Debug command also programs the board. If any code needs to be generated or rebuilt,
that happens automatically when you issue a Program or Debug command. You can also debug
without programming the board. However, these instructions do not use the debugger.

Note: The KitProg2 firmware on the kit might require an update. Please refer to the kit user guide for
step-by-step instructions on updating the firmware.

5.9 Part 6. Test your design
This section describes how to test your Bluetooth® LE design using either the Appendix D.3 or the Appendix D.2.
The setup for testing your design using the Bluetooth® LE Pioneer Kit is shown in Figure 10.

Path Working from scratch
code example as
reference only

Using code example
new to PSoC™ Creator or
Bluetooth® LE

Using code example
familiar with PSoC™

Creator and Bluetooth®

LE

Actions Perform either step 1 or step 2

• Test using the CySmart Mobile App
- Turn on Bluetooth® on your iOS or Android device
- Launch the CySmart app
- Press the reset switch on the Bluetooth® LE Pioneer Kit to start Bluetooth® LE advertisements from your

design. The green LED must be on for the CySmart app to see the device
- Pull down the CySmart app home screen to start scanning for BLE Peripherals. The Find Me target

appears as a Bluetooth® LE device in the CySmart app home screen. Tap to establish a Bluetooth® LE
connection. If the phone does not find the target, press the reset button again, or try the CySmart Host
Emulation tool (step 2)

- Select the “Find Me” Profile from the carousel view
- Select an Alert Level value on the Find Me Profile screen and watch the state of the blue LED on your

device change per your selection
Figure 52 shows this process using the iOS app. Figure 53 shows the process using the Android app.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 58 002-10781 Rev. *E
2022-03-08

Figure 52 Testing with CySmart iOS App

Figure 53 Testing with CySmart Android App

• Test using the CySmart Host Emulation Tool
As an alternative to the CySmart mobile app, you can use the CySmart Host Emulation Tool to establish
a Bluetooth® LE connection with your design and perform read or write operations on Bluetooth® LE
characteristics.
• If not already installed, install the CY Smart Host Emulation Tool
Right-click the Bluetooth® Low Energy Component symbol on the Top Schematic and select Download
CySmart as shown in Figure 54. Follow the installer directions to install the tool.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 59 002-10781 Rev. *E
2022-03-08

Figure 54 Download CySmart

• Connect the Bluetooth® LE dongle to your Windows personal computer. Wait for the driver installation to be
completed

• Launch the CySmart Host Emulation Tool
The tool automatically detects the Bluetooth® LE dongle. Click Refresh if the Bluetooth® LE dongle does not
appear in the Select BLE Dongle Target pop-up window. Click Connect, as shown in Figure 55.

Figure 55 CySmart Bluetooth® LE dongle selection

Note: If the dongle firmware is outdated, you will be alerted. You must upgrade the firmware before you can
complete this step. Follow the instructions in the window to update the dongle firmware.

• Click Configure Master Settings and then click Restore Defaults, as shown in Figure 56. Then, click OK

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 60 002-10781 Rev. *E
2022-03-08

Figure 56 CySmart master settings configuration

• Press the reset switch on the Bluetooth® LE pioneer kit to start BLE advertisements from your design. The
LED turns green to indicate you are advertising

• On the CySmart Host Emulation Tool, click Start Scan. Your device name (configured as Find Me Target)
should appear in the Discovered devices list, as shown in Figure 57

Note: If the scan process times out without finding the target, the LED turns red. Click the reset button again
to resume advertising.

Figure 57 CySmart device discovery

• Select Find Me Target and click Connect to establish a Bluetooth® LE connection between the CySmart
Host Emulation Tool and your device, as shown in Figure 58

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 61 002-10781 Rev. *E
2022-03-08

Figure 58 CySmart device connection

• Once connected, switch to the Find Me Target device tab and discover all the attributes on your design
from the CySmart Host Emulation Tool, as shown in Figure 59

Figure 59 CySmart attribute discovery

• Scroll down the Attributes window and locate the Immediate Alert Service fields. Write a value of 0, 1, or 2
to the Alert Level characteristic under the Immediate Alert Service, as Figure 60 shows. Observe the state
of the LED on your device change per your Alert level characteristic configuration

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 62 002-10781 Rev. *E
2022-03-08

Figure 60 Testing with CySmart Host Emulation Tool

• When you are finished exploring, click the Disconnect button in the CySmart application. The LED turns red
to indicate you are disconnected

You can repeat this process by pressing the reset button on the board to resume advertising.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
5 My first PSoC™ 6 MCU design with Bluetooth® LE

Application note 63 002-10781 Rev. *E
2022-03-08

6 Summary
This application note explored the PSoC™ 6-BLE device architecture and the associated development tools.
PSoC™ 6-BLE is a truly programmable embedded system-on-chip, integrating low-power Bluetooth® LE radio,
configurable analog and digital peripheral functions, memory, and a dual-CPU system on a single chip. The
integrated features and low-power modes make PSoC™ 6-BLE an ideal choice for battery-operated wearable,
health, and fitness Bluetooth® LE applications.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
6 Summary

Application note 64 002-10781 Rev. *E
2022-03-08

7 Related application notes and code examples
For a complete and updated list of PSoC™ 6 MCU code examples, please visit our code examples webpage. For
more PSoC™ 6 MCU related documents, visit our PSoC™ 6 MCU product webpage.
Table 3 lists the system-level and general application notes that are recommended for the next steps in learning
about PSoC™ 6-BLE and PSoC™ Creator.

Table 3 General and system-level application notes, code examples

Document Document name

AN221774 Getting Started with PSoC™ 6 MCU on PSoC™ Creator

CE221773 PSoC™ 6 MCU Hello World Example

AN218241 PSoC™ 6 MCU Hardware Design Considerations

AN219434 PSoC™ 6 MCU Importing Generated Code into an IDE

AN219528 PSoC™ 6 MCU Low-Power Modes and Power Reduction
Techniques

Table 4 lists the application notes and code examples (CE) for specific peripherals and applications of the
device.

Table 4 Documents related to PSoC™ 6-BLE features

Document Document name

Programmable digital

Bluetooth® smart

AN91162 Creating a BLE Custom Profile

AN91445 Antenna Design and RF Layout Guidelines

AN92584 Designing for Low Power and Estimating Battery Life for BLE
applications

CE218463 Bluetooth® Low Energy (BLE) Alert Notification Client/Server

CE218464 Bluetooth® Low Energy (BLE) Phone Alert Client/Server

System resources, CPU, and interrupts

AN215656 PSoC™ 6 MCU Dual-CPU System Design

AN217666 PSoC™ 6 MCU Interrupts

CE216795 PSoC™ 6 MCU Dual-CPU Basics

CE216825 PSoC™ 6 MCU Real-Time Clock Basics

CE218129 PSoC™ 6 MCU Wake up from Hibernate Using Low-Power
Comparator

CE218541 PSoC™ 6 MCU Fault-Handling Basics

CE218542 PSoC™ 6 Custom Tick Timer Using RTC Alarm Interrupt

CE218552 PSoC™ 6 MCU UART to Memory Buffer Using DMA

CE218964 PSoC™ 6 MCU RTC Daily Alarm

CE219339 PSoC™ 6 MCU MCWDT and RTC Interrupts (Dual Core)
(table continues...)

