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1 Introduction
The PSOC™ Edge MCU provides a diverse range of internal and external memories. This application note offers
comprehensive insights into each of these memory types. It delves into configuring on-chip and external
memories to attain the desired power and performance levels, covering aspects such as memory architecture,
bus architecture, and memory access. Additionally, it explores the impact of memory on power consumption,
power domains, associated memories, linker script, and memory layout, and includes practical hands-on
exercises for running code from different internal and external memories.
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2 PSOC™ Edge architecture
The PSOC™ Edge MCU features two CPU subsystems, the Arm® Cortex® M33 running up to 200 MHz and the Arm®

Cortex® M55 running up to 400 MHz. These CPUs are equipped with caches to improve performance and reduce
power consumption when accessing memory. The MCU contains two SRAM sections of 512 KB each in the low-
power domain. The MCU also has 5120 KB of System SRAM (SoCMEM) in the high-performance domain. The
512 KB of RRAM serves as a nonvolatile storage option primarily for code and can also be used to store certain
data in the low-power domain. The overall performance of the CM55 core is enhanced by tightly coupled
memory for data and instruction of 256 KB each.
For memory expansion, the PSOC™ Edge MCU supports the expansion of code and data memory off-chip
through a Serial Memory Interface (SMIF) which enables Execute in Place (XIP) capability with external memory
and facilitates the physical interface for memory expansion for external RAM and flash. The contents of the
external memory can be encrypted and decrypted on the fly, enhancing the system's security. The following
sections of this application note describe these internal and external memories and how to utilize them
effectively.

2.1 Power domains
The PSOC™ Edge features two power domains, the always-on low-power domain (PD0) and the high-
performance domain (PD1) as shown in Figure 1. Both domains are powered by the internal buck output. Both
PD1 and PD0 domains operate at the same voltage. Additionally, PD1 can be independently turned off, while
PD0 remains on unless the chip power is removed. For applications that do not require high-performance
peripherals in the PD1 domain, the domain can be completely turned off to conserve power and brought up
again as needed. See the Summary section for memory and associated power domain information.

2.2 Internal memories

2.2.1 RRAM (NVM)
RRAM is a form of embedded nonvolatile memory (NVM), where the stored information is coded in the
changeable resistances of the individual RRAM elements. It behaves like a (slow) RAM with retention,
independent bit toggling, and easy to handle in software. RRAM is typically used to store CPU instructions and
data when the device power is off. It offers high bulk program performance and supports ultra-low-power
operation. Electrically erasable programmable read-only memory and OTP regions can also be emulated in
RRAM.
The RRAM in the PSOC™ Edge MCU is divided into two main regions:
• Nonvolatile memory (NVM)
• One-time programmable (OTP)
The NVM region is further subdivided into two sub-regions:
• MAIN NVM (user programmable and extended BOOT)
• PROTECTED NVM (only accessible by Secured Enclave)
The MAIN NVM region is user-programmable and contains an extended BOOT area, whereas the PROTECTED
NVM region is only accessible by the Secured Enclave, providing an additional layer of security. See the PSOC™

Edge MCU datasheet for the actual size of the NVM and OTP region.

2.2.2 SRAM
In the PD0 domain, two 512 KB arrays (SRAM0 and SRAM1) reside in a contiguous address range. Each array has
eight partitions, allowing a minimum of 64 KB for retention purposes, to enable applications to balance Deep
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Sleep leakage current with the amount of memory retained. The SRAM is designed in two independent blocks
to facilitate simultaneous access from different processors to different regions.

2.2.3 System SRAM (SoCMEM)
System SRAM is also referred to as System-On-Chip Memory (SoCMEM). System SRAM is a multiported on-chip
memory controller. It has multiple banks to increase overall system memory bandwidth. It contains multiple
ports to allow connections to multiple buses without relying on system interconnect (bus infrastructure). Each
port is connected to each memory bank via an internal bus, and each port can be either asynchronous or
synchronous to the memory controller. PSOC™ Edge MCU SoCMEM is organized into 10 partitions each with four
banks for interleaved access for a total of 5120 KB. This granularity allows the minimum retention partition to
be 512 KB for the minimum retention current. It can be accessed from either the CM55 or the CM33, with bus
arbitration.

2.2.4 Cache memories
Cache stores frequently accessed data in a high-speed, volatile memory to make it quicker to access than the
slower main memory or storage. Its main goal is to enhance the system's performance by offering faster access
to frequently used instructions and data.
ICACHE manages read transactions only and does not manage write transactions while DCACHE efficiently
manages both read and write transactions for data.

2.2.4.1 Instruction cache
The instruction cache (ICACHE) aims to cache instruction fetches or instruction memory loads, coming from the
processor from both internal and external memories. ICACHE has a 128-bit prefetch buffer for quick refill in the
event of a cache miss.
CM33: It has a 16 KB 4-way set associative instruction cache on the C-AHB bus.
CM55: It has a 32 KB 4-way set associative instruction cache on the M-AXI bus.

2.2.4.2 Data cache
CM33: Not available.
CM55: The processor features a 32 KB 4-way set associative data cache connected to the M-AXI bus. This cache
supports various inner memory attributes and allocation hints for Non-shareable memory. These attributes
include Write-Back and Write-Through Cache-able, as well as Read-Allocate and No Read-Allocate options.
Additionally, Write-Allocate and No Write-Allocate, along with Transient and Non-transient attributes, are also
supported.
The share-ability attribute forces the region to be treated as non-cache-able, regardless of the inner memory
attributes. This enables maintaining coherency at the system level. You can configure these memory attributes
in the start-up code by using the MPU configuration.

2.2.5 Tightly coupled memories for CM55
The CM55 processor integrates instruction tightly coupled memory (ITCM) and data tightly coupled memory
(DTCM), ensuring rapid and predictable access to program instructions (256 KB) and data (256 KB). Its close
proximity to the CPU core reduces memory access latency, allowing for quick fetching and execution of
instructions and data.
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2.2.5.1 DTCM
Data tightly coupled memory (DTCM) closely integrates with the CM55 core processor, providing a specialized
memory size of 256 KB for storing critical data that requires fast and deterministic access. DTCM instructions do
not pass through the cache and do not impose any restriction on wait states.
DTCM is used mainly for storing data that require low-latency access, real-time processing, or data that needs
to be accessed frequently. DTCM, like ITCM, is located physically close to the CPU core, separate from the
system SRAM (SoCMEM), and SRAM. This reduces memory access latency and ensures that data can be read or
written quickly. Access to DTCM is deterministic, ensuring consistent and predictable memory access times.
This is crucial for real-time applications where timing is critical.

2.2.5.2 ITCM
ITCM stores program instructions requiring low latency and minimal contention for access, often housing
critical parts of the program like interrupt service routines (ISRs), time-critical control loops, or frequently used
functions. ITCM instructions do not pass through the cache and do not impose any restriction on wait states.
This allows for direct and deterministic access to instructions from this TCM, improving execution speed for
critical, or time-sensitive code. Accessing instructions from ITCM typically incurs zero wait states compared to
accessing instructions from slower memory regions like flash memory. This reduction in wait states enhances
the real-time performance and responsiveness of the MCU.

2.3 Serial Memory Interface (SMIF)
This product line has one or two SMIF interfaces (SMIF0 and SMIF1), depending on package (see the device
datasheet for pins and package information). Each interface can address up to 64 MB externally, for a total of
128 MB. The SMIF allows code XIP from the external memory; it is not required to copy code into the internal
memory to execute it. On-the-fly (OTF) encryption and decryption are supported.
The Serial Memory Interface (SMIF) provides a low pin count connection to off-chip (single/dual/quad/dual-
quad/octal) SPI devices, such as EEPROM, F-RAM, MRAM, or NOR memories, in SDR or DDR mode, and
HYPERBUS™ devices such as HYPERFLASH™ (NOR flash) and HYPERRAM™ PSRAM (Pseudo-static RAM). SMIF
provides two modes for data transfer operation to and from external devices:
Execute in Place (XIP) mode: The read and write transfers on the XIP AXI interface are translated on the fly to
external device SPI transfers. The XIP mode of operation maps the external memory space to a range of
addresses in the PSOC™ Edge MCU's address space. When this address range is accessed, the hardware
automatically generates the commands required to initiate the associated transfer from the external memory.
The typical use case for the XIP mode is to execute code placed in external memory directly from the CPU.
MMIO (Memory-mapped I/O) mode: This mode supports MMIO-based access to external devices. The MMIO
operation mode is less efficient than the XIP operation mode for read and write operations. However, it is more
flexible than the XIP operation mode and this helps to implement other device operations in addition to read
and write operations, such as programming and changing power modes.

2.3.1 PSOC™ Edge external memory options
Memory device I/O signals (# denotes active low)

Single SPI memory SCK, CS#, SI, SO. This memory device has two data signals (SI and SO).

Dual SPI memory SCK, CS#, IO0, IO1. This memory device has two data signals (IO0 and
IO1).

Quad SPI memory SCK, CS#, IO0, IO1, IO2, IO3. This memory device has four data signals
(IO0, IO1, IO2, IO3).
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Memory device I/O signals (# denotes active low)

Octal SPI memory SCK, CS#, IO0, IO1, IO2, IO3, IO4, IO5, IO6, IO7. This memory device has
eight data signals (IO0, IO1, IO2, IO3, IO4, IO5, IO6, IO7)

Some memory ICs might not support Read While Write (RWW) operations. This limitation means that any
ongoing write or erase operation to the external memory connected via SMIF will block read access to the same
memory. Consequently, executing code from SMIF while a write/erase operation is in progress will result in a
system fault.
Recommendations to mitigate this issue are as follows:
1. Relocate critical code to internal SRAM or SoC memory to avoid dependency on SMIF during write/erase

operations. See section Placing code and data in a specific memory region using default linker files for
details

2. Avoid XIP execution for critical routines that may overlap with SMIF write/erase operations
3. Implement core synchronization mechanisms:

• Suspend CM55 execution when CM33 is performing SMIF write/erase
• Suspend CM33 execution when CM55 is performing SMIF write/erase

4. Use inter-core communication protocols for coordination
5. When performing Firmware Updates, ensure the update code is relocated to SRAM before execution

2.3.2 Associated code examples

2.3.2.1 PSOC™ Edge MCU: Serial flash read and write
This code example demonstrates how to interface an external QSPI NOR flash memory with the PSOC™ Edge
MCU using the serial flash library. In addition, this code example readme covers how to use the Serial Flash
Discoverable Parameters (SFDP) standard, which allows for the autodiscovery of flash parameters, as well as
the commands for read, program, and erase operations.

2.3.2.2 PSOC™ Edge MCU: PSRAM read and write in Execute in Place (XIP)
mode

This code example demonstrates how to interface with an external PSRAM using Octal-SPI DDR mode using
Serial Memory Interface (SMIF) PDL in PSOC™ Edge MCU. It also demonstrates how to perform read and write
operations while in XIP mode. This example writes 64 bytes of data to the PSRAM memory after entering XIP
mode. The written data is read back to check its integrity. The UART resource outputs the debug information to
a terminal window.

2.3.3 PSOC™ Edge external memory configuration
The Quad Serial Peripheral Interface (QSPI) Configurator is part of a collection of tools included in the
ModusToolbox™ software. Use the QSPI Configurator to open or create configuration files, configure memory
slots, and generate code for your application. The QSPI Configurator is a stand-alone tool. For details, refer to
the ModusToolbox™ QSPI Configurator User Guide. You can run the QSPI Configurator and use it with a
ModusToolbox™ IDE application. You can also run it independently of the IDE. Then, you can either use the
generated source with a ModusToolbox™ IDE application or use it in any software environment you choose.
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2.4 Summary
The table provides an overview of the various memory types available in the PSOC™ Edge MCU, their respective
use cases, and the associated power domains.

