
Connecting to cloud services using ModusToolbox™

About this document
Scope and purpose

This application note delves into the IoT cloud connectivity solutions on Infineon Microcontrollers (MCUs).
Application note provides in-depth information on how to seamlessly connect to cloud services, such as
Microsoft's Azure and Amazon's AWS for IoT applications leveraging Infineon MCUs. It covers the fundamental
concepts of connectivity and cloud provider services and guides through the creation of connectivity
applications, including configuring IoT cloud service assets, generating authentication credentials,
programming application code, and running projects, ultimately empowering developers to design and
implement efficient IoT solutions using Infineon MCUs.
Intended audience

This application note is intended for users who wants to work on cloud connectivity applications on Infineon
MCUs such as PSOC™ Edge E8 using the ModusToolbox™ software.

AN238090

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-38090 Rev. *A
www.infineon.com 2025-09-04

https://www.infineon.com

Table of contents

About this document . 1

Table of contents . 2

1 Introduction . 4
1.1 Amazon Web Services (AWS) . 4
1.2 Microsoft Azure Web Services .4
1.3 Overview . 5

2 Hardware and software requirements . 6
2.1 Hardware requirements . 6
2.2 Software requirements . 6
2.2.1 ModusToolbox™ for cloud services .6
2.2.2 Python . 7
2.2.3 AWS IoT Device SDK Port Library . 7
2.2.4 Azure C SDK Port Library . 7
2.2.5 MQTT Client library . 8

3 Getting started with AWS communication . 9
3.1 AWS credential setup . 9
3.1.1 AWS IoT resources . 9
3.1.2 AWS Thing . 9
3.1.3 Certificate . 10
3.1.4 Policy . 10
3.1.5 Creating an AWS IoT account . 10
3.1.5.1 Create Thing .10
3.1.5.2 Using the AWS MQTT test client .17
3.2 Connecting to MQTT client using AWS . 18
3.2.1 Prerequisites .18
3.2.2 Application development . 18
3.2.3 About the design . 18
3.2.4 Create a new application . 19
3.2.5 Select a new workspace .19
3.2.6 Create a new ModusToolbox™ application .20
3.2.7 Select PSOC™ Edge E84 MCU-based target hardware . 21
3.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for

“Working from Scratch” flow) .21
3.2.9 Configure design resources .22
3.2.10 Add libraries and middleware .22
3.2.11 Write the application code . 25
3.2.12 User application code entry . 31
3.2.13 Build, program, and test your design . 31

Connecting to cloud services using ModusToolbox™

Table of contents

Application note 2 002-38090 Rev. *A
2025-09-04

4 Getting started with Azure communication . 34
4.1 Azure credential setup . 34
4.1.1 Azure Hub setup .34
4.1.2 Shared access signature (SAS)-based authentication mode . 42
4.1.3 X509 certificate-based authentication mode . 45
4.2 Connecting to Azure IoT services using Azure SDK for Embedded C . 47
4.2.1 Prerequisites .47
4.2.2 Application development . 48
4.2.3 About the design . 48
4.2.3.1 SAS authentication .48
4.2.3.2 X.509 authentication . 48
4.2.4 Create a new application . 48
4.2.5 Select a new workspace .49
4.2.6 Create a new ModusToolbox™ application .49
4.2.7 Select PSOC™ Edge E84 MCU-based target hardware . 50
4.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for

“Working from Scratch” flow) .51
4.2.9 Configure design resources .51
4.2.10 Add libraries and middleware .51
4.2.11 Write the application code . 55
4.2.12 Build, program, and test your design . 58
4.2.13 Code example output . 59
4.2.13.1 Azure Device App .60
4.2.13.2 PnP <Plug and Play> . 64

5 Summary . 67

References .68

Glossary . 69

Revision history .70

Trademarks .71

Disclaimer . 72

Connecting to cloud services using ModusToolbox™

Table of contents

Application note 3 002-38090 Rev. *A
2025-09-04

1 Introduction
This application note will provide information how IoT applications on Infineon MCUs using ModusToolbox™

software tools can establish connection with cloud services like Amazon Web Services (AWS) and Microsoft
Azure.
Third-party IoT Embedded SDKs like Azure SDK for Embedded C and AWS IoT Device SDK for Embedded C uses
to simplify connecting these devices to cloud platforms (Azure or AWS) by providing secure communication,
data management, and device management functionalities. These SDKs save development time and ensure
security, making them valuable tools for building efficient IoT applications.
See AN236697 - Getting started with PSOC™ Edge MCU and AIROC™ connectivity devices to know more about the
Infineon’s connectivity devices. See AN228571 – Getting started with PSOC™ 6 MCU on ModusToolbox™ software
for PSOC™ 6 family series and Getting started with PSOC™ Edge E8 on ModusToolbox™ software to know how to
use Infineon MCUs. These application notes provide an overview of the MCU and the information needed to get
started. Additionally, see the datasheet of the corresponding MCU for more information. PSOC™ Edge MCU is
used to demonstrate a range of applications within this document.

1.1 Amazon Web Services (AWS)
AWS is a secure cloud services platform offering compute power, database storage, content delivery, and other
functionalities. AWS is built from a vast array of both virtual and actual servers and networks as well as a large
number of web server software and administrative tools.
AWS IoT: A cloud platform that provides cloud services for IoT devices. The AWS IoT Cloud service supports
MQTT Message Brokers, HTTP access, and a bunch of server-side functionality that includes:
• A virtual MQTT Message Broker and HTTP server
• Thing Registry: A web interface to manage the access to your AWS Things
• Security and identity: A web interface to manage the certificates and rules about things. You can create

encryption keys and manage access privileges
• Shadow: An online cache of the most recent state of your thing
• Rules Engine: An application that runs in the cloud can subscribe to topics and take programmatic actions

based on messages – for example, configure it to subscribe to an "Alert" topic, and if a thing publishes a
warning message to the "Alert" topic, it uses Amazon SNS to send an SMS text message to your cellphone

• IoT applications: An SDK to build webpages and cellphone applications
The AWS IoT Device SDK for Embedded C is a collection of C source files provided by AWS that allow developers
to securely connect embedded devices to AWS IoT Core. This lightweight SDK is specifically designed for
embedded systems with limited processing power and memory resources.