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
7 Related application notes and code examples

Application note 65 002-10781 Rev. *E
2022-03-08

https://www.infineon.com/cms/en/design-support/software/code-examples/
http://www.cypress.com/psoc6
http://www.cypress.com/an221774
http://www.cypress.com/ce221773
http://www.cypress.com/an218241
http://www.cypress.com/an219434
http://www.cypress.com/an219528
http://www.cypress.com/documentation/application-notes/an91162-creating-ble-custom-profile
http://www.cypress.com/documentation/application-notes/an91445-antenna-design-and-rf-layout-guidelines
http://www.cypress.com/documentation/application-notes/an92584-designing-low-power-and-estimating-battery-life-ble?source=search&keywords=AN92584
http://www.cypress.com/ce218463
http://www.cypress.com/ce218464
http://www.cypress.com/an215656
http://www.cypress.com/an217666
http://www.cypress.com/ce216795
http://www.cypress.com/ce216825
http://www.cypress.com/ce218129
http://www.cypress.com/ce218541
http://www.cypress.com/ce218542
http://www.cypress.com/ce218552
http://www.cypress.com/ce218964
http://www.cypress.com/ce219339

Table 4 (continued) Documents related to PSoC™ 6-BLE features

Document Document name

CE219521 PSoC™ 6 MCU GPIO Interrupt

CE219881 PSoC™ 6 MCU Switching Power Modes

CE220060 PSoC™ 6 MCU Watchdog Timer

CE220061 PSoC™ 6 MCU Multi-Counter Watchdog Interrupts

CE220120 PSoC™ 6 MCU Blocking Mode Flash Write

CE220169 PSoC™ 6 MCU Periodic Interrupt Using TCPWM

GPIO

CE219490 PSoC™ 6 Breathing LED Using SMART IO

CE219506 PSoC™ 6 Clock Buffer Using SMART IO

CE220263 PSoC™ 6 MCU GPIO Pins Example

CAPSENSE™

AN92239 Proximity Sensing with CAPSENSE™

AN85951 PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ Design Guide

SMIF

Bootloader

AN213924 MCU Bootloader Software Development Kit (SDK) Guide

CE213903 PSoC™ 6 MCU Basic Bootloaders

Communications

CE220541 PSoC™ 6 MCU SCB EzI2C

Segment LCD

Audio

CE218636 PSoC™ 6 MCU Inter-IC Sound (I2S) Example

CE219431 PSoC™ 6 MCU PDM-to-PCM Example

RTOS

CE217911 PSoC™ 6 FreeRTOS™ Example Project

Security

CE220465 PSoC™ 6 MCU Cryptography – AES Demonstration

CE220511 PSoC™ 6 MCU Cryptography – SHA Demonstration

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
7 Related application notes and code examples

Application note 66 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/ce219521
http://www.cypress.com/ce219881
http://www.cypress.com/ce220060
http://www.cypress.com/ce220061
http://www.cypress.com/ce220120
http://www.cypress.com/ce220169
http://www.cypress.com/ce219490
http://www.cypress.com/ce219506
http://www.cypress.com/ce220263
http://www.cypress.com/documentation/application-notes/an92239-proximity-sensing-capsense
http://www.cypress.com/an85951
http://www.cypress.com/an213924
http://www.cypress.com/ce213903
http://www.cypress.com/ce220541
http://www.cypress.com/ce218636
http://www.cypress.com/ce219431
http://www.cypress.com/ce217911
http://www.cypress.com/ce220465
http://www.cypress.com/ce220511

A Appendix A. Glossary
This section lists the most commonly used terms that you might encounter while working with PSoC™ family of
devices.
Component Customizer: Simple GUI in PSoC™ Creator that is embedded in each Component. It is used to
customize the Component parameters and is accessed by right-clicking a Component.
Components: Components are used to integrate multiple ICs and system interfaces into one PSoC™ Component
that is inherently connected to the MCU via the main system bus. For example, the Bluetooth® Low Energy
component creates Bluetooth® Smart products in minutes. Similarly, you can use the Programmable Analog
components for sensors.
MiniProg3: Programming hardware for development that is used to program PSoC™ devices on your custom
board or PSoC™ development kits that do not support a built-in programmer.
PSoC™: A programmable, embedded design platform that includes one or more CPUs, such as the 32-bit CM4,
with both analog and digital programmable blocks. It accelerates embedded system design with reliable,
easy-to-use solutions, such as touch sensing, and enables low-power designs.
PSoC™ Creator: PSoC™ 3, PSoC™ 4, PSoC™ 5LP, and PSoC™ 6-BLE IDE software that installs on your PC and allows
concurrent hardware and firmware design of PSoC™ systems, or hardware design followed by export to other
popular IDEs.
Peripheral Driver Library: The Peripheral Driver Library (PDL) simplifies software development for the PSoC™

6 MCU architecture. The PDL reduces the need to understand register usage and bit structures, thus easing
software development for the extensive set of peripherals available.
PSoC™ Programmer: A flexible, integrated programming application for programming PSoC™ devices. PSoC™

Programmer is integrated with PSoC™ Creator to program PSoC™ 3, PSoC™ 4, PRoC, PSoC™ 5LP, and PSoC™ 6 MCU
designs.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
A Appendix A. Glossary

Application note 67 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/documentation/development-kitsboards/cy8ckit-002-psoc-miniprog3-program-and-debug-kit
http://www.cypress.com/go/psoc
http://www.cypress.com/go/creator
http://www.cypress.com/documentation/software-and-drivers/peripheral-driver-library-pdl
http://www.cypress.com/go/programmer

B Appendix B. Bluetooth® LE protocol

B.1 Overview
BLE, also known as Bluetooth® Smart, was introduced by the Bluetooth® SIG as a low-power wireless standard
operating in the 2.4-GHz ISM band. Figure 61 shows the BLE protocol stack.

Physical Layer (PHY)

Link Layer (LL)

Host Control Interface (HCI)

Logical Link Control and Adaption Protocol (L2CAP)

Attribute Protocol (ATT) Security Manager (SM)

Generic Attribute Profile (GATT)

Generic Access Profile (GAP)

H
ea

rt
R

at
e

Pr
of

ile

Bl
oo

d
Pr

es
su

re
 P

ro
fil

e

Fi
nd

 M
e

Pr
of

ile

G
lu

co
se

 P
ro

fil
e

Controller

Host

Applications

Figure 61 Bluetooth® LE architecture

The BLE stack can be subdivided into three groups:
• Controller: A physical device that encodes the packet and transmits it as radio signals. On reception, the

controller decodes the radio signals and reconstructs the packet
• Host: A software stack consisting of various protocols and Profiles (Security Manager, Attribute Protocol,

and so on) that manages how two or more devices communicate with one another
• Application: A use case that uses the software stack and the controller to implement a particular

functionality
The following sections provide an overview of the multiple layers of the Bluetooth® LE stack, using the standard
Heart Rate and Battery Service as examples. For a detailed Bluetooth® LE architecture description, see the
Bluetooth® Core Specification.

B.2 Physical Layer (PHY)
The physical layer transmits or receives digital data at 1 Mbps using Gaussian frequency-shift keying (GFSK)
modulation in the 2.4-GHz ISM band. The Bluetooth® LE physical layer divides the ISM band into 40 RF channels
with a channel spacing of 2 MHz, 37 of which are data channels and 3 are advertisement channels.

B.3 Link Layer (LL)
The link layer implements key procedures to establish a reliable physical link (using an acknowledgement and
flow-control-based architecture) and features that help make the Bluetooth® LE protocol robust and low-power.
Some link layer functions include:

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 68 002-10781 Rev. *E
2022-03-08

https://www.bluetooth.com/specifications/specs/core-specification/

• Advertising, scanning, creating, and maintaining connections to establish a physical link
• 24-bit CRC and AES-128-bit encryption for robust and secure data exchange
• Establishing fast connections and low-duty-cycle advertising for low-power operation
• Adaptive Frequency Hopping (AFH), which changes the communication channel used for packet

transmission so that the interference from other devices is reduced
At the link layer, two roles are defined:
• Master: A smartphone is an example that configures the link layer in the master configuration
• Slave: A heart-rate monitor device is an example that configures the link layer in the slave configuration
PSoC™ 6-BLE devices can operate in either configuration.
The link-layer slave is the one that advertises its presence to another link-layer master. A link-layer master
receives the advertisement packets and can choose to connect to the slave based on the request from an
application (see Figure 62). In this example implementation of a heart-rate monitor application, a heart-rate
monitor device acts as the slave and sends the data to a smartphone, which acts as the master. A smartphone
app then can display the reading on the smartphone.
PSoC™ 6-BLE devices implement the time-critical and processor-intensive parts of the link layer such as
advertising, CRC, and AES encryption in hardware. Link-layer control operations such as entering the
advertisement state and starting encryption are implemented in firmware.
Figure 62 shows the Bluetooth® LE link-layer packet structure and sizes of the individual fields in the link-layer
packet. The link-layer packet carries all upper layer data in its payload field. It has a 4-byte access address that
is used to uniquely identify communications on a physical link, and ignore packets from a nearby Bluetooth® LE
device operating in the same RF channel. 24-bit CRC provides data robustness.