Table 1 Overview of memory types

Memory Size Power
domain

Description

SRAM 0/SRAM 1 512 KB/512 KB PD0 SRAM memory is used for storing data,
variables, and buffers required for runtime
operations. The MCU can read, write, and
manipulate data during program execution.
Although SRAM is typically used for data
storage, it can also host code execution using
SRAM loading to optimize performance and
power efficiency. See section Placing and
executing code from SRAM for details.

RRAM up to 512 KB PD0 RRAM is typically used to store CPU instructions
and data when the device power is off. It offers
high-bulk program performance and supports
ultra-low-power operation.

CM33 Instruction Cache 16 KB PD0 To improve the execution speed and efficiency
of the MCU by storing frequently accessed
program instructions in a small, high-speed
memory close to the CPU core.

System SRAM
(SoCMEM)

5120 KB PD1 System SRAM in the PD1 domain is used for
storing data, variables, and buffers required
for runtime operations. It can also be used
to allocate heap for dynamic allocation of
memory. Although System SRAM is typically
used for data storage, it can also host code
execution to optimize performance and power
efficiency.

ITCM 256 KB PD1 This can be utilized for implementing essential
routines like interrupt handling or real-time
tasks, guaranteeing maximum responsiveness
without any cache latency.

DTCM 256 KB PD1 To achieve faster, predictable, and deterministic
data access, the CPU core is directly linked to
DTCM for storing critical buffers and efficiently
managing context-switching data in systems
with rapid context switching.

CM55 Instruction Cache 32 KB PD1 To improve the execution speed and efficiency

CM55 Data Cache 32 KB PD1 Faster data access with reduced latency.

SMIF Core 0/Core 1 64 MB/64 MB PD1 Expanding the external storage for the MCU
program and data.
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3 Bus architecture and memory access
The bus infrastructure in a system on chip (SoC) forms the backbone of communication between various
components within the chip. It is a network of buses that connect different IP blocks, such as processors,
memory, peripherals, and accelerators. The bus infrastructure provides a standardized interface for data and
control signals, enabling seamless interaction and data exchange among these components. It typically
comprises different types of buses, such as system buses, interconnects, and peripheral buses, each serving a
specific purpose. System buses and interconnects, such as the advanced high-performance bus (AHB) or
advanced eXtensible interface (AXI), facilitate high-bandwidth communication between processors, memory,
and other critical components.
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Figure 2 PSOC™ Edge bus architecture

The PSOC™ Edge MCU family features two subsystems, SYSCPUSS and APPCPUSS, which consist of AHB5 and
AXI4-based bus infrastructure that interconnects multiple bus masters with slaves. These bus interconnects use
bridges, upsizers, and downsizers to connect to other interconnects of varying bus widths, allowing access from
multiple masters to slaves and enabling concurrent access and efficient operation even when several high-
speed peripherals are working at the same time.

3.1 Understanding bus architecture
The system uses a unified memory address space. Except for CM55’s ITCM/DTCM, all masters (CPUs, AXI/AHB
DMA) see all memory structures and peripherals at the same memory locations. The software maintains the
coherency of caches and I/D TCMs of each CPU or during protection context (PC) switches. For CM33, all
accessible address spaces in RRAM are cacheable. Except for aliasing on SRAM/SoCMEM/Ext FLASH regions, no
other area is cached. For CM55, through its M-AXI bus, all FLASH/RRAM and SoCMEM address spaces are
cacheable in I/D Caches, subject to the CPU’s MPU/Secure MPU control. The CPU’s private I/D TCM memory
space is noncacheable.

3.1.1 SYSCPUSS AHB5 interconnect
The SYSCPUSS (CM33 CPU) uses a 128-bit and 32-bit multilayer AHB5 bus matrix interconnect. The AHB5 bus
masters may reside in the SYSCPUSS or outside of the SYSCPUSS (the SYSCPUSS external bus masters).
Similarly, the AHB5 bus slaves may reside inside the SYSCPUSS (for example, the on-chip memory controllers)
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or outside of the SYSCPUSS (for example, slaves connected to the peripheral interconnect (PERI) or to the
external slave interfaces). The SYSCPUSS AHB5 bus matrix interconnects the following masters and slaves:
Masters
• Cortex® M33 code AHB (C-AHB) bus via instruction cache (ICACHE)
• Cortex® M33 slave AHB (S-AHB) bus
• Neural network lite (NNLite)
• Secured Enclave
• Crypto
• APPCPUSS_SYSCPUSS_MS: APPCPUSS master interface from the APPCPUSS AHB5 interconnect through

AHB5-to-AHB5 bridge
• Debug controller (SYS-AP)
• Two DMA-DW controller (DMA0(DW0) and DMA1(DW1))
• Two secure digital high capacity host controllers (SDHC0, SDHC1)
• High-speed USB (USBHS) controller
Slaves
• One 128-bit slave interface to system-on-chip memory (SoCMEM)
• One 32-bit slave interface to SoCMEM
• RRAM (NVM) controller inside SYSCPUSS
• SYSCPUSS_APPCPUSS_SL: APPCPUSS slave interface to the APPCPUSS AHB5 interconnect through AHB5-

to-AHB5 bridge
• Two SRAM controllers (SRAMC0, SRAMC1) inside SYSCPUSS
• CM33 to peripheral interconnect (PERI_CM33)
• One AHB DMA to peripheral interconnect (PERI_DMA)
• Serial Memory Interface port 0 and 1 (SMIF port 0, SMIF port 1)
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Figure 3 PSOC™ Edge AHB5 bus matrix

In cases where the same master bus needs to be used by two different slave buses, the master bus can only
handle one transfer at a time. As a result, a method is needed to determine which device gets to use the bus. In
a multiple-bus system, "arbitration" is the process through which the system uses the shared buses. It is a
mechanism for resolving conflicts when multiple devices or components compete for access to the bus to
communicate with other devices or the central processing unit (CPU). Essentially, arbitration regulates the
shared buses and manages the contention for bus access among various devices and components. The PSOC™

Edge bus matrix actively manages access arbitration between masters. An internal arbiter resolves conflicts and
manages bus concurrency among masters on the bus. The SYSCPUSS uses a round-robin with latency scheme
to implement bus arbitration in the AHB5 interconnect. Figure 3 shows the SYSCPUSS AHB5 bus matrix
interconnect.

3.1.2 AHB5 bus matrix interconnect

3.1.2.1 Cortex® M33 C-AHB bus
This bus connects the Cortex® M33 core to the bus matrix through the instruction cache. This bus is used for
instruction fetch and data access to the internal and external memories mapped in the code region. The targets
of this bus are the RRAM (NVM), internal SRAMs, SoCMEM, and external SMIFs.
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3.1.2.2 Cortex® M33 S-AHB bus
This bus connects the Cortex® M33 core to the bus matrix. The core uses this bus to access data located in a
peripheral or SRAM area. The targets of this bus are the aliased RRAM (NVM), internal SRAMs, SoCMEM, external
SMIFs, and peripherals connected via PERI_CM33.

3.1.3 APPCPUSS AXI4/AHB5 interconnects
The APPCPUSS uses the 64-bit AXI4 infrastructure for on-chip memory and off-chip memory and devices. It
employs a 32-bit multilayer AHB5 bus matrix with bridges (within APPCPUSS) as well as connect to the AHB5
bus matrix of the SYSCPUSS. The APPCPUSS AXI4/AHB5 bus matrix interconnects following masters and slaves:
Masters
• Cortex® M55 64-bit master AXI4 interface (M-AXI) with associated I&D-cache
• One AXI DMA controller (AXI_DMAC1/HPDMA)
• U55 neural processing unit subsystem (U55 NPUSS) port 0 & 1
• Graphics subsystem (GFXSS) port 2 & 3
• Cortex® M55 32-bit peripheral AHB interface (P-AHB)
• Two SDHC controllers (SDHC0, SDHC1)
• USBHS controller
• SYSCPUSS_APPCPUSS_MS: SYSCPUSS master interface from the SYSCPUSS AHB5 interconnect through

AHB5-to-AHB5 bridge
• PERI interface accessing ITCM and DTCM over aliased address via Cortex® M55 64-bit slave AHB5 interface
Slaves
• Three dedicated AXI4 slave ports for SoCMEM
• SMIF port 0 & 1
• APPCPUSS_SYSCPUSS_SL: SYSCPUSS slave interface to the SYSCPUSS AHB5 interconnect through AHB5-

to-AHB5 bridge
• CM55 to peripheral interconnect (PERI_CM55)
• One AXI DMA to peripheral interconnect (PERI_AXI_DMA)
• CM55 ITCM
• CM55 DTCM
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Figure 4 PSOC™ Edge AXI4/AHB5 bus matrix

3.1.3.1 Cortex® M55 M-AXI
The Cortex® M55 CPU uses the 64-bit master AXI4 (M-AXI) bus for on or off-chip higher-latency memory and
peripherals that support native AXI transactions. Except for the address space covered by ITCM, DTCM, P-AHB,
and private peripheral bus (PPB), the CM55 CPU can access memory regions such as RRAM, SoCMEM, SMIF, and
others over the M-AXI interface. These accessible address spaces are cacheable in I&D caches subject to the
CPU’s MPU/Secure MPU control. Instruction and data access are always allowed over M-AXI. The M-AXI bus
supports a store buffer (STB), which merges transactions into a 64-bit aligned double-word.

3.1.3.2 Cortex® M55 TCM buses
The 4x32-bit ITCM bus is used by the Cortex® M55 CPU for fetching instructions and accessing data from the
ITCM, and the 4x32-bit DTCM bus is used for accessing data in the DTCM. The DTCM bus allows load/load and
load/store instruction pairs to be dual-issued on the DTCM memory. It can also fetch instructions. The DTCM
and ITCM are accessed by CM55 at CPU clock speed, with zero wait states.
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3.1.3.3 Cortex® M55 S-AHB bus
The Cortex® M55 CPU has a 64-bit AHB5 slave interface (S-AHB, with width converter connected to PERI), which
gives the rest of the system backdoor access to ITCM and DTCM. The system DMA can use this interface to
preload/initialize ITCM and DTCM. Bus masters can access the ITCM and DTCM memories via this interface over
ITCM and DTCM aliasing addresses.

3.1.3.4 Cortex® M55 P-AHB bus
The Cortex® M55 CPU uses the 32-bit peripheral AHB (P-AHB) bus to access peripherals supporting native AHB
transactions.

3.1.3.5 Cortex® M55 D-AHB bus
The Cortex® M55 CPU has the debug AHB5 (D-AHB) interface with Secure Debug Control signals connected to
the common debug infrastructure.

3.2 Memory aliasing
Memory aliasing allows the CM33 C-AHB bus (ICACHE) to access system SRAMs or external SMIFs. CM33 S-AHB
bus uses the aliased address path and writes into RRAM (in C-AHB bus address space). Data can be read from
the RRAM aliased address, but it is not preferred because it is not cached by the CM33's ICACHE. The aliasing
address only applies to the CM33 processor when accessing SRAM, SoCMEM, and external flash via a code bus
to facilitate code execution out of these memories. Otherwise, these devices, along with the rest, are accessed
by the CM55 processor through their globally defined memory addresses. See the PSOC™ Edge MCU
architecture reference manual for more details.

