
Visual Studio Code for ModusToolbox™ user guide

ModusToolbox™ tools package version 3.7.0

About this document
Scope and purpose

This document provides information and instructions for using Visual Studio Code (VS Code) with
ModusToolbox™ software.
ModusToolbox™ software is a set of tools and libraries that support device configuration and application
development. These tools enable you to integrate our devices into your existing development methodology.
A newer version of this document may be available on the web here.

Document conventions

Convention Explanation
Bold Emphasizes heading levels, column headings, menus and sub-menus.

Italics Denotes file names and paths.

Monospace Denotes APIs, functions, interrupt handlers, events, data types, error handlers, file/folder
names, directories, command line inputs, code snippets.

File > New Indicates that a cascading sub-menu opens when you select a menu item.

Reference documents

Refer to the following documents for more information as needed:
• ModusToolbox™ software installation guide – Provides information and instructions about installing the

tools package on Windows, Linux, and macOS.
• ModusToolbox™ tools package user guide – Provides information about all the tools included with

ModusToolbox™ tools package.
• Debugging in Visual Studio Code
• GitHub - Marus /cortex-debug: Visual Studio Code extension for enhancing debug capabilities for Cortex-M

Microcontrollers

User guide Please read the sections "Important notice" and "Warnings" at the end of this document 002-37543 Rev. *J
www.infineon.com 2026-01-19

https://www.Infineon.com/MTBVSCodeUserGuide
https://www.Infineon.com/ModusToolboxInstallGuide
https://www.Infineon.com/ModusToolboxUserguide
https://code.visualstudio.com/docs/editor/debugging
https://github.com/Marus/cortex-debug
https://github.com/Marus/cortex-debug
https://www.infineon.com

Table of contents

About this document . 1

Table of contents . 2

1 Download/install software .3
1.1 ModusToolbox™ software .3
1.2 VS Code . 3
1.3 J-Link . 3

2 Getting Started . 4
2.1 Create new application . 4
2.2 Export existing application . 7
2.3 Open workspace in VS Code . 7

3 Add/modify application code . 10

4 Using ModusToolbox™ tools . 11
4.1 ModusToolbox™ Assistant extension .11
4.2 Command line . 11

5 Build the Application . 13

6 Program/debug . 15
6.1 Program/debug common . 15
6.2 Program/debug using KitProg3/MiniProg4 . 24
6.3 Program/debug using J-Link . 28
6.4 Multi-core debugging . 30
6.5 Program/debug secure configuration devices . 33

Revision history .35

Disclaimer . 36

Visual Studio Code for ModusToolbox™ user guide

Table of contents

User guide 2 002-37543 Rev. *J
2026-01-19

1 Download/install software

1.1 ModusToolbox™ software
Download the ModusToolbox™ Setup program from https://softwaretools.infineon.com/tools/
com.ifx.tb.tool.modustoolboxsetup. Refer to the instructions in the ModusToolbox™ software installation guide
for how to install the necessary ModusToolbox™ tools and packages.

1.2 VS Code
The ModusToolbox™ tools package includes various tools to create and manage applications, but it does not
include VS Code. If you do not already have VS Code installed on your computer, you can download it from the
website:
https://code.visualstudio.com/
After opening an application in VS Code, it will recommend several extensions. The Cortex-Debug extension is
required for build and debug. Other extensions such as Arm® Assembly, ModusToolbox™ Assistant, and clangd
improve the development and debug experience. Use the search under Extensions to locate and install them:

• Cortex-Debug

• Arm® Assembly

• ModusToolbox™ Assistant

• clangd

1.3 J-Link
For J-Link debugging, download and install J-Link software:
https://www.segger.com/downloads/J-Link

Visual Studio Code for ModusToolbox™ user guide

1 Download/install software

User guide 3 002-37543 Rev. *J
2026-01-19

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxsetup
https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxsetup
https://www.Infineon.com/ModusToolboxInstallGuide
https://code.visualstudio.com/
https://www.segger.com/downloads/jlink

2 Getting Started
This section covers the ways to get started using VS Code with ModusToolbox™ software
• Create new application
• Export existing application
• Open workspace in VS Code

2.1 Create new application
Creating an application includes several steps, as follows:

2.1.1 Step 1: Open Project Creator tool
The ModusToolbox™ Project Creator tool is used to create applications based on code examples and template
applications. The tool is provided in GUI form and as a command line interface. For more details, refer to the
Project Creator user guide. By default, the tool is installed in the following directory:
<user_home>/ModusToolbox/tools_<version>/project-creator
Open the Project Creator tool as applicable for your operating system. You can launch it from the
ModusToolbox™ Dashboard or the VS Code ModusToolbox™ Assistant extension.