Scan, establish &
manage the link

Advertise
capabilities

Link
Master

Link
Slave

Smartphone Heart Rate Monitor

Preamble Access Address Protocol Data Unit (PDU) CRC
(x24+x10+x9+x6+x4+x3+x1+x0)

1 byte 4 bytes
2 to 33 bytes (Bluetooth 4.1 or earlier) or

2 to 257 bytes (Bluetooth 4.2 or later) 3 bytes

Example

FormatLink
Layer
Packet

Header
(1B)

Payload
Length (1B) Payload

0x55 Random Number
(0x8E89BED0)

Protocol Data Unit (PDU) CRC for PDU data
0x60 0x1A Higher Layer Protocol Data Packet

Figure 62 Bluetooth® LE link layer protocol

B.4 Host Control Interface (HCI)
The HCI is the standard-defined interface between the host and the controller. It allows the host and the
controller to exchange information such as commands, data, and events over different physical transports such
as USB or UART. The HCI requires a physical transport only when the controller and the host are different
devices.
In PSoC™ 6-BLE devices, the HCI is just a firmware protocol layer that passes the messages and events between
the controller and the host.

B.5 Logical Link Control and Adaptation protocol (L2CAP)
L2CAP provides protocol multiplexing, segmentation, and reassembly services to upper-layer protocols.
Segmentation breaks the packet received from the upper layer into smaller packets that the link layer can
transmit, while reassembly combines the smaller packets received from the link layer into a meaningful packet.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 69 002-10781 Rev. *E
2022-03-08

The L2CAP layer supports three protocol channel IDs for Appendix B.7, and L2CAP control, as shown in Figure
63. Bluetooth 4.2 allows direct data channels through the L2CAP connection-oriented channels on top of these
protocol channels.
The L2CAP and the layers above it are implemented in firmware in PSoC™ 6-BLE.

- Connection Timing
Update

- Command Reject etc.

- Read Attribute Request
- Read Attribute Response

etc.

L2CAP Control

ATTRIBUTE PROTOCOL (ATT)

L2CAP
L2CAP

- Encryption Information

- Security Request etc. SECURITY MANAGER (SM)

Preamble Access Address Protocol Data Unit (PDU) CRC
(x24+x10+x9+x6+x4+x3+x1+x0)Header

(1B)
Payload
Length (1B) Payload

Connection Oriented

L2CAP Channel CommandAPPLICATION

Link Layer

Physical Layer

ATT
Commands

SM Commands

Application Data and Commands

Figure 63 Bluetooth® LE L2CAP layer

B.6 Security manager (SM)
The SM layer defines the methods used for pairing, encryption, and key distribution.
• Pairing is the process to enable security features. In this process, two devices are authenticated, the link is

encrypted, and then the encryption keys are exchanged. This enables the secure exchange of data over the
Bluetooth® LE interface without being snooped on by a silent listener on the RF channel

• Bonding is the process in which the keys and the identity information exchanged during the pairing
process are saved. After devices are bonded, they do not have to go through the pairing process again
when reconnected

Bluetooth® LE uses 128-bit AES for data encryption.

B.7 Attribute protocol (ATT)
There are two GATT roles in BLE that you should know to understand the ATT and GATT layers:
• GATT Server: A GATT Server contains the data or information. It receives requests from a GATT Client and

responds with data. For example, a heart-rate monitor GATT Server contains heart-rate information; a BLE
HID keyboard GATT Server contains user key press information

• GATT Client: A GATT Client requests and/or receives data from a GATT Server. For example, a smartphone
is a GATT Client that receives heart-rate information from the heart-rate GATT Server; a laptop is a GATT
Client that receives key-press information from a Bluetooth® LE keyboard

ATT forms the basis of Bluetooth® LE communication. This protocol enables the GATT Client to find and access
data or attributes on the GATT Server. For more details about the GATT Client and Server architecture, see
Appendix B.8.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 70 002-10781 Rev. *E
2022-03-08

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

An attribute is the fundamental data container in the ATT/GATT layer, which consists of the following:
• Attribute handle: The 16-bit address used to address and access an attribute
• Attribute type: This specifies the type of data stored in an attribute. It is represented by a 16-bit UUID

defined by the Bluetooth® SIG
For example, the 16-bit UUID of the Heart-Rate Service is 0x180D; the UUID for the Device Name Attribute is
0x2A00. Visit the Bluetooth® webpage for a list of 16-bit UUIDs assigned by the SIG.
• Attribute value: This is the actual data stored in the attribute
• Attribute permission: This specifies the attribute access, authentication, and authorization requirements.

Attribute permission is set by the higher layer specification and is not discoverable through the attribute
protocol

Figure 64 shows the structure of a Device name attribute as an example.

Attribute
Handle Attribute Type Attribute Value Attribute

Permission

2 bytes 2 bytes 0 to 512 bytes
Implementation

specific

0x0003
0x2A00

(UUID for
Device Name)

“Cypress HRM”
Read Only, No
Authentication,
No Encryption

Example

Format

Figure 64 Attribute format example

B.7.1 Attribute hierarchy
Attributes are the building blocks for representing data in ATT/GATT. Attributes can be broadly classified into
the following two groups to provide hierarchy and abstraction of data:
• Characteristic: A collection of attributes that exposes the system information or meaningful data. A

Characteristic consists of the following attributes:
- Characteristic declaration attribute: This defines the beginning of a characteristic
- Characteristic value attribute: This holds the actual data
- Characteristic descriptor attributes: These are optional attributes, which provide additional

information about the characteristic value
“Battery Level” is an example of a characteristic in the Battery Service (BAS). Representing the battery level in
percentage values is an example of a characteristic descriptor.
Figure 65 shows the structure of a characteristic with Battery Level as an example.
• The first part of a characteristic is the declaration of the characteristic (it marks the beginning of a

characteristic) indicated by the Battery Level Characteristic in Figure 65
• Next is the actual characteristic value or the real data, which in the case of the Battery Level Characteristic

is the current battery level. The battery level is expressed as a percentage of full scale, for example “65,”
“90,” and so on

• Characteristic descriptors provide additional information that is required to make sense of the
characteristic value. For example, the Characteristic Presentation Format Descriptor for Battery Level
indicates that the battery level is expressed as a percentage. Therefore, when “90” is read, the GATT Client
knows this is 90 percent and not 90 mV or 90 mAh. Similarly, the Valid Range Characteristic descriptor (not
shown in Figure 65) indicates that the battery level range is between 0 and 100 percent

• A Client Characteristic Configuration Descriptor (CCCD) is another commonly used Characteristic descriptor
that allows a GATT Client to configure the behavior of a Characteristic on the GATT Server. When the
GATT Client writes a value of 0x01 to the CCCD of a Characteristic, it enables asynchronous notifications
(described in the next section) to be sent from the GATT Server. In the case of a Battery Level Characteristic,

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 71 002-10781 Rev. *E
2022-03-08

https://www.bluetooth.org/en-us/specification/assigned-numbers

writing 0x01 to the Battery Level CCCD enables the Battery Service to notify its battery level periodically or
on any change in battery-level value

<<Characteristic>>

<<Value>>

<<Descriptor>>

<<Descriptor>>

Format

Battery Level
Characteristic

Battery Level

Client Characteristic
Configuration Descriptor

Characteristic Presentation
Format

Example

Figure 65 Characteristic format and example

• Service: The type of attribute that defines a function performed by the GATT Server. A service is a
collection of characteristics and can include other services. The concept of a service is used to establish the
grouping of relative data and provide a data hierarchy. See Figure 66 for an example of a Heart Rate Service
(HRS).