Table 2 Memory aliasing

Description Global default address Aliasing Size

Non secure Secure Non secure Secure

RRAM (NVM) 0x0200 0000 0x1200 0000 0x2200 0000 0x3200 0000 0x0008 0000

SRAM0/SRAM1 512 KB/512
 KB

0x2400 0000 0x3400 0000 0x0400 0000 0x1400 0000 0x0010 0000

System SRAM (SoCMEM)
5120 KB

0x2600 0000 0x3600 0000 0x0600 0000 0x1600 0000 0x0050 0000

CM55 ITCM 256 KB 0x0000 0000 0x1000 0000 Reserved Reserved 0x0004 0000

CM55 DTCM 256 KB 0x2000 0000 0x3000 0000 Reserved Reserved 0x0004 0000

XIP SMIF Core 0 64 MB 0x6000 0000 0x7000 0000 0x0800 0000 0x1800 0000 0x0400 0000

XIP SMIF Core 1 64 MB 0x6400 0000 0x7400 0000 Reserved Reserved 0x0400 0000

3.3 Memory wait states
When accessing a memory area from the CPU, specifically the CM33 or CM55 cores, the primary focus is on the
time required to retrieve data (read) at the relevant system operating frequencies. While write access times are
also relevant, writes are typically posted, allowing the operation to proceed without immediate
acknowledgment. In contrast, reads must traverse the full outbound address and control signal path, as well as
the inbound data access path, which directly impacts system performance and response times.
This analysis is limited to scenarios where the CPU acts as the bus master. Other potential bus masters in the
system are not considered in this context.
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Generally, memory access time consists of two main components:
1. Wait states of the memories being read
2. Delay through the network interconnect (NIC)

1. Wait states (WS): This section focuses on wait states for RRAM and SRAM, which are of primary interest
to users.
• RRAM:

- RRAM writes are significantly slower than RRAM reads (as is typical for most non-volatile
memory) and are not considered in this context

- RRAM reads are controlled by an internal 160 MHz read state machine clock, designed to
produce data within 30 ns (also referred to as the "analog read time") regardless of the voltage
mode (0.7 to 0.9 V)

- In addition to the 30 ns analog read time, the following times are required for an RRAM read:
- 1 clock cycle for address read
- 1 clock cycle for ECC correction (assuming 0 or 1-bit correction; longer times are required

for greater corrections)
• Wait state calculation:

- Based on the 30 ns read time, the WS value for a cycle time (Tcyc) in nanoseconds is calculated
as ceil(30/Tcyc)

- Examples:
- For an AHB clock frequency of 200 MHz (Tcyc = 5 ns), the WS value is 6
- For an AHB clock frequency of 50 MHz (Tcyc = 20 ns), the WS value is 2

Voltage (V) Frequency (MHz) Wait states (WS)

0.9 (HP mode) 200 6

0.8 (LP mode) 80 3

0.7 (ULP mode) 50 2

• SRAM:
- All SRAMs are designed to operate with zero wait states at their peak target frequencies
- This means that the address is latched on one clock edge, and the data is available on the next

clock edge
- Access cycles remain unaffected by voltage and frequency scaling. As long as the voltage and

frequency limits are observed, all SRAM wait states remain at zero
- Consequently, the number of cycles required to access SRAM (via CLK_HF0) and System SRAM

(via CLK_HF2) does not change under normal operating conditions
2. Delay through the Network Inter-Connect (NIC):

Table 3 CM33 CPU

Memory resource Outbound clock
cycles

Access time Inbound clock
cycles

Comment

RRAM 3 AHB clocks Ceil(30 ns/AHB
Tcyc)

2 AHB clocks 128-bit C-AHB. I-
cache refill. 32-bit
access is similar

SRAM - - 1 AHB clock No wait states
(table continues...)
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Table 3 (continued) CM33 CPU

Memory resource Outbound clock
cycles

Access time Inbound clock
cycles

Comment

System SRAM 3 AHB clocks 6 system SRAM
clocks

2 AHB clocks 32-bit access and
128-bit access
(parallel bank read)

Table 4 CM55 CPU

Memory resource Outbound clock
cycles

Access time Inbound clock
cycles

Comment

RRAM 3 AXI + 5 AHB
cycles

2 * Ceil(30 ns/AHB
Tcyc)

4 AHB + 4 AXI
cycles

64-bit word read
takes 2 cycles

SRAM 3 AXI clocks + 3
AHB clocks

4 AHB cycles (2
accesses)

7 AXI clocks + 3
AHB clocks

64-bit word read
takes 2 cycles

System SRAM 3 AXI clocks 6 system SRAM
clocks

2 AXI clocks The first word
access takes one
clock cycle, and
each subsequent
access requires one
system SRAM clock
cycle

3.4 Cache and its influence on power consumption
In addition of other forms of memory, cache is a specialized form of quick-access memory with each core of a
processor. It is specifically designed to speed up the transfer of instructions and data between the processor
core and the memory, therefore helping bridge the access speed gap between the processor and memory. The
primary purpose of cache is to improve the overall performance of the system by providing faster access to
frequently used data and instructions.
Usage of cache memories can significantly improve the system performance. When caching is disabled, the
data will need to be fetched directly from the memory and there will be a throughput bottleneck limited by the
access speed of the memory in use.
Cache memories fail to provide benefits in the following situations:
• data blocks lack cyclical patterns
• prefetch algorithms cannot predict the next sequence of instructions
• programs access data in a non-local non-repetitive manner, making it difficult for the cache to predict what

data to store
In these cases, the cache lines are frequently replaced, resulting in a high cache miss rate, and the system
consumes more power even with caching enabled, as the program fetches the needed data directly from
memory, rendering the cache ineffective.
For PSOC™ Edge MCU, the cache configurations for CM33 core are present in the CM33 start-up code present in
(<application-directory>/bsps/TARGET_<BSP>/COMPONENT_CM33/COMPONENT_SECURE_DEVICE/s_start_pse84.c) and
cache configurations for the CM55 core are present in the CM55 start-up code present in (<application-
directory>/bsps/TARGET_<BSP>/COMPONENT_CM55/COMPONENT_NON_SECURE_DEVICE/ns_start_pse84.c).
The default configuration for shared memories have been kept as "non-cacheable". These memories can be
configured to be cacheable and then user should take care of the cache coherency mechanisms. For details on
the MPU configurations, see Understanding security configurations.
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For details on cache coherency maintenance, see Arm® Cortex®-M55 Processor Technical Reference Manual.

3.4.1 APIs to enable and disable cache
Arm® provides the routines to configure the usage of cache memory in the CMSIS library. The function
definitions are present in /mtb_shared/cmsis/<release-tag>/Core/Include/cachel1_armv7.h. The following four
functions enable and disable the instruction and data cache of the CM55 core.

/* Turns on I-Cache */
__STATIC_FORCEINLINE void SCB_EnableICache(void)
 
/* Turns off I-Cache */
__STATIC_FORCEINLINE void SCB_DisableICache(void)
 
/* Turns on D-Cache */
__STATIC_FORCEINLINE void SCB_EnableDCache(void)
 
/* Turns off D-Cache */
__STATIC_FORCEINLINE void SCB_DisableDCache(void)

To configure the cache for CM33 core, use the following code.

/* Disable I cache */
ICACHE0->CTL = ICACHE0->CTL & (~ICACHE_CTL_CA_EN_Msk);
 
/* Enable I cache */
ICACHE0->CTL = ICACHE0->CTL | (ICACHE_CTL_CA_EN_Msk);
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4 Default memory configuration
This section describes the default memory configuration and usage that comes with the Board Support
Package (BSP) for the PSOC™ Edge device. Most of the PSOC™ Edge code examples utilize the same memory
configuration unless the specific use case requires modification. This chapter discusses the default memory
map and linker scripts provided with the KIT_PSE84_EVAL_EPC2 BSP.
This section uses the S-AHB Secure and Non-Secure address alias when referring to the CM33 CPU application
configuration, and the physical memory address when referring to the CM55 CPU. See Memory aliasing for
details on memory address aliasing.
The Extended Boot selects and starts the first user application (the CM33 Secure project, Edge Protect
Bootloader etc.,) from a fixed memory location, as defined by the boot configuration policy. User can modify
the policy by provisioning the device. See AN237849 - Getting started with PSOC™ Edge security for information
on provisioning and policy file.

4.1 Memory map partitioning and allocation
Figure 5 illustrates the default memory layout for the PSOC™ Edge MCU, showcasing the division of various
memories for secure and non-secure processing environments for code, data, and shared regions. This section
provides an explanation of the division and allocation of memory segments in the out-of-the-box memory
layout available with the default BSP (KIT_PSE84_EVAL_EPC2). While this application note only discusses the
default BSP of PSOC™ Edge MCU in detail, the discussion can easily be extrapolated to other BSPs like
KIT_PSE84_EVAL_EPC4 and KIT_PSE84_AI. The memory map assumes a three project structure: CM33 S, CM33 NS,
and CM55.
Note: This memory map reflects the BSP’s default memory layout. Application developers may reconfigure

region boundaries, attributes, and placements within the BSP to meet application-specific
requirements while respecting device address-space, alignment, and protection constraints. See
section Memory configuration use cases for custom memory configurations.
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ITCM(256 KB)
0x1000 0000 / 0x0000 0000

Reserved

RRAM (512 KB)

SRAM aliasing on CM33
C-AHB bus (1 MB)

System SRAM aliasing
on CM33 C-AHB bus (5120 KB)

SMIF0 (XIP_Port0)
aliasing on C-AHB bus (64 MB)

SMIF1 (XIP_Port1)
aliasing on C-AHB bus(64 MB)

DTCM (256 KB)

Reserved

RRAM aliasing on S-AHB
bus (for write) (512 KB)

System SRAM
(SoCMEM) (5120 KB)

Reserved

Peripheral
Region

CM55_ITCM aliasing (256 KB)

CM55_DTCM aliasing (256 KB)

Reserved

SMIF0 (64 MB)

SMIF1(64 MB)

Reserved

PPB/EPPB (1 MB)

Reserved

Extended Boot Reserved 
RRAM (68 KB)

User Programmable 
(296 KB)

Unused (28 KB)

Extended Boot Reserved 
SRAM (4 KB)

CM33 Secure Shared (4 KB)

CM33 Secure Data (132 KB)

CM33 Data (256 KB)

CM33 Secure Shared (4KB)

CM33 Shared (4KB)

CM55 Code (256 KB)

Unused (1 MB)

CM33 Secure Code (212 KB)

0x3200 0000 / 0x2200 0000

0x3201 1000 / 0x2201 1000

0x3206 3000 /  0x2206 3000

0x3206 A000 / 0x2206 A000

0x3400 0000 / 0x2400 0000

0x3400 1000 / 0x2400 1000

0x3400 2000 / 0x2400 2000

0x3403 7000 / 0x2403 7000

0x3405 8000 / 0x2405 8000

0x340F D000 / 0x240F D000

0x340F E000 / 0x240F E000

CM55 Data (2.73 MB)

CM33 CM55 Shared (256 KB)

Graphics Data (1.77 MB)

0x3600 0000 /  0x2600 0000

0x3604 0000 / 0x2604 0000

0x362F C000 / 0x262F C000

0x3633 C000 / 0x2633 C000

0x364F FFFF / 0x264F FFFF

CM33 secure image
 (2 MB)

CM33 secure trailer (256 KB)

CM33 image (2 MB)

0x7000 0000 / 0x6000 0000

0x7034 0000 / 0x6034 0000

0x7054 0000 / 0x6054 0000

0x7058 0000 / 0x6058 0000

0x7084 0000 / 0x6084 0000

0x70FF FFFF / 0x60FF FFFF

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

0x1003 FFFF /  0x0003 FFFF

0x1200 0000 /  0x0200 0000

0x1207 FFFF / 0x0207 FFFF

0x1400 0000 /  0x0400 0000

0x140F FFFF / 0x040F FFFF

0x1600 0000 / 0x0600 0000

0x164F FFFF / 0x064F FFFF

0x1800 0000 / 0x0800 0000

0x1BFF FFFF / 0x0BFF FFFF

0x1FFF FFFF / 0x0FFF FFFF

0x3000 0000 / 0x2000 0000

0x3003 FFFF / 0x2003 FFFF

SRAM (1 MB)