2.1.2 Step 2: Choose Board Support Package (BSP)
When the Project Creator tool opens, expand one of the BSP categories under Kit Name and select an
appropriate kit; see the description for it on the right. For this example, select the KIT-PSC3M5_EVK kit. The
following image is an example; the list of boards available in this version will reflect the platforms available for
development.

Visual Studio Code for ModusToolbox™ user guide

2 Getting Started

User guide 4 002-37543 Rev. *J
2026-01-19

https://www.Infineon.com/ModusToolboxProjectCreator

2.1.3 Step 3: Select application
To select an application:
1. Click Next > to open the Select Application page.

This page displays example applications, which demonstrate different features available on the selected
BSP. In this case, the KIT-PSC3M5_EVK provides the PSOC Control MCU. You can create examples for
various peripherals and security.

2. Click Browse… next to Application(s) Root Path to create or specify a folder where the application will
be created.

3. Pull down the Target IDE menu and select Microsoft Visual Studio Code.

4. Under the Template Application column, expand Getting Started and select Hello World from the list.
This example exercises the PSOC™ Control MCU to blink an LED.

Visual Studio Code for ModusToolbox™ user guide

2 Getting Started

User guide 5 002-37543 Rev. *J
2026-01-19

Note: The actual application names available might vary.

5. Type a name for your application or leave the default name. Do not use spaces in the application name.
Also, do not use common illegal characters, such as:

* . " ‘ / \ [] : ; | = ,

2.1.4 Step 4: Create application
To create the application:
1. Click Create.

The tool displays various messages.

Visual Studio Code for ModusToolbox™ user guide

2 Getting Started

User guide 6 002-37543 Rev. *J
2026-01-19

When the process completes, a message states that the application was created.

2. Click Close to exit the Project Creator tool.
Note: If you opened the Project Creator tool using the VS Code ModusToolbox Assistant extension, the

tool will close automatically upon successful completion.

2.2 Export existing application
If you have a ModusToolbox™ application that was created for another IDE or the command line, you can export
that application to be used in VS Code. Open a terminal window in the application directory and run the
command make vscode.

2.3 Open workspace in VS Code
In VS Code, select File > Open Workspace from File, navigate to the location of the application that was just
created, select the workspace file, and click Open.

Visual Studio Code for ModusToolbox™ user guide

2 Getting Started

User guide 7 002-37543 Rev. *J
2026-01-19

Depending on your settings in VS Code, you may see a message about trusting the authors. If so, click Yes, I
trust the authors.

VS Code opens with the Hello_World workspace in the EXPLORER view.

Visual Studio Code for ModusToolbox™ user guide

2 Getting Started

User guide 8 002-37543 Rev. *J
2026-01-19

Visual Studio Code for ModusToolbox™ user guide

2 Getting Started

User guide 9 002-37543 Rev. *J
2026-01-19

3 Add/modify application code
Code example applications work as they are, and there is no need to add or modify code in order to build or
program them. However, if you want to update and change the application to do something else, open the
appropriate file in the code editor.
Double-click the main.c file to open it.

As you type into the file, a dot will appear in the file’s tab to indicate changes were made. The file icon will also
indicate that there are unsaved changes.

Visual Studio Code for ModusToolbox™ user guide

3 Add/modify application code

User guide 10 002-37543 Rev. *J
2026-01-19

4 Using ModusToolbox™ tools

4.1 ModusToolbox™ Assistant extension
The easiest way to open various ModusToolbox™ tools with VS Code is by installing the ModusToolbox™

Assistant extension, which provides access to tools, configurators, and documentation.

4.2 Command line
Alternatively, you can open various ModusToolbox™ tools using make commands in the terminal. Select
Terminal > New Terminal, then select the main project folder for your application (in this case, Hello_World):

Note: On Windows, use the modus-shell (Cygwin) terminal.

This section covers a few of the tools you might open more frequently. For a complete list of the tools available,
refer to the tools package user guide.

4.2.1 Library Manager
To add, remove, or modify libraries, open the Library Manager using the following command:

make library-manager

Refer to the Library Manager user guide for details about that tool.

Visual Studio Code for ModusToolbox™ user guide

4 Using ModusToolbox™ tools

User guide 11 002-37543 Rev. *J
2026-01-19

https://www.Infineon.com/ModusToolboxUserguide
https://www.Infineon.com/ModusToolboxLibraryManager

4.2.2 BSP Assistant
To create or modify a BSP, open the BSP Assistant using the following command:

make bsp-assistant

Refer to the BSP Assistant user guide for details about that tool.