A service can be of two types: A primary service or a secondary service. A primary service exposes the main
functionality of the device, while the secondary service provides additional functionality. For example, in a
heart-rate monitoring device, the HRS is a primary service and BAS is a secondary service.
A service can also include other services that are present on the GATT Server. The entire included services
become part of the new service.

Service
Heart Rate Service

Characteristic
Heart Rate measurement

Characteristic
Body Sensor Location

Characteristic
Heart Rate Control Point

Heart Rate Service

Figure 66 Bluetooth® LE Heart rate service example

The word “Profile” in Bluetooth® LE is a collection of services and their behavior that together perform a
particular end application. A Heart Rate Profile (HRP) is an example of a Bluetooth® LE Profile that defines all
the required services for creating a heart-rate monitoring device. See the Appendix B.9 section for details.
Figure 67 shows the data hierarchy using attributes, characteristics, services, and profiles defined previously in
this section.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 72 002-10781 Rev. *E
2022-03-08

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239866
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239865

Figure 67 Bluetooth® LE data hierarchy

Note: Image courtesy of Bluetooth® SIG.

B.7.2 Attribute operations
Attributes defined in the previous section are accessed using the following five basic methods:
• Read request: The GATT Client sends this request to the GATT Server to read an attribute value. For every

request, the GATT Server sends a response to the GATT Client. A smartphone reading the Battery-Level
Characteristic of a heart-rate monitor device (see Figure 65) is an example of a Read Request

• Write request: The GATT Client sends this request to the GATT Server to write an attribute value. The
GATT Server responds to the GATT Client, indicating whether the value was written. A smartphone writing
a value of 0x01 to the CCCD of a Battery Level characteristic to enable notifications is an example of a Write
Request

• Write command: The GATT Client sends this command to the GATT Server to write an attribute value. The
GATT Server does not send any response to this command. For example, the Bluetooth® LE Immediate Alert
Service (IAS) uses a Write Command to trigger an alert (turn on an LED, ring a buzzer, drive a vibration
motor, and so on) on an IAS Target device (for example, a Bluetooth® LE key fob) from an IAS locator (for
example, a smartphone)

• Notification: The GATT Server sends this to the GATT Client to notify it of a new value for an attribute. The
GATT Client does not send any confirmation for a notification. For example, a heart-rate monitor device
sends heart-rate measurement notifications to a smartphone when its CCCD is written with a value of 0x01

• Indication: The GATT Server sends this type of message. The GATT Client always confirms it. For example,
a Bluetooth® LE Health Thermometer Service (HTS) uses indications to reliably send the measured
temperature value to a health thermometer collector, such as a smartphone

B.8 Generic Attribute Profile (GATT)
The GATT defines the ways in which attributes can be found and used. The GATT operates in one of two roles:
• GATT Client: The device that requests the data (for example, a smartphone)
• GATT Server: The device that provides the data (for example, a heart-rate monitor)

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 73 002-10781 Rev. *E
2022-03-08

https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.immediate_alert.xml
https://developer.bluetooth.org/gatt/services/Pages/ServiceViewer.aspx?u=org.bluetooth.service.health_thermometer.xml

Figure 68 shows the client-server architecture in the GATT layer using a heart-rate monitoring device as
an example. The heart-rate monitoring device exposes multiple services (HRS, BAS, and Device Information
Service); each service consists of one or more characteristics with a characteristic value and descriptor, as
shown in Figure 65.

GATT Client
(Smartphone)

GATT Server
(Heart Rate Sensor)

Device Info
Service

Serial Number

Heart Rate
Service

Heart Rate
Requests

Responses

Battery Level
Service

Battery Level

FW Version

Sensor Location

Figure 68 GATT Client-Server architecture

After the Bluetooth® LE connection is established at the link-layer level, the GATT Client (which initially knows
nothing about the connected Bluetooth® LE device) initiates a process called “service discovery.” As part of the
service discovery, the GATT Client sends multiple requests to the GATT Server to get a list of all the available
services, characteristics, and attributes in the GATT Server. When service discovery is complete, the GATT Client
has the required information to modify or read the information exposed by the GATT Server using the attribute
operations described in the previous section.

B.9 Generic Access Profile (GAP)
The GAP layer provides device-specific information such as the device address; device name; and the methods
of discovery, connection, and bonding. The Profile defines how a device can be discovered, connected, the list
of services available, and how the services can be used. Figure 70 shows an example of a Heart Rate Profile.
The GAP layer operates in one of four roles:
• Peripheral: This is an advertising role that enables the device to connect with a GAP Central. After a

connection is established with the central, the device operates as a slave. For example, a heart-rate sensor
reporting the measured heart-rate to a remote device operates as a GAP peripheral

• Central: This is the GAP role that scans for advertisements and initiates connections with peripherals.
This GAP role operates as the master after establishing connections with peripherals. For example, a
smartphone retrieving heart-rate measurement data from a peripheral (heart-rate sensor) operates as a
GAP central

• Broadcaster: This is an advertising role that is used to broadcast data. It cannot form Bluetooth® LE
connections and engage in data exchange (no request/response operations). This role works similar to
a radio station in that it sends data continuously whether or not anyone is listening; it is a one-way
data communication. A typical example of a GAP broadcaster is a beacon, which continuously broadcasts
information but does not expect any response

• Observer: This is a listening role that scans for advertisements but does not connect to the advertising
device. It is the opposite of the broadcaster role. It works similar to a radio receiver that can continuously
listen for information but cannot communicate with the information source. A typical example of a GAP
Observer is a smartphone app that continuously listens for beacons

Figure 69 shows a generic Bluetooth® LE system with Bluetooth® LE pioneer kit as the peripheral and a
smartphone as the central device. The interaction between Bluetooth® LE protocol layers and their roles on the
Central and the Peripheral devices are also shown.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 74 002-10781 Rev. *E
2022-03-08

Figure 69 Bluetooth® LE system design

Figure 70 shows an example where a smartphone with a heart-rate app operates as a central and a heart-rate
sensor operates as a peripheral. The heart-rate monitoring device implements the Heart-Rate Sensor Profile,
while the smartphone receiving the data implements the Heart-Rate Collector profile.
In this example, the Heart-Rate Sensor Profile implements two standard services. The first is a Heart Rate
Service that comprises three characteristics (the Heart Rate Measurement Characteristic, the Body Sensor
Location Characteristic, and the Heart Rate Control Point Characteristic). The second service is a Device
Information Service. At the link layer, the heart-rate measurement device is the slave and the smartphone is the
master. See the Bluetooth® developer portal for a detailed description of the Heart Rate Service and Profile.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 75 002-10781 Rev. *E
2022-03-08

https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239866
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=239865

Figure 70 Bluetooth® LE Heart-rate monitor system

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
B Appendix B. Bluetooth® LE protocol

Application note 76 002-10781 Rev. *E
2022-03-08

C Appendix C. Device features

C.1 System wide resources

C.1.1 CPU subsystem: CM4 and CM0
The CPU subsystem in PSoC™ 6-BLE consists of two Cortex® cores: CM4 with a single-precision floating-point
unit capable of operating at a maximum frequency of 150 MHz; CM0+ capable of operating at a maximum
frequency of 100 MHz. There is a memory protection unit (MPU) available in both the cores. Additionally,
there are protection units attached to peripherals called Peripheral Protection Unit (PPUs) and Shared Memory
Protection Units (SMPUs) for shared memory regions.
The CM0+ also provides a secure boot function. This allows system integrity to be checked and privileges
enforced prior to the execution of the user application.