0x3200 0000 / 0x2200 0000

0x3207 FFFF / 0x2207 FFFF

0x3400 0000 / 0x2400 0000

0x340F FFFF / 0x240F FFFF

0x3600 0000 / 0x2600 0000

0x364F FFFF / 0x264F FFFF

0x5000 0000 / 0x4000 0000

0x5800 0000 / 0x4800 0000

0x5807 FFFF / 0x4807 FFFF

0x5803 FFFF / 0x4803 FFFF

0x7000 0000 / 0x6000 0000

0x73FF FFFF / 0x63FF FFFF

0x77FF FFFF / 0x67FF FFFF

0xF000 0000 / 0xE000 0000

0xF00F FFFF / 0xE00F FFFF

0xFFFF FFFF

0x340B D000 / 0x240B D000

Secure address / Non-secure address

Note: Memory block sizes are not to scale

Unused 
(7.5 MB if 16 MB flash used)

0x7088 0000 / 0x6088 0000

Reserved Region  (88 KB)
0x3207 FFFF / 0x2207 FFFF

CM33 CM55 shared memory domain
CM55 memory domain

CM33 secure memory domainAliased address space
Reserved address space

Secure address / Non-secure address

CM33 Code (404 KB)

CM55 Shared (4KB)

CM33 memory domain

0x340F F000 / 0x240F F000

0x340F FFFF / 0x240F FFFF

CM33 trailer (256 KB)

Reserved memory domain
Unused memory region

CM55 image (2.75 MB)

CM55 trailer (256 KB)

0x7010 0000 / 0x6010 0000

0x7030 0000 / 0x6030 0000

User NVM (32 KB)
0x3205 B000 / 0x2205 B000

Figure 5 Default memory map for KIT_PSE84_EVAL_EPC2 BSP

PSOC™ Edge MCU's memory layout divides various memory segments for code, data, and shared memory
sections in CM33 SPE (secure processing environment) and both CM33 and CM55 NSPE (Non-secure processing
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environment) domains. This default memory layout provides a specific configuration for different memory
regions. See section PSOC™ Edge architecture for an overview of memories present in the PSOC™ Edge MCU. The
below tables summarize the memory sections, region IDs, security domain classification and size for each
memory section present in PSOC™ Edge MCU. Note that all region sizes and security descriptions in this section
represent the BSP’s default settings. The memory region configurations can be modified using ModusToolbox™

Device Configurator. See section Customizing the memory MAP for more details.

Table 5 PSOC™ Edge memory layout for RRAM

Region Name Region ID Domain Size Description

Extended Boot Reserved
RRAM

extended_b
oot_reserve
d

reserved 68 KB Region reserved for Extended Boot

User Programmable
Region

user_progra
mmable

M33S 296 KB This can be utilized for various use
cases like CM33 Secure Project/TF-
M Image, Edge Protect Boot-loader,
Internal Trusted (Secured) Storage

User NVM Region user_nvm M33_M55 32 KB This is a shared NVM memory region in
RRAM which can be accessed by both
CM33 and CM55 applications

Unused - - 28 KB -

Reserved Region reserved_re
gion

reserved 88 KB Reserved for secured enclave

Table 6 PSOC™ Edge memory layout for SRAM

Region Name Region ID Domain Size Description

Extended Boot Reserved
SRAM

extended_b
oot_sram_r
eserved

reserved 4 KB Region reserved for Extended Boot

CM33 Secure Shared m33s_share
d

M33S 4 KB Shared memory region between the
CM33 secure project and the secure
enclave. Secure enclave can place data
in this region.

CM33 Secure Code m33s_code M33S 212 KB Placement of instructions from the
CM33 secure project

CM33 Secure Data m33s_data M33S 132 KB Placement of data from the CM33
secure project

CM33 Code m33_code M33 404 KB Placement of instructions from either of
the CM33 projects.

CM33 Data m33_data M33_M55 256 KB Placement of data from the CM33
project but also accessible to the CM55
project.

CM33 Secure Shared m33s_alloc
atable_shar
ed

M33_M55 4 KB Placement of shared code or data
by CM33 secure project that can be
accessed by any project.

(table continues...)
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Table 6 (continued) PSOC™ Edge memory layout for SRAM

Region Name Region ID Domain Size Description

CM33 Shared m33_allocat
able_shared

M33_M55 4 KB Placement of shared code or data by
CM33 project that can be accessed by
any project.

CM55 Shared m55_allocat
able_shared

M33_M55 4 KB Placement of shared code or data by
CM55 project that can be accessed by
any project.

Table 7 PSOC™ Edge memory layout for System SRAM (SoCMEM)

Region Name Region ID Domain Size Description

CM55 code m55_code_
secondary

M55 256 KB Allocated for the code region of the
CM55 application

CM55 Data m55_data_s
econdary

M55 2.73 MB This region is meant to place a data
region for CM55 application in the
default case. It is also used to store
specific buffers to be placed in System
SRAM and to allocate heap for dynamic
allocation of memory.

CM33 CM55 shared m33_m55_s
hared

M33_M55 256 KB Shared memory between CM33 and
CM55 applications. This region can be
used to share data buffers among the
CM33 NS and CM55 applications. This
can be used for various audio, graphics,
and ML use cases where applications
need to share specific information or
requests with each other.

Graphics Data gfx_mem M33_M55 1.77 MB Intended for storing dynamic GPU data
for graphics use cases, such as image
rendering on displays. In most use
cases, this region should be used by the
CM55 core or the GPU used for graphics
applications.

Table 8 PSOC™ Edge memory layout for external flash (SMIF0)

Region Name Region ID Domain Size Description

CM33 secure image m33s_nvm M33S 2 MB Placement of the code from CM33
secure project

CM33 secure trailer m33s_traile
r

M33S 256 KB Trailer region for CM33 secure project

CM33 image m33_nvm M33 2 MB Placement of the code from CM33 non-
secure project

CM33 trailer m33_trailer M33 256 KB Trailer region for CM33 non-secure
project

(table continues...)
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Table 8 (continued) PSOC™ Edge memory layout for external flash (SMIF0)

Region Name Region ID Domain Size Description

CM55 image m55_nvm M55 2.75 MB Placement of the code from CM55
project

CM55 trailer m55_trailer M55 256 KB Trailer region for CM55 project

The NVM images are followed by a trailer region for each image. The trailer region at the end of each image slot
in flash used by the Edge Protect Bootloader to manage firmware upgrades safely. Refer to MCUboot image
format for more details about image trailers.
In addition to the above discussed memory types, there are two types of Tightly Coupled Memories (TCMs)
present in the MCU. ITCM and DTCM memories can be accessed through their respective start addresses at
0x00000000 and 0x20000000 for the CM55 CPU. By default, the DTCM is utilized to hold the stack for the CM55
application. Additionally, it can be used to place custom data in the DTCM as per the application's
requirements. The ITCM, on the other hand, is used to place the vector table for faster access, it is also used to
place some code for execution like delay snippet and SMIF driver and syslib source files. See section
Understanding the linker script for details.
The partitioning described in the above memory map are implemented using the default linker scripts and
security settings available in the BSP. The subsequent sections in this chapter will delve deeper into linkers and
security configurations for the default memory layout.

4.2 Understanding the linker script
Linker scripts are essentially configuration files that are used by the linker to specify how object files and
libraries should be linked together to generate the final executable. Linker scripts are a collection of linker
commands that describe how the sections in the input-compiled files should be mapped into the output
executable file. They also help provide precise control over the memory configuration, output section
definition, and address binding.
In this section, you will examine the linker script file for GCC. The GCC linker script file has a (.ld) extension. For
complete documentation on GCC (.ld) linker script, refer to the GCC documentation. You can use Linker Scripts
for Arm® and IAR compilers to help the linkers of the respective compilers with the linking process. These scripts
function similarly to the GCC linker but with a slightly different syntax and memory region allocation
philosophies.

4.2.1 VMA and LMA concepts
Every loadable or allocatable output section has two addresses. The first is the VMA, or virtual memory address,
and the second is the LMA, or load memory address. This section discusses them and their usage.
The VMA refers to the execution address of the program — the address used by the CPU to access instructions
and data while the program is running. The VMA is the address that is relevant once the system is up and
running.
The LMA is the address where a section is placed in memory at the time the system is loaded. This is the
address at which the program is written into memory. Generally, this is the address in a nonvolatile memory
(like flash) where the program resides after being programmed into the device.
For embedded memories, the VMA and LMA may have the same value where the program is run from the exact
location from where it is loaded in the memory. However, there may be cases when a section of the user
application has to be loaded into a nonvolatile memory (like flash) and this section is expected to be run from a
volatile memory (like RAM). This means that a start-up program must copy the section from its LMA (where it is
stored in flash) to its VMA (where it should run in RAM) before the main program starts executing. In such cases,
it is helpful to have two separate addresses.
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Let us take an implementation example in GNU linker script to understand the concept of VMA and LMA.
Consider the below linker snippet:

.examplesection : ALIGN(4)
{
    ...
    {Section Details}
    ...
} > VMA_mem_reg AT > LMA_mem_reg

• > VMA_mem_reg: This specifies the Virtual Memory Address (VMA), or the execution address. It means that
when the program is running, the .examplesection section will be accessed at addresses within the
VMA_mem_reg memory region

• AT > LMA_mem_reg: This specifies the Load Memory Address (LMA), or the address where
the .examplesection section is stored in the executable file. It indicates that the initial values for
the .examplesection section are located in the LMA_mem_reg memory region (likely a non-volatile memory
like Flash)

Therefore, the last line instructs the linker to place the .examplesection section into the executable file as if it
were part of the LMA_mem_reg memory region. Then, at runtime, a startup code will copy the data from the
LMA_mem_reg to the VMA_mem_reg.

4.2.2 Linker script for the GCC Compiler
For PSOC™ Edge MCU, the following linker script files are present for the GCC compiler.

Table 9 Linker scripts for PSOC™ Edge MCU

COMPONENT_CORE Linker file Description

COMPONENT_CM33 pse84_ns_cm33.ld This is the linker script file used for the CM33 non-secure
project.

pse84_s_cm33.ld This is the linker script file used for the CM33 secure project.

COMPONENT_CM55 pse84_ns_cm55.ld This is the linker script file used for the CM55 project.

You may customize the memory placement configurations for the described code and data regions as needed
for the application. A GCC linker script file has among others two major commands: MEMORY {} and SECTIONS {}
which are discussed in the following sections.

4.2.2.1 MEMORY command
The MEMORY command in a GNU linker script declares memory regions available in the target system. It is used
to describe the size and attributes of different blocks of memory, which informs the linker how to allocate
sections to specific memory regions during the linking process.
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The format of the MEMORY command is as follows.

MEMORY
{
...
 region_name (attr) : ORIGIN = origin, LENGTH = len
...
 
}

The memory regions are specified within the 'Memory' tab of the ModusToolbox™ Device Configurator. These
configurations are used to automatically generate a linker file, which is incorporated into the main linker script
during the project linking process. The generated linker file is located at: bsps/TARGET_<BSP>/config/
GeneratedSource/cymem_<Toolchain>_<Core>.<Linker-Extension> .

