

User Guide Please read the Important Notice and Warnings at the end of this document 002-28736 Rev. *I

www.infineon.com page 1 of 26 2024-02-12

ModusToolbox™ Library Manager user guide

ModusToolbox™ tools package version 3.2.0

Library Manager version 2.20

A newer version of this document may be available on the web here.

About this document

Scope and purpose

This document provides information and instructions for how to use the ModusToolbox™ Library Manager.

Intended audience

Read this document to learn how to manage ModusToolbox™ BSPs and libraries for your application.

Document conventions

Convention Explanation

Bold Emphasizes heading levels, column headings, menus and sub-menus

Italics Denotes file names and paths.

Courier New
Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder names,

directories, command line inputs, code snippets

File > New Indicates that a cascading sub-menu opens when you select a menu item

Reference documents

Refer to the following documents for more information as needed:

• ModusToolbox™ tools package user guide

https://www.infineon.com/ModusToolboxLibraryManager
https://www.cypress.com/ModusToolboxUserGuide

User Guide 2 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Table of contents

Table of contents

1 Overview ... 3

1.1 ModusToolbox™ 3.x vs. 2.x BSPs ... 3
1.2 Specifying dependencies .. 3

1.3 Including libraries and dependencies .. 5

2 Launch the Library Manager .. 9

2.1 make command .. 9

2.2 VS Code and Eclipse .. 9
2.3 Stand-alone GUI mode .. 9

2.4 Local Content mode .. 10

2.5 Non-GUI command line interface (CLI) .. 10

3 Working with BSPs .. 11

3.1 Select Active BSP ... 11
3.2 Add BSPs .. 12
3.3 Rename BSP .. 14

3.4 Remove BSP .. 15

4 Working with libraries ... 16

4.1 Add library (single-core application) .. 17

4.2 Add library (multi-core application) ... 17

4.3 Update indirect dependency libraries .. 18

4.4 Change library version .. 19
4.5 Share/unshare libraries... 19

5 GUI description ... 20

5.1 Menus ... 20

5.2 Application directory... 20

5.3 BSP/library controls .. 21

5.4 BSP context menus ... 21
5.5 Tabs.. 21
5.6 Buttons .. 23

5.7 Message console.. 23

6 Tool change description ... 24

User Guide 3 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Overview

1 Overview

The Library Manager provides a GUI to select which Board Support Package (BSP) should be used when
building a ModusToolbox™ application. The tool collects a list of available and currently selected BSPs and
libraries, as well as all the necessary metadata from a webservice. The tool allows you to add and remove BSPs
and libraries, as well as change their versions.

1.1 ModusToolbox™ 3.x vs. 2.x BSPs

One of the major changes made for ModusToolbox™ version 3.x is that most BSPs are no longer Git repos when
you create a version 3.x application. Instead, the BSP becomes owned by the application. This means you can
change various aspects of the BSP as you see fit without having to create a custom BSP, because creating a

version 3.x application effectively creates a custom BSP. As such, you will typically check the BSP into source

control with the application.

ModusToolbox™ version 2.x BSPs are still Git repos, by default, and may be used by more than one application

in a given workspace. In general, this means any change you make to a BSP creates a "dirty" repo, and those
changes affect all the related applications. In this case, you will typically not check the version 2.x BSP into
source control, since you can regenerate the BSP. For this reason, it is best to create a "custom BSP" for your

needs.

Note: BTSDK applications still default to shared BSPs, due to the nature of how BTSDK applications are

structured and typical use cases.

Refer to the ModusToolbox™ tools package user guide for more details about ModusToolbox™ BSPs and
applications.

This version of the Library Manager supports both ModusToolbox version 3.x and 2.x BSPs. The main difference
is that the Version and Type fields are not applicable and cannot be changed for a 3.x BSP. See the Properties

tab section later in this document for descriptions of these fields.