4.2.3 Device Configrator
To view peripherals, pins, clocks, etc., open the Device Configurator using the following command:

make device-configurator

The Device Configurator provides access to the BSP resources and settings. Each enabled resource contains one
or more links to the related API documentation. There are also buttons to open other configurators for
CAPSENSE™, QSPI, Smart I/O, etc. For more information, refer to the Device Configurator user guide, which is
also available by selecting View Help from the tool’s Help menu.

Note: The Device Configurator cannot be used to open Library Configurators, such as Bluetooth®.

Visual Studio Code for ModusToolbox™ user guide

4 Using ModusToolbox™ tools

User guide 12 002-37543 Rev. *J
2026-01-19

https://www.Infineon.com/ModusToolboxBSPAssistant
https://www.Infineon.com/ModusToolboxDeviceConfig

5 Build the Application
Building the application is not specifically required, because building will be performed as part of the
programming and debugging process. However, if you are running VS Code without any hardware attached you
may wish to build your application to ensure all the code is correct.
Select Terminal > Run Task. Then select Build Hello_World.

Note: If you have the ModusToolbox™ Assistant extension installed, you can build using the option under
Quick Links.

Build information will display in the Terminal.

The build should complete successfully with messages similar to the following:

Visual Studio Code for ModusToolbox™ user guide

5 Build the Application

User guide 13 002-37543 Rev. *J
2026-01-19

Visual Studio Code for ModusToolbox™ user guide

5 Build the Application

User guide 14 002-37543 Rev. *J
2026-01-19

6 Program/debug
This section covers various aspects of programming and debugging using VS Code:
• Program/debug common
• Program/debug using KitProg3/MiniProg4
• Program/debug using J-Link
• Multi-core debugging
• Program/debug secure configuration devices

6.1 Program/debug common
The VS Code GUI shows these launch configurations by default:
• Launch: This builds the associated project, programs project-specific output file, and then starts a

debugging session.
• Attach: This starts a debugging session attaching to a running target without programming or resetting.
• Erase Device: This erases all internal memories.
• Erase All: If present, erases all internal and external memories.
• Program: This builds the associated project, programs project-specific output file, and then runs the

program.

6.1.1 Program
Open the main menu, select Terminal > Run Task. On the selection menu, select the "program" task.

If needed, VS Code builds the application and messages display in the Terminal. If the build is successful, device
programming starts immediately. If there are build errors, then error messages will indicate as such. When
programming completes successfully, the LED will start blinking.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 15 002-37543 Rev. *J
2026-01-19

6.1.2 Debug
Select the Run and Debug icon in the VS Code Activity Bar, select the Launch PSoC C3 CM33
(KitProg3_Miniprog4) or Launch PSoC C3 CM33 (JLink) Launch Configuration, and click Start Debugging
icon or press F5.

If needed, VS Code builds the application and messages display in the Console. If the build is successful, VS
Code switches to debug mode automatically. If there are build errors, then error messages will indicate as such.

6.1.3 Changing programming interface SWD/JTAG
To change the target interface, update the application’s bsp.mk file by adding a make variable as shown
(possible values are ‘swd’ and ‘jtag’).

MTB_PROBE_INTERFACE=swd

Then, regenerate launch configurations:

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 16 002-37543 Rev. *J
2026-01-19

6.1.4 Update debugger serial number
If there are two or more debugger probes connected to your computer, the first detected probe will be used by
default. There should not be more than one probe with the same serial number. Use this method if you want to
use only one specific device. Use OS-specific tools to determine the serial number of connected USB devices.
Update application's bsp.mk file by adding variable below with the serial number specified, and regenerate
launch configurations:

MTB_PROBE_SERIAL=0B0B0F9701047400

6.1.5 Add Live Watch
While debugging an application in VS Code, it is possible to add a Live Watch variable. This topic provides an
example using the Hello World application.

Note: Live Watch is not supported for multi-core applications.

1. Open the application's launch.json file, and locate the launch configuration. In this case "Launch PSoC
C3 CM33 (KitProg3_MiniProg4)".

2. Scroll to the end of the configuration and add the following:

"liveWatch": {
 "enabled": true,
 "samplesPerSecond": 4
}

3. Open the main.c file and declare a global variable:

volatile int count = 0;

4. Add the code to increment the variable every time the LED is blinking:

count++;

5. Launch a serial terminal such as PuTTY to monitor the output.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 17 002-37543 Rev. *J
2026-01-19

Note: This step may only be required for applications that have output, such as Hello World.

6. Start the debugger. When it stops at main(), add the count variable to the CORTEX LIVE WATCH section
and press the [Enter] key.

