
 

www.cypress.com Document No. 001-73054 Rev. *E 1 

AN73054 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 

 Author: Vivek Shankar Kannan 

 Associated Project: Yes 

 Associated Part Family: All PSoC 3 and PSoC 5LP parts  

 Software Version: PSoC Creator™ 3.3 CP1 or later 

 Related Application Notes: AN84858, AN44168, AN73854 

  

AN73054 shows you how to implement PSoC 3 or PSoC 5LP device programming with an external microcontroller 

by using modular C code. In this process, called Host Sourced Serial Programming (HSSP), the host microcontroller 

programs PSoC 3 or PSoC 5LP through the serial wire debug (SWD) interface. The C code is written so that it can 

be ported to any microcontroller with minimal changes, speeding up HSSP application development for PSoC 3 or 

PSoC 5LP. 

 

Contents

1 Introduction ............................................................... 1 
1.1 Types of Programmers .................................... 1 
1.2 Terms and Definitions ...................................... 2 

2 HSSP Firmware Architecture .................................... 3 
2.1 SWD Protocol Physical Layer .......................... 3 
2.2 SWD Protocol Packet Layer ............................ 4 
2.3 HSSP Timeout Parameters .............................. 4 
2.4 Entering HSSP Programming Mode ................ 4 
2.5 HSSP Programming Data ................................ 4 
2.6 Fetching Programming Data ............................ 5 
2.7 HSSP Programming Steps .............................. 5 
2.8 Main Application Code ..................................... 5 

3 Porting the HSSP Application to a Host Programmer
 7 

3.1 Files that need to be Ported ............................. 7 
3.2 Code Changes Required while Porting ............ 7 
3.3 Calculating HSSP Timeout Parameters ........... 8 
3.4 Interface for Receiving HSSP Programming 
Data  ......................................................................... 9 

3.5 HSSP Timing Validation ................................ 10 
4 Tips and Tricks for Debugging HSSP Issues .......... 10 
5 Summary ................................................................ 11 
6 Related Documentation .......................................... 12 

6.1 Application Notes ........................................... 12 
6.2 Programming Specifications .......................... 12 
6.3 PSoC Architecture Technical Reference 
Manuals ...................................................................... 12 
6.4 Webpage ....................................................... 12 
6.5 List of Attached Projects ................................ 12 

A Appendix A ............................................................. 13 
A.1 Hex File Parser Application ........................... 13 

B Appendix B ............................................................. 16 
B.1 HSSP Functions ............................................ 16 

C Appendix C ............................................................. 19 
C.1 Differences between PSoC 3 HSSP and 
PSoC 5LP HSSP ........................................................ 19 

Document History ............................................................ 20 
 

 

1 Introduction 

PSoC 3 or PSoC 5LP device programming refers to the programming of the nonvolatile memory in the device by using an 
external host programmer. The host can be the programmer supplied by Cypress (CY8CKIT-002 MiniProg3), a third-party 
programmer, or a custom programmer (for example, an onboard microcontroller). This application note explains how to 
implement a host programmer to program a PSoC 3 or PSoC 5LP device. For more information on the device architecture and 
to learn how to create projects for PSoC 3 or PSoC 5LP using the PSoC Creator™ software, refer to the application notes: 
AN54181 – Getting Started with PSoC® 3, and AN77759 – Getting Started with  PSoC® 5LP. 

1.1 Types of Programmers 

The type of device programmer you choose depends on the stage of product development: 

http://www.cypress.com/
http://www.cypress.com/?rID=81013
http://www.cypress.com/documentation/application-notes/an44168-psoc-1-device-programming-using-external-microcontroller
http://www.cypress.com/documentation/application-notes/an73854-psoc-3-psoc-4-and-psoc-5lp-introduction-bootloaders
http://www.cypress.com/?rID=38154&source=an84858
http://www.cypress.com/documentation/application-notes/an54181-getting-started-psoc-3
http://www.cypress.com/documentation/application-notes/an77759-getting-started-psoc-5lp


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 2 

Prototyping: A programmer must be able to perform the following functions: 

1. Program the device. 

2. Debug the device to troubleshoot the application. 

The programmers used during prototyping must also interact with the integrated design environment (IDE)—for 
example, PSoC Creator™—to accomplish the programming and debugging operations. A few examples are 
Cypress’s MiniProg3 or the PSoC® 5LP Prototyping Kit, which can be used as a low-cost programmer/debugger. 

Production: You require a programmer that can program multiple devices. It parses the hex file to extract the 
necessary information and implements programming through the programming interface, such as SWD. 

There are two major categories of programmers: 

▪ In-system programmers can program the target device directly on the end-application PCB. You can connect the 
external programmer to the device’s programming pins to do in-system programming. 

▪ Socket programmers require the target device to be placed on the programmer hardware socket for 
programming. After programming, solder the target device to the end-application PCB. Most third-party 
production programmers are of the socket type. 

In both in-system and socket programming, the programmer implements an HSSP algorithm and generates signals to 
program the hex file’s data. 

This application note provides the C code to implement an HSSP programmer. You can easily port this C code to any 
host microcontroller with minimal changes. By porting, you reduce the time required to develop HSSP applications. 
The project provided with this application note uses a PSoC 5LP device as a host programmer to program the target 
PSoC 3 or PSoC 5LP device. 

Before reading this application note, review the programming specifications document of the respective device listed 
in the Related Documentation section. This document explains the programming interface, programming algorithm, 
hardware connection, and electrical timing specifications required to program a PSoC 3 or PSoC 5LP device. This 
application note is a practical implementation of the programming specifications. 

1.2 Terms and Definitions 

1. Serial wire debug (SWD): Developed by ARM, the SWD protocol uses only two wires—SWDCLK (clock) and 
SWDIO (bidirectional data line)—to program and debug. 

2. Debug access port (DAP): DAP is the program/debug interface between SWD and the Cortex-M3 CPU in 
PSoC 5LP. PSoC 3, which has an 8051 CPU, has a test controller block that is similar to the DAP in PSoC 5LP. 
The DAP includes a debug port (DP) and an access port (AP). 

 DP is responsible for the physical connection to the programmer/debugger. 

  AP provides the interface between the DAP module and the CPU, the flash memory, and so on. 

3. HSSP: HSSP refers to the programming of the target device on the board using a host microcontroller. The 
target PSoC is programmed through the SWD interface. In this application note, HSSP uses a bit-banging 
implementation to program the target device. Bit-banging programming refers to the technique in which 
programming pins are manipulated using a software code that resides in the host programmer. 

4. Differences between bootloading and HSSP: In embedded systems, bootloaders are also used to update the 
system firmware. Bootloading and HSSP differ in the following key aspects: 

 Bootloaders are used to update the flash memory of the device over a standard communication protocol. 
Bootloaders can update only a specific portion of the flash memory, known as the bootloadable area.  

 On the other hand, HSSP supports complete programming of the flash memory in PSoC. 