1.2 Microsoft Azure Web Services
Microsoft Azure is a comprehensive suite of cloud computing services from Microsoft. It provides a wide range of
on-demand services for building, deploying, and managing applications across a global network of data
centers. It is a web-based interface that acts as the central command center for managing all resources in
Microsoft's Azure cloud computing platform. It provides a user-friendly graphical interface, eliminating the need
for complex code commands.
The Azure SDK for Embedded C is a development tool designed to connect resource-constrained
microcontroller devices to Microsoft Azure services. The Azure Core Library for Embedded C acts like a shared
toolkit for various Azure client libraries written in C code. This library provides common building blocks and
functionalities, ensuring a consistent experience when working with different Azure services.

Connecting to cloud services using ModusToolbox™

1 Introduction

Application note 4 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/AN228571
https://www.infineon.com/AN238090
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/tree/main/sdk/docs/core

1.3 Overview
This document provides comprehensive guidance on initiating interactions with AWS and Azure platforms.
Detailed instructions on establishing authentication credentials for communication with AWS and Azure web
services are provided, along with illustrative code examples which are described in sections Getting started
with AWS communication and Getting started with Azure communication respectively. Hardware and software
requirements section provides the required hardware and software prerequisites.

Connecting to cloud services using ModusToolbox™

1 Introduction

Application note 5 002-38090 Rev. *A
2025-09-04

2 Hardware and software requirements
This section describes the required hardware and software prerequisites for the code example demonstration
exhibited in Getting started with AWS communication and Getting started with Azure communication sections.

2.1 Hardware requirements
This document applies to PSOC™ Edge E84 Evaluation Kit with the Edge Protect Category 2 (EPC 2) part
(KIT_PSE84_EVAL_EPC2), Edge Protect Category 4 (EPC 4) part (KIT_PSE84_EVAL_EPC4) and PSOC™ 6 family
series (PSOC™ 61, PSOC™ 62, PSOC™ 63, PSOC™ 64). Adapt the prerequisites and other sections that are specific
to PSOC™ Edge E84 and PSOC™ 6 according to the kit that you are using. See the References section for
documents related to the kit.
For the design example shown in this application note, the minimum required revision for the PSOC™ Edge E84
Evaluation kit (KIT_PSE84_EVAL_EPC2) is Rev *G.

2.2 Software requirements
This section provides a brief overview of the software dependencies utilized.

2.2.1 ModusToolbox™ for cloud services
The ModusToolbox™ software is a modern, extensible development environment for Infineon MCUs for
applications ranging from wireless and cloud-connected systems, edge AI/ML, embedded sense and control, to
wired USB connectivity using PSOC™ Industrial/IoT MCUs, AIROC™ Wi-Fi and Bluetooth® connectivity devices,
XMC™ Industrial MCUs, and EZ-USB™/EZ-PD™ wired connectivity controllers. It provides a flexible set of tools and
a diverse, high-quality collection of application-focused software. These include configuration tools, low-level
drivers, libraries, and operating system support, most of which are compatible with Linux, macOS, and
Windows-hosted environments.
The complete set of run-time software connectivity libraries fit together with the core PSOC™ libraries as shown
in Figure 1.

Connecting to cloud services using ModusToolbox™

2 Hardware and software requirements

Application note 6 002-38090 Rev. *A
2025-09-04

Figure 1 ModusToolbox™ for connectivity

The run-time software is distributed as a collection of libraries that work together to help you easily get your IoT
device up and running on the cloud. Some of the libraries are from Infineon, while others are industry standard
open-source libraries and can be pulled into a ModusToolbox™ application easily by using the Library Manager.

2.2.2 Python
Download the official Python version 3.8-3.12 from the Python website. After installation, add the Python
directory to your system path environment variables, which allows you to easily run the Python commands
from anywhere in your terminal.

2.2.3 AWS IoT Device SDK Port Library
AWS IoT Device SDK Port Library is a port layer implementation for Infineon MQTT client library and HTTP client
library. It can work with AWS IoT Device SDK Embedded C library on Infineon connectivity-enabled MCU
platforms. See aws-iot-device-sdk-port for more information on the library.
This port library is a dependency for the PSOC™ Edge MCU: Wi-Fi MQTT client code example and is automatically
pulled into the project at the time of application creation.

2.2.4 Azure C SDK Port Library
Azure C SDK Port Library implements the port layer for the Azure SDK for Embedded C to work on PSOC™ Edge
E8 MCU and PSOC™ 6 MCU connectivity-enabled platforms. This library automatically pulls the Azure SDK for

Connecting to cloud services using ModusToolbox™

2 Hardware and software requirements

Application note 7 002-38090 Rev. *A
2025-09-04

https://www.python.org/
https://github.com/Infineon/aws-iot-device-sdk-port
https://github.com/Infineon/mqtt
https://github.com/Infineon/http-client/
https://github.com/Infineon/http-client/
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/Infineon/aws-iot-device-sdk-port
https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/azure-c-sdk-port
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0

Embedded C library and the port layer functions implemented by this library are used by the Azure SDK for
Embedded C library. If your application needs an Azure SDK for Embedded C library with MQTT client
functionality, it needs to explicitly import the MQTT library.
See the azure-c-sdk-port for more information on the library.
A few dependencies as follows:
• Microsoft Azure SDK for Embedded C library
• Wi-Fi middleware core
• HTTP client
• Azure IoT SDK port
• FreeRTOS PKCS11 PSA
This port library is a dependency for the PSOC™ Edge MCU: Connecting to Azure IoT using Azure SDK for C code
example and is automatically pulled into the project at the time of application creation.