4.2.2.2 SECTIONS command
The SECTIONS command within a GNU GCC linker script is central to the linking process.
This directive allows you to specify exactly how sections (pieces of code or data) from the input files (usually
object files, .o, and library files, .a) should be mapped into the output file (the final executable). Under the
SECTIONS command, you can control the placement, alignment, and combination of these sections, among
other attributes.
The output section descriptors inside SECTION command end with a [region_name] statement. This statement
informs the linker about the memory region in which that output section should be placed into.
The format of the SECTIONS command is as follows.

SECTIONS
{
    /*Executable Code*/
     .text :
    {
        ... 
    } [>region_name]
 
    /*Initialized Data*/
    .data :
    {
        ...
    } [>region_name]  
 
    /*Uninitialized Data*/
   .bss :
    {
        ...
    } [>region_name]
}
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4.2.2.3 Structure of GCC linker script
The basic structure of the GCC linker script for PSOC™ Edge MCU is as follows:

/* Specify the output format for the linker script */
OUTPUT_FORMAT ("elf32-littlearm", "elf32-bigarm", "elf32-littlearm")

/* Search for libraries in the current directory */
SEARCH_DIR(.)

/* Specify the group of libraries to link against */
GROUP(-lgcc -lc -lnosys)

/* Define the entry point of the program, which is the reset handler */
ENTRY(Reset_Handler)

/* Define the stack size for the application */
/* Include the device memory definitions generated by the Device Configurator */
INCLUDE cymem_gnu_CM33_0.ld

/* Device definitions */
/* Section definitions */
SECTIONS
{
    /* This section is intended to hold the main non-secure (NS) 
     * application code for the Cortex-M33 */
    .app_code_main : ALIGN(VECTORS_ALIGNMENT)
    {
        ...
    } [>region_name]

    /* Exception tables and Exception Index tables for ARM architecture */
    /* Copy table and Zero table section definitions */

    /* A section for performance-sensitive or critical functions that 
     * need to be executed in SRAM */
    .app_code_ram : ALIGN(4)
    {
        ...
    } [>region_name(VMA)] AT [>region_name(LMA)]

    /* A section for initialized data memory */
    .data : ALIGN(4)
    {
        ...
    } [>region_name(VMA)] AT [>region_name(LMA)]

    /* BSS, Heap, GPU buffer and other region definitions */

}
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4.2.3 Linker script for other toolchains
1. Arm® Toolchain:

The linker script for Arm® toolchain has a .scat or .sct file extension (for “scatter”). It has no commands;
instead it separately defines regions and sections only. It has a load region. The load region contains
several execution regions, which in turn contain one or more section attributes. The linker script for Arm®

toolchain can be found at
• CM33: bsps/TARGET_<BSP>/COMPONENT_CM33/TOOLCHAIN_ARM
• CM55: bsps/TARGET_<BSP>/COMPONENT_CM55/TOOLCHAIN_ARM
For complete documentation on Arm® (.sct) linker script, see Arm® documentation

2. IAR Toolchain
The linker script for IAR toochain has a .icf file extension. It uses "define symbols" command to define
the various memory and data regions and then uses the "place in" command to control what sections is
placed in which memory. The linker script for IAR toolchain can be found at
• CM33: bsps/TARGET_<BSP>/COMPONENT_CM33/TOOLCHAIN_IAR
• CM55: bsps/TARGET_<BSP>/COMPONENT_CM55/TOOLCHAIN_IAR
For complete documentation on IAR (.icf) linker script, see IAR documentation

3. LLVM_ARM Toolchain
The linker script for LLVM_ARM toolchain has a .ld file extension similar to the GNU linker script. The
syntax for basic linker scripts is nearly identical with the GNU linker, but GNU linker script supports
additional GNU-specific features, while the focus of LLVM linker script is more on compatibility and
performance of the applications. The linker script for LLVM_ARM toolchain can be found at
• CM33: bsps/TARGET_<BSP>/COMPONENT_CM33/TOOLCHAIN_LLVM_ARM
• CM55: bsps/TARGET_<BSP>/COMPONENT_CM55/TOOLCHAIN_LLVM_ARM

4.3 Understanding security configurations
PSOC™ Edge device security restrictions can be configured by software for applying restrictions for accessing
the various memories and peripherals. See Protection Units section in PSOC™ Edge architecture reference
manual for more details. Security configurations for PSOC™ Edge MCU has two major components:
• S/NS attribute on Address alias (TrustZone® SAU/IDAU configuration): These attributes are configured

using Implementation Defined Attribution Unit (IDAU) and Security Attribution Unit (SAU) configurations
provided by the TrustZone® architecture. Hence, these are only applicable for the CM33 CPU. IDAU
configurations are fixed for device and you can only make use of SAU configuration in secured software to
implement the required attribute on address regions. SAU defines the access restrictions for a particular
address region on the basis of the secure/non-secure state of CPU (secure/non-secure SW). TrustZone®

blocks all access to memory region marked as secure by non-secure state of CPU (non-secure SW), whereas
otherwise is allowed. For further details, see the TrustZone® section in the PSOC™ Edge architecture
reference manual

• System-wide access restrictions for memory and peripheral (MPC and PPC): These attributes are
configured by MPC, PPC as per Protection Context (PC) at system (bus master) level hence applicable to
all bus masters. It defines the access of a particular memory region on the basis of a Secure/Non-Secure
attribute and PC of bus master trying to access the memory. As per MPC configuration secure master(s)
executing in a configured protection context can only access memory region marked as secure, similarly
non-secure master can only access memory region marked as non-secure. If memory access tries to violate
the given configuration, a fault will be generated signaling an illegal access to memory. For further details,
see the TrustZone® section in the PSOC™ Edge architecture reference manual

The Infineon Device Support Library provides the following protection personalities for PSOC™ Edge devices:
1. Protection domain personality:
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The Protection Domain personality lets you set security attributes for device memory. The Device
Configurator allows for 15 protection domains and the BSP configures 6 domains by default with specific
access and security settings as discussed in Table 10. Users have the flexibility to create their own
protection domains, tailoring the settings to meet the specific needs of the application.

Table 10 Default protection domains

Domain Name Description

Domain 0 M33S CM33 secure memory domain. This domain is only accessible
within the Secure processing environment (SPE).

Domain 1 M33 CM33 memory domain. This domain is accessible by both
the Secure processing environment (SPE) and the non-secure
processing environment (NSPE)

Domain 2 M55 CM55 memory domain.

Domain 3 M33NSC Direct calls from NSPE to SPE are prohibited. The NSC domain is
used as gateway for secure SPE function access.

Domain 4 M33_M55 Shared memory domain between CM33 and CM55 applications.

Domain 5 reserved Reserved Domain. This domain should not be assigned to user-
defined memory regions. It is used internally by the Device
Configurator and no code or configuration is generated for
regions assigned to it

When a memory region is assigned to a domain, the region inherits all settings from that domain,
including security access and configurations for the MPC, SAU, and related security components. These
configurations are known as 'Protection domain parameters' and are configured in the Device
Configurator. Figure 6 shows the protection domain parameters for the Domain 0 (M33S). The
parameters within the domain personality are discussed below:

a. 'Top level protection' parameter sets the domain’s security state to one of the following:
• Secure: Only Secure code can access this domain
• Non-Secure: Accessible by Non-Secure code
• Non-Secure Callable (NSC): Provides controlled entry points for Non-Secure code to call

Secure functions
b. 'Peripheral protection' parameter controls whether peripherals in this domain can be accessed

from unprivileged (user) mode. Enable this only if unprivileged software must talk to these
peripherals; otherwise leave it disabled to restrict access to privileged code

c. 'Accessible by' parameter lists available protection contexts (PCs) for each memory domain
d. For each PC that you enable for a particular memory domain, you must also provide the

configuration in the 'Memory Protection' parameter from among the following settings:
• Read allowed: Can this PC read from the domain?
• Write allowed: Can this PC write to the domain?
• Secure attribute: Is this PC operating as Secure or Non-Secure for this domain’s access

checks?
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Figure 6 Domain 0 Protection domain parameters

Note that the default domains are read-only and are not supposed to be modified by the users. They are
designed to ensure reliable and predefined functionality. The only exception is in Custom Security mode,
where you can enable or disable Debugger PC access within the M33S default domain using the
checkbox in the top-level Protection resource. For any other modification requirement, a custom
protection domain should be created

2. Memory Protection Unit (MPU) personality:
The ARMv8-M memory protection units (MPUs) are programmable units and part of the CPU. A MPU
distinguishes user and privileged accesses from a CPU. The MPUs allow privileged software to define
memory access permission (R/W/X) and monitors the instruction fetch and data access operations from
the CPU. In the PSOC™ Edge platform, the M33 CPU has eight secure MPUs and eight non-secure MPUs.
The M55 CPU has eight non-secure MPUs. Any access violation observed by the MPU triggers a fault.
After enabling a MPU region, the ‘Base Address’ and ‘Size (bytes)’ should be configured. 'End address' is
generated based on the Base Address and Size. Once enabled, the options for region securities are as
follows: (wait for ravikiran for device-memory)
• Privileged access only: When enabled, only privileged code can access this region. Unprivileged code

will be blocked and result in a fault
• Writable: When enabled, software can write to this region. When disabled, the region is read-only
• Executable: When enabled, code can run from this region. When disabled, instruction fetches are

blocked
• Device memory: Mark this if the region maps to device/peripheral registers
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3. Memory Protection Controller (MPC) personality:
The memory protection controller (MPC) is situated on the AHB/AXI bus. The following memories are
equipped with MPCs: RRAM, SRAM, System SRAM (SocMEM), and SMIF (external memory). This
personality allows to configure MPC response on assess violation of the Security Domains

4. Peripheral Protection Controller (PPC) personality:
PPC provides peripheral access control based on Arm® TrustZone®-M secure/non-secure (NS), Privileged/
Unprivileged (P) and protection context (PC) attributes. PPC is situated between bus masters and
peripherals. In the peripheral space, the PPC groups the MMIO registers of a peripheral which typically
require same security permissions into "regions". The PPC checks the security attribute of a peripheral
region against the transaction attribute from the masters for a security violation. If the transaction has
security violation, then the transaction is blocked

5. Security Attribution Units (SAU) personality:
The Security Attribution Units (SAU) personality displays the current SAU security settings for device
memory. It is primarily used to configure regions within memory that are designated as ‘Non-Secure
Callable’ by the protection domain associated with the memory regions.
The SAU (Security Attribution Unit) defines which parts of memory are Secure, Non-Secure Callable
(NSC), or Non-Secure. By default, all memory is Secure, which means code running in the Non-Secure
world cannot access it or call functions stored there. The other configurations include:

• Non-Secure Callable (NSC): Mark a small region as NSC when you want Non-Secure code to call into
Secure functions. NSC only allows controlled function entry points; it does not allow direct data
access

• Non-Secure: Mark regions as Non-Secure when Non-Secure code must run from them or read and
write their data. Non-Secure code can execute, read, and modify memory in these regions

In this flow, the SAU is primarily used to define the NSC 'gateway' regions. Based on those definitions,
the NSC region is identified and the remaining regions are treated as non-secure.
The SAU personality is available in Secure cores. The Device Configurator generates a file ‘cycfg_sau.h’
with the function Cy_SauInit(void) for SAU configuration. This function has to be called from the secure
core main() function
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5 Power and performance impact for memory accesses
The system's efficiency depends on the type of application and its memory requirements. Small-scale systems
can function adequately with internal memory alone. However, larger applications, such as image processing
or graphical tasks, may necessitate additional memory beyond the internal RRAM and SRAM. For such cases,
off-chip SMIF memories can provide the necessary extra storage. Furthermore, encrypting and decrypting the
data on the fly can enhance security when accessing the storage.
For details on low-power modes in PSOC™ Edge MCU devices, and power management strategies for low-power
application design, see AN237976 - PSOC™ Edge MCU low power modes and power reduction techniques.