C.1.2 IPC
Inter-processor communication (IPC) provides the functionality for the two cores to communicate and
synchronize their activities. IPC hardware is implemented using register structures in PSoC™ 6-BLE. These
register structures are used to synchronize events, and trigger “notify” or “release” events of an IPC channel.
PSoC™ 6-BLE supports up to 16 channels, which allows message passing between CPU cores and supports locks
for mutual exclusion.

C.1.3 Memory system
The CPU cores have a fixed memory address map that enables shared access to memory and peripherals. Code
can be executed from both the flash and RAM on both cores.
The PSoC™ 6-BLE family has up to 1 MB of flash memory and an additional 32 KB of flash that can be used
for EEPROM emulation. There is also an additional 32 KB of supervisory flash. In addition, the flash supports
Read-While-Write (RWW) operation so that the flash can be written to when the CPU is actively executing
instructions. There is also a 128 KB ROM that contains boot and configuration routines. This will ensure Secure
Boot operation if authentication of user flash is required for end applications.
PSoC™ 6-BLE has up to 288 KB of SRAM memory, which can be fully retained or retained in increments of
user-designated 32 KB blocks.

C.1.4 DMA
The CPU subsystem includes two independent DMA controllers, each capable of running 32 channels. The
controllers support independent accesses to the peripherals using the Arm® standard Advanced microcontroller
Bus Architecture (AMBA) High-Performance Bus (AHB).
The DMA transfers data to and from memory, peripherals, and registers. These transfers occur independent of
the CPU. The DMA channels support the following:
• 8-bit, 16-bit, and 32-bit data widths at both source and destination
• Four priority levels on each channel
• Configurable interrupts on each DMA descriptor
• Descriptor chaining

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 77 002-10781 Rev. *E
2022-03-08

C.1.5 Clocking system
PSoC™ 6-BLE has the following clock sources:
• Internal main oscillator (IMO): The IMO is the primary source of internal clocking in PSoC™ 6-BLE. The CPU

and all high-speed peripherals can operate from the IMO or an external crystal oscillator (ECO). PSoC™

6-BLE has multiple peripheral clock dividers operating from either the IMO or the ECO, which generate
clocks for high-speed peripherals. The IMO can generate an 8 MHz clock with an accuracy of ±1 percent and
is available only in Active mode.

• External crystal oscillator (ECO): The PSoC™ 6 MCU device contains an oscillator to drive an external 4 MHz
to 33.33 MHz crystal for an accurate clock source

In addition, the external crystal oscillator on the Bluetooth® Low Energy subsystem with a built-in tunable
crystal load capacitance is used to generate a highly accurate 32 MHz clock. It is primarily used to clock the
Bluetooth® Low Energy subsystem that generates the RF clocks. The high-accuracy ECO clock can also be used
as a clock source for the PSoC™ 6-BLE device’s high-frequency clock (CLK_HF) and is designated as the AltHF
clock.
• External clock (EXTCLK):The external clock is a megahertz-range clock that can be sourced from a signal on

a designated I/O pin. This clock can be used as the source clock for either the PLL or FLL, or it can be used
directly by the high-frequency clocks

• Internal low-speed oscillator (ILO):The ILO is a very-low-power 32 kHz oscillator, which primarily generates
clocks for low-speed peripherals operating in all power modes

• Precision internal low-speed oscillator (PILO): PILO is an additional source that can provide a more
accurate 32.768 kHz clock than ILO. PILO works in Deep Sleep and higher modes

• Watch crystal oscillator (WCO): The 32.768 kHz WCO is used as one of the sources for low frequency clock
tree (CLK_LF) along with ILO/PILO. WCO is used to accurately maintain the time interval for Bluetooth® LE
advertising and connection events. Similar to ILO, WCO is also available in all modes except the Hibernate
and Stop modes

The PSoC™ Bluetooth® LE clock generation system has phase-locked loop (PLL) and frequency-locked loop (FLL)
blocks that can be used to generate high-frequency clocks (CLK_HF). These high-frequency clocks in turn drive
the CPU core clocks and the peripheral clock dividers.
PSoC™ 6-BLE has five high-frequency root clocks (CLK_HF [0-4]). Each CLK_HF has a destination on the device
such as peripherals like serial memory interface.
PSoC™ 6-BLE has clock supervisors on high-frequency clock path 0 (CLK_HF [0]) and WCO to detect if the clock
has been stopped and can trigger an interrupt or a system reset or both.

C.1.6 System interrupts
PSoC™ 6-BLE supports interrupts and exceptions on both the CPU cores: CM4 and CM0+. The cores provide their
own vector table for handling interrupts/exceptions. PSOC™ 6-BLE can support up to 139 interrupts on CM4 and
32 interrupts on CM0+. Up to 33 interrupts can wake the device from Deep Sleep power mode

C.1.7 Power supply and monitoring
The PSoC™ 6-BLE device family supports an operating voltage of 1.71 V to 3.6 V. It integrates a single-input
multiple-output (SIMO) buck converter to power the blocks within the device. The core operating voltage is user
selectable between 0.9 V and 1.1 V. The device family supports multiple power supply rails – VDDD, VDDA, VDDIO,
and VBACKUP. Additionally, there are power supply rails for Bluetooth® LE radio operation – VDDR. The availability
of various supply rails/pins for an application will depend on the device package selected.
The device includes a VBACKUP supply pin to power a small set of peripherals such as RTC and WCO. This rail
is independent of all other rails and can exist even when other rails are absent. Because the power supply
to these blocks comes from a dedicated VBACKUP pin, these blocks continue to operate even when the device

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 78 002-10781 Rev. *E
2022-03-08

power is disconnected or held in reset. The RTC present in the backup domain provides an option to wake up
the device from any power modes.
The PSoC™ 6-BLE family supports power-on reset (POR), brownout detection (BOD), overvoltage protection
(OVP), and low-voltage detection (LVD) circuits for power supply monitoring and to implement fail-safe
recovery.
For more information on the power supplies in PSoC™ 6-BLE, see the PSoC™ 6 MCU: PSoC™ 63 with BLE
architecture technical reference manual.

C.1.8 Power modes
The power modes supported by PSoC™ 6-BLE, in the order of decreasing power consumption, are:
• Active mode: This is the primary mode of operation. In this mode, all peripherals are active and are

available
• Low-Power Active mode: This mode is akin to the Active mode with most peripherals operating with limited

capability; CPU cores are available. The performance tradeoffs include reduced operating clock frequency,
high-frequency clock sources limited in frequency, and lower core operating voltage

• Sleep mode: In this mode, the CPU cores are in Sleep mode, SRAM is in retention, and all peripherals are
available. Any interrupt wakes up either of the CPUs and returns the system to Active mode. CM4 and
C-M0+ both support their own CPU Sleep modes, and each CPU can be in Sleep independent of the state of
the other CPU. The device is said to be in Sleep mode when both the cores are in CPU sleep

• Low-Power Sleep mode: Most peripherals operate with limited capability; CPU cores are not available
• Deep Sleep mode: In Deep Sleep mode, all high-speed clock sources are turned OFF. This in turn makes

high-speed peripherals unusable in Deep Sleep. Peripherals that operate on low-frequency clocks only are
available

• Hibernate mode: Device and GPIO states are frozen, and the device resets on wakeup
You can use a combination of Sleep, Deep Sleep, and Hibernate modes in a battery-operated Bluetooth® LE
system to achieve best-in-class system power with longer battery life. Table 5 shows the dependency between
PSoC™ 6-BLE system power modes and BLESS power modes. A check mark in a cell of Table 5 indicates that the
BLESS can perform the specified task when the system is in a given power mode. For example, BLESS can be in
Deep Sleep mode while the system is in Low-Power Active mode. The retention label indicates that the BLESS
operating context is retained when the system switches to Deep Sleep mode.