1.2 Specifying dependencies

This document only applies to applications that use .mtb files to specify their dependencies, not .lib files. To

find information for applications that that use .lib files, refer to an older version of this document.

Applications can share libraries. If needed, different applications can use different versions of the same library.

Sharing resources reduces the number of files on your computer and speeds up subsequent application
creation time. Shared libraries and versions are located in a "mtb_shared" directory adjacent to your

application directories. You can easily switch a shared library to become local to a specific application, or back

to being shared.

The Library Manager runs the make getlibs command to process the .mtb files, pull the libraries from the
specified git repos, and store them in the specified location. The system also creates a file called mtb.mk in the

application's libs subdirectory. The build system uses that file to find all the libraries required by the
application.

https://www.cypress.com/ModusToolboxUserGuide
https://www.cypress.com/file/520271/download

User Guide 4 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Overview

The following shows the Library Manager for a typical PSoC™ 6 BSP. The key items are the lock symbols for
libraries that are included because they are dependendies of other libraries. See Working with libraries for more

details about using the tool.

The following concepts are key to understanding dependencies:

1.2.1 .mtb file

This file provides information about the associated BSP/library. It contains:

• A URL to a git repository somewhere that is accessible by your computer, such as GitHub.

• A git Commit Hash or Tag that tells which version of the library that you want.

• A path to where the library should be stored.

A typical .mtb file looks like this:

https://github.com/Infineon/core-make#release-v3.0.0#$$ASSET_REPO$$core-make/release-v3.0.0

The variable $$ASSET_REPO$$ points to the root of the shared location. If you want a library to be local to the

application instead of shared, use $$LOCAL$$ instead of $$ASSET_REPO$$.

1.2.2 Direct dependency

This is a library that is directly referenced by an application. In some applications, there will be direct
dependencies such as Wi-Fi or Bluetooth libraries. You may also have changed the location or version of an
indirect library, which makes that library a direct dependency.

You manage the .mtb files for direct dependencies, and .mtb files should be checked into source control along
with your application source code. A .mtb file for a direct dependency is typically stored in the application’s
deps subdirectory by default. You can store it anywhere inside the application except in the application's libs

subdirectory.

User Guide 5 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Overview

1.2.3 Indirect dependency

This is a library that was included indirectly as a dependency of a BSP or another library. The system stores the
code in the appropriate directory and resolves any potential conflicts with different library versions.

The system finds indirect dependencies for each library using information that is stored in a manifest file. For

each indirect dependency found, the Library Manager places an .mtb file in the application's libs subdirectory.
The tool also creates a locking_commit.log file in the application's deps subdirectory to record the locked

release version of those libraries.

You do not manage .mtb files for indirect dependencies, and they do not need to be checked into source
control. The .mtb file for an indirect dependency is stored in the application’s libs subdirectory and must not be

moved.

1.2.4 Shared

A shared library includes the code for the associated .mtb file, and the library can be shared by multiple

applications in the same directory structure or workspace. When creating a new application, BSPs/libraries can
be shared and placed in an mtb_shared directory adjacent to the application directory(ies), based on the

"default_location" in the manifest file. When you add a BSP/library and specify it as shared, it is also included in

the mtb_shared directory. These BSPs/libraries do not need to be checked into source control. All the code can
be re-downloaded at any time from the information in the .mtb file.

You can change the name and location of the shared directory using make variables CY_GETLIBS_SHARED_NAME

and CY_GETLIBS_SHARED_PATH. For more details about the ModusToolbox™ build system and make variables,
refer to the ModusToolbox™ tools package user guide.

1.2.5 Local

A local library includes the code for the associated .mtb file, and the BSP/library is used only for a specific
application. The local BSP/library is stored in the libs subdirectory of the specific application. These

BSPs/libraries do not need to be checked into source control. All the code can be re-downloaded at any time

from the information in the .mtb file.

If you change libraries to be local to an application (see Share/unshare libraries later in this guide), then the

source code for these are located in the libs subdirectory inside the application directory.