5.1 Effect of different memory types on power consumption
Application design on embedded systems involves dealing with limited memory resources and power
consumption constraints. Real-world MCU-based embedded application designs usually employ a combination
of both internal and external memory to strike a balance between performance and power to achieve an
optimal solution for their application.
Internal memory includes on-chip memories like RRAM, SRAM, and System SRAM (SoCMEM). External memory
refers to the secondary memory that is present outside the processor such as QSPI/OSPI flash. This is typically
used for storing application data with a higher memory footprint.
To optimize the power to performance ratio of applications, the application developer must decide the optimal
placement of data and code in the correct memory. In this section, some qualitative strategies to consider
when choosing the appropriate memory as per the requirements of your application.
Internal memories reside on-chip and therefore exhibit faster read/write operations when compared with
memories that reside outside the chip. However, internal memory storage is limited and for applications with
high memory demanding use cases like graphics and connectivity, it might be a challenge to only rely on
internal memories. For simple application designs, if the usage of internal memory is sufficient, it would
provide the optimal power efficiency for the application. However, for applications which involve large code
size and data to store or process, like graphics, connectivity, machine learning, the internal RRAM and/or the
SRAM will not be sufficient and the external memories must be used. External memories like SPI flash provide
larger memory space at the cost of speed and power efficiency. It is recommended to keep an instruction cache
(ICACHE) on when using external memory for data or instructions. This helps in minimizing power
consumption. Application designs for lowest power and maximum performance can be achieved using internal
memories. To optimize for power and performance, you may consider moving the code to the most appropriate
memory locations for that particular application. Detailed steps for code and data movement across memories
are covered in the section Memory configuration use cases.
See the following chart for a typical representative comparison of power vs performance characteristics of
different memories present on the PSOC™ Edge MCU. Note that this is just an indicative image for qualitative
analysis. The memory sizes are not to scale.
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Figure 7 Power consumption vs performance comparison

5.2 Power optimization techniques
1. Configuring system SRAM: For the system Deep Sleep, put the system SRAM to Deep Sleep using the

following function:

Cy_SysPm_SetSOCMEMDeepSleepMode(CY_SYSPM_MODE_DEEPSLEEP);

For applications that do not need system SRAM, you may completely turn it off using the following
function and run the code from ITCM. See Memory configuration use cases on how to use ITCM. Make
sure the clock supplied to the system SRAM block is also disabled before calling this function using
Cy_SysClk_ClkHfDisable() API.

/* Disable System SRAM (SoCMEM) */
Cy_SysEnableSOCMEM(false);

2. Disabling external flash: If your application does not have size constraints and can be completely
moved to internal memories, you may disable the external flash altogether to reduce power
consumption. The following API functions can be used to enable and disable the SMIF domain.
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Make sure the clock supplied to the SMIF block is also disabled before calling this function using
Cy_SysClk_ClkHfDisable() API.

/* Disable SMIF Block
The SMIF block can be disabled only when it is not in the active state.
Use the Cy_SMIF_BusyCheck() function to check before calling the disable function.
Make sure the clock supplied to SMIF block is also disabled before calling this function 
using Cy_SysClk_ClkHfDisable
 
Parameters
base:   Holds the base address of the SMIF block registers. */
 
__STATIC_INLINE void Cy_SMIF_Disable( SMIF_Type* base) 
 
 
/* De-Initialize SMIF block
This function de-initializes the SMIF block to default values.
The SMIF must be disabled before calling the function.
 
Parameters
base:   Holds the base address of the SMIF block registers. */
 
void Cy_SMIF_DeInit(SMIF_Type* base)  

3. Disabling high-power domain (PD1): PD1 can be independently turned off, while PD0 remains on
unless the chip power is removed. For applications that do not require high-performance peripherals in
the PD1 domain, the domain can be completely turned off to conserve power and brought up again as
needed.
The following API functions can be used to enable and disable the PD1 domain

/*Enable PD1*/
void Cy_System_EnablePD1(void);
 
/*Disable PD1*/
/*The System SRAM must be disabled before disabling PD1 domain using this API. */
void Cy_System_DisablePD1(void);

4. Configuring SRAM: In Deep Sleep mode, retain SRAM in blocks of 64 KB. For applications that do not
utilize the whole of the 1 MB SRAM, retain selective blocks via the following function:

cy_en_syspm_status_t Cy_SysPm_SetSRAMMacroPwrMode(cy_en_syspm_sram_index_t sramNum, 
uint32_t sramMacroNum, cy_en_syspm_sram_pwr_mode_t sramPwrMode);

5. Optimizing core voltage and frequency: Clock frequencies of certain memory peripherals like system
SRAM and SMIF interface can be configured by the user as per requirement. You may also consider
selecting the right core voltage and core clock frequencies as per different available low-power modes to
optimize power consumption. See AN237976 - PSOC™ Edge MCU low power modes and power reduction
techniques.

6. Usage of DMA: You may also consider using the DMA for memory transactions while the processor is put
to sleep to reduce system power consumption.
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5.3 Performance optimization techniques
1. Usage of TCM memories: For applications utilizing the CM55 core, use the tightly coupled memories

(ITCM and DTCM) to achieve faster, predictable, and deterministic data access. The tightly coupled
memories are physically placed close to the CM55 core and therefore the access times to these memories
is much faster compared to any other internal memory

2. Usage of data cache: Utilize the data caching in CM55 projects for small repetitive operations needed in
the application

3. Utilization of application-specific coprocessor: Utilize the U55 coprocessor to accelerate machine
learning inference applications such as automatic speech recognition and keyword identification

4. SMIF interfacing: When using external memory, it is optimal to utilize SPI protocols with higher speed,
like Quad over Dual or Octal over Quad, and higher data rate transfer, such as Dual Data Rate (DDR) over
Single Data Rate (SDR), to achieve the best performance

5. Compiler Flags: User may optionally choose to apply compiler optimization flags with the goal of
improving performance or reducing resource usage. Common optimization flags include "-O0", "-O1",
"-Ofast", etc.
-O0 refers to 'no optimization', while -O1 through -O3 refer to progressively higher optimization levels
favoring proportionate increase in the runtime execution speed of the programs.
Each compiler optimization level represents a tradeoff between compilation time, execution speed, and
code size. Lower compilation flags (-O1 or -O2) are often associated with shorter compilation time with
smaller memory footprint of the program and lead to higher debug clarity and deterministic control over
code behavior. Higher (more aggressive) optimization levels (-O3 or -Ofast) may increase the memory
footprint of the program to achieve higher execution speed. These are targeted to maximize runtime
performance, reduce resource usage, or take full advantage of the hardware’s capabilities. Aggressive
optimization flags are commonly used to showcase hardware or software performance in benchmarking
scenarios.
There also compiler optimization flags aimed to optimize the program for size. These flags aim to reduce
the size of the generated binary, making the program smaller in terms of memory footprint and disk
storage. While optimizing for size can sometimes slightly impact runtime performance, it is extremely
useful in scenarios where memory or storage is a constraint.
Perform the following steps to add the optimization flags to your applications:

a. Set CONFIG=Custom in the common.mk file
b. Set CFLAGS and CXXFLAGS in the Makefile for each core with the desired optimization
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6 Memory configuration use cases
This section describes the process of connecting and running code across different types of memory, including
RRAM, SRAM, and System SRAM (SoCMEM). Furthermore, it provides detailed insights into the techniques for
strategically situating a block of data within different memory regions. The code example, CE238541 PSOC™

Edge MCU: Hello world, which is accessible in the ModusToolbox™, serves as the starting point for this section. It
is assumed that readers possess a level of familiarity with the usage of the PSOC™ Edge device and EVK, along
with practical experience in working with the "Hello World" code example in the ModusToolbox™. For those who
have yet to explore this code example, it is recommended to commence with AN235935-Getting started with
PSOC™ Edge E84 on ModusToolbox™ software.
PSOC™ Edge code example is structured around three projects, namely proj_cm33_s, proj_cm33_ns, and
proj_cm55. Throughout this chapter, the explanations are centered on CM33 secure project (proj_cm33_s),
CM33 non-secure project (proj_cm33_ns) and CM55 project (proj_cm55) emphasizing that the foundational
concept remains consistent across all other projects.
As observed in the section Understanding the linker script, the linker file establishes a default memory
allocation for placing your code and data. For instance, in proj_cm33_ns, the default placement involves
placing data in SRAM1 (.data) while the code is placed in External Flash (.app_code_main), and SRAM
(.app_code_ram). However, there are situations where you may need to modify this allocation. For example, you
might need to relocate a code segment to RRAM or position data in System SRAM (SoCMEM) for reasons related
to power efficiency and performance, as elaborated in the section Power and performance impact for memory
accesses. Examples in this section are demonstrated using the KIT_PSE84_EVAL_EPC2 BSP but the methods can
be extended to other PSOC™ Edge BSPs as well. This section describes the following:
1. Placing code and data in a specific memory region using default linker files
2. Customizing the memory MAP

6.1 Placing code and data in a specific memory region using default
linker files

6.1.1 Assigning functions and variables to a linker section
Each compiler provides a mechanism to place your code and data into a memory region of your choice. PSOC™

Edge linker files provide the most commonly used sections in the default linker files. You can use of these
sections for your application needs. Additionally, you can still create the sections on your own or customize
them as needed for the use case.
In the following sections, specific examples and work towards achieving common use cases by utilizing the
preexisting memory regions and sections from the default linker files are described.
1. Placing data in SOCMEM in the cm33_ns project: In the cm33_ns project, the default configuration

allocates data to SRAM1 using the .data section. If you want to allocate the data to SOCMEM instead of
SRAM1, you can achieve this by utilizing CY_SECTION directed to .cy_socmem_data. A sample code snippet
is shown for reference:

/* Place data in a specific memory section */
CY_SECTION(".cy_socmem_data") __attribute__((used)) unsigned int my_var = 0;

This method is not limited to a single variable. You can also allocate an array or structure using the same
approach. You can allocate as many variables as needed, as long as they fit within the target memory
region

2. Placing code in SRAM1 in the cm33_ns project: In the cm33_ns project, the default configuration
places code on external flash using the .app_code_main section. If you want to place the code on SRAM1
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instead of external flash, you can achieve this by utilizing CY_SECTION directed to .cy_sram_code A
sample code snippet is shown for reference:

/* Place code in a specific memory section */
CY_SECTION(".cy_sram_code") __attribute__((used)) int my_sram_func(void);
 
/********************************************************
* Function Name: my_sram_func
********************************************************/
unsigned int my_sram_func(void)
{
    /* function body here */
    return 0;
}

3. Placing code in the ITCM in the cm55 project: The default configuration allocates code to the external
flash using the .app_code_main section outlined in the cm55 linker file. However, certain specific codes
like syslib and SMIF drivers are positioned in the ITCM using the .app_code_itcm section. If there is a need
to place a particular piece of code in the ITCM, it can be achieved by utilizing CY_SECTION to allocate the
code to the '.cy_itcm' section, sending it to the ITCM memory. See the sample source code to place the
code in the ITCM section:

/* Place code in ITCM */
CY_SECTION(".cy_itcm") __attribute__((used)) unsigned int my_itcm_func(void);
 
/********************************************************
* Function Name: my_itcm_func
********************************************************/
unsigned int my_itcm_func(void)
{
    /* function body here */
    return 0;
}

4. Placing data in DTCM in the cm55 project: In the cm55 project, the default configuration places data
in DTCM using the .data section defined in the cm55 linker file. There is no need to make any changes
to the code or linker to place data in DTCM, in the default case. Note, if you have changed the default
location for data from DTCM to another memory location, use the '.cy_dtcm' section to place data in
DTCM. Make sure '.cy_dtcm' is appropriately included in a memory region in the linker.
The focus so far has been on using the default memory configurations provided by the linker files. This
keeps things simple: you can leverage existing sections and memory regions without needing to create
custom ones or worry about security settings. However, real-world projects often require more control.
The next example explores a more complex situation where the default memory map and security
configurations might not be sufficient. It describes how to create a dedicated section for your specific
needs and configure security settings that are not readily available. By tackling these challenges, gain a
deeper understanding of how to manage memory and security aspects even when they go beyond the
built-in defaults

5. Placing the code in RRAM: Some use cases might necessitate storing specific code sections in RRAM
for persistent data storage or other purposes, the default linker files for cm33_s, cm33_ns, and cm55
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does not include a dedicated linker section explicitly labeled for RRAM. To illustrate how to handle this
scenario, consider a cm33_ns project and perform the following steps.
a. Open the source file (for example, main.c) and create a named section as shown. This code

instructs the compiler to assign a section, ".my_rram_code" to function 'my_rram_func'

/* Add a RRAM section in source file */
CY_SECTION(".my_rram_code") __attribute__((used)) unsigned int 
my_rram_func(unsigned char *buf);
 
/********************************************************
* Function Name: my_rram_func
********************************************************/
unsigned int my_rram_func(unsigned char *buf)
{
    /* function body here */
    return 0;
}

b. Open ModusToolbox™ Device Configurator, and select the 'Memory' tab. Under the RRAM memory
section, create a new region my_rram_region. Select the Domain as M33 and enter the desired offset
and size as illustrated in Figure 8.