2.2.5 MQTT Client library
• It contains an MQTT Client library that can work with the family of Infineon connectivity devices. This

library uses the AWS IoT Device SDK MQTT Client library and implements the glue layer that is required for
the library to work with Infineon connectivity platforms

• ModusToolbox™ AWS MQTT Client and Azure IoT code examples download this library automatically, so you
do not need to. ModusToolbox™ AWS MQTT Client and Azure IoT code examples download this library
automatically, so you do not need to

Connecting to cloud services using ModusToolbox™

2 Hardware and software requirements

Application note 8 002-38090 Rev. *A
2025-09-04

https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Infineon/azure-c-sdk-port
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Infineon/wifi-mw-core
https://github.com/Infineon/http-client/releases/tag/release-v1.0.0
https://github.com/Infineon/aws-iot-device-sdk-port/releases/tag/release-v1.0.0
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot

3 Getting started with AWS communication

3.1 AWS credential setup
Infineon's connectivity device for IoT solutions will connect and communicate using the AWS IoT Device SDK
and MQTT libraries. This section will discuss some of the concepts that are important to know when connecting
your IoT device to AWS.

Figure 2 AWS authentication process

3.1.1 AWS IoT resources
There are three types of resources in AWS: Things, Certificates, and Policies. The following sections will guide
you into the step-by-step process to create each of them.

3.1.2 AWS Thing
A thing is a representation of a device or logical entity. It can be a physical device or sensor (for example, a light
bulb or a switch on a wall). It can also be a logical entity like an instance of an application or a physical entity
that does not connect to AWS IoT but can be related to other devices that do (for example, a car that has engine
sensors or a control panel).

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 9 002-38090 Rev. *A
2025-09-04

3.1.3 Certificate
AWS IoT provides mutual authentication and encryption at all points of connection so that data is never
exchanged between things and AWS IoT without a proven identity. AWS IoT supports X.509 certificate-based
authentication. Connections to AWS use certificate-based authentication. You must attach policies to a
certificate to allow or deny access to AWS IoT resources. Your device uses a root CA (certification authority) to
ensure it is communicating with the actual Amazon Web Services site. You can only connect your thing to the
AWS IoT Cloud via TLS.

3.1.4 Policy
After creating a certificate for your internet-connected thing, you must create and attach an AWS IoT policy that
will determine what AWS IoT operations the thing can perform. AWS IoT policies are JSON documents and they
follow the same conventions as AWS Identity and Access Management policies. You can specify permissions for
specific resources such as topics and shadows.

3.1.5 Creating an AWS IoT account
To create a new AWS account, you need to provide billing information. The basic account is free for the first year
and is chargeable after that. Please read the terms and conditions on the AWS website for the details of the
same. When you create an AWS IoT account, Amazon will create a new virtual machine for you in the cloud and
will turn on an MQTT Message Broker and an HTTP server on that machine. To connect your device to the
machine, you need to know the DNS name of the virtual machine. To find the virtual machine's DNS name, click
on Settings at the lower left corner of the AWS IoT console window as shown in Figure 3. The name is listed as
the Endpoint.

Figure 3 DNS name

3.1.5.1 Create Thing
1. Create a new AWS Thing, provision a new thing in the AWS IoT Cloud, and establish its policy and

credentials
2. After log in from the Services menu, select IoT Core

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 10 002-38090 Rev. *A
2025-09-04

Figure 4 AWS Services - IoT Core
3. Select Things from the Manage section and click Create things

Figure 5 Create Thing
4. Select Create single thing from Create things and click Next

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 11 002-38090 Rev. *A
2025-09-04

Figure 6 Create single thing
5. Name your thing, select No shadow in Device Shadow, and click Next. Here, Aws_Test_1 name is used

for the thing that will be used for development

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 12 002-38090 Rev. *A
2025-09-04

Figure 7 Thing name
6. Before you access the broker from your kit, you need to create the encryption keys that enables you to

identify it as an allowed device. To do this, find your thing in the list of things and select it. If you do not
see it in the list, you can search for it using the search box at the upper right corner of the window. One
you get to your thing's page, click Security, select Auto-generate a new certificate (recommended)
from Device certificate and then click Next

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 13 002-38090 Rev. *A
2025-09-04

Figure 8 Configure device certificate
7. Click Create policy from Policies

Figure 9 Create policy
8. Enter the Policy name that you want to create. Here, the Aws_Test_1_Policy name is used. While

setting up your device, ensure that the policy associated with this device permits all MQTT operations
(iot:Connect, iot:Publish, iot:Subscribe, and iot:Receive) for the resource used by this device. For testing
purposes, use the following Policy document properties that allows you to all the MQTT Policy Actions
on all Amazon Resource Names (ARNs) as shown in Figure 10

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 14 002-38090 Rev. *A
2025-09-04

Figure 10 Policy details
9. Select the created policy and click Create thing

Figure 11 Attach policy
10. After attaching the policy, it shows all the required certificates that can be downloaded as shown in

Figure 12 to download. Note that these certificates cannot be downloaded in the later steps and click
Done

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 15 002-38090 Rev. *A
2025-09-04

Figure 12 Certificate and keys
11. After that the Thing is created as shown in Figure 13

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 16 002-38090 Rev. *A
2025-09-04