1.3 Including libraries and dependencies

There are two basic ways of including a library and its dependencies into your application: using a manifest file
or using manual methods. There is also a third method that is only used for custom BSPs. Each method is

discussed separately below. The method you should use depends on whether or not the library and its
dependencies are specified in a manifest file.

1.3.1 Including libraries that are specified in a manifest

All libraries provided by Infineon are specified in manifest files that are automatically found by the tools.
Manifests are XML files that tell the Library Manager how to discover the list of available BSPs, libraries, and
library dependencies. The manifest can also specify specific versions of libraries and dependent libraries that
are meant to work together. For more information, refer to the Manifest chapter in the ModusToolbox™ tools
package user guide.

https://www.cypress.com/ModusToolboxUserGuide
https://www.cypress.com/ModusToolboxUserGuide
https://www.cypress.com/ModusToolboxUserGuide

User Guide 6 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Overview

You can create your own manifest file(s) for your libraries so that they will show up in the Library Manager and
will work just like the Infineon libraries. More information on manifest files and how to create and use your own

manifests is covered in the ModusToolbox™ tools package user guide.

In order to manage libraries that are specified in a manifest file in the application, files with the extension mtb
are used. Their location and behavior depend on whether the library is a direct dependency or an indirect

dependency. Normally the Library Manager is used to create/modify mtb files so you won't need to change
them or even view them, but it is worthwhile to understand what is in them.

1.3.1.1 Direct dependencies

For direct dependencies, there will be one or more mtb files somewhere in your project (typically in the deps
directory but could be anywhere except the libs directory). An mtb file is simply a text file with the extension

mtb that has three fields separated by #:

• A URL to a Git repository somewhere that is accessible by your computer, such as GitHub

• A Git Commit Hash or Tag that tells which version of the library that you want

• A path to where the library should be stored in the shared location (i.e. the directory path underneath

mtb_shared).

A typical mtb file looks like this:

https://github.com/cypresssemiconductorco/retarget-io/#latest-v1.X#$$ASSET_REPO$$/retarget-

io/latest-v1.X

The variable $$ASSET_REPO$$ points to the root of the shared location - it is specified in the application's

Makefile. If you want a library to be local to the app instead of shared, you can use $$LOCAL$$ instead of
$$ASSET_REPO$$ in the mtb file before downloading the libraries. Typically, the version is excluded from the

path for local libraries since there can only be one local version used in a given application. Using the above
example, a library local to the app would normally be specified like this:

https://github.com/cypresssemiconductorco/TARGET_CY8CKIT-062S2-43012/#latest-

v1.X#$$LOCAL$$/TARGET_CY8CKIT-062S2-43012

Note: The examples above specify dynamic library versions (e.g. latest-v1.X). Normally in your
application, you will want fixed library versions (e.g. release-v1.0.0). This behavior can be

controlled using the Library Manager.

1.3.1.2 Indirect dependencies

For indirect dependencies, an mtb file for each library is automatically created in the libs directory. The version
of each dependent library is also captured in the file locking_commit.log in the deps directory.

Once all the mtb files are in the application (both direct and indirect), the libraries they point to are pulled in
from the specified Git repos and stored in the specified location (i.e. mtb_shared for shared libraries and libs for

local libraries). Finally, a file called mtb.mk is created in the application's libs directory. That file is what the
build system uses to find all the libraries required by the application.

Since the libraries are all pulled in using make getlibs, you don't typically need to check them in to a revision
control system - they can be recreated at any time by re-running make getlibs. This includes both shared
libraries (in mtb_shared) and local libraries (in libs) - they all get pulled from GitHub when you run
make getlibs.