Figure 8 RRAM memory placement
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Click on 'OK' and save the file. The Device Configurator will generate the linker with the
MEMORY command at bsps/TARGET_<BSP>/config/GeneratedSource/cymem_gnu_CM33_0.ld which
will be utilized by the default linker script during the project linking process

c. To store the ".my_rram_code" section in the my_rram_region memory region and reflect it in the
RRAM memory, we must instruct the linker script. The below linker script snippet should be
placed in the CM33 non-secure linker file.

 /* Add a RRAM section in source file */
.app_code_rram :ALIGN(4)
{
    KEEP(*(.my_rram_code))

    . = ALIGN(4);
} > my_rram_region

Note: The examples provided above are just a few instances. You have the flexibility to utilize these
available sections and route the code and data to the memory regions that best suit your
application's requirements. For example, you can place the code/data in SoCMEM, SRAM, External
Flash, ITCM, and DTCM based on your application needs. The fundamental concept remains
unchanged for all the scenarios.

6.1.2 Placing the code from a source file into a dedicated linker section
Manually assigning individual variables and functions to specific linker sections can be cumbersome when
dealing with large amounts of code. While this approach works well for a small number of elements, it becomes
inefficient for extensive relocation. For scenarios where you want to move all functions or data from a source
file into separate sections, compilers offer a more efficient file-level management option. This allows you to
handle entire code segments at once, significantly streamlining the process.
1. In the default linker files, you can see some code being already placed into the dedicated section.

Look at the cm33_ns linker file. By default, the code will be placed in .app_code_mainregions, which is in
external flash. As an example, consider how to move code from a specific file into the .app_code_ram
section in SRAM. To move the code to a specific section, remove it from its default location,
which is .app_code_main. The following code snippet demonstrates how the .app_code_main section
utilizes the EXCLUDE_FILE command to omit code from the cy_syslib.o, cy_syslib_ext.o, cy_smif.o,
cy_smif_memslot.o, cy_smif_sfdp.o, cy_smif_hb_flash.o, and cyhal_qspi.o files.

/* Exclude the code from section */
.app_code_main : ALIGN(4)
{
    .
    .
    .
    /* Exclude certain files from this section as they will be placed in RAM */
    *(EXCLUDE_FILE(*cy_syslib.* *cy_syslib_ext.* *cy_smif.* *cy_smif_memslot.* 
*cy_smif_sfdp.* *cy_smif_hb_flash.* *mtb_hal_memoryspi.* *mtb_serial_memory.* *freertos/
Source*.* *cy_clib_support*.* *cy_mutex_pool*.* *cy_time.* *cyabs_*.* *cy_worker_thread.* 
*cmsis*.*) .text*)

} > m33_nvm_sel
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After removing the code from the .app_code_main section, relocate it to a section of your choosing.
Default linker file locates the complete code from cy_syslib, cy_syslib_ext, cy_smif etc into the 
.app_code_ramregion, which is located in SRAM1 memory. The following code snippet demonstrates the
syntax for placing code in a custom section:

/* A section for performance-sensitive or critical functions that need to be executed in 
SRAM */
.app_code_ram : ALIGN(4)
{
        .
        .
        .
    *cy_syslib_ext.*(.text*)
    *cy_syslib.*(.text*)
    *cy_smif.*(.text*)
    *cy_smif_memslot.*(.text*)
    *cy_smif_sfdp.*(.text*)
    *cy_smif_hb_flash.*(.text*)
    *mtb_hal_memoryspi.*(.text*)
    *mtb_serial_memory.*(.text*)
    *freertos/Source*.*(.text*)
    *cy_clib_support*.*(.text*)
    *cy_mutex_pool*.*(.text*)
    *cy_time.*(.text*)
    *cyabs_*.*(.text*)
    *cy_worker_thread.*(.text*)
    *cmsis*.*(.text*)

    . = ALIGN(4);
} > m33_code_sel AT > m33_nvm_sel

In this example, the linker file from the cm33_ns project is utilized. You can observe a similar
implementation in both the cm33_s and cm55 projects as well. This approach can be readily extended to
all other source files as required. For instance, to allocate all the code from a source file named my_file.c
to the ITCM, do the following:

2. To exclude the code in my_file.c from the default code section that is .app_code_main in external flash
using EXCLUDE_FILE command:

/*Excluding file from the NVM section*/
.app_code_main : ALIGN(4)
{
    .
    .
    *(EXCLUDE_FILE(*my_file.*) .text*)
    .
    .
} > m33_nvm_sel
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Include these contents to .app_code_itcm section, which is placed in ITCM.

/* Placing code from file to ITCM */
.app_code_itcm : ALIGN(4)
{
    .
    .
    *my_file.*(.text*)
    .
    .
} > m55_code_INTERNAL AT > m55_nvm_sel

3. To move other types of data sections, such
as .rodata, .rodata.*, .constdata, .constdata.*, .conststring, and .conststring.*, you can use a similar
approach. For example, to move the .rodata section from my_file to the .app_code_itcm section, you can
add the following statement:

.app_code_main : ALIGN(4)
{
    .
    .
    *(EXCLUDE_FILE(*my_file.*) .rodata)
    *(EXCLUDE_FILE(*my_file.*) .rodata.*)
    *(EXCLUDE_FILE(*my_file.*) .constdata)
    *(EXCLUDE_FILE(*my_file.*) .constdata.*)
    *(EXCLUDE_FILE(*my_file.*) .conststring)
    *(EXCLUDE_FILE(*my_file.*) .conststring.*)
    .
    .
} > m33_nvm_sel

Include these contents to .app_code_itcm section, which is placed in ITCM.

.app_code_itcm : ALIGN(4)
{
    .
    .
    *my_file.*(.text*)
    *my_file.*(.rodata*)
    *my_file.*(.rodata.*)
    *my_file.*(.constdata*)
    *my_file.*(.constdata.*)
    *my_file.*(.conststring*)
    *my_file.*(.conststring.*)
    .
    .
} > m55_code_INTERNAL AT > m55_nvm_sel
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In the preceding sections, the process of allocating code to various linker sections and different memory
regions is covered. While the examples primarily centered on a few memory types like ITCM, SRAM and External
Flash, you can seamlessly apply these concepts to other memory types such as System SRAM(SOCMEM) and
RRAM. It is important to be mindful of the memory regions defined in the default linker file when placing code
or data into custom sections. The linker file specifies the available memory areas and their properties. If you
intend to place code or data in a new memory region that is not predefined in the linker file, take additional
steps to create those memory regions. You can see an example scenario in the Customizing the memory MAP
section.

6.2 Customizing the memory MAP
In previous sections, how to move a part of the data and code across memory was discussed. In this section the
memory map will be modified at the project level using the memory tab of ModusToolbox™ Device Configurator.
For detailed instructions on using the memory tab, refer the section 'Memory tab' of the Infineon Device
Configurator User Guide
In this section, take the PSOC™ Edge: Hello World application as an example and learn how to customize the
memory map for our example scenarios. The examples in this section are:
1. Customizing the existing memory layout of external flash by increasing the size for CM33 non-secure

project and decreasing the size of the CM33 secure project
2. Placing the entire application (CM33 secure, CM33 non-secure, and CM55 projects) in RRAM and

executing from RRAM
3. Loading the application in SRAM and executing from SRAM

Note: If the project has already been built and you then move the m33s_nvm memory region, the linker
may report: "start address of `.gnu.sgstubs' is different from previous link." This happens because
a previously generated object (the non-secure callable veneer, nsc_veneer.o) still encodes the old
addresses. In order to solve the error, you must manually remove the stale veneer object file (present
at <application-directory>/proj_cm33_s/nsc_veneer.o) from the build output and perform a clean
rebuild so it is regenerated with the updated memory addresses. As a general precaution, after
changing memory layout you should always perform a clean build so all generated artifacts reflect
the new memory map.

6.2.1 Modifying the existing memory layout of external flash
Default memory configuration described the default configurations provided by the PSOC™ Edge BSP. This
configuration is used by most of the code examples including PSOC™ Edge MCU: Basic Secure Application and
PSOC™ Edge MCU: Hello world. In this section, we will customize the default memory layout of external flash by
increasing the allocated size for the cm33_ns project in external flash from 2 MB to 2.5 MB. This also means that
the allocated size of cm33_s project must be reduced from 2 MB to 1.5 MB.

Note: This section demonstrates how to modify the memory layout for external flash. The same approach
can be applied to adjust the memory layout for other memory regions as well.
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0x7010 0000 / 0x6010 0000

0x7028 0000 / 0x6028 0000

0x702C 0000 / 0x602C 0000

Secure address / Non-secure address

CM55 memory domain

CM33 secure memory domain
CM33 memory domain

Unused memory region

Figure 9 PSOC™ Edge modified memory map

Figure 9 represent the modified memory map discussed above. See the differences with respect to the original
memory layout in Default memory configuration. To achieve the target memory map as described, do the
following:
1. Modify the memory layout in ModusToolbox™ Device Configurator
2. Update the CM33 NS project start location

6.2.1.1 Memory configuration in device configurator
There is a need to update the size and offset for memory regions. Following are the steps to change the memory
layout of the external flash for the selected ModusToolbox™ project.
1. Launch the ModusToolbox™ Device Configurator and navigate to the 'Memory' tab. Under the device's

MPN (Manufacturer Part Number), review the default memory layout configuration, which displays the
various memory regions supported by the device

2. Notice in Figure 10 that the external flash memory listed under Serial Memory Interface Block 0 (SMIF0)
allocates 2 MB for the CM33 secure image (memory region m33_s_nvm) and 2 MB for the CM33 non-secure
image (memory region m33_nvm). To achieve the desired memory sizes, we will adjust the offset and size
of these memory regions
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Figure 10 Default memory layout for external flash
3. Click on the 'Pencil' icon located next to the m33_s_nvm memory region and select 'Edit Region' from the

drop down menu to open the memory region editor window as shown in Figure 11. Alternatively, you
may also select the memory region and press F2 key on the keyboard to open the memory region editor
window

4. Update the size of the m33_s_nvm region to 0x180000 (which corresponds to 1.5 MB) as shown in Figure 11.
Click on 'OK' to update the memory region

Figure 11 Edit the memory region
5. The memory regionm33s_trailer require changes to its offsets, while its size shall remain the same.