 Bootloaders can use any standard communication interface (such as, USB, I2C, SPI, and UART) to update the 
firmware, while HSSP uses an SWD or JTAG interface to program the flash. This application note project 
supports only SWD interface. 

 

http://www.cypress.com/
http://www.cypress.com/?id=2494&source=an84858
http://www.cypress.com/?rID=38154&source=an84858
http://www.cypress.com/?rid=108038
http://www.cypress.com/?rID=2543
http://www.cypress.com/?rID=2543


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 3 

2 HSSP Firmware Architecture  

Figure 1 shows the call tree graph of the HSSP firmware architecture and the high-level sequence of steps in the 
HSSP application. Those steps displayed under HSSP Implementation Flow in Figure 1 are explained in detail in the 
PSoC 3 or PSoC 5LP Programming Specifications. The function of each layer of the code in the HSSP firmware 
architecture is explained in the following sections. Appendix B lists the functions used in the different layers of the 
HSSP firmware. 

Figure 1. PSoC 3 and PSoC 5LP HSSP Firmware Architecture 

Host Programmer

SWDIO

SWDCK

XRES

Target PSoC 3 

or PSoC 5LP

device

RegisterDefines.h,

Swd_PhysicalLayer.h,

Swd_PhysicalLayer.c

SWD Protocol Physical Layer 

Swd_PacketLayer.h,

Swd_PacketLayer.c

SWD Protocol Packet Layer 

DeviceAcquire.h,

DeviceAcquire.c

Entering Programming mode

(Time Critical code)

Timeout.h,

Timeout.c

HSSP Timeout Parameters

ProgrammingSteps.h,

ProgrammingSteps.c

HSSP Programming Steps

 

DataFetch.h,

DataFetch.c

 Fetching Programming 

Data

 HexImage.h,

HexImage.c

 Programming 

Data

main.c

Main application code

Enter Programming mode

Configure Target Device

Verify Device ID

Erase All (Entire Flash memory)

 Program Device Configuration 

Nonvolatile latch

Program Flash

Verify Checksum

Verify Flash

 Program Write Once Nonvolatile 

latch

Program Flash Protection data

Verify Flash Protection data

Exit Programming mode

HSSP Implementation Flow

Program EEPROM

Verify  EEPROM

 

2.1 SWD Protocol Physical Layer 

This layer includes the files RegisterDefines.h, Swd_PhysicalLayer.h, and Swd_PhysicalLayer.c. These 

files have the driver routines to manipulate the SWDIO, SWDCK, and XRES pins used for programming the target 
device. The code in these files applies when PSoC 5LP is the host programmer. For any other host processor, you 
must modify the function definitions and the macro definitions in the files appropriately.  

RegisterDefines.h: This header file contains the definitions for the port number, pin number, output register, input 
register, and the drive mode register of the programming pins. The definitions are specific to PSoC 5LP as the host 
programmer and should be modified for the specific host used. The register definitions are used in the 
Swd_PhysicalLayer.c, Swd_PhysicalLayer.h files to define the bit banging routines for the programming pins. 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 4 

Swd_PhysicalLayer.h, Swd_PhysicalLayer.c: These files contain the macros and the functions to manipulate the 
programming pins. They use the register definitions in RegisterDefines.h to access the programming pins. Note 

that the bit banging routines are provided both as macros and as functions. That is because the procedure to enter 
the programming mode of PSoC 3 and PSoC 5LP (defined as “Step 1: Enter Programming Mode” in the 
programming specification) has strict timing requirements. Therefore, bit banging macros are used to reduce the 
execution time.  

2.2 SWD Protocol Packet Layer 

This layer includes the files Swd_PacketLayer.h, Swd_PacketLayer.c. These files have the packet routines for 

sending the SWD read and the SWD write packets. These packet routines are called by the functions in 
DeviceAcquire.c and ProgrammingSteps.c. To meet the critical timing requirements in entering the 

programming mode of PSoC 3 or PSoC 5LP, a separate SWD write packet function Swd_WritePacketFast(…) is 

defined that has been optimized for execution time by having few function calls in its definition. This function expects 
the pre-calculated parity bit of the 4-byte data as a function parameter. This function uses the bit banging macros 
defined in Swd_PhysicalLayer.h, and another function Swd_SendByteFast(…) to send a single SWD write 

packet quickly. 

All of these SWD packet functions operate on three global variables - Swd_ packetHeader, Swd_packetAck, 

and Swd_packetData[], that are accessed by the functions in the top layer files, as shown in Figure 1. 

2.3 HSSP Timeout Parameters 

This layer includes the files Timeout.h, Timeout.c. These files have the time stamp definitions and the delay 

routines used in HSSP. The time stamp definitions are derived from the electrical timing specifications provided in the 
PSoC 3  PSoC 5LP Device Programming Specifications. The values of these time stamp parameter definitions in 
Timeout.h are for a PSoC 5LP host programmer running at a clock frequency of 66 MHz. To learn how to calculate 

these time stamp parameters for a specific host programmer, see the section Calculating HSSP Timeout Parameters. 
A delay routine DelayHundredUs(…), defined in Timeout.c is used to generate an active low pulse of 100 µs on 

XRES pin to reset the target device. The time stamp definitions and the delay routine are used in the function 
definitions in files DeviceAcquire.c and ProgrammingSteps.c. 

2.4 Entering HSSP Programming Mode 

This layer includes the files DeviceAcquire.h, DeviceAcquire.c. These files contain the routines to acquire the 

target device to enter the HSSP programming mode (AcquireTargetDevice(…)), and to release the target device 

to exit the HSSP programming mode (ReleaseTargetDevice(…)). 

The first step in HSSP is to enter the programming mode of the target device. For this step to be executed 
successfully, the host programmer must meet the timing requirements defined in “Step 1: Enter Programming Mode” 
in the programming specification. To meet these timing requirements, the function AcquireTargetDevice(…) is 

written in a performance (execution time) optimized manner. This is done by using very few internal function calls in 
the function definition, and also by using the bit banging macros defined in the file Swd_PhysicalLayer.h. This 

function also calls the Swd_WritePacketFast(…) function in Swd_PacketLayer.h to send the SWD acquire 

packets to the target device. 

2.5 HSSP Programming Data 

This layer includes the files HexImage.h, HexImage.c. These files contain the data to be programmed in to the 

target device, which includes the flash data, flash protection data, EEPROM, and the NVL data. The files also store 
the target device parameters used in HSSP programming, such as the device silicon ID, Checksum value of the flash 
data, number of flash rows, number of flash arrays, number of EEPROM rows, and the number of bytes for each flash 
row. In the project provided with the application note, the programming data is stored in the flash memory of the 
PSoC 5LP host programmer as an array of constants. 

HexImage.h and HexImage.c files are generated from the PSoC 3 or PSoC 5LP hex file. See “Appendix A.1. 