You also don't need to check in the mtb files for indirect references and the mtb.mk file which are stored in the
libs directory. In fact, the default .gitignore file in our code examples excludes the entire libs directory since you

should not need to check in any files from that directory – they can be recreated at any time.

https://github.com/cypresssemiconductorco/retarget-io/#latest-v1.X
https://github.com/cypresssemiconductorco/retarget-io/#latest-v1.X
https://github.com/cypresssemiconductorco/TARGET_CY8CKIT-062S2-43012/#latest-v1.X
https://github.com/cypresssemiconductorco/TARGET_CY8CKIT-062S2-43012/#latest-v1.X

User Guide 7 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Overview

1.3.2 Including libraries are not specified in a manifest

If you a have your own custom libraries, you can create and include your own custom manifest files so that your
libraries will show up in the Library Manager just like Infineon libraries. That method also allows you to specify

the dependencies in the manifest so that they are automatically added as indirect dependencies when the
dependent library is added to the application. Custom manifests are covered in the ModusToolbox™ tools
package user guide.

1.3.2.1 Manually adding a library

If you do not want to create a manifest file for your custom libraries, then you must manually include the library

and its dependencies in each application that uses the library. You can include the library several different
ways, such as:

• git clone the version of the library that you want (or use some other revision control system) into the

application's directory

• unzip an archive file of the library into the application's directory

• recursive copy the library into the application's directory

• modify the SEARCH variable in the application's Makefile to point to the library

• add an mtb file to the deps directory for the library and run make getlibs (requires that the library is in a

Git repo)

For the first four methods, the library can go anywhere in the application's directory tree. Remember that if you

put it in the libs directory it will not be checked into source control by default, so you will normally want put
manually added libraries somewhere else.

If you use the mtb file (i.e., 5th) method, there are two things to be aware of: the library will still not show up in
the Library Manager; and latest locking will not be performed on that library so you should use a fixed version in

the mtb file unless you want the dynamic update behavior.

1.3.2.2 Manually adding dependencies

You can easily add dependencies using the Library Manager tool (for dependencies that are in a manifest file

such as Infineon libraries). For dependencies that are not in a manifest file, you can use the same manual
methods that are used for including the library itself.

1.3.3 Specifying dependencies for custom BSPs

Custom BSPs use an alternate method to specify dependencies. The advantage is that the specification of the

dependencies is self-contained within the custom BSP itself.

This method is accomplished by having files with the extension mtbx for each dependency in the deps directory

inside the custom BSP. An mtbx file has the exact same content at an mtb file with a different file extension.

The process of getting dependencies from mtbx files only searches in the target BSP for the application, so if

your application contains multiple custom BSPs, only the dependencies for the active target (as specified in the
TARGET variable in the Makefile or on the command line) will be included in the application.

The mtbx files are automatically created for you, so you typically don't need to do anything with them unless
you want to add or remove dependencies from your custom BSP. You can use the BSP Assistant to do this; for

details, refer to the BSP Assistant user guide.

User Guide 8 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Overview

During make getlibs, mtbx files are treated just like indirect dependencies that are specified in a manifest file.
That is, the process will copy each mtbx file to the application's libs directory and will lock the version in the

locking_commit.log file in the deps directory. The libraries are then pulled down according to the information

contained in the mtb files.

User Guide 9 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Launch the Library Manager

2 Launch the Library Manager

There are numerous ways to launch the Library Manager, and that depends on how you use the various tools
included with ModusToolbox™ software.

2.1 make command

As described in the ModusToolbox™ tools package user guide build system chapter, you can run numerous

make commands in the application directory, such as launching the Library Manager. After you have created a
ModusToolbox™ application, navigate to the application directory and type the following command in the

appropriate bash terminal window:

make library-manager

This command opens the Library Manager GUI for the specific application in which you are working.

2.2 VS Code and Eclipse

VS Code and Eclipse have tools to launch the Library Manager from within an open application. Refer to the
applicable user guide for more details:

• VS Code for ModusToolbox™ user guide

• Eclipse IDE for ModusToolbox™ user guide

2.3 Stand-alone GUI mode

You can launch the Library Manager in stand-alone mode by running its executable as applicable for your

operating system (for example, double-click or select it using the Windows Start menu). By default, it is

installed here:

<install_dir>/ModusToolbox/tools_<version>/library-manager

When run in stand-alone mode, the Library Manager opens with the target directory set as <user-home> or as
the directory selected from a previous stand-alone session.