7. Check that the variable was added to the list and click on Run/Continue to proceed with debugging.

8. Observe that the variable's value increments as the code is running.

6.1.6 Add SEGGER SWO/RTT Grapher
You can use the SEGGER real-time transfer (RTT) to visualize the output of the target performed via the SWO
pin. This section provides an example:
1. Start by adding the live watch described in the previous topic.
2. In the main.c file, add an include for the SEGGER RTT header file:

#include "SEGGER_RTT.h"

3. Also, change the "count" global variable to uint32_t:

static uint32_t count = 0;

4. Next, locate the main "for" loop. Insert these two lines directly before the loop:

SEGGER_RTT_Init();
SEGGER_RTT_ConfigUpBuffer(0, NULL, NULL, 0, SEGGER_RTT_MODE_BLOCK_IF_FIFO_FULL);

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 18 002-37543 Rev. *J
2026-01-19

5. Then, inside the loop, update the count=count+1; line to add CySysLib_Delay(); and SEGGER_RTT_Write();
commands, as follows:

 for (;;)
 {
 Cy_SysLib_Delay(100);
 count=count+1;
 if(count%256==0)
 {
 count=0;
 }
 SEGGER_RTT_Write(0, &count, sizeof(count));

/* code continues */

 }

6. Manually add a new file in the deps directory named, segger-rtt.mtb, with the following content:

https://github.com/SEGGERMicro/RTT#master#$$ASSET_REPO$$/RTT/master

7. Edit the .cyignore file with the following content:

Segger RTT
$(SEARCH_RTT)/Examples
$(SEARCH_RTT)/Syscalls/SEGGER_RTT_Syscalls_IAR.c

8. Open the Library Manager and click Update, or run make getlibs to update the application and acquire
the RTT library.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 19 002-37543 Rev. *J
2026-01-19

9. Open the launch.json file and, in the same "Launch" configuration where you added the live watch, and
add the rttConfig configuration, as follows:

 "liveWatch": {
 "enabled": true,
 },
 "rttConfig": {
 "enabled": true,
 "address": "auto",
 "decoders": [
 {
 "label": "",
 "port": 0,
 "type": "graph",
 "encoding": "unsigned",
 "graphId": "count",
 "scale": 1
 }
]
 },

10. Then, add the graphConfig configuration:

 "graphConfig": [
 {
 "label": "RTT variable test",
 "timespan": 20,
 "type": "realtime",
 "annotate": true,
 "maximum": 255,
 "minimum": 0,
 "plots": [
 {
 "graphId": "count",
 "label": "value of count",
 "color": "#FF0000"
 }
]
 }
]

11. Save all files, start the debugger, and then click Continue.
VS Code will display the RTT grapher.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 20 002-37543 Rev. *J
2026-01-19

See https://community.infineon.com/t5/ModusToolbox/Using-Segger-RTT-library-in-ModusToolbox/td-p/
965434 for expanding instructions for this example. To learn more about SEGGER RTT support, review these
links:
• https://github.com/Marus/cortex-debug/wiki/SEGGER-RTT-support
• https://github.com/Marus/cortex-debug/wiki/SWO-Output#output-graphing-graphing
• https://github.com/SEGGERMicro/RTT.git

6.1.7 BMI for XMC1xxx/4xxx devices
XMC1xxx/4xxx devices use the Boot Mode Index (BMI) value to determine their boot mode and debug
configuration after power-up. This value is stored in flash config sector 0.
The default boot mode is either:
• ASC_BSL (Bootstrap Loader) – for new, out-of-the-factory, devices. This mode allows erasing and

programming flash via UART or SPI interface using the onboard J-Link Lite debugger and legacy Infineon
tools, but does not allow programming and debugging in ModusToolbox™ and using the standalone J-Link
debugger.

• SWD0 (Serial Wire Debug via Channel 0) – for Infineon kits, like XMC1100 Boot Kit. This mode allows any
flash operations and debugging via the SWD interface.

There are several other modes, including using different channels (pins), SPD protocol, and flash protection
scheme, which you may want to activate (switch to) during the development and production life cycles.
Refer to the following documentation for more details about BMI implementation and usage for XMC1xxx/4xxx
devices.
• Boot Mode Index (BMI) XMC™ microcontrollers
• Tooling - Boot mode options XMC4000