Figure 13 AWS Thing

3.1.5.2 Using the AWS MQTT test client
To test the MQTT client, the AWS website has an MQTT test client to test publishing and subscribing to topics.
Consider the MQTT test client as a terminal window into your message broker, or as a generic IoT thing that can
publish and subscribe topics and use this client to test the tasks. Alternately, you can run two tabs in your
browser – one to subscribe and one to publish.
1. Select Test > MQTT test client on the left side of the AWS IoT
2. Enter a topic that you want to subscribe in the Topic filter such as Test_1_status
3. Select Display payloads as strings and click Subscribe to topic

Figure 14 Subscribe to a topic
4. Enter a topic that you want to publish such as Test_2_status in the Topic name, click Publish. The

payload will be sent to the subscriber

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 17 002-38090 Rev. *A
2025-09-04

https://aws.amazon.com/

Figure 15 Publish Topic

3.2 Connecting to MQTT client using AWS
This section describes how to build an AWS-based application for PSOC™ Edge E84 device using Eclipse IDE for
ModusToolbox™. This code example (PSOC™ Edge MCU: Wi-Fi MQTT client) that is going to be demonstrated
implements an MQTT client using the MQTT library on PSOC™ Edge MCU. The library uses the AWS IoT Device
SDK Port library and implements the glue layer that is required for the library to work with Infineon
connectivity platforms.

3.2.1 Prerequisites
Before you start, ensure that you have the appropriate development kit for the PSOC™ Edge E84 MCU product
line, and have installed the required software. For more details, see Hardware and software requirements.

3.2.2 Application development
The following sections provide guidelines on how to develop an application:
• Create a new application
• View and modify the design
• Develop your application
• Build the application
• Program the device
• Test your design

Note: This design is developed for the PSOC™ Edge E84 Evaluation Kit (KIT_PSE84_EVAL_EPC2).

3.2.3 About the design
This example implements three RTOS tasks: MQTT client, publisher, and subscriber. The main function
initializes the BSP and the retarget-io library, and creates the MQTT client task.

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 18 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/mqtt

The MQTT client task initializes the Wi-Fi Connection Manager (WCM) and connects it to a Wi-Fi Access Point
(AP) using the Wi-Fi network credentials that are configured in the wifi_config.h file. After a successful Wi-Fi
connection, the task initializes the MQTT library and establishes a connection with the MQTT broker/server.
The MQTT connection is configured to be secure by default; the secure connection requires a client certificate.
Client certificate contains information about your device and is signed by a trusted Certificate Authority (CA), a
Private Key (private key that is to be kept secured), and the Root CA certificate (during connection, verifies the
authenticity of the server certificate presented by AWS IoT) of the MQTT broker that are configured in the
mqtt_client_config.h file.
After a successful MQTT connection, the subscriber and publisher tasks are created. The MQTT client task then
waits for commands from the other two tasks and callbacks to handle events like unexpected disconnections.
The subscriber task initializes the user LED GPIO and subscribes to messages on the topic specified by the
MQTT_SUB_TOPIC macro that can be configured in the mqtt_client_config.h file. When the subscriber task
receives a message from the broker, it turns the user LED ON or OFF depending on whether the received
message is "TURN ON" or "TURN OFF" (configured using the MQTT_DEVICE_ON_MESSAGE and
MQTT_DEVICE_OFF_MESSAGE macros).
The publisher task sets up the user button GPIO and configures an interrupt for the button. The ISR notifies the
publisher task upon a button press. The publisher task then publishes messages (TURN ON/OFF) on the topic
specified by the MQTT_PUB_TOPIC macro. When the publish operation fails, a message is sent over a queue to the
MQTT client task.
An MQTT event callback function mqtt_event_callback() invoked by the MQTT library for events like MQTT
disconnection and incoming MQTT subscription messages from the MQTT broker. In the case of an MQTT
disconnection, the MQTT client task is informed about the disconnection using a message queue. When an
MQTT subscription message is received, the subscriber callback function implemented in subscriber_task.c file
is invoked to handle the incoming MQTT message.
The MQTT client task handles unexpected disconnections in the MQTT or Wi-Fi connections by initiating
reconnection to restore the Wi-Fi/MQTT connections. Upon failure, the publisher and subscriber tasks are
deleted, cleanup operations of various libraries are performed, and then the MQTT client task is terminated.

3.2.4 Create a new application
This section provides a step-by-step guideline for creating a new application. It uses the Empty App starter
application and manually adds the functionality from the Wi-Fi MQTT Client application. ModusToolbox™ is
used in the instructions, but you can use any IDE or the command-line tool if you prefer.
If you are familiar developing projects with ModusToolbox™, you can use PSOC™ Edge MCU: Wi-Fi MQTT client
starter application for PSOC™ Edge and MQTT client code example for PSOC™ 6 application. It is a complete
design with all the firmware written for the supported kits. You can walk through the instructions and observe
how the steps are implemented in the code example.
Launch Eclipse IDE for ModusToolbox™ to get started. It requires the Internet connection to download the assets
from GitHub repositories.
The following sections provide the steps to start with a new empty application.

3.2.5 Select a new workspace
At launch, Eclipse IDE for ModusToolbox™ shows a dialog box to choose a directory as the workspace directory.
The workspace directory is used to store workspace preferences and development artifacts such as device
configuration and application source code. You can choose an existing empty directory by clicking the Browse
button. Alternatively, you can type in a directory name to be used as the workspace directory along with the
complete path, and ModusToolbox™ will create the directory for you.

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 19 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/mtb-example-wifi-mqtt-client

Figure 16 Select a directory as workspace

3.2.6 Create a new ModusToolbox™ application
Click New Application in the Quick Panel, see Figure 17. Alternatively, go to File > New and click
ModusToolbox™ Application.