Note: The number of commons and segments supported by a PSoC™ 6-BLE device varies based on the device
family and device package. See the respective device datasheet for details.

Table 5 PSoC™ 6-Bluetooth® LE power modes

BLESS modes PSoC™ 6-Bluetooth® LE system power modes

Active Low-Power
Active

Sleep Low-Power
Sleep

Deep Sleep Hibernate

Transmit ✓ ✓ ✓ ✓ retention OFF

Receive ✓ ✓ ✓ ✓ retention OFF

Idle ✓ ✓ ✓ ✓ retention OFF

Deep Sleep ✓ ✓ ✓ ✓ retention OFF

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 79 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/trm218176
http://www.cypress.com/trm218176

C.2 Secure Boot
Secure booting involves authenticating the application flash images using a key-based security protocol
defined by a market/application-specific standard. The secure boot process is implemented in SROM and a
separate supervisory flash in the PSoC™ 6-BLE device. The boot code computes a checksum of the boot code
and compares it to a value in eFuse. If these values do not match, the boot process fails. The boot code also
enforces debug access restrictions as specified in eFuse. Secure boot is an optional feature and needs to be
enabled by the end-user.

C.3 Programmable digital peripherals

C.3.1 UDB
UDBs are programmable logic blocks that provide functionalities similar to CPLD and FPGA blocks, as Figure
71 shows. UDBs allow you to create a variety of digital functions such as timer, counter, PWM, pseudo random
sequence (PRS), CRC, shift register, SPI, UART, I2S, and custom combinational and sequential logic circuits.
Each UDB has two programmable logic devices (PLDs), each with 12 inputs and 8 product terms. PLDs can
form registered or combinational sum-of-products logic. Additionally, an 8 bit single-cycle arithmetic logic unit
(ALU), known as a “datapath,” is present in each UDB. The datapath helps with the efficient implementation of
functions such as timer, counter, PWM, and CRC.
UDBs also provide a switched digital signal interconnect (DSI) fabric that allows signals from peripherals and
ports to be routed to and through the UDBs for communication and control.

Figure 71 Universal digital block diagram

You do not necessarily need to know any hardware description language (HDL) to use UDBs. PSoC™ Creator,
development tool for PSoC™ 6-BLE, can generate the required function for you from a schematic. If required,
advanced users can implement custom logic on UDBs using Verilog.
PSoC™ 6-BLE has up to 12 UDBs. For more information on UDBs, see the following application notes:
• AN62510 - Implementing state machines with PSoC™ 3, PSoC™ 4, and PSoC™ 5LP

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 80 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/documentation/application-notes/an62510-implementing-state-machines-psoc-3-psoc-4-and-psoc-5lp

• AN82156 - PSoC™ 3, PSoC™ 4, and PSoC™ 5LP - Designing PSoC™ Creator components with UDB datapaths
• AN82250 - PSoC™ 3, PSoC™ 4, and PSoC™ 5LP - Implementing programmable logic designs with verilog

C.3.2 Programmable TCPWM
PSoC™ 6-BLE has 32 programmable TCPWM blocks. Each TCPWM can implement a timer, counter, PWM, or
quadrature decoder. TCPWMs provide dead band programmable complementary PWM outputs and selectable
start, reload, stop, count, and capture event signals. The PWM mode supports center-aligned, edge, and
pseudorandom operations. It also has a kill input to force outputs to a predetermined state.
For more information, refer to the PSoC™ 6-BLE TCPWM component datasheet.

C.3.3 SCB
PSoC™ 6-BLE has up to nine independent run-time programmable SCBs with I2C, SPI, or UART. The SCB supports
the following features:
• Standard SPI master and slave functionality with Motorola®, Texas Instruments® Secure Simple Pairing

(SSP), and National Semiconductor® Microwire protocols
• Standard UART functionality (up to 1 Mbps baud rate) with smart-card reader, single-wire local

interconnect network (LIN) interface, SmartCard (ISO7816), and Infrared Data Association (IrDA) protocols
• Standard I2C master and slave functionality with operating speeds up to 1 Mbps
• EzSPI and EzI2C mode, which allows operation without CPU intervention
• One SCB can be configured to operate in Deep Sleep mode with an external clock. The low-power (Deep

Sleep) mode of operation is supported on the SPI and I2C protocols (using an external clock) in slave mode
only

For more information, see the PSoC™ 6-BLE SCB Component datasheet.

C.3.4 BLESS
PSoC™ 6-BLE incorporates a Bluetooth® smart subsystem that implements the BLE link layer and physical
layer as specified in the Bluetooth® 4.2 specification. The Bluetooth® LE subsystem contains the physical layer
(PHY) and link layer engine with an embedded AES-128 security engine. The subsystem supports all Bluetooth®

SIG-adopted Bluetooth® LE profiles.
The physical layer consists of a digital PHY and RF transceiver compliant with the Bluetooth® 4.2 specification.
The transceiver transmits and receives GFSK packets at 1 Mbps over the 2.4 GHz ISM band. The baseband
controller is a composite hardware/firmware implementation that supports both master and slave modes. The
key protocol elements such as HCI and link control are implemented in firmware, while time-critical functions
such as encryption, CRC, data whitening, and access code correlation are implemented in hardware.
The BLESS is Bluetooth® 4.2 compliant with support for all the features of the Bluetooth® 4.0 specification and
some additional features of the Bluetooth® 4.2 specification such as low-duty-cycle advertising, LE ping, L2CAP
connection-oriented channels, link layer privacy, link layer data length extension, and LE secure connection.
The BLESS block also contains an ECO and WCO that are required for generating an accurate RF frequency and
keeping the time between successive connection intervals on the Bluetooth® LE link respectively.
The Bluetooth® LE subsystem supports up to four simultaneous connections. It supports its own four functional
power modes: Deep Sleep, Idle, Transmit, and Receive.

Note: The power modes discussed in this section are specific to the BLESS block. For PSoC™ 6-BLE system
power modes, see the section Appendix C.1.8.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 81 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/documentation/application-notes/an82156-psoc-3-psoc-4-and-psoc-5lp-designing-psoc-creator-components
http://www.cypress.com/documentation/application-notes/an82250-psoc-3-psoc-4-and-psoc-5lp-implementing-programmable-logic

C.3.4.1 Deep Sleep mode
Deep Sleep mode is the lowest power functional mode supported by the BLESS. In this mode, the radio is off.
This mode is entered for maximum power saving during an advertising or connection interval after the packet
transmission and reception is complete. The ECO can be turned off in this mode for power saving; the WCO,
which is the low-frequency clock, is on for maintaining the BLE link layer timing reference logic. The application
firmware controls the entry to and exit from this state.

C.3.4.2 Sleep mode
In Sleep mode, the radio is off. The block maintains all the configurations. The ECO and WCO are turned on, but
the clock to the core BLESS logic is turned off. The application firmware controls the entry to and exit from this
state.

C.3.4.3 Idle mode
The Idle mode is the preparation state for the transmit and receive states. In this state, the radio is turned off,
but the link layer clock is enabled for the link layer logic so that the CPU starts the protocol state machines.

C.3.4.4 Transmit mode
Transmit mode is the active functional mode; all the blocks within BLESS are powered on. The link layer clock is
enabled to complete the logic within the link layer and RF-PHY. In this mode, RF-PHY gets up to 2 Mbps of serial
data from the link layer and transmits the 2.4 GHz GFSK-modulated data to the antenna port. BLESS enters
Transmit mode from Idle mode.

C.3.4.5 Receive mode
This mode enables the BLESS to move into the receive state to perform BLE-specific receiver operations.
RF-PHY translates the 1 Mbps data received from the RF analog block and forwards it to the link layer controller
after demodulation. A summary of the BLESS power modes and operational sub-blocks is given in Table 6.