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 21 002-37543 Rev. *J
2026-01-19

https://community.infineon.com/t5/ModusToolbox/Using-Segger-RTT-library-in-ModusToolbox/td-p/965434
https://community.infineon.com/t5/ModusToolbox/Using-Segger-RTT-library-in-ModusToolbox/td-p/965434
https://github.com/Marus/cortex-debug/wiki/SEGGER-RTT-support
https://github.com/Marus/cortex-debug/wiki/SWO-Output#output-graphing-graphing
https://github.com/SEGGERMicro/RTT.git
https://www.infineon.com/row/public/documents/30/56/infineon-ip-bmi-xmc1-tr-en.pdf
https://www.infineon.com/row/public/documents/30/56/infineon-tooling---xmc4000-boot-mode-options-tr-en.pdf

• AN_201511_PL30_005 - Boot mode handling for XMC1000
• XMC1100 AB-Step Reference Manual
• SEGGER KBA - Infineon XMC1000: BMI - Boot Mode Index

Switching BMI with the onboard J-Link Lite debugger

With the on-board J-Link Lite debugger, you can switch the BMI using the SEGGER J-Link Commander tool,
which is a part of the J-Link Software Pack that must be installed to use XMC1xxx/4xxx in ModusToolbox™.
1. Connect the XMC™ Kit to USB and start J-Link Commander.
2. In J-Link Commander, connect to the target device, providing its name and specifying the SWD interface.

• Use GetBMI command to obtain the current BMI.
• Use SetBMI command without parameters to list all Boot Mode Indexes.
• Use SetBMI <index> command to set switch to desired BMI.

The debugger is now able to connect and identify the target after switching the BMI.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 22 002-37543 Rev. *J
2026-01-19

https://www.infineon.com/row/public/documents/30/42/infineon-applicationnote-xmc1000-microcontroller-bootmodehandling-an-en.pdf
https://www.infineon.com/row/public/documents/30/44/infineon-xmc1100-ab-rm-um-en.pdf
https://kb.segger.com/Infineon_XMC1000
https://www.segger.com/downloads/jlink/

Switching BMI with stand-alone J-Link debugger

Stand-alone J-Link debuggers will automatically switch the BMI mode from ASC_BSL to SWD0 on target
connection.
No additional steps required for programming and debugging in ModusToolbox™ if Channel 0 is used for debug
pins (SWDIO - P0.14, SWCLK - P0.15).
If a BMI other than SWD0 is required, you can use one of three *.pex scripts (ASC_BSL to SWD1, ASC_BSL to
SPD0, and ASC_BSL to SPD1) available in SEGGER’s KBA. You can also use the J-Flash tool, where the desired
BMI mode can be applied after programming, like in the example project file.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 23 002-37543 Rev. *J
2026-01-19

https://kb.segger.com/Infineon_XMC1000
https://kb.segger.com/File:XMC1000_Example.jflash

6.2 Program/debug using KitProg3/MiniProg4
Most PSOC™-based kits use KitProg3/MiniProg4 as the default programmer/debugger, so there is nothing to
configure for them.

6.2.1 Connect the Kit
Follow the instructions provided with the kit to connect it to the computer with the USB cable.

6.2.2 KitProg Firmware Loader
The PSOC™ MCU kits include on-board programmer/debug firmware, called KitProg. KitProg3 is the latest
firmware version. However, some older kits come with KitProg2 firmware installed, which does not work with
the ModusToolbox™ software and you must update them to KitProg3. KitProg3 provides the CMSIS-DAP (Bulk)
protocol by default, which is up to ~2.5 times faster than the CMSIS-DAP (HID) protocol. Both modes can be
used via OpenOCD.
To update it, use the ModusToolbox™ Programmer GUI or the fw-loader CLI tool. Both are provided with the
ModusToolbox™ Programming tools package available from the Setup program.
For more details about these tools, refer to the ModusToolbox™ Programmer GUI user guide or the Firmware
Loader user guide.

Note: On a Linux machine, you must run the udev_rules\install_rules.sh script before the first run of the
fw-loader.

6.2.2.1 Supplying power with KitProg3_MiniProg4
If using the KitProg3 connector on a kit, power is generally supplied by the host PC. When using a MiniProg4,
power is not supplied via the MiniProg4 by default. It is expected that the target MCU will be powered
externally. However, the MiniProg4 does provide the ability to supply power to the target MCU.
Note: Verify the voltage range supported by the target MCU, since it can be damaged by supplying

unsupported voltage. Make sure that your MCU is not powered externally before supplying power
via the KitProg3_MiniProg4 launch configuration. This supply is limited to approximately 200 mA and
is protected against excess current draw. You can select 1.8 V, 2.5 V, 3.3 V, or 5 V.