Intel Hex File Format” in the programming specifications document for details on the hex file format. HexImage.h, 

HexImage.c files are generated by the application HexFileParser_Psoc3_5lp that is provided with this application 

note. This application generates these files by taking the PSoC 3 or PSoC 5LP hex file as the input. The details of 
this application are provided in Appendix A. 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 5 

For host programmers that lack the memory capacity to store the programming data in the on-chip memory, the 
HexImage.h, HexImage.h files are not required. In such cases, the HSSP programming data will possibly be sent 

to the host as packets through a communication interface, such as I2C, UART, and USB. See the section Interface for 
Receiving HSSP Programming Data for information on modifying the HSSP source code according to the method 
used to get the programming data. 

2.6 Fetching Programming Data 

This layer includes the files DataFetch.h, DataFetch.c. These files have the functions to fetch the programming 

data from the HexImage.c file and pass that data to the functions in the ProgrammingSteps.c file. These include 

the functions to get the flash row data, flash protection data, EEPROM data, NVL data, JTAG ID, checksum, total 
number of flash rows, and the number of bytes for each flash row. The definition of the functions needs to be modified 
based on the method used to get HSSP programming data. See the section Interface for Receiving HSSP 
Programming Data for information on modifying the HSSP source code. 

2.7 HSSP Programming Steps 

This layer includes the files ProgrammingSteps.h, ProgrammingSteps.c. These files contain the top-level 

functions of the HSSP application as shown in the HSSP Implementation Flow in Figure 1 These functions access 
the functions, definitions, and global variables from three layers namely - Swd_PacketLayer.h, 

DeviceAcquire.h, and DataFetch.h. The functions provided in these files cover all the steps required to 

program the target device.  

2.8 Main Application Code 

The main.c file is the main application code that calls the top-level HSSP functions in the sequence shown in Figure 

1. Each step must be executed successfully to proceed to the next step. The HSSP operation is aborted if a failure 
code is returned after any step. For a failure code, the error status returned by the ReadHsspErrorStatus() is 

used to identify the cause of the error. The function ProgramDevice(…) in main.c does all of the steps mentioned 

in Figure 1. The status of the HSSP operation along with the error status register is displayed on a character LCD in 
the HSSP project provided with the application note. The character LCD routines are specific to the PSoC 5LP host 
programmer and should be modified as required for any other host programmer. 

2.8.1 HSSP Error Status  

When any of the top-level steps in the HSSP application return a failure status, the ReadHsspErrorStatus() 

function is called from the main application code to get the details of the error. This function returns the status byte, 
and from the bit field definitions of the status byte, the error details can be inferred. The bit field definitions of the 
status byte returned by this function are given in the following figure. 

2.8.2 Bi t  Field Def in i t ions of  HSSP Error Status Register  

For a successful HSSP operation, all bits except ‘Bit 0’ must be zero. ‘Bit 0’ being set indicates that the SWD packet 
received an OK ACK as shown in Table 1. 

Figure 2. HSSP Error Status Register Bit Field Definitions 

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

 

SWD ACK [2:0] response

SWD Read Data 

Parity Error

SPC Polling Timeout

Port Acquire Timeout

No meaning 

(Always 1'b0)

Verification Failure

 
 

 

 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 6 

▪ Bits[2:0] - SWD Acknowledge response (Swd ACK [2:0]) - This is the 3-bit acknowledgment response for a 
SWD packet sent by the target device to the host programmer. The possible ACK codes are listed in Table 1. 

Table 1. SWD ACK Response Codes 

ACK[2:0] ACK Response Meaning 

001 OK (SUCCESS) 

010 WAIT 

100 FAULT 

Any other code Undefined code. Treat this as FAULT response 

 

All the responses except the OK ACK response require that the host abort the HSSP operation and restart from 
the first step. Even for an OK ACK, the rest of the bit fields (bits 3 to 6) in the status register in Figure 2 should 
not be set. If any of the other bit fields are set even with the OK ACK, the HSSP operation must be aborted and 
restarted. 

The WAIT ACK will be set when a continuous WAIT ACK code is received for five consecutive tries of the SWD 
packet. WAIT ACK will be received if the host programmer tries to clock SWDCK at a frequency higher than the 
maximum specified value of SWDCK in the programming specifications. 

A FAULT ACK, typically, will be received if there is a parity error in the 4-byte data packet sent by the host during 
the previous SWD write packet. Any other ACK code received by the host should also be treated similarly to 
FAULT ACK. 

▪ Bit 3 - SWD Read Data Parity Error - The host programmer sets this bit if a parity error occurs in the data 
received from the target device. The host must abort the HSSP operation and try again. 

▪ Bit 4 - Port Acquire Timeout - This bit is set if the SWD packets that are part of acquiring the target device 
(AcquireTargetDevice(…)in DeviceAcquire.c) are not completed successfully. The HSSP operation 

must be aborted if this bit is set, and retried. Two reasons can cause this timeout error: Either the hardware 
connection fails between the host programmer and the target device, or the host programmer fails to meet the 
timing requirements to enter the target device programming mode. For details on the timing requirements to enter 
the programming mode, see “Step 1: Enter Programming Mode” in Programming Specifications document. 

▪ Bit 5 - SPC Polling Timeout Error - After every nonvolatile memory operation such as flash read and flash write, 
the host programmer must poll a status register (called SPC Status Register) to check if that operation is 
complete. If a success response is not received within 1 second (the maximum polling duration), this “SPC 
Polling Timeout” bit is set, and the HSSP operation must be aborted and restarted. The polling timeout typically 
occurs if the wrong parameters have been sent to the target device for a nonvolatile memory operation. 

If this bit is set, the host programmer must call the ReadSpcStatusReg() function in ProgrammingSteps.h 

to read the value of the SPC Status Register. See “Table A-3. Status Codes for an SPC Command” in the 
Programming Specifications document for details on the SPC status codes. 

▪ Bit 6 - Verification Failure - This error bit is set under the following conditions. 

 Device ID Verification Error – If the Device silicon ID information in the hex file does not match the ID read 
from the target device, this bit is set. This means that the hex file to be programmed is not meant for the target 
device identified, and the HSSP operation is aborted. This can occur in the “Verify Device ID” step in the 
HSSP programming sequence. 

 Flash Data Verification Error - In HSSP a verify operation ensures that the data to be programmed matches 
with the flash data programmed in the target device. If the data mismatch, this bit is set. This can occur in the 
“Verify Flash” step in the HSSP programming sequence. 

 Flash Protection Data Verification Error – This is similar to the “Flash Data Verification Error” except that the 
comparison is done on the flash protection data. This can occur in the “Verify Flash Protection” step in the 
HSSP programming sequence. 

 Checksum Verification Error – If the checksum value of the flash data in target device does not match with the 
checksum data in hex file, this bit is set. This can occur in the “Verify Checksum” step in the HSSP 
programming sequence. 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 7 

 EEPROM Verification Error – This is similar to the “Flash Data Verification Error” except that the comparison 
is done on the EEPROM data. This can occur in the “Verify EEPROM” step in the HSSP programming 
sequence. Note that EEPROM program and verify operations are carried out only if the EEPROM data is 
present in the hex file. 