Note: When launching from the executable, you can add the --verbose [0-3] option to specify more or
less messaging in the console. The default level is 1.

https://www.infineon.com/ModusToolboxUserGuide
https://www.infineon.com/MTBVSCodeUserGuide
https://www.infineon.com/MTBEclipseIDEUserGuide

User Guide 10 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Launch the Library Manager

If you haven’t opened the Library Manager tool previously, it starts at your home directory and looks for an
application Makefile, and then it opens the first application it finds. If the tool does not find an application, it

doesn't display any BSPs or libraries.

Click the Browse… button next to the Application Directory field and navigate to the appropriate directory
that contains the desired application.

Note: The next time you open the Library Manager in stand-alone mode, it will open with the most
recently selected application.

2.4 Local Content mode

If the Library Manager cannot connect to the internet when launching, it displays messages/errors in the

console that it cannot access the online manifest file. If you intend to work without Internet, enable Local

Content mode from the Settings menu. Refer to the Local Content Storage CLI user guide for details about
creating local content.

If you did not intend to work without Internet, check your Internet settings, adjust your proxy settings (from the
Settings menu), and then click the Retry button to re-read library information.

2.5 Non-GUI command line interface (CLI)

You can run a non-graphical interface from the command line. However, there are only a few reasons to do this

in practice. The primary use case would be part of an overall build script for the entire application. For
information about command line options, run the library-manager-cli executable using the -h option.

http://www.infineon.com/ModusToolboxLCSManager

User Guide 11 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with BSPs

3 Working with BSPs

This section covers the common tasks involved when working with BSPs for your application, including:

• Select Active BSP

• Rename BSP

• Add BSPs

• Remove BSP

The Library Manager displays the BSP(s) included with the application at the top of the list above the libraries,

by default.

3.1 Select Active BSP

The active BSP for the application displays in bold text with "(ACTIVE)" next to it. An application can only have

one active BSP. If your application has more than one BSP included, select one of the other BSPs to be active by

clicking the radio option next to it. You can also choose to right-click on it and select Set as Active BSP. Then,
click the Update button.

When you click the Update button, the system displays progress in the message console and updates your
application's Makefile "TARGET=" field to specify the new BSP as active.

User Guide 12 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with BSPs

3.2 Add BSPs

When you add a BSP to an application, you have several options, including adding a BSP from a template,
browsing to one on disk, and creating a new BSP from a device part number. To begin the process, click the

Add BSP button located below the list of BSPs and libraries.

This opens the Add BSP dialog. There are different steps to add, select, or create a BSP.

3.2.1 Add BSP from template

On the Add BSP dialog, select the desired BSP from the list, change the New BSP name, if desired, and click OK.

The added BSP will appear on the list of BSPs on the main Library Manager window.

User Guide 13 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with BSPs

3.2.2 Create BSP from MPN

On the Add BSP dialog, click the Create from MPN button. This command opens the BSP Assistant tool to
create a BSP based on device part numbers. Refer to the BSP Assistant user guide for more details about how to

create a BSP from MPN. When you close the BSP Assistant, the new BSP will show up in the Add BSP dialog
under Import.

Change the New BSP name, if desired, and click OK. The new BSP will appear on the list of BSPs on the main
Library Manager window.

3.2.3 Browse for existing BSP

On the Add BSP dialog, click the Browse for BSP button. Then on the Select Folder dialog, navigate to and
select the desired BSP and click Select Folder.

http://www.infineon.com/ModusToolboxBSPAssistant

User Guide 14 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with BSPs

The added BSP will show up in the Add BSP dialog under Import.