6.2.2.1.1 Turning power supply on

Debug session

To turn power supply on during a debug session, edit the Launch configurations:
1. Open the Run and Debug view, select the launch configuration to be modified, and click the gear icon

that opens the selected launch configurations in launch.json file.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 24 002-37543 Rev. *J
2026-01-19

https://softwaretools.infineon.com/tools/com.ifx.tb.tool.modustoolboxsetup
https://www.infineon.com/ModusToolboxProgrammeruserguide
https://www.infineon.com/fw-loaderuserguide
https://www.infineon.com/fw-loaderuserguide

2. Look for the openOCDPreConfigLaunchCommands property. If it is not present, add it. Update the property to
include the following value:

"set ENABLE_POWER_SUPPLY <mV>"

Where <mV> defines target voltage in millivolts. For example:

3. Save the changes to the file.

Programing or erasing

To turn power supply on when programing or erasing, edit the Task configurations:
1. On the main menu, select Terminal > Configure Task....

2. On the dialog, select the task to be modified, which opens the tasks.json file to that task.
3. Update the task to add the following value to the args property:

_MTB_RECIPE__OPENOCD_INTERFACE=\"source [find interface/kitprog3.cfg]; set
ENABLE_POWER_SUPPLY <mV>";\

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 25 002-37543 Rev. *J
2026-01-19

Where <mV> defines target voltage in millivolts. For example:

{
 "label": "Program",
 "type": "process",
 "command": "bash",
 "args": [
 "--norc",
 "-c",
 "make -j8 program _MTB_RECIPE__OPENOCD_INTERFACE=\"source [find interface/
kitprog3.cfg]; set ENABLE_POWER_SUPPLY 3300";\ --output-sync"
],
 "windows": {
 "command": "${config:modustoolbox.toolsPath}/modus-shell/bin/bash.exe",
 "args": [
 "--norc",
 "-c",
 "export PATH=/bin:/usr/bin:$PATH ; ${config:modustoolbox.toolsPath}/modus-
shell/bin/make.exe -j8 program _MTB_RECIPE__OPENOCD_INTERFACE=\"source [find interface/
kitprog3.cfg]; set ENABLE_POWER_SUPPLY 3300";\ --output-sync"
]
 },
 "problemMatcher": "$gcc",
 "group": {
 "kind": "build"
 }
},

4. Save the changes to the file.

6.2.2.2 Power cycle programming mode with KitProg3_MiniProg4

Note: This section is applicable to PSOC™ 6 and PSOC™ 4 only.

By default, Launch Configurations use Reset mode to program the device. However, Reset mode is not available
in all situations (for example, if the XRES pin is not available on the part's package). In these cases, Launch
Configurations use an alternative reset with software. However, using the software reset type is not sufficient in
cases in which access to the device's DAP is restricted (such as when set by security settings).
If there is no XRES pin available and DAP access is restricted, the only way to reset a part is to use Power Cycle
mode. Follow these instructions to add commands to the launch configuration and switch to Power Cycle
mode.

Note: Verify the voltage range supported by the target MCU, since it can be damaged by supplying
unsupported voltage. Make sure that your MCU is not powered externally before supplying power
via the KitProg3_MiniProg4.

Debug session

To enable power cycle during a debug session, edit the Launch configurations:
1. Open the Run and Debug view, select the launch configuration to be modified, and click the gear icon

that opens the selected launch configuration in the launch.json file.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 26 002-37543 Rev. *J
2026-01-19

2. Look for the openOCDPreConfigLaunchCommands property. If it is not present, add it. Update the property to
include the following value:
• For PSOC™ 6:

"set ENABLE_POWER_SUPPLY <mV>",
"set ENABLE_ACQUIRE 2"

• For PSOC™ 4:

"set ENABLE_POWER_SUPPLY <mV>",
"set PSOC4_USE_ACQUIRE 2"

Where <mV> defines target voltage in millivolts. For example:

3. Save the changes to the file.

Programing or erasing

To enable power cycle when programing or erasing, edit the Task configurations:
1. On the main menu, select Terminal > Configure Task....

2. On the dialog, select the task to be modified, which opens the tasks.json file to that task.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 27 002-37543 Rev. *J
2026-01-19

3. Update the task to add the following value to the args property:
• For PSOC™ 6:

_MTB_RECIPE__OPENOCD_INTERFACE=\"source [find interface/kitprog3.cfg]; set
ENABLE_POWER_SUPPLY <mV>; set ENABLE_ACQUIRE 2;\"

• For PSOC™ 4:

_MTB_RECIPE__OPENOCD_INTERFACE=\"source [find interface/kitprog3.cfg]; set
ENABLE_POWER_SUPPLY <mV>; set PSOC4_USE_ACQUIRE 2;\"

Where <mV> defines target voltage in millivolts. For example:
4. Save the changes to the file.