It is clear from the above conditions that bit 6 can be set for multiple verification error cases. Based on the step in 
which the bit is set, the cause of the verification failure can be inferred. For example, if this bit is set in the “Verify 
Device ID” step, the host programmer application can identify that the error is due to mismatch of the Device ID.  

▪ Bit 7 - No meaning for this bit. It is always zero. 

3 Porting the HSSP Application to a Host Programmer 

The project provided with this application note uses PSoC 5LP as a host programmer for the target device. In the 
HSSP application, the host programmer could also be any other microcontroller. This section explains the changes 
required to port this HSSP code to the specific host used to program the target device. 

3.1 Files that need to be Ported 

The PSoC 5LP host programmer-based project includes files that are specific to PSoC 5LP. While porting the HSSP 
code to any other host programmer, only the following files must be ported. 

▪ Header Files (.h files) to be ported: RegisterDefines.h, Swd_PhysicalLayer.h, 
Swd_PacketLayer.h, Timeout.h, DeviceAcquire.h, HexImage.h, DataFetch.h, 

ProgrammingSteps.h  

▪ Source Files (.c files) to be ported: Swd_PhysicalLayer.c, Swd_PacketLayer.c, Timeout.c, 
DeviceAcquire.c, HexImage.c, DataFetch.c, ProgrammingSteps.c, main.c  

3.2 Code Changes Required while Porting 

The following changes should be done to each of the files while porting the HSSP code to a host programmer other 
than PSoC 5LP. Note that only some files need to be modified while porting as explained. The rest of the files need 
not be modified. 

▪ RegisterDefines.h: The definitions in this header file for the port numbers, pin numbers, mask values, output 
registers, input registers, and the drive mode registers should be modified according to the host programmer 
used. 

▪ Swd_PhysicalLayer.h: The entire bit banging macros defined in this header file need to be modified based on 
the host programmer. Note that these macros are defined in the PSoC 5LP host programmer project to meet the 
timing requirements for entering the target device programming mode. It is recommended to have these macros 
for any other host programmer as well as to meet the timing requirements. 

▪ Swd_PhysicalLayer.c: The entire bit banging functions defined in this file should be modified according to the 
host programmer used. 

▪ Timeout.h: The four timeout parameter definitions namely - XRES_PULSE_100US, TIME_WINDOW_68US, 

DEVICE_ACQUIRE_TIMEOUT, and 

SPC_POLLING_TIMEOUT – need to be modified according to the host programmer used. See the section 

Calculating HSSP Timeout Parameters for the explanation on calculating these timeout parameters for a specific 
host programmer. 

▪ DeviceAcquire.c (if necessary): The AcquireTargetDevice()function in this file has been written in a 

performance optimized (reduced execution time) manner in order to meet the timing requirements to enter the 
target device programming mode. If this function cannot meet the timing requirements defined in the 
programming specification without making changes, then the definition should be modified appropriately. One 
way to reduce the function execution time is to replace all the function calls inside the function with inline code.  

▪ HexImage.c, HexImage.h: These files contain the data to be programmed into the target device defined as an 
array of constants. For PSoC 5LP host programmer, the data to be programmed is stored in the flash memory of 
host PSoC 5LP. Some host programmers might lack the capacity to store the programming data in their on-chip 
memory. Instead, they can use a communication interface, such as USB, SPI, or UART, to get the programming 
data. In such a case, these files need to be removed. 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 8 

▪ DataFetch.c: The definitions for the functions must be modified based on the method used to get the 
programming data. See the section Interface for Receiving HSSP Programming Data for information on modifying 
the HSSP source code according to the method used to get programming data. 

▪ main.c: The character LCD functions in main.c to display the HSSP application status on the LCD are for a 

PSoC 5LP host programmer, and should either be removed or modified while porting to any other host 
programmer. 

In all of the above specified files, the code that needs to be modified based on the host programmer are preceded by 
the below comments. This will help in easy identification of the code to be modified. 

/****** USER ATTENTION REQUIRED ***** 

 ****** HOST PROCESSOR SPECIFIC *****/ 

3.3 Calculating HSSP Timeout Parameters 

The values of the timeout parameters defined in Timeout.h need to be modified according to the host programmer 

used. A separate test project, “Hssp_TimeoutCalc”, is provided with the application note to illustrate the procedure to 
calculate these timeout parameters for a PSoC 5LP host programmer. A similar test project should be created for any 
other host programmer to calculate these timeout values. The test project provides test functions in two files - 
TimeoutCalc.h, TimeoutCalc.c. These test functions toggle a test pin during code execution. Calculate the 

timeout parameters by measuring the low pulse width  of the signal on the test pin. See the explanation in the macro 
definitions in the TimeoutCalc.h header file of the project for calculating these timeout parameters. The 

significance of each of these timeout values are as follows. 

3.3.1 Timeout parameter  name: TIME_WINDOW_68US  

This constant definition is used in the function AcquireTargetDevice()in DeviceAcquire.c file to enter the target 

device programming mode. It is referred to as TBOOT (68 µs) in the programming specifications document. During this time 
TBOOT, the host must generate SWDCK at a frequency of fSWDCK_ACQUIRE. This frequency parameter value is provided in the 
programming specifications, and its minimum value is 1.4 MHz. The host must also drive the SWDIO line low during the period 
TBOOT. The code snippet to do this in firmware is below. TIME_WINDOW_68US parameter determines the duration of clocking 

(TBOOT) by the host programmer. 

Code 1. Clocking for Time TBOOT 

/* Generate SWDCK clock waveform for 68 µS with SWDIO low. The timeout constant   

TIME_WINDOW_68US used below comes  

from Timeout.h */ 

unsigned short time_elapsed = 0; 

SWDIO_OUTPUT_LOW; 

do 

{ 

 SWDCK_OUTPUT_LOW; 

 SWDCK_OUTPUT_HIGH; 

 time_elapsed++; 

} 

while(time_elapsed < TIME_WINDOW_68US); 

 

To calculate this timeout value, see the explanation of the definition TIME_WINDOW_68US in the file 

TimeoutCalc.h in the “Hssp_TimeoutCalc” project. 

3.3.2 Timeout parameter  name:  DEVICE_ACQUIRE_TIMEOUT  

This constant definition is used in the function AcquireTargetDevice()in DeviceAcquire.c file to enter the target 

device programming mode. This timeout corresponds to the timing specification TTESTMODE in the Programming Specifications 
document. TTESTMODE defines the maximum time available for the host to enter device programming mode after doing a device 
reset using the XRES pin. DEVICE_ACQUIRE_TIMEOUT definition signifies the maximum number of SWD packets the host 

can send in this time window.  