Change the New BSP name, if desired, and click OK. The added BSP will appear on the list of BSPs on the main
Libbrary Manager window.

3.2.4 Finalize Add BSP process

After adding a BSP you can choose to set it as the active BSP. You can also choose to remove the non-active

BSP and/or rename either BSP.

Regardless of whether you added an existing or new BSP, and whether you made other changes, the final step
is to click the Update button on the main Library Manager window to commit the changes. This copies the BSP
to the application and then it becomes owned by the application. This also updates the application's Makefile.

3.3 Rename BSP

There are a few ways to rename a BSP, as follows:

3.3.1 Existing BSP

For a BSP already shown in the main Library Manager list, right-click and select Rename BSP or double-click on
the BSP. Then in the Properties tab Value field for the Name, type the new name for the BSP.

You can also double-click the BSP name shown in the Value field to rename it.

To commit the change, click Update.

User Guide 15 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with BSPs

3.3.2 Added BSP

You can also rename a BSP when adding one. On the Add BSP dialog, the added BSP appears under Import.
When you select the added BSP, you can type a new name for it in the New BSP name field.

3.4 Remove BSP

To remove a BSP, click the Delete symbol under Remove for the appropriate BSP.

Note: The Lock symbol for the active BSP means you cannot remove the active BSP from the application.

A dialog displays a message asking you to confirm the removal.

Click Delete to remove the BSP from the list of BSPs for the application. Then, click the Update button in the

main window to commit the change.

User Guide 16 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with libraries

4 Working with libraries

This section covers various ways to update BSPs and libraries, including:

• Add library (single-core application)

• Add library (multi-core application)

• Update indirect dependency libraries

• Change library version

• Share/unshare libraries

The Library Manager displays the libraries included with the application below the BSP(s), by default.

For a multi-core application, there are two sets of libraries; one for each core project.

When a library has a newer version available than the one currently selected, a "newer version" symbol displays

under Update Available, indicating that a newer major or minor version is available.

When you select a library, various information displays on the right side of the Library Manager See Tabs for

more information.

User Guide 17 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with libraries

4.1 Add library (single-core application)

Click the Add Library button.

On the Add Library dialog, click one or more check boxes for libraries to add, and if needed, specify the Version.
Then click OK.

Note: The Target Project option for a single-core application has only one choice and it is selected by
default.

Back on the Library Manager, click the Update button to commit the changes.

4.2 Add library (multi-core application)

Click the Add Library button.

User Guide 18 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with libraries

Select the appropriate core project from the Target Project pull-down menu.

Click one or more check boxes for libraries to add, and if needed, specify the Version. Then click OK.

4.3 Update indirect dependency libraries

Some libraries included in your application show a lock symbol by default. This symbol indicates that a library
is an indirect dependency, and it is required by the BSP and/or another library.

These libraries cannot be removed using the Library Manager; however, you can change whether or not it is

shared and select a different version.

When you make a change to an Indirect Dependency library, the lock symbol changes to a Delete symbol.

Unlike BSPs, this symbol indicates that after you click Update, the library is now a direct dependency, and it is
your responsibility to manage it either as a local library and/or with the selected version.

User Guide 19 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Working with libraries

To change the library back to an Indirect Dependency, click the Delete symbol. The icon reverts back to the
lock symbol, and the settings revert back to the defaults. You must click the Update button to commit the

changes.

4.4 Change library version

Libraries have a specific version, by default. You can change a library version by selecting the pull-down menu
next to Version and choosing another version. See Version for a detailed description.

Click the Update button to commit the changes.

When you change versions for a shared ibrary, the tool creates a new subdirectory for the added version to
ensure that the existing version is available for other applications. However, when you change a version for a

local library, the system will not create a new local subdirectory. Instead, the version of the library will just be
updated with the appropriate tag.

4.5 Share/unshare libraries

When you create applications, libraries can be shared or local depending on the application and manifest.