6.3 Program/debug using J-Link
Most PSOC™-based BSPs default to using the KitProg3/MiniProg4 programmer/debugger launch configurations.
This section covers how to use J-Link.

6.3.1 Configure J-Link programmer/debugger settings
1. Open your ModusToolbox™ application's bsp.mk file and enter the following variable:

BSP_PROGRAM_INTERFACE=JLink

2. Also enter the following variable to specify the path to the J-Link install directory:

MTB_JLINK_DIR=<path to J-Link>

3. Save the bsp.mk file.

4. In a bash Terminal run:

make vscode

When the command completes, J-Link configurations will be shown. These are the same configurations
described in Program/debug common, but applicable to J-Link.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 28 002-37543 Rev. *J
2026-01-19

5. Open the settings.json file and <app>.code-workpace file to verify the path to the J-Link GDB server.

For example, the default on Windows is:

"cortex-debug.JLinkGDBServerPath": "C:/Program Files/SEGGER/JLink/JLinkGDBServerCL.exe"

6.3.2 Connect the Kit
Follow the instructions provided with the kit and from SEGGER to connect it to the computer with the J-Link
probe.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 29 002-37543 Rev. *J
2026-01-19

6.4 Multi-core debugging
Projects created for VS Code also provide debug configurations for multi-core applications. They support these
probes:
• KitProg3 onboard programmer
• MiniProg4
• J-Link (See Configure J-Link programmer/debugger settings)

6.4.1 Configurations
The configurations support debugging one core at a time and multiple cores as well. After the application has
opened, there will be several configurations available for use in the Run and Debug tab of Activity Bar as
shown.

These include:
• Multi-Core Debug: programs multiple hex files, launches OpenOCD/J-Link GDB Server and starts multi-

core debug session
• Launch <device>: launches debug session on the chosen core
• Attach <device>: attaches to the running core
In addition to these configurations, there is associated VS Code tasks available through the main menu
Terminal > Run Task.
• Erase Device: erases all internal memory banks.
• Program <application_name>: downloads combined hex file into the flash.
• Program <project_name>: downloads project-specific hex file into the flash.
• Erase All: If present, erases all internal and external memories.

6.4.2 Launch the configuration
To launch multi-core debugging, run the Multi-Core Debug configuration. You will end up with a debug session
containing two debug processes in CALL STACK view.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 30 002-37543 Rev. *J
2026-01-19

Once a session has started, the CM0+ core is halted at the beginning of main(), while the CM4 core is spinning in
an endless loop in boot code, waiting for start. It will start and halt at main() as soon as the application running
on the CM0+ executes the Cy_SysEnableCM4() function.
In the CALL STACK view you can observe two debug processes, each of them associated with a specific core. You
can switch between the cores by selecting the appropriate process.

Note: There is one limitation for XMC7000 MCUs. Before launching a multi-core debug session, you must
program the MCU by launching the Program Application configuration.

6.4.3 Multi-core debug CM33 secure application booting from RRAM
When using multi-core debug CM33 secure applications booting from RRAM (for example
PSOC_Edge_RTC_periodic_wakeup), you must configure the launch configuration to add the SMIF IP enabling
commands.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 31 002-37543 Rev. *J
2026-01-19

Add the following to `overrideLaunchCommands` and `overrideRestartCommands` parameters in the "Multi-
Core Debug" configuration:

For KitProg3/MiniProg4

monitor mww 0x54004054 0
monitor mww 0x54004050 4

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 32 002-37543 Rev. *J
2026-01-19

For J-Link

monitor memU32 0x54004054=0
monitor memU32 0x54004050=4

6.5 Program/debug secure configuration devices
The BootROM on devices such as PSOC™ Control and PSOC™ Edge can temporarily disable access to the core's
Access Port (AP). This behavior is determined by the security policy during device provisioning. However, access
can be re-enabled using a certificate (debug token). If the debugger identifies that the AP is disabled, it will
upload and verify the certificate located in the ./packets/debug_token.bin file within the current project folder.
Note: For details about PSOC™ Control C3 and PSOC™ Edge E8 MCU security, refer to Application Notes:

• AN240106 – Getting started with PSOC™ Control C3 security
• AN237849 – Getting started with PSOC™ Edge security

By default, the certificate is located in ./packets/debug_token.bin in the application root folder for both
OpenOCD and Segger J-Link.

To change the location and name of the certificate (address cannot be changed) for programming and
debugging, use the make variable CY_DBG_CERTIFICATE_PATH.
You can use the variable in the Makefile. For example:

CY_DBG_CERTIFICATE_PATH=../new_location/new_name_4_token.bin

You can optionally make changes to the certificate’s setting using make commands and OpenOCD commands.
OpenOCD 6.5.1

Make variable (Program and Debug)

Note: If you use this variable, it will apply the new path to the certificate for all Launch Configurations
(Debug, Program, Erase), but you must first regenerate the Launch Configuration using the make
vscode command.