To calculate this timeout value, see the explanation of the definition DEVICE_ACQUIRE_TIMEOUT in the file TimeoutCalc.h 

in “Hssp_TimeoutCalc” project. This value should always be greater than or equal to 4 for any host programmer. That is 

because a minimum of four SWD packets are required to enter the programming mode. 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 9 

3.3.3 Timeout parameter  name: SPC_POLLING_TIMEOUT  

This constant definition is used in the system performance controller (SPC) polling operations during the HSSP Programming. 
This is used while polling the result of nonvolatile memory read and write operations through the SPC in the target device. 
When the host has issued commands to the SPC through the SWD interface, it waits for a maximum of 1 second for a 
response from the SPC. If the response is not received, the host would abort the HSSP operation. This definition 
SPC_POLLING_TIMEOUT signifies the number of SWD read packets that can be sent in 1 second interval. When the host 

detects during polling that the number of SWD packets sent have crossed the limit defined by SPC_POLLING_TIMEOUT, it 

aborts the HSSP operation.  

To calculate this timeout value, see the explanation of the definition SPC_POLLING_TIMEOUT in the file TimeoutCalc.h in 

“Hssp_TimeoutCalc” project.  

3.3.4 Timeout parameter  name:  XRES_PULSE_100US  

To reset the target device, the host has to generate an active low signal with a minimum pulse width of 1 µs on XRES line. In 
the HSSP code, a pulse width of 100 µs is generated on the XRES pin. This is accomplished by using the delay routine 
DelayHundredUs() between the XRES toggling events as shown below. 

Code 2. Generating a Reset Pulse 

XRES_OUTPUT_LOW; 

DelayHundredUs();  

 

XRES_OUTPUT_HIGH; 

 

The function DelayHundredUs() is defined in the file Timeout.c. It uses the XRES_PULSE_100US timeout parameter in a 

for loop to introduce the 100 µs delay as given below. 

Code 3. Delay Routine 

void DelayHundredUs(void) 

{ 

    unsigned short timestamp;   

 

     

    for(timestamp = 0; timestamp <    

    XRES_PULSE_100US; timestamp++) 

    { 

         

    } 

} 

 
To calculate this XRES_PULSE_100US timeout value, see the explanation of the definition XRES_PULSE_100US in the file 

TimeoutCalc.h in the “Hssp_TimeoutCalc” project.  

3.4 Interface for Receiving HSSP Programming Data 

The files DataFetch.c, DataFetch.h have the functions to fetch the data to be programmed into the target device. 

In the example project, the programming data is stored in the on-chip flash memory of the PSoC 5LP host 
programmer in files HexImage.c, HexImage.h. The data fetch routines access this data from the PSoC 5LP flash 

memory to do HSSP. But not all host programmers have the on-chip memory to store the HSSP programming data. 
Instead, the programmer might use a communication interface, such as an SPI or an UART, to get the programming 
data. For such a use case, all of the function definitions in DataFetch.c file should be modified appropriately. The 

following example is a reference that shows the modifications required for the LoadFlashRowData(...) function. 

Similar modifications should be done for other functions as well. 
 

Original Code 
 

Code 4. Original Code to Get Flash Data 

void LoadFlashRowData(unsigned short rowNumber, unsigned short rowByteSize, unsigned 

char *rowData) 

{ 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 10 

    unsigned short i; 

     

    for(i = 0; i < rowByteSize; i++) 

    { 

        /* Get the constant array data from 

        HexImage.c and store in    

        Flash row buffer */ 

        rowData[i] =  

           flashData_hexFile[RowNumber][i]; 

    } 

} 

 
Modified Code 

If the programming data is received through a communication interface such as an UART, then the modified code should be 
similar to the following one. 

Code 5. Modified Code to Get Flash Data 

void LoadFlashRowData(unsigned short rowNumber, unsigned short rowByteSize, unsigned 

char *rowData) 

{ 

    unsigned short i; 

 

    /* ADD WAITING CODE HERE FOR THE UART  

    BUFFER TO GET THE FLASH DATA */ 

 

    for(i = 0; i < rowByteSize; i++) 

    { 

   

        rowData[i] = /* PLACE THE UART  

        BUFFER ARRAY HERE */; 

    } 

} 

3.5 HSSP Timing Validation 

The host programmer must meet the timing specifications for the PSoC 3 or PSoC 5LP programming for a robust 
HSSP implementation. Those timing specifications are given in the section “Programming Specifications” in the 
PSoC 3 Programming Specifications document, PSoC 5LP Programming Specifications document. The host 
programmer must meet the timing parameters specified for the SWD interface, programming mode entry. This timing 
validation can be done by capturing the SWDIO, SWDCK, and XRES signals on an oscilloscope. From the captured 
waveforms, the timing parameters can be verified against the corresponding values provided in the programming 
specification. 

4 Tips and Tricks for Debugging HSSP Issues  

Porting the HSSP code from the PSoC 5LP host processor used in the code example to your own processor 
architecture might be a complex task depending on the other system level constraints on the host processor side. 
This section helps you in troubleshooting the most commonly encountered issues while developing an HSSP 
application for your hardware platform. 

• Hardware Setup Validation: The first step is to ensure that the hardware connections are done properly for the 
HSSP operation. This includes making the correct pin connections between the host processor and the target 
PSoC  device, powering of all the PSoC  voltage domains, and ensuring the host SWD pins drive mode settings 
are configured appropriately. Refer to the “Physical Layer” section of the respective device programming 
specification for details on the hardware connections and configuration. 

• Power Cycle Mode Programming: The HSSP projects provided with this application note use the XRES pin to 
generate the reset event. The same reset event can also be triggered by toggling the power to the device which 
is referred to as power cycle mode programming. Power cycle mode programming is more complex to implement 
compared to XRES mode programming. Review the section “SWD Programming using Power Cycle Mode” in 
the respective programming specification document for design considerations in power cycle mode. 

http://www.cypress.com/
http://www.cypress.com/?rID=44327
http://www.cypress.com/?rID=72883


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 11 

• Timing Validation: When porting the host PSoC 5LP code to your host processor, ensure that the timeout 
parameters used in the code are modified to reflect the host processor code timing. Refer to the section - 
Calculating HSSP Timeout Parameters – for information on modifying the timeout parameters while porting the 
code. The first step of the HSSP “Device Acquire” has strict timing requirements with regards to entering the 
programming mode. One of the important requirements is to ensure that the frequency of SWDCK clock line is at 
least 1.4 MHz to meet the acquire window timing. Ensure that there are no interrupt events in the host processor, 
which can affect the code execution time for completing the “Device Acquire” step on the host processor side. 
Ensure that the host processor is able to meet all the timing requirements explained in “Step 1 – Acquire Chip” of 
the respective device programming specification document.  