Shared libraries are included in a mtb_shared directory, which is adjacent to your application directory.
Libraries that are local (aka, not shared) are included in the libs subdirectory inside your application’s directory.

If you select Type "Local Git Repo" under the Properties tab, a new library will be created in the libs

subdirectory, and it will not be removed from the mtb_shared library. This is because the system assumes a
shared library is being used by another application. However, if you select "Shared Git repo" for a library
already included as local in the application and click Update, that library will be removed from the libs
subdirectory and will instead be populated in the mtb_shared directory.

Click the Update button to commit the change(s). The message console displays the progress and indicates
when changes are complete.

User Guide 20 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

GUI description

5 GUI description

The Library Manager contains menus, controls, tabs and buttons used to manage BSPs and libraries.

5.1 Menus

The Library Manager has two menus, as follows:

• Settings –

• Local Content: Check box to toggle between LCS mode on and off, and read the local copy of the

manifest file installed from the LCS Manager. See Local Content mode for more details.

• Proxy Settings: Opens a dialog to specify direct or manual proxy settings.

Note: Save any changes before attempting to update proxy settings. A dialog will warn you that changes

could be lost.

• Help –

• View Help: Opens this document.

• About: Displays tool version information, with a links to open Infineon.com.

5.2 Application directory

This is the location of the application's top-level directory, which contains one or more ModusToolbox™
Makefile projects. Use the Browse… button to select a different directory, if needed.

User Guide 21 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

GUI description

5.3 BSP/library controls

The left side of the Library Manager contains various controls for managing BSPs and libraries:

• Filter text – Field used to show only the BSPs/libraries that match the text entered.

• Collapse All – Click to collapse all item trees.

• Expand All – Click to expand all item trees.

• Remove Library – This button allows you to remove libraries from the application.

• Add BSP – This button allows you to add and import BSPs to the application.

• Add Library – This button allows you to add libraries to the application.

5.4 BSP context menus

If you right-click on a BSP, different commands are available. See "Working with BSPs" for details.

• Set as Active BSP – This button allows you to switch between multiple BSPs, choosing which BSP is active

and non-active.

• Rename BSP – This button allows you to specify the name for a BSP created as an in-app BSP.

• Remove BSP – This button allows you to delete a non-active BSP.

5.5 Tabs

The right side of the Library Manager contains the following tabs for a BSP or library: Properties, README.md,
and RELEASE.md. Each tab may contain links to reference documentation that you can follow to find more
specific information about your selected BSP or library.

5.5.1 Properties tab

The Properties tab contains several fields of information about the selected BSP or library.

5.5.1.1 Name

The Name field contains the BSP or library name. For BSPs, this field can be changed. See Rename BSP for

more information on how to use the feature.

5.5.1.2 Version

The Version field doesn't apply to version 3.x BSPs, which are owned by the application. If this field is
populated, it just displays information from the JSON file.

For all libraries and 2.x BSPs, you can select a dynamic "Latest X.Y release" or a fixed "X.Y.Z release" version.
These represent tags for versions of libraries and version 2.x BSPs in GitHub repos:

• Dynamic – If you select a "Latest X.Y release " version, then it is dynamic. A ModusToolbox™ v2.x
application will download and use the appropriate version specified in the manifest and attempt to resolve
any potential conflicts with different versions. Using a "Latest" version means the item will update to the

latest, backward-compatible version whenever you click the Library Manager Update button.

User Guide 22 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

GUI description

• Fixed – By selecting a specific "release-vX.Y.Z" version, you assign a fixed version of a specific, official

release of the item that does not change, unless you manually change it.

When you create a new version 3.x application from an Infineon code example, the application converts
libraries to use the "X.Y.Z release" version, by default. This ensures that they will not be updated automatically,
unless you change the version to "Latest X.Y release."

When you open the Library Manager for an application and make any kind of change, the change summary

displays in the console. If a "latest-vX.Y" tag has a newer version, the console displays a warning about the

"latest-vX.Y" tag. It includes a hyperlink to open a dialog that explains how the "latest-vX.Y" tag auto-update
works.