Follow the same procedure as in Step 3 to update the offsets as follows:
• m33s_trailer: Offset 0x280000, Size 0x40000 (256 KB)
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6. For the m33_nvm memory region, which corresponds to the cm33 non-secure image, both the offset and
size need to be updated. Follow the same procedure as in Step 3 to modify the region as follows:
• m33_nvm: Offset 0x2C0000, size 0x280000 (2 MB)

7. Once all updates are complete, verify that the final memory map matches the configuration shown in
Figure 12. Save the design file to generate the linker files. The generated linker files for the custom
memory layout will be present at bsps/TARGET_<BSP>/config/GeneratedSource/

Figure 12 Custom memory layout for external flash

6.2.2 Placing and executing code from RRAM
By default, all three applications are located in the external flash connected on SMIF0, with RRAM serving as the
sole internal NVM memory available for the PSOC™ Edge device. This section will focus on the process of placing
and executing all three applications in RRAM. To achieve this, any basic code example for the PSOC™ Edge can
be utilized, preferably PSOC™ Edge MCU: Basic Secure Application or PSOC™ Edge MCU: Hello world. The scope
of customization is shown below.

CM33 secure image
 (92 KB)

CM33 secure trailer (16 KB)

CM33 image (92 KB)
0x3204 3000 / 0x2204 3000

0x3204 7000 / 0x2204 7000

0x3205 E000 / 0x2205 E000

0x3206 2000 / 0x2206 2000

0x3206 A000 / 0x2206 A000

CM33 trailer (16 KB)

CM55 image (92 KB)

CM55 trailer (16 KB)

0x3202 8000 / 0x2202 8000

0x3202 C000 / 0x2202 C000

Extended Boot Reserved 
RRAM (68 KB)

0x3200 0000 / 0x2200 0000

0x3201 1000 / 0x2201 1000

Reserved Region  (88 KB)
0x3207 FFFF / 0x2207 FFFF

Secure address / Non-secure address

CM55 memory domain

CM33 secure memory domain
CM33 memory domain

Reserved memory domain

Unused (32 KB)

Unused memory region

Figure 13 RRAM custom memory map
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Note: As the RRAM memory is very limited, the above use case is a demonstration rather than an actual
production use case.

To achieve the target memory map as described, do the following:
1. Modify the memory layout in ModusToolbox™ Device Configurator to relocate the memory regions listed

under (SMIF0) to RRAM
2. Update the combine-sign JSON file 'boot_with_extended_boot.json" for the following

a. Update the metadata_proj_cm33_s section with the RRAM hex address and slot-size of the CM33
secure project and update the fill value as 0x00

b. Update the metadata_proj_cm33_ns with the RRAM hex address of the CM33 non-secure project
c. Add a section relocate_proj_cm55 to shift the CM55 hex from the Code AHB (C-AHB) address to

the System AHB (S-AHB) address
3. Update the CM33 NS and CM55 project start location

6.2.2.1 Memory configuration in device configurator
To achieve the above use case, you need to make the following changes in the ModusToolbox™ Device
Configurator:
1. Launch the ModusToolbox™ Device Configurator and navigate to the 'Memory' tab. Under the device's

MPN (Manufacturer Part Number), review the default memory layout configuration, which displays the
various memory regions supported by the device

2. Notice in Figure 14 that the external flash memory listed under Serial Memory Interface Block 0 (SMIF0)
allocates the memory regions for CM33 secure project (m33s_nvm), CM33 non-secure project (m33_nvm)
and CM55 project (m55_nvm) along with other accompanying memory regions. We shall move all of
these regions to the RRAM section by deleting the memory regions in SMIF0 and creating the new regions
with the same region name in RRAM section. Keeping the same memory region names will help us to use
the default linker scripts of the BSP.
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Figure 14 Default memory layout for external flash
3. Click on the 'Pencil' icon located next to the m33_s_nvm memory region and select 'Delete all regions' from

the drop down menu as shown in Figure 15. Alternatively, you may right-click on any memory region
under SMIF0 and select 'Delete all regions' from the drop-down menu

Figure 15 Delete all memory regions in external flash
4. Under RRAM section, there is a predefined memory region user_programmable in the CM33 secure domain

which is already located at default RRAM boot address for the CM33 secure app (0x32011000). We shall
modify the name of this memory region as m33s_nvm to place the CM33 secure project and update the size
of the memory region as 92 KB (0x00017000) as shown in Figure 16
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Figure 16 Update the RRAM memory layout
5. For the CM33 non-secure and CM55 projects, we shall create the corresponding memory regions with

offsets and region sizes in the RRAM section as shown in Figure 17

Figure 17 Final RRAM memory layout
6. Verify the final memory map and save the design file to generate the linker files. The generated linker

files for the custom memory layout will be present at bsps/TARGET_<BSP>/config/GeneratedSource/

6.2.2.2 Update the combine-sign JSON file
The ModusToolbox™ Edge Protect Tools (packaged within the ModusToolbox™ Edge Protect Security Suite) uses
the combine-sign JSON boot_with_extended_boot.json file present in the <application-directory>/config
folder to sign, shift or manipulate the binary and Intel Hex (also known as Intel hexadecimal object file format)
as needed by the application before combining them into a single final output app_combined.hex which is used
for programming the MCU.
The default JSON file is configured to use the addresses of the external flash. We shall modify the file to use
RRAM addresses. Following are the changes in the boot_with_extended_boot.json file.
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1. Update the 'sign' command under metadata_proj_cm33_s command group to use 0x00 as the fill value
for RRAM. Update the slot-size to 108 KB (0x1B000) in the command 'inputs' . The JSON snippet (with the
update highlighted with underline formatting) is attached below.

{
    "name": "metadata_proj_cm33_s",
    "enabled" : true,
    "commands" :
    [
        {
            "command" : "sign",
            "inputs" :
            [
                {
                    "file" : "../build/project_hex/proj_cm33_s.hex",
                    "header-size": "0x400",
                    "fill-value" : "0x00",
                    "slot-size" : "0x1B000",
                    "hex-address" : "{{CYMEM_CM33_0_S_m33s_nvm_S_START}}"
                }
            ],
            .
            .
            .
        }
    ]
},

2. Create a new command group relocate_proj_cm55 to relocate the CM55 hex from the Code AHB (C-AHB)
address to the System AHB (S-AHB) address. This is done because the C-AHB bus supports only
instruction fetches, preventing write operations to ensure security and efficiency in execute-only regions,
such as Flash memory. In contrast, the S-AHB bus supports both read and write transactions, enabling
versatile data communication between the CPU, SRAM, and peripherals for general-purpose operations.
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The relocation for CM33 non-secure image is already handled by the relocate_proj_cm33_ns command
group in the same file. The JSON snippet for relocation of CM55 image is attached below

{
    "name": "relocate_proj_cm55",
    "description": "relocate the hex to a programmable (S-BUS) address",
    "enabled" : true,
    "commands" :
    [
        {
            "command" : "hex-relocate",
            "inputs" :
            [
                {
                    "file" : "../build/project_hex/proj_cm55.hex",
                    "regions" : "{{RelocationTable}}"
                }
            ],
            "outputs":
            [
                {
                    "file" : "../build/project_hex/proj_cm55_shifted.hex"
                }
            ],
            "extra_config":
            [
                {
                    "project": "proj_cm55",
                    "debug_config_name" : "proj_cm55",
                    "default":false,
                    "build_dependency" : "project"
                }
            ]
        }
    ]
},
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3. Update the merge command group to use the new shifted hex file for the CM55 project,
proj_cm55_shifted.hex. The JSON snippet (with the update highlighted with underline formatting) is
attached below

{
    "name": "merge",
    "enabled": true,
    "commands" :
    [
        {
            "command" : "merge",
            "inputs" :
            [
                {
                    "file" : "../build/project_hex/proj_cm33_s_signed.hex"
                },
                {
                    "file" : "../build/project_hex/proj_cm33_ns_shifted.hex"
                },
                {
                    "file" : "../build/project_hex/proj_cm55_shifted.hex"
                }
            ],
            "outputs" :
            [
                {
                    "file" : "../build/app_combined.hex",
                    "format" : "ihex",
                    "overlap" : "ignore"
                }
            ]
        }
    ]
}

4. Save the boot_with_extended_boot.json file

6.2.2.3 App start address
By default, all code examples including the Hello World application, are configured to boot from the external
QSPI flash connected through SMIF0. For all the three projects, booting from external flash, the S-AHB address
is used. In order to launch the CM55 applications from RRAM, we must use the C-AHB address.
In the main.c file of the CM33 non-secure project, update the macro used for the application boot address of
CM55 project as shown in the snippet below.

/* App boot address for CM55 project */
#define CM55_APP_BOOT_ADDR (CYMEM_CM33_0_m55_nvm_C_START + CYBSP_MCUBOOT_HEADER_SIZE)
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6.2.2.4 Hardware (Boot switch) modification
By default, all code examples execute out of the external flash and extended boot launch CM33S from the
external flash. To launch CM33 S from RRAM, ensure that BOOT_SWITCH (BOOT_SW) P6.0 is "Low(0)". See the
Security user guide for more details.

6.2.3 Placing and executing code from SRAM
The default memory map places and executes all three projects (CM33 secure, CM33 non-secure and CM55)
from the external flash connected on SMIF 0. Contrary to the default, this use case places the application in the
external flash but loads and executes all three applications from SRAM at run-time. Code execution from SRAM
provides better performance and lower power consumption.
For this use case, user shall refer to the PSOC™ Edge SRAM Loading code example.
This code example provides instructions for loading all three projects into SRAM and requires the EdgeProtect
Bootloader as an intermediate stage. The bootloader is programmed into the RRAM while the three projects are
programmed into the external flash. On each system reset, the bootloader runs from RRAM, initializes the
system, and copies the three application images into their assigned SRAM regions. After loading, the bootloader
passes control to the CM33 secure project, and the application executes from SRAM.
See the README.md file of this code example for operation details.

6.3 Modifying the default stack size
Customizing the stack size is a critical consideration for ensuring reliable application performance, particularly
in memory-constrained environments. This is particularly useful when an application involves complex
operations, such as deep function call chains, recursive algorithms, or interrupt-heavy routines, which demand
more stack space than the default allocation. Conversely, in simpler applications, reducing the stack size can
free up valuable memory for other uses, optimizing overall resource utilization.
In the default linker scripts provided with the BSP, the stack size is defined as 4 KB (0x1000).
In order to modify the stack size of the project, the user needs to pass a linker flag in the project makefile.

LDFLAGS+= -Wl,--defsym=APP_MSP_STACK_SIZE=<CUSTOM_VALUE>

Before modifying the stack size, developers should profile their application’s runtime behavior under expected
operating conditions to estimate the stack space required for worst-case scenarios. Additionally, when
increasing the stack size, developers must ensure that the total memory usage remains within the available
SRAM bounds of the microcontroller.
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7 Conclusion
This application note provides a comprehensive overview of the PSOC™ Edge architecture, including its power
domains, internal and external memory configurations, bus architecture, memory access, default memory
configuration, linker script usage, security configurations, power, and performance impact for memory
accesses, as well as memory configuration cases. By understanding the intricacies of memory types, memory
mapping, and optimization techniques, developers can effectively leverage the PSOC™ Edge's memory
capabilities to enhance both power efficiency and overall system performance. Additionally, the note outlines
various use cases for customizing memory maps and executing applications from different memory regions,
offering valuable insights for optimizing memory usage in PSOC™ Edge-based designs.
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