• HSSP Algorithm Validation:  

o While porting the HSSP code, if any changes were made to the SWD packet layer files shown in Figure 1, 
ensure that the SWD packet format is the same as that mentioned in the section “Serial Wire Debug (SWD) 
Format” in the device programming specification. 

o Cypress qualified programmers like MiniProg3, KitProg can be used to validate and debug the steps like 
“Erase Flash”, “Program Flash” in Figure 1. For example, to check if the host processor erased the entire 
flash memory, the MiniProg3 programmer and the “Read” option in the PSoC Programmer GUI can be used 
to verify that the entire flash data is zero. The “Checksum” option in PSoC Programmer GUI can be used to 
ensure that the checksum of the flash data programmed in to the device matches the checksum of the hex 
file that is fed as the input file to the GUI. Additionally, the “Patch Image” option in the PSoC Programmer 
GUI can be used to identify the number of flash rows for which there is a data mismatch between the device 
flash content and the hex file data. 

5 Summary 

The HSSP application is extremely useful for developing in-system programming solutions for the PSoC 3 and 
PSoC 5LP devices. It provides a cheap, robust method for programming the PSoC 3 or PSoC 5LP using an on-board 
embedded microcontroller as a host programmer. The portable, modular C code provided with this application note 
greatly reduces the time to develop such HSSP applications. 

  

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 12 

6 Related Documentation 

6.1 Application Notes 

AN84858 – PSoC 4 Programming Using an External Microcontroller (HSSP) 

AN44168 – PSoC® 1 Device Programming using External Microcontroller (HSSP) 

6.2 Programming Specifications 

PSoC 3 Device Programming Specification 

PSoC 5LP Device Programming Specification 

6.3 PSoC Architecture Technical Reference Manuals 

PSoC 3 Architecture Technical Reference Manual (TRM) 

PSoC 5LP Architecture Technical Reference Manual (TRM) 

6.4 Webpage  

General PSoC Programming 

6.5 List of Attached Projects 

AN73054.cywrk: 

This workspace contains three projects to demonstrate the HSSP application. 

▪ A_PSoC3_Hssp_Programmer: This project is the PSoC 3 HSSP application. It is a PSoC 5LP based project in 
which a PSoC 5LP device acts as a host programmer to program the target PSoC 3 device. 

▪ B_PSoC5LP_Hssp_Programmer: This project is the PSoC 5LP HSSP application. It is a PSoC 5LP based 
project in which a PSoC 5LP device acts as a host programmer to program the target PSoC 5LP device. 

▪ C_Hssp_TimeoutCalc: This project is used to calculate the time stamp parameters used in the PSoC 3 HSSP, 
PSoC 5LP HSSP projects. 

  

http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an84858-psoc-4-programming-using-external-microcontroller-hssp
http://www.cypress.com/?rID=2906&source=an84858
http://www.cypress.com/documentation/technical-reference-manuals/psoc-3-device-programming-specifications-cy8c32xxx
http://www.cypress.com/documentation/technical-reference-manuals/psoc-5lp-device-programming-specification
http://www.cypress.com/documentation/technical-reference-manuals/psoc-3-architecture-trm
http://www.cypress.com/documentation/technical-reference-manuals/psoc-5lp-architecture-trm
http://www.cypress.com/documentation/technical-reference-manuals/psoc-5lp-architecture-trm
http://www.cypress.com/?rID=2543


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 13 

A Appendix A 

A.1 Hex File Parser Application 

The data for programming the PSoC 3 or PSoC 5LP is available in the hex file (.hex) format, which is explained in the 
section “Appendix A.1 - Intel Hex File Format” in the PSoC 3 Programming Specifications document, PSoC 5LP 
Programming Specifications document. The hex file is not in a format that can be used by a host to program the 
target device. This file, which is generated by the PSoC Creator software, contains both the programming data and 
the meta data in hexadecimal format. The meta data includes information on the hex file record type, extended linear 
address data, and so on. This meta data is used to categorize the programming data in to the flash code region data, 
flash configuration region data, flash protection data, and so on. A C# application has been developed in the Visual 
Studio development environment that parses the hex file, and generates .c, .h (HexImage.c, HexImage.h) files 

that store only the programming data from the hex files. The programming data is stored as an array of constants in 
the HexImage.c, HexImage.h files.  

The C# application with the source code is provided along with the application note. To use the C# application, .NET 
framework version 4.0 or higher must be installed in your computer. 

C# Application Name: HexFileParser_Psoc3_5lp  

Development Environment: Microsoft Visual C# 2010 Express  

Source code: See the C# source project for details. The project source code can be viewed, edited by downloading 
and installing the freely available Microsoft Visual C# 2010 Express software. . The source code can be viewed and 
edited by right clicking on the Form1.cs file in the Solution Explorer window, and then selecting on the View Code 
option. This action will open the source code of Form1.cs. 

A.1.1  Using the Hex Fi le  Parser Appl icat ion  

Open the executable file of Hex File Parser application in the folder “HexFileParser_Psoc3_5lp 
\HexFileParser_Psoc3_5lp \bin\Release”. A graphical user interface (GUI) screen, as shown in Figure 3 will pop-up. 

Figure 3. Hex File Parser Application 

 
 

▪ Select the hex File that needs to be programmed. 

▪ Select the target file folder location in which the parsed .c, .h files (HexImage.h, HexImage.c) should be 

created.  

▪ After selecting the hex file and the target folder location, click the Parse Hex File button to generate the .c, .h 
files. A message will be displayed once the parsing operation has been completed. 

http://www.cypress.com/
http://www.cypress.com/?rID=44327
http://www.cypress.com/?rID=72883
http://www.cypress.com/?rID=72883


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 14 

A.1.2  Adding the Generated HexImage.c,  HexImage.h  f i les to  PSoC Creator Example Project   

To add the generated HexImage.c, HexImage.h files to the PSoC Creator example project provided with this application 

note, follow the below steps. These steps are required if you need to program a hex file into target device using PSoC 5LP as 
a host programmer. The below steps are applicable either for the project A_PSoC3_Hssp_Programmer in case of PSoC 3 
HSSP or the project B_PSoC5LP_Hssp_Programmer in case of PSoC 5LP HSSP. 

1. Select the Target File Folder location in GUI in Figure 3 as the same folder in which main.c file of the project 

is located. 
2. After the HexImage.c, HexImage.h files have been generated in the above folder location, add those files to 

the project workspace in PSoC Creator by using Add Existing Item option in Workspace explorer as shown in 
Figure 4. 

 
Figure 4. Adding HexImage.c, HexImage.c Files to PSoC Creator Project 

 
 

3. Once the HexImage.c, HexImage.h files are selected, the Workspace Explorer window of the project should 

appear as shown in the following figure. 
  