If you click Update, all items with the "latest-vX.Y" tag will be moved to the newer version, even if you didn’t
make changes to them.

5.5.1.3 Type

The Type field doesn't apply to version 3.x BSPs. All 3.x BSPs are owned by the application.

For all libraries and 2.x BSPs, this field contains a pull-down menu to specify if the selected library is shared or
local. See Specifying dependencies for decriptions of shared and local.

5.5.1.4 Location

This shows the current location on disk for the selected BSP or library.

5.5.1.5 Source

This field doesn't apply to version 3.x BSPs. It shows the source location (usually on GitHub) for the library or
version 2.x BSP.

5.5.1.6 MTB file location

This field doesn't apply to version 3.x BSPs. It shows the location on disk for library and version 2.x BSP .mtb
files.

5.5.1.7 Description

For most libraries, there is a brief description included below the table.

User Guide 23 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

GUI description

5.5.2 README.md tab

This tab dispays the README.md file for the selected BSP or library, if available.

5.5.3 RELEASE.md tab

This tab dispays the RELEASE.md file for the selected BSP or library, if available.

5.6 Buttons

The Library Manager contains the following buttons to perform the described actions:

• Update – Use this button to update your project with changes made in the Library Manager. This action

runs the make getlibs command and you can use it at any time, even if you made no changes. You might
do this for a project that has no libraries yet, or to update the libraries specified as "Latest" to get any

updates. This button becomes bolded when there are pending changes requiring an update.

• Close – Use this button to close the Library Manager.

• Retry – This button displays if the message console indicates that the tool cannot access the manifest file.
Use the Retry button after adjusting your internet and/or proxy settings to check if the tool can access the

manifest file.

5.7 Message console

The area below the BSPs and Libraries displays various messages, such as when you select/deselect an item,
click a button, or select Local Content mode.

User Guide 24 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Tool change description

6 Tool change description

This section lists and describes the changes for each version of this tool.

Version Change descriptions

1.0 New tool.

1.1

Added Settings and Help menus.

Moved link about version changes to the message console, when it is applicable.

Added icon to indicate online/offline status.

Removed Summary dialog; summary is shown in the console.

1.2.0

Added Retry button.

Changed Apply button to Update.

Added Close button.

Tool can be launched from the Windows Start menu.

Updated versioning to support patch releases.

Updated for the MTB flow.

Added toolbar commands to show/hide items, as well as collapse and expand the trees.

1.30

Added indications for newer versions of BSPs and libraries.

For BSPs and libraries that are not selected, the displayed version was changed from Latest #.X release

to the actual most recent X.Y.Z release.

1.40 Updated the handling on .mtbx files.

2.0 Entire GUI updated to support ModusToolbox™ version 3.0.

2.10

Added rename BSP feature.

Added Create from MPN feature.

Changed Offline mode to Local Content mode.

Removed online status icon.

2.20
Back-end changes and bug fixes.

Updated the Properties tab to include descriptions.

User Guide 25 of 26 002-28736 Rev. *I

 2024-02-12

ModusToolbox™ Library Manager user guide

Tool change description

Revision history

Revision Date Description

** 2019-10-16 New document.

*A 2019-10-17 Added a warning about removing all Cypress BSPs/libraries when there is no custom BSP.

*B 2020-03-26 Updated to version 1.1.

*C 2020-09-01 Updated to version 1.2.0.

*D 2020-10-07 Added details for BTSDK 2.8.

*E 2021-03-25 Updated to version 1.30.

*F 2021-09-22 Updated to version 1.40.

*G 2022-09-14 Updated entire document to reflect version 2.0.

*H 2023-05-09 Updated document to version 2.10.

*I 2024-02-12 Updated document to version 2.20.

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2024 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie") .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.

In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-02-12

002-28736 Rev. *I

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