Figure 17 Create a new ModusToolbox™ application

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 20 002-38090 Rev. *A
2025-09-04

3.2.7 Select PSOC™ Edge E84 MCU-based target hardware
ModusToolbox™ lists the Infineon kits to start your application development. In this case, develop an
application on the PSOC™ Edge E84 Evaluation Board that uses the PSOC™ Edge line device. Select
KIT_PSE84_EVAL_EPC2 and click Next as shown in Figure 18.

Figure 18 Choose target hardware

3.2.8 Select a PSOC™ Edge Empty application and create the application
(applicable only for “Working from Scratch” flow)

Use an existing empty application as the starting point for the Working from Scratch development flow.
This is a minimal empty application template for PSOC™ Edge MCU devices. This example uses FreeRTOS to
blink two LEDs with different frequencies respectively from the Arm® Cortex®-M33 CPU and the Arm® Cortex®-M55
CPU. This code example has a three project structure that is, CM33 secure, CM33 non-secure, and CM55
projects. All three projects are programmed to an external QSPI flash and executed in the XIP mode. Extended
boot launches the CM33 secure project from a fixed location in an external flash, which then configures the
protection settings and launches the CM33 non-secure application. Additionally, the CM33 non-secure
application enables the CM55 CPU and launches the CM55 application.
The application code of PSOC™ Edge MCU: Wi-Fi MQTT client uses only the CM33 CPU of the PSOC™ Edge E84
MCU. Therefore, the application is written under the CM33 non-secure project (proj_cm33_ns) and the CM55
CPU (in proj_cm55) is subsequently put to Deep Sleep mode.
1. To create an Empty_app, select PSOC Edge Empty Application as shown in Figure 19
2. In the Name Application Name field, type a required name for the application if required and click Next;

the application summary dialog appears
3. Click Create and wait for the application to download and create in the workspace
4. Click Close to complete the application creation process. Here, the application is named as AWS_MQTT

as shown in Figure 19

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 21 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client

Figure 19 Create PSOC™ Edge Empty Application

You have successfully created a new ModusToolbox™ application for the PSOC™ Edge E84 MCU.

3.2.9 Configure design resources
In this step, you will configure the design resources for your application and generate the configuration code.
You will also be adding the required middleware libraries.

3.2.10 Add libraries and middleware
ModusToolbox™ provides a Library Manager tool to select various middleware components for developing
applications.
To launch the Library Manager, select the AWS_MQTT application, the application name will vary based on the
name you provide while creating the empty_app and in the Quick Panel, click Library Manager as shown in
Figure 20. Click Add Library to add the required libraries and middleware for your application.

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 22 002-38090 Rev. *A
2025-09-04

Figure 20 Open Library Manager

For the AWS_MQTT code example design, follow these steps to add the required libraries:
1. Add the retarget-io middleware to redirect the standard input and output streams to the UART

configured by the BSP. The initialization of the middleware will be done in main.c file. Click Add Library,
select proj_cm33_ns the target project and search the library name retarget-io in the Enter filter text box.
For more information about the library, Refer the website Retarget-io.

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 23 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/retarget-io

Figure 21 Add retarget-io library
2. Add the wifi-core-freertos-lwip-mbedtls library. This bundle library comprises core components needed

for Wi-Fi connectivity support. It bundles FreeRTOS, lwIP TCP/IP stack, and mbed TLS for security, Wi-Fi
Host Driver (WHD), Wi-Fi Connection Manager, Secure Sockets interface, and configuration files. Click
Add Library, select proj_cm33_ns as the Target Project, and select Wi-Fi > wifi-core-freertos-lwip-
mbedtls, see Figure 22

Figure 22 Add wifi-core-freertos-lwip-mbedtls library
3. Add the MQTT Library as this library supports multi-core architecture by making a subset of APIs

available as virtual APIs

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 24 002-38090 Rev. *A
2025-09-04

Figure 23 Add MQTT Library
4. After selecting all the libraries, click OK and Update as shown in Figure 24

Figure 24 Update libraries

3.2.11 Write the application code
At this point in the development process, you created an application and added the required libraries. This part
examines the application code that implements the AWS_MQTT code example.

Note: The empty application of the PSOC™ Edge E84 MCU has a three project structure (proj_cm33_ns,
proj_cm33_s, and proj_cm55). The application code of the AWS_MQTT example is to be written on the
proj_cm33_ns project that uses the M33 core and subsequently the proj_cm55 project that uses the
M55 core is put to Deep Sleep mode.

Add files to your project (required only for the Working from Scratch flow).
• Visit the website, mtb-example-psoc-edge-wifi-mqtt-client which contains the application files that can be

downloaded.
• Copy the following folders from the mtb-example-psoc-edge-wifi-mqtt-client code example under

proj_cm33_ns to your proj_cm33_ns folder of the Empty_App inside the ModusToolbox™ workspace folder,
which contains:

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 25 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client

Table 1 Code example files

File name File definitions

main.c This is the source code for the MQTT Client example running on a CM33 CPU.

core_mqtt_config.h This file contains the configuration macros for the MQTT library.

mbedtls_user_config.h This file is part of the mbed TLS Library.

mqtt_client_config.c This file contains the configuration structures used by the MQTT client for MQTT
connect operation.

mqtt_client_config.h This file contains all the configuration macros used by the MQTT client in this
example.

mqtt_task.c This file contains the task that handles initialization and connection of Wi-Fi and
the MQTT client. The task then starts reconnection mechanisms to handle Wi-Fi
and MQTT disconnections. The task also handles all the cleanup operations to
gracefully terminate the Wi-Fi and MQTT connections in case of any failure.

mqtt_task.h This file is the public interface of mqtt_task.c file.

publisher_task.c This file contains the task that sets up the user button GPIO for the publisher and
publishes MQTT messages on the topic MQTT_PUB_TOPIC to control a device that
is actuated by the subscriber task. The file also contains the ISR that notifies the
publisher task about the new device state to be published.

publisher_task.h This file is the public interface of publisher_task.c file.

subscriber_task.c This file contains the task that initializes the user LED GPIO, subscribes to the
topic MQTT_SUB_TOPIC, and actuates the user LED based on the notifications
received from the MQTT subscriber callback.

wifi_config.h This file contains the configuration macros required for the Wi-Fi connection.