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 15 

Figure 5. Project Workspace Showing HexImage.c, HexImage.h Files 

 
 

3. Important note on using the HexImage.c, HexImage.h files for the PSoC 5LP HSSP project: The 
PSoC 5LP HSSP project (B_PSoC5LP_Hssp_Programmer) uses a PSoC 5LP device as a host programmer to 
program the target PSoC 5LP device. Since the HSSP algorithm in the host PSoC 5LP will consume a portion of 
its 256 KB Flash memory, the entire hex file data cannot be stored in the flash memory of host PSoC 5LP. In 
order to meet the code size requirements, the programming data corresponding to the last few flash rows is 
deleted from the HexImage.c, HexImage.h files. The corresponding logic has also been incorporated in the 
LoadFlashRowData(…) function in the file DataFetch.c. The changes done are listed below. Refer to the 

B_PSoC5LP_Hssp_Programmer project code for viewing the exact changes.  

a. In the HexImage.h file, the number of flash rows in the array declaration is reduced by 
NUMBER_OF_FLASH_ROWS_REMOVED  by editing the array declaration as below.  

extern unsigned char const FlashData_HexFile[(NUMBER_OF_FLASH_ROWS_HEX_FILE -     

NUMBER_OF_FLASH_ROWS_REMOVED)][FLASH_ROW_BYTE_SIZE_HEX_FILE]; 

The macro define, NUMBER_OF_FLASH_ROWS_REMOVED, for specifying the number of rows to be removed 

is manually added in HexImage.h file, and assigned a value 224 in the project. The choice of 224 rows was 
arrived so that the code size of the project fits the host PSoC 5LP flash memory capacity. 

b. In the HexImage.c file, the last NUMBER_OF_FLASH_ROWS_REMOVED  flash rows are deleted from the 

definition of the array FlashData_HexFile[][] corresponding to the changes done in the array 

declaration in the HexImage.h file. 

c. In the definition of the function LoadFlashRowData(…) in the file DataFetch.c, the entire flash row data 

is loaded with zero in the case of the flash row number being in the last 
NUMBER_OF_FLASH_ROWS_REMOVED rows of the target PSoC 5LP device.   

 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 16 

B Appendix B 

B.1 HSSP Functions 

The following tables list the public functions in each layer of the HSSP firmware architecture. These functions are 
used to communicate among the layers of the HSSP firmware, as shown in Figure 1. 

Table 2. Functions in Swd_PhysicalLayer.h 

Function  Description 

SetSwdckHigh() Sets the host SWDCK pin high 

SetSwdioHigh() Sets the host SWDIO pin high 

SetXresHigh() Sets the host XRES pin high 

SetSwdckLow() Sets the host SWDCK pin low 

SetSwdioLow() Sets the host SWDIO pin low 

SetXresLow() Sets the host SWDCK pin low 

SetSwdckCmosOutput() Configures the host SWDCK pin for CMOS output drive mode 

SetSwdioCmosOutput() Configures the host SWDIO pin for CMOS output drive mode 

SetXresCmosOutput() Configures the host XRES pin for CMOS output drive mode 

SetSwdckHizInput() Configures the host SWDCK pin for high-impedance digital input drive mode 

SetSwdioHizInput() Configures the host SWDIO pin for high-impedance digital input drive mode 

SetXresHizInput() Configures the host XRES pin for high-impedance digital input drive mode 

ReadSwdio() Returns the current state of the SWDIO input pin 

 

Table 3. Functions in Swd_PacketLayer.h 

Function  Description 

Swd_WritePacket() Sends a SWD write packet. This function operates on the global variables 
Swd_packetHeader, Swd_packetAck, and Swd_packetData[]. 

Swd_WritePacketFast() Sends a SWD write packet. This function operates on the global variables 
Swd_packetHeader, Swd_packetAck, and Swd_packetData[]. This function expects the 
precalculated even parity bit of Swd_packetData[]as a parameter. This function has been 
optimized for execution time to meet the timing requirements for entering the    target 
device programming mode. 

Swd_RawReadPacket() Sends a single SWD read packet. This function operates on the global variables 
Swd_packetHeader, Swd_packetAck, and Swd_packetData[]. This function is used for 
doing a continuous read from a specific address. 

Swd_ReadPacket() Sends a SWD read packet twice to read from a specific address. This function operates 
on the global variables Swd_packetHeader, Swd_packetAck, and Swd_packetData[]. 

JtagToSwdSequence() 

(Only for PSoC 5LP HSSP) 

Sends the initial packets of the JTAG to SWD switching sequence. This includes all the 
steps involved in the switching except reading of the Device JTAG ID. The complete 
switching is implemented in the private function SwitchToSwd() in ProgrammingSteps.c. 
This function is present only for the PSoC 5LP HSSP. PSoC 3 HSSP does not require 
this switching sequence in its implementation. 

 

  

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 17 

Table 4. Functions in Timeout.h 

Function  Description 

DelayHundredUs() Introduces a delay of 100 µs used for generating an active low pulse signal of duration 
100 µs on the XRES pin. 

Table 5. Functions in DeviceAcquire.h 

Function  Description 

AcquireTargetDevice() Sends the sequence to enter the programming mode of the target device. The function has 
been optimized for execution time to meet the timing requirements for entering the PSoC 3 
or PSoC 5LP programming mode. 

ReleaseTargetDevice() Exits the PSoC 3 or PSoC 5LP programming mode by generating a pulse on the XRES pin 

 

Table 6. Functions in DataFetch.h 

Function  Description 

LoadDeviceSiliconId() Copies the device silicon ID data from the HexImage.c file to an indicated destination array 

LoadDeviceConfigNvl() 

 

Copies the device configuration NVL data from the HexImage.c file to an indicated 
destination array.  

LoadWriteOnceNvl() Copies the write-once NVL data from the HexImage.c file to an indicated destination array 

LoadFlashRowData() Copies the flash row data from the HexImage.c file to an indicated destination array. The 
flash row number and the flash row byte size are also passed as parameters to this 
function. 

LoadFlashProtectionData() Copies the flash row protection data from the HexImage.c file to an indicated destination 
array. The byte size of the protection data is also passed as a parameter to this function. 

LoadChecksumData() Copies the checksum data from the HexImage.c file to an indicated destination array 

LoadEepromRowData() Copies the EEPROM row data from the HexImage.c file to an indicated destination array. 
The EEPROM  row number is also passed as a parameter to this function. 

GetFlashRowCount() Returns the total number of flash rows in the target device from the HexImage.c file 

GetFlashRowByteSize() Returns the size in bytes of the flash row from the HexImage.c file 

GetFlashArrayCount() 

(Only for PSoC 5LP HSSP) 

Returns the number of flash arrays from the HexImage.c file. This function is required only 
for PSoC 5LP HSSP which can have multiple flash arrays. PSoC 3 has only one flash 
array and this function is not present in PSoC 3 HSSP. 

GetEepromRowCount() Returns the total number of EEPROM rows in the target device from the HexImage.c file.  

GetEepromSectorCount () Returns the total number of EEPROM sector rows in the target device from the 
HexImage.c file.  

 

  

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 18 

Table 7. Functions in ProgrammingSteps.h 

Function  Description 

EnterProgrammingMode() 
Enters the programming mode of the target device 

ConfigureTargetDevice() Configures the target device for programming 

VerifyDeviceId() Verifies whether the device silicon IDs of the target device and the hex file match 

EraseFlash() Erases the entire flash memory of the target device including the flash protection data 

ProgramDeviceConfigNvl() 

 

Programs the device configuration NVL of the target device 

ProgramFlash() Programs the flash memory of the target device 

VerifyFlash() Verifies whether the flash data programmed to the target device and the hex file flash data 
match 

ProgramWriteOnceNvl() Programs the write-once NVL of the target device.  