Table 6 BLESS power modes

BLESS power
mode

ECO WCO RF Tx RF Rx BLESS Core

Deep Sleep Off On Off Off Off

Sleep On On Off Off Off

Idle On On Off Off On

Transmit On On On Off On

Receive On On Off On On

C.3.5 Audio subsystem
PSoC™ 6-BLE has an audio subsystem that consists of an I2S block and two PDM channels. The PDM channels
interface to a digital microphone’s bit-stream output. The PDM processing channel provides droop correction
and can operate with clock speeds ranging from 384 kHz to 3.072 MHz and produce word lengths of 16 to 24 bits
at audio sample rates of up to 48 ksps.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 82 002-10781 Rev. *E
2022-03-08

The I2S interface supports both master and slave modes with word clock rates of up to 192 ksps when 8-bit to
32-bit words are transmitted.

C.3.6 Serial Memory Interface
The Serial Memory Interface (SMIF) on PSoC™ 6-BLE is capable of interfacing with different types of memories
and up to four memories. SMIF supports Octal-SPI (8 bits/cycle throughput), Dual quad-SPI (8 bits/cycle
throughput), quad-SPI (4 bits/cycle throughput), Dual-SPI (2 bits/cycle throughput), and SPI (1 bit/cycle
throughput). The block also supports execute-in-place (XIP) mode where the CPU cores can execute code
directly from external memory. The SMIF block along with software modules developed in PSoC™ Creator
enable you to use a qualified predetermined set of memory devices in your applications.

C.3.7 eFUSE
eFuse is a one-time programmable that is be used to program security-related settings. It can also be used to
store your application settings that are programmed once and used later.

C.3.8 Segment LCD
PSoC™ 6-BLE has a segment LCD drive with the following features:
• Supports up to 8 common (COM) and 64 segment (SEG) electrodes
• Programmable GPIOs provide flexible selection of COM and SEG electrodes
• Supports 14-segment and 16-segment alphanumeric display, 7-segment numeric display, dot matrix, and

special symbols
• Two drive modes: digital correlation and PWM
• Operates in all system power modes except Hibernate
• Can drive a 3 volt display from 1.8 volt VDD
• Digital contrast control

C.4 Programmable analog peripherals

C.4.1 Continuous Time Block Opamps
PSoC™ 6-BLE devices have a pair of Continuous Time Block (CTBm) based opamps that have their inputs and
outputs connected to fixed location pins. The opamps support all power modes except Hibernate. However, the
opamps operate with reduced gain bandwidth product in Deep Sleep mode. The outputs of these opamps in
typical usage can be used as buffers for the SAR inputs.

C.4.2 Low-Power comparator
PSoC™ 6-BLE devices have a pair of low-power comparators that can also operate in Deep Sleep and Hibernate
modes. The comparators consume less than 300 nA of current in low-power modes. In a power-sensitive design,
when the device goes into low-power mode. you can use the low-power comparator to monitor analog inputs
and generate an interrupt that can wake up the system.
For more information, refer to the PSoC™ 6-BLE Low-Power comparator component datasheet.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 83 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/documentation/component-datasheets/psoc-4-low-power-comparator

C.4.3 SAR ADC
PSoC™ 6-BLE has a 12-bit, 1 Msps successive approximation register (SAR) ADC with input channels that support
programmable resolution and single-ended or differential input options. The number of GPIOs limits the
number of ADC input channels that can be implemented. The SAR ADC does not operate in Deep Sleep and
Hibernate modes as it requires a high-speed clock.
The SAR ADC has a hardware sequencer that can perform an automatic scan on as many as eight channels
without CPU intervention. The SAR ADC can be connected to a fixed set of pins through an 8-input sequencer.
The sequencer cycles through the selected channels autonomously (sequencer scan) and does so with zero
switching overhead. It also supports preprocessing operations such as accumulation and averaging of the
output data on these eight channels.
You can trigger a scan with a variety of methods, such as firmware, timer, pin, or UDB, giving you additional
design flexibility.
To improve the performance in noisy conditions, it is possible to provide an external bypass on a fixed location
pin for the internal reference amplifier. For more information on the SAR ADC, see the PSoC™ 6-BLE SAR ADC
Component datasheet.
PSoC™ 6-BLE has an on-chip temperature sensor that can be used to measure temperature. The temperature
sensor can be connected to the SAR ADC, which digitizes the reading and produces a temperature value by
using software Component that includes calibration and linearization.

C.4.4 DAC
PSoC™ 6-BLE has a 12-bit voltage mode continuous time DAC (CTDAC), which has a settling time of 2 µs. The
12-bit DAC provides continuous time output without the need for an external sample and hold (S/H) circuit. The
DAC control interface provides an option to control the DAC output through the CPU and DMA. This includes
a double-buffered DAC voltage control register, clock input for programmable update rate, interrupt on DAC
buffer empty to CPU, and trigger to DMA. The DAC may hence be driven by the DMA controllers to generate
user-defined waveforms.
For more information on the DAC, see the PSoC™ 6-BLE DAC Component datasheet.

C.4.5 CAPSENSE™

The fourth-generation CAPSENSE™ in the PSoC™ 6-BLE device supports self-capacitance and mutual
capacitance-based touch sensing. CAPSENSE™ is supported on all pins.
Capacitive touch sensors use human-body capacitance to detect the presence of a finger on or near a sensor.
Capacitive sensors are aesthetically superior, easy to use, and have long lifetimes. The CAPSENSE™ feature in
PSoC™ 6-BLE offers best-in-class SNR; best-in-class liquid tolerance; and a wide variety of sensor types such as
buttons, sliders, track pads, and proximity sensors.
A software component makes capacitive sensing design very easy; the component supports an automatic
hardware-tuning feature called SmartSense and provides a gesture recognition library for trackpads and
proximity sensors.
For more information, see the AN85951 - PSoC™ 4 and PSoC™ 6 MCU CAPSENSE™ design guide.
The CAPSENSE™ block has two 7-bit IDACs, which can be used for general purposes if CAPSENSE™ is not using
them. A (slow) 10-bit slope ADC may be realized by using one of the IDACs. Refer to the PSoC™ 6-BLE CAPSENSE™

component datasheet for more information on how to use the slope ADC.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 84 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/an85951

C.5 Programmable GPIOs
The I/O system provides an interface between the CPU cores, the peripherals, and the external devices. PSoC™

6-BLE has up to 104 programmable GPIO pins. You can configure the GPIOs for CAPSENSE™, LCD, analog, or
digital signals. PSoC™ 6-BLE GPIOs support multiple drive modes, drive strengths, and slew rates.
PSoC™ 6-BLE offers an intelligent routing system that gives multiple choices for connecting an internal signal to
a GPIO. This flexible routing simplifies circuit design and board layout.
Additionally, PSoC™ 6-BLE includes up to two Smart I/O ports, which can be used to perform Boolean
operations on signals going to and coming from the GPIO pin. Smart I/O ports are also operational in Deep-
Sleep mode.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
C Appendix C. Device features

Application note 85 002-10781 Rev. *E
2022-03-08

D Appendix D. IoT development tools

D.1 CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit
The PSoC™ 6-BLE pioneer kit shown in Figure 72 is a Bluetooth® LE development kit that supports the
PSoC™ 6-BLE family of devices.
Following are the features of the PSoC™ 6-BLE pioneer kit baseboard:
• Can be powered by a coin-cell battery or through the Type-C USB interface. The Type-C USB interface also

supports up to 12 V, 3 A power delivery (PD) consumer and provider profiles
• Enables development of battery-operated low-power Bluetooth® LE designs that work in conjunction with

standard, Arduino Uno connector-compliant shields or the onboard PSoC™ 6-BLE device capabilities, such
as the CAPSENSE™ user interface and serial memory interface

• Supports third-party programming, debugging, and tracing with the Cortex® Debug/ETM connector
• Includes an additional header that supports interfacing with Pmod™ daughter cards from third-party

vendors such as Digilent
• Supports PDM-PCM microphone for voice-over-Bluetooth® LE functionality
• Includes QSPI NOR flash and F-RAM
The kit includes the following:
• A USB-Bluetooth® LE dongle that acts as a Bluetooth® LE link master and works with the CySmart Host

Emulation Tool to provide a Bluetooth® LE host emulation platform on non-Bluetooth® LE Windows PCs
• An E-Ink display
The kit consists of a set of BLE example projects and documentation that help you get started on developing
your own Bluetooth® LE applications. Visit the CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit webpage to get the
latest updates on the kit and download the kit design, example projects, and documentation files.