All PSOC™ Edge E84 MCU applications have a dual-CPU three-project structure to develop code for the CM33
and CM55 cores. The CM33 core has two separate projects for the Secure Project Environment (SPE) and Non-
Secure Project Environment (NSPE). A project folder consists of various subfolders, each denoting a specific
aspect of the project. See Figure 25 for the final project structure.

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 26 002-38090 Rev. *A
2025-09-04

Figure 25 Project structure

Follow the steps from AWS credential setup to setup the AWS Things, MQTT broker, and generate a certificate.
Wi-Fi configuration: Set the Wi-Fi credentials in wifi_config.h: Modify the macros WIFI_SSID, WIFI_PASSWORD,
and WIFI_SECURITY to match with that of the Wi-Fi network that you want to connect.
MQTT configuration: Some of the important configuration macros are as follows:
• MQTT_BROKER_ADDRESS: Hostname of the MQTT broker
• MQTT_PORT: Port number to be used for the MQTT connection. As specified by the Internet Assigned

Numbers Authority (IANA), the port numbers assigned for the MQTT protocol are 1883 for non-secure
connections and 8883 for secure connections. However, MQTT brokers can use other ports. Configure this
macro as specified by the MQTT broker

• MQTT_SECURE_CONNECTION: Set this macro to '1' if a secure (TLS) connection to the MQTT broker is
required to be established; else '0'

• MQTT_USERNAME and MQTT_PASSWORD: User name and password for client authentication and
authorization if required by the MQTT broker. However, note that this information is generally not
encrypted and the password is sent in plain text. Therefore, this is not a recommended method of client
authentication

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 27 002-38090 Rev. *A
2025-09-04

• CLIENT_CERTIFICATE and CLIENT_PRIVATE_KEY: Certificate and private key of the MQTT client used for
client authentication. Note that these macros are applicable only when MQTT_SECURE_CONNECTION is
set to '1'

• ROOT_CA_CERTIFICATE: Root CA certificate of the MQTT broker
Set up the MQTT client and configure the credentials in mqtt_client_config.h file.

1. In the mqtt_client_config.h file, set MQTT_BROKER_ADDRESS to your custom endpoint on the
Settings page of the AWS IoT console. This has the format
ABCDEFG1234567.iot.<region>.amazonaws.com

2. Set the macros MQTT_PORT to 8883and MQTT_SECURE_CONNECTION to 1 in the mqtt_client_config.h file
3. Download the following certificates and keys that are created and activated in the earlier step:

- A certificate for the AWS IoT Thing:xxxxxxxxxx.cert.pem
- A public key: xxxxxxxxxx.public.key
- A private key: xxxxxxxxxx.private.key
- Root CA RSA 2048 bit key: Amazon Root CA 1 for AWS IoT from CA certificates for server

authentication
4. Using these certificates and keys, enter the following parameters in mqtt_client_config.h file in

Privacy-Enhanced Mail (PEM) format:
- CLIENT_CERTIFICATE: xxxxxxxxxx.cert.pem
- CLIENT_PRIVATE_KEY: xxxxxxxxxx.private.key
- ROOT_CA_CERTIFICATE: Root CA certificate
They must be formatted as shown in Figure 26.

Figure 26 Certificate format

You can manually format the strings as shown in Figure 26 or use format_aws_certificates.py to
format each files one at a time. To use it:

- Place the format_aws_certificates.py and certificates/keys in the same folder

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 28 002-38090 Rev. *A
2025-09-04

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://github.com/Infineon/training-modustoolbox-level3-wifi/blob/master/Scripts/format_aws_certificates.py

- Open modus-shell, go to the folder with the script and enter the following:

python ./format_certificates.py<filename>

- Copy and paste the formatted strings from the output window to the proper locations in
mqtt_client_config.h file

For a complete list of configuration macros used in this code example are as follows:

Table 2 Wi-Fi and MQTT configuration macros

Wi-Fi connection configurations In wifi_config.h file.

WIFI_SSID SSID of the Wi-Fi AP to which the MQTT client connects.

WIFI_SECURITY Security type of the Wi-Fi AP. See cy_wcm_security_t structure in
the cy_wcm.h file for details.

MAX_WIFI_CONN_RETRIES Maximum number of retries for Wi-Fi connection.

WIFI_CONN_RETRY_INTERVAL_MS Time interval in milliseconds in between successive Wi-Fi
connection retries

MQTT connection configurations In mqtt_client_config.h file.

MQTT connection configurations Hostname of the MQTT broker.

MQTT_PORT Port number to be used for the MQTT connection. As specified
by the IANA, the port numbers assigned for the MQTT protocol
are 1883 for non-secure connections and 8883 for secure
connections. However, MQTT brokers can use other ports.
Configure this macro as specified by the MQTT broker.

MQTT_SECURE_CONNECTION Set this macro to '1' if a secure (TLS) connection to the MQTT
broker is required to be established; else '0'.

MQTT_USERNAME MQTT_PASSWORD User name and password for client authentication and
authorization if required by the MQTT broker. However, note that
this information is generally not encrypted and the password is
sent in plain text. Therefore, this is not a recommended method
of client authentication.

MQTT client certificate configurations In mqtt_client_config.h file.