ProgramFlashProtection() Programs the flash protection data to the target device 

VerifyFlashProtection() Verifies whether the flash protection data programmed to the target device and the hex file 
flash protection data match 

VerifyChecksum() Verifies whether the checksum data read from the target device and the hex file checksum 
data match 

ProgramEeprom() Programs the EEPROM memory of the target device. If there is no EEPROM data present 
in the hex file, this API is not called in the main code.  

VerifyEeprom() Verifies whether the EEPROM data programmed to the target device and the hex file 
EEPROM data match. If there is no EEPROM data present in the hex file, this API is not 
called in the main code.  

ExitProgrammingMode() Exits the target device programming mode by generating an active low pulse signal on the 
XRES pin 

ReadHsspErrorStatus() Returns the error status of the HSSP operation 

ReadSpcStatusReg() Returns the SPC status register value in case of a SPC polling timeout error condition 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 19 

C Appendix C 

C.1 Differences between PSoC 3 HSSP and PSoC 5LP HSSP  

The application note provides two separate projects – A_PSoC3_Hssp_Programmer and B_PSoC5LP_Hssp_Programmer – 
for PSoC 3 HSSP and PSoC 5LP HSSP respectively. From a higher level implementation standpoint, both the HSSP projects 
have very little differences. But there are differences in the internal implementation of the functions in PSoC 3 HSSP and 
PSoC 5LP HSSP. The differences are explained in this section for the knowledge of the developer migrating between PSoC 3 
HSSP and PSoC 5LP HSSP. There is no need to implement these differences as two separate HSSP projects are provided for 
PSoC 3 HSSP and PSoC 5LP HSSP respectively. The differences are as follows: 

• The internal implementation of all the top level HSSP functions (HSSP Implementation Flow in Figure 1) is 
different between PSoC 3 HSSP and PSoC 5LP HSSP. For example, the register addresses in PSoC 5LP have 
the upper 16-bit offset address as 0x4000, while for PSoC 3 it is 0x0000. These differences stem from the 
differences in the SWD vectors provided in the PSoC 3 programming specifications and PSoC 5LP programming 
specifications respectively. 

• The SPC polling function definitions (IsSpcIdle() and IsSpcDataReady()) in the file ProgrammingSteps.c 

differ between PSoC 3 and PSoC 5LP. The SPC status register is the least significant byte in case of PSoC 3 
and the third least significant byte in case of PSoC 5LP. 

• PSoC 5LP HSSP has a function GetFlashArrayCount() in the file DataFetch.h to get the number of Flash 

arrays in the target PSoC 5LP device. This is not present in PSoC 3 HSSP because there is only one Flash array 
in all PSoC 3 device families. 

  

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 20 

Document History  

Document Title: AN73054 - PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 

Document Number: 001-73054 

Revision ECN Orig. of 
Change 

Submission 
Date 

Description of Change 

** 3466083 VVSK 12/19/2011 New Application Note. 

*A 3478580 VVSK 12/30/2011 Updated Document Title to read as “PSoC® 3 / PSoC 5 Programming Using an 
External Microcontroller (HSSP) – AN73054”. 

Updated Associated Part Family as “All PSoC 3, PSoC 5 families” in page 1. 

Added PSoC 5 related information in all instances across the document. 

*B 3814249 VVSK 16/11/2012 Updated Document Title to read as “PSoC® 3 and PSoC 5LP Programming Using 
an External Microcontroller (HSSP) – AN73054”. 

Updated Associated Part Family as “All PSoC 3, PSoC 5LP families” in page 1. 

Updated Software Version as “PSoC Creator™ 2.1 SP1” in page 1. 

Added PSoC 5LP related information in all instances across the document. 

Completing Sunset Review. 

*C 5046300 VVSK 12/16/2015 Updated Software Version as “PSoC Creator™ 3.3 CP1 or later” in page 1. 

Updated Related Application Notes as “AN84858, AN44168, AN73854” in page 1. 

Updated attached projects (to PSoC Creator 3.1 CP1).  

Added “Related Documentation”. 

Added “Tips and Tricks for Debugging HSSP Issues”. 

Updated to new template.  

Completing Sunset Review. 

*D 5699764 AESATP12 04/26/2017 Updated logo and copyright. 

*E 6432387 SNVN 01/08/2019 Updated to new template. 

Completing Sunset Review. 

http://www.cypress.com/


 
 

PSoC® 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP) 
 

www.cypress.com Document No. 001-73054 Rev. *E 21 

Worldwide Sales and Design Support 

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find 
the office closest to you, visit us at Cypress Locations. 

 

Products 

ARM® Cortex® Microcontrollers cypress.com/arm 

Automotive cypress.com/automotive 

Clocks & Buffers cypress.com/clocks 

Interface cypress.com/interface 

Internet of Things cypress.com/iot 

Memory  cypress.com/memory 

Microcontrollers cypress.com/mcu 

PSoC cypress.com/psoc 

Power Management ICs cypress.com/pmic 

Touch Sensing cypress.com/touch 

USB Controllers cypress.com/usb 

Wireless Connectivity cypress.com/wireless 

 

PSoC® Solutions 

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU 

Cypress Developer Community 

Forums | WICED IOT Forums | Projects | Videos | Blogs | 
Training | Components 

Technical Support 

cypress.com/support

 

 

 Cypress Semiconductor 
 198 Champion Court  
 San Jose, CA 95134-1709 

 © Cypress Semiconductor Corporation, 2011-2019. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, 
including Spansion LLC (“Cypress”).  This document, including any software or firmware included or referenced in this document (“Software”), is owned 
by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide.  Cypress reserves all rights under such 
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other 
intellectual property rights.  If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with 
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to 
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for 
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end 
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of 
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for 
use with Cypress hardware products.  Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. 

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD 
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  No computing device can be absolutely secure.  Therefore, despite 
security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, 
such as unauthorized access to or use of a Cypress product.  In addition, the products described in these materials may contain design defects or 
errors known as errata which may cause the product to deviate from published specifications.  To the extent permitted by applicable law, Cypress 
reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of 
any product or circuit described in this document.  Any information provided in this document, including any sample design information or programming 
code, is provided only for reference purposes.  It is the responsibility of the user of this document to properly design, program, and test the functionality 
and safety of any application made of this information and any resulting product.  Cypress products are not designed, intended, or authorized for use as 
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or 
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances 
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”).  A 
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or 
system, or to affect its safety or effectiveness.  Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, 
damage, or other liability arising from or related to all Unintended Uses of Cypress products.  You shall indemnify and hold Cypress harmless from and 
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of 
Cypress products. 

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are 
trademarks or registered trademarks of Cypress in the United States and other countries.  For a more complete list of Cypress trademarks, visit 
cypress.com.  Other names and brands may be claimed as property of their respective owners. 

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