You can also run the make variable in a terminal, and it will only apply to the specific make command. For
example:

make program CY_DBG_CERTIFICATE_PATH=../new_location/new_name_4_token.bin
make erase CY_DBG_CERTIFICATE_PATH=../new_location/new_name_4_token.bin

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 33 002-37543 Rev. *J
2026-01-19

https://www.infineon.com/assets/row/public/documents/30/42/infineon-an240106-getting-started-psoc-control-c3-security-applicationnotes-en.pdf
https://www.infineon.com/assets/row/public/documents/30/42/infineon-an237849-getting-started-psoc-edge-security-applicationnotes-en.pdf

OpenOCD commands (Debug only)

Another option to specify a different path and address for the certificate is by using the following OpenOCD
commands. These apply only during a debug session:

"set DEBUG_CERTIFICATE %PATH_TO_TOKEN%"
"set DEBUG_CERTIFICATE_ADDR %HEX_ADDRESS%"

6.5.2 J-Link
For single-core applications, the certificate must be located in ./packets/debug_token.bin in the application root
folder. Its name and location cannot be changed.
For multi-core applications, there must be multiple certificates located in ./packets/debug_token.bin in the
application root folder, as well as all sub-project folders. The names and locations cannot be changed.

Visual Studio Code for ModusToolbox™ user guide

6 Program/debug

User guide 34 002-37543 Rev. *J
2026-01-19

Revision history
Revision Date Description
** 2023-05-16 New document.

*A 2023-07-18 Added instructions for using MiniProg4 and powering the MCU.

*B 2024-01-25 Updates for version 3.2 tools package.

*C 2024-10-02 Updates for version 3.3 tools package.

*D 2024-10-11 Updated information about tasks and power control.

*E 2024-12-06 Updates for version 3.4 tools package.

*F 2025-03-24 Updates for version 3.5 tools package.

*G 2025-05-20 Added note that Live Watch is not supported for multi-core applications.
Updated path to fw-loader; located only in Programming tools.

*H 2025-09-03 Updates for version 3.6 tools package.
Added section for multi-core debug CM33 secure application booting from RRAM.

*I 2025-12-12 Updates for version 3.7 tools package.
Added BMI topic for XMC1xxx/XMC4xxx devices.
Updated information on ModusToolbox™ Assistant extension.

*J 2026-01-19 Added section for program/debug secure configuration devices.

Visual Studio Code for ModusToolbox™ user guide

Revision history

User guide 35 002-37543 Rev. *J
2026-01-19

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2026-01-19
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2026 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-kpt1712774185041

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Download/install software
	1.1 ModusToolbox™ software
	1.2 VS Code
	1.3 J-Link

	2 Getting Started
	2.1 Create new application
	2.1.1 Step 1: Open Project Creator tool
	2.1.2 Step 2: Choose Board Support Package (BSP)
	2.1.3 Step 3: Select application
	2.1.4 Step 4: Create application

	2.2 Export existing application
	2.3 Open workspace in VS Code

	3 Add/modify application code
	4 Using ModusToolbox™ tools
	4.1 ModusToolbox™ Assistant extension
	4.2 Command line
	4.2.1 Library Manager
	4.2.2 BSP Assistant
	4.2.3 Device Configrator

	5 Build the Application
	6 Program/debug
	6.1 Program/debug common
	6.1.1 Program
	6.1.2 Debug
	6.1.3 Changing programming interface SWD/JTAG
	6.1.4 Update debugger serial number
	6.1.5 Add Live Watch
	6.1.6 Add SEGGER SWO/RTT Grapher
	6.1.7 BMI for XMC1xxx/4xxx devices

	6.2 Program/debug using KitProg3/MiniProg4
	6.2.1 Connect the Kit
	6.2.2 KitProg Firmware Loader
	6.2.2.1 Supplying power with KitProg3_MiniProg4
	6.2.2.1.1 Turning power supply on

	6.2.2.2 Power cycle programming mode with KitProg3_MiniProg4

	6.3 Program/debug using J-Link
	6.3.1 Configure J-Link programmer/debugger settings
	6.3.2 Connect the Kit

	6.4 Multi-core debugging
	6.4.1 Configurations
	6.4.2 Launch the configuration
	6.4.3 Multi-core debug CM33 secure application booting from RRAM

	6.5 Program/debug secure configuration devices
	6.5.1 OpenOCD
	6.5.2 J-Link

	Revision history
	Disclaimer