CLIENT_CERTIFICATE Certificate and private key of the MQTT client used for client
authentication. Note that these macros are applicable only when
MQTT_SECURE_CONNECTION is set to '1'.

CLIENT_PRIVATE_KEY

ROOT_CA_CERTIFICATE Root CA certificate of the MQTT broker.

MQTT message configurations In mqtt_client_config.h file.

MQTT_PUB_TOPIC MQTT topic to which the messages are published by the
publisher task to the MQTT broker.

MQTT_SUB_TOPIC MQTT topic to which the subscriber task subscribes to. The MQTT
broker sends the messages to the subscriber that are published
in this topic (or equivalent topic).

MQTT_MESSAGES_QOS The Quality of Service (QoS) level to be used by the publisher and
subscriber. Valid choices are '0', '1', and '2'.

(table continues...)

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 29 002-38090 Rev. *A
2025-09-04

Table 2 (continued) Wi-Fi and MQTT configuration macros

ENABLE_LWT_MESSAGE Set this macro to '1' if you want to use the 'Last Will and
Testament (LWT)' option; else '0'. LWT is an MQTT message that
will be published by the MQTT broker on the specified topic if
the MQTT connection is unexpectedly closed. This configuration
is sent to the MQTT broker during MQTT connect operation; the
MQTT broker will publish the Will message on the Will topic when
it recognizes an unexpected disconnection from the client.

MQTT_WILL_TOPIC_NAME The MQTT topic and message for the LWT option described
earlier. These configurations are applicable only when
ENABLE_LWT_MESSAGE is set to '1'.

MQTT_WILL_MESSAGE

MQTT_DEVICE_ON_MESSAGE The MQTT messages that control the device (LED) state in this
code example.MQTT_DEVICE_OFF_MESSAGE

Other MQTT client configurations In mqtt_client_config.h file.

GENERATE_UNIQUE_CLIENT_ID Every active MQTT connection must have a unique client
identifier. If this macro is set to '1', the device will generate a
unique client identifier by appending a timestamp to the string
specified by the MQTT_CLIENT_IDENTIFIER macro. This feature
is useful if you are using the same code on multiple kits
simultaneously.

MQTT_CLIENT_IDENTIFIER The client identifier (client ID) string to be used during an
MQTT connection. If GENERATE_UNIQUE_CLIENT_ID is set to '1', a
timestamp is appended to this macro value and used as the
client ID; else, the value specified for this macro is directly used
as the client ID.

MQTT_CLIENT_IDENTIFIER_MAX_LEN The longest client identifier that an MQTT server must accept
(as defined by the MQTT 3.1.1 specification) is 23 characters.
However, some MQTT brokers support longer client IDs.
Configure this macro as per the MQTT broker specification.

MQTT_TIMEOUT_MS Timeout in milliseconds for MQTT operations in this example.

MQTT_KEEP_ALIVE_SECONDS The keepalive interval in seconds used for the MQTT ping
request.

MQTT_ALPN_PROTOCOL_NAME The application layer protocol negotiation (ALPN) protocol name
to be used that is supported by the MQTT broker in use. Note
that this is an optional macro for most of the use cases. Per
IANA, the port numbers assigned for the MQTT protocol are 1883
for non-secure connections and 8883 for secure connections. In
some cases, there is a need to use other ports for MQTT like port
443 (which is reserved for HTTPS). ALPN is an extension to TLS
that allows many protocols to be used over a secure connection.

MQTT_SNI_HOSTNAME The server name indication (SNI) hostname to be used during
the transport layer security (TLS) connection as specified by the
MQTT broker. SNI is an extension to the TLS protocol. As required
by a few MQTT brokers, SNI typically includes the hostname in
the "Client Hello" message sent during a TLS handshake.

(table continues...)

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 30 002-38090 Rev. *A
2025-09-04

Table 2 (continued) Wi-Fi and MQTT configuration macros

MQTT_NETWORK_BUFFER_SIZE A network buffer is allocated for sending and receiving MQTT
packets over the network. Specify the size of this buffer using
this macro. Note that the minimum buffer size is defined by the
CY_MQTT_MIN_NETWORK_BUFFER_SIZE macro in the MQTT library.

MAX_MQTT_CONN_RETRIES Maximum number of retries for MQTT connection.

MQTT_CONN_RETRY_INTERVAL_MS Time interval in milliseconds in between successive MQTT
connection retries.

3.2.12 User application code entry
In this example, the MQTT client RTOS task establishes a connection with the configured MQTT broker and
creates two tasks: publisher and subscriber. The publisher task publishes messages on a topic when the user
button is pressed on the kit. The subscriber task subscribes to the same topic and controls the user LED1 based
on the messages received from the MQTT broker. If the MQTT or Wi-Fi connection is lost, the application will
automatically try to reconnect.
Operation as follows:
1. User button is pressed
2. GPIO interrupt service routine (ISR) notifies the publisher task
3. Publisher task publishes a message on a topic
4. MQTT broker sends back the message to the MQTT client because it is also subscribed to the same topic
5. When the message is received, the subscriber task turns the User LED1 ON or OFF. As a result, the user

LED toggles every time when you press the User button1

3.2.13 Build, program, and test your design
This section shows how to build, program, and test the Wi-Fi MQTT Client application on the
KIT_PSE84_EVAL_EPC2. At this point, it is assumed that you have followed the previous steps in this application
note to develop the Wi-Fi MQTT Client code example.

Note: To understand the build and program process of a simpler application, see the AN235935 - Getting
started with PSOC™ Edge E8 MCU on ModusToolbox™ software application note that explains how to
run a simple hello world application on the KIT_PSE84_EVAL_EPC2.