Figure 72 CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit

D.2 CySmart Host Emulation Tool
The CySmart Host Emulation Tool is a Windows application that emulates a Bluetooth® LE central device using
the PSoC™ 6-BLE pioneer kit’s dongle; see Figure 73. It is installed as part of the Bluetooth® LE pioneer kit
installation and can be launched by right-clicking the Bluetooth® Low Energy component. It provides a platform
for you to test your PSoC™ 6-BLE peripheral implementation over GATT or L2CAP connection-oriented channels

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
D Appendix D. IoT development tools

Application note 86 002-10781 Rev. *E
2022-03-08

http://www.cypress.com/go/CY8CKIT-062-BLE

by allowing you to discover and configure the Bluetooth® LE services, characteristics, and attributes on your
Peripheral.
Operations that you can perform with the CySmart Host Emulation Tool include, but are not limited to:
• Scan Bluetooth® LE peripherals to discover available devices to which you can connect
• Discover available Bluetooth® LE attributes including services and characteristics on the connected

Peripheral device
• Perform read and write operations on characteristic values and descriptors
• Receive characteristic notifications and indications from the connected Peripheral device
• Establish a bond with the connected Peripheral device using Bluetooth® LE Security Manager procedures
• Establish a Bluetooth® LE L2CAP connection-oriented session with the Peripheral device and exchange data

per the Bluetooth® 4.2 specification
• Perform over-the-air (OTA) firmware upgrade of Bluetooth® LE peripheral devices
Figure 73 and Figure 74 show the user interface of the CySmart Host Emulation Tool. For more information on
how to set up and use this tool, see the CySmart user guide from the Help menu.

Advertisement and
Scan Response Data

Discovered Device List

Log Window

Trusted Device List

Figure 73 CySmart Host Emulation Tool Master device tab

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
D Appendix D. IoT development tools

Application note 87 002-10781 Rev. *E
2022-03-08

Attribute Display
and

Configuration

List of Discovered
Attributes

Figure 74 CySmart Host Emulation Tool peripheral device attributes tab

D.3 CySmart mobile app
In addition to the PC tool, you can download the CySmart mobile app for iOS or Android from the respective
app stores. This app uses the iOS Core Bluetooth® framework and the Android built-in platform framework for
Bluetooth® LE respectively. It configures your Bluetooth® LE -enabled smartphone as a Central device that can
scan and connect to peripheral devices.
The mobile app supports SIG-adopted Bluetooth® LE standard Profiles through an intuitive GUI and abstracts
the underlying Bluetooth® LE service and characteristic details. In addition to the Bluetooth® LE standard
profiles, the app demonstrates a custom Profile implementation using LED and CAPSENSE™ demo examples.
Figure 75 and Figure 76 show a set of CySmart app screenshots for the Heart Rate Profile user interface. For
a description of how to use the app with Bluetooth® LE pioneer kit example projects, see the Bluetooth® LE
pioneer kit guide.

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
D Appendix D. IoT development tools

Application note 88 002-10781 Rev. *E
2022-03-08

Figure 75 CySmart iOS App Heart Rate profile example

Figure 76 CySmart Android App Heart Rate profile example

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
D Appendix D. IoT development tools

Application note 89 002-10781 Rev. *E
2022-03-08

Revision history
Document
version

Date of
release

Description of changes

** 2016-12-27 New Application Note

*A 2017-03-09 Rewrite of application note
Updated UDB template

*B 2017-08-31 Updated title and figures

*C 2018-04-24 Partial rewrite of application note
Updated template, abstract, and figures

*D 2019-10-11 Updated title

*E 2022-03-08 Migrated to Infineon template
Replaced BLE with Bluetooth® LE/Bluetooth® Low Energy and PSoC™ 6 BLE to
PSoC™ 6-BLE across the document
Updated Software version as PSoC™ Creator 4.4
Fixed hyperlinks throughout the document

Getting started with PSoC™ 6 MCU with Bluetooth® low energy
connectivity on PSoC™ Creator
Revision history

Application note 90 002-10781 Rev. *E
2022-03-08

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-03-08
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2022 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-vai1649675934009

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Prerequisites
	1.1.1 Hardware
	1.1.2 Software

	2 Development ecosystem
	2.1 PSoC™ resources
	2.2 Firmware/application development
	2.2.1 PSoC™ Creator
	2.2.1.1 PSoC™ Creator help

	2.2.2 Peripheral Driver Library (PDL)

	2.3 Support for other IDEs
	2.3.1 Using PSoC™ Creator to target another IDE

	2.4 RTOS support
	2.5 Debugging
	2.6 CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit
	2.7 CySmart Host Emulation Tool and mobile applications

	3 Device features
	4 Development setup
	5 My first PSoC™ 6 MCU design with Bluetooth® LE
	5.1 Using the instructions
	5.2 Before you begin
	5.3 About the design
	5.4 Part 1. Create a new project from scratch
	5.5 Part 2. Implement the design
	5.6 Part 3. Generate source code
	5.7 Part 4. Write the firmware
	5.8 Part 5. Build the project, program the Device
	5.9 Part 6. Test your design

	6 Summary
	7 Related application notes and code examples
	A Appendix A. Glossary
	B Appendix B. Bluetooth® LE protocol
	B.1 Overview
	B.2 Physical Layer (PHY)
	B.3 Link Layer (LL)
	B.4 Host Control Interface (HCI)
	B.5 Logical Link Control and Adaptation protocol (L2CAP)
	B.6 Security manager (SM)
	B.7 Attribute protocol (ATT)
	B.7.1 Attribute hierarchy
	B.7.2 Attribute operations

	B.8 Generic Attribute Profile (GATT)
	B.9 Generic Access Profile (GAP)

	C Appendix C. Device features
	C.1 System wide resources
	C.1.1 CPU subsystem: CM4 and CM0
	C.1.2 IPC
	C.1.3 Memory system
	C.1.4 DMA
	C.1.5 Clocking system
	C.1.6 System interrupts
	C.1.7 Power supply and monitoring
	C.1.8 Power modes

	C.2 Secure Boot
	C.3 Programmable digital peripherals
	C.3.1 UDB
	C.3.2 Programmable TCPWM
	C.3.3 SCB
	C.3.4 BLESS
	C.3.4.1 Deep Sleep mode
	C.3.4.2 Sleep mode
	C.3.4.3 Idle mode
	C.3.4.4 Transmit mode
	C.3.4.5 Receive mode

	C.3.5 Audio subsystem
	C.3.6 Serial Memory Interface
	C.3.7 eFUSE
	C.3.8 Segment LCD

	C.4 Programmable analog peripherals
	C.4.1 Continuous Time Block Opamps
	C.4.2 Low-Power comparator
	C.4.3 SAR ADC
	C.4.4 DAC
	C.4.5 CAPSENSE™

	C.5 Programmable GPIOs

	D Appendix D. IoT development tools
	D.1 CY8CKIT-062-BLE PSoC™ 6-BLE pioneer kit
	D.2 CySmart Host Emulation Tool
	D.3 CySmart mobile app

	Revision history
	Disclaimer