To build, program, and test the application, do the following:
1. Connect the kit to your PC using the provided USB cable
2. The USB-to-UART serial interface on the kit provides access to the UART interface of the

KIT_PSE84_EVAL_EPC2 device. Use your favorite serial terminal application (Tera Term is used in this
design) and connect to the USB-to-UART serial port. Configure the terminal application to access the
serial port using the following settings:
• Baud rate: 115200 bps; Data: 8 bits; Parity: None; Stop: 1 bit; Flow control: None; New line for

receiving data: Line Feed (LF) or auto setting
3. Build and program the application: In the Project Explorer, select the project. In the Quick Panel, scroll to

the Launches section, and click the Program (KitProg3_MiniProg4) configuration as shown in Figure 27

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 31 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/https://www.infineon.com/AN235935
https://www.infineon.com/https://www.infineon.com/AN235935

Figure 27 Program the application
4. You can also use the command-line interface (CLI) to build and program the application. See the Build

system chapter in the ModusToolbox™ tools package user guide
5. After programming, the application starts automatically. Confirm that the text as shown in either one of

the following figures is displayed on the UART terminal. Note that the Wi-Fi SSID and the IP address
assigned will be different, based on the network that you have connected to

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 32 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/ModusToolboxUserguide

Figure 28 Application initialization
6. After the initialization is complete, confirm that the message Press the user button (SW2) to publish

"TURN ON"/"TURN OFF" on the topic 'ledstatus' is printed on the UART terminal. This message may
vary depending on the MQTT topic and publish messages that are configured in the
mqtt_client_config.h file

7. Press the user button1 (SW2) on the kit to toggle the user LED1 state
8. Confirm that the user LED1 state is toggled and the messages received on the subscribed topic are

printed on the UART terminal

Figure 29 Publish subscribe messages
9. This example can be programmed on multiple kits (only when GENERATE_UNIQUE_CLIENT_ID is set to '1');

the user LEDs on all the kits will synchronously toggle with button presses on any kit
10. Alternatively, the publish and subscribe functionalities of the MQTT client can be individually verified if

the MQTT broker supports a test MQTT client like the AWS IoT
11. To verify the subscribe functionality, use the test MQTT client, publish messages such as "TURN ON" and

"TURN OFF" on the topic specified by the MQTT_PUB_TOPIC macro in mqtt_client_config.h file to control
the LED state on the kit

12. To verify the publish functionality, from the Test MQTT client, subscribe to the MQTT topic specified by
the MQTT_SUB_TOPIC macro and confirm that the messages published by the kit (when the user button is
pressed) are displayed on the test MQTT client's console

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

Application note 33 002-38090 Rev. *A
2025-09-04

4 Getting started with Azure communication

4.1 Azure credential setup
Azure IoT Hub is a managed service offered by Microsoft within the Azure Cloud Platform. It acts as a central
hub for communication between millions of internet-connected devices (referred to as "things" on the Internet
of Things or IoT) and cloud-based applications.
Azure IoT Hub seamlessly integrates with other Azure services like Azure Stream Analytics, Azure Machine
Learning, and Azure Functions; allowing you to build powerful IoT solutions that analyze device data, generate
insights, and automate actions based on real-time information.

Figure 30 Azure authentication process

4.1.1 Azure Hub setup

This section describes how to create an IoT hub using the Azure portal.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 34 002-38090 Rev. *A
2025-09-04

https://portal.azure.com/

1. Sign in to Azure portal
2. On the Azure homepage, select + Create a resource in the Azure services

Figure 31 Create resource
3. From the Categories, select Internet of Things, and then select IoT Hub

Figure 32 Select category
4. Click Create in the IoT Hub page

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 35 002-38090 Rev. *A
2025-09-04

https://portal.azure.com/

Figure 33 IoT Hub
5. On the Basics tab, select the required fields as shown in Figure 34 and click Next: Networking >

Figure 34 IoT Hub Basics details
6. On the Networking tab, select the required fields as shown in Figure 35 and select the TLS version as 1.2

if you are using the latest Baltimore root.ca certificate, and click Next: Management >

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 36 002-38090 Rev. *A
2025-09-04

Figure 35 IoT Hub Networking details
7. On the Management tab, use the default settings as shown in Figure 36. If required, you can modify any

of the fields. Later, click on Next: Add-ons > to continue to the next page

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 37 002-38090 Rev. *A
2025-09-04

Figure 36 IoT Hub Management details
8. On the Add-ons tab, use the default settings as shown in Figure 37. If required, you can modify any of the

fields and then click Next: Tags >

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 38 002-38090 Rev. *A
2025-09-04

Figure 37 IoT Hub Add-ons details
9. On the Tags tab, you can leave the fields empty if you do not need to add any name/value pairs as shown

in Figure 38

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 39 002-38090 Rev. *A
2025-09-04

Figure 38 IoT Hub Tags details
10. Select Next: Review + create to review your choices
11. Select Create to start the deployment of your new hub. Your deployment will be in progress a few

minutes while the hub is being created. After the deployment is complete, select Go to resource to open
the new hub

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 40 002-38090 Rev. *A
2025-09-04

Figure 39 IoT Hub Review details
If you require additional updates, see Create and manage Azure IoT hubs.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 41 002-38090 Rev. *A
2025-09-04

https://learn.microsoft.com/en-us/azure/iot-hub/create-hub?tabs=portal

There are two ways to setup the X509 or SAS credentials-based on the hardware for the Azure IoT Hub that is
explained in detail in the following section.

4.1.2 Shared access signature (SAS)-based authentication mode
Shared Access Signature (SAS) token functions as a digital keycard, granting controlled access to specific Azure
resources for a limited duration. This approach ensures security by providing granular access permissions.
The following steps are used to generate the output of the Azure Device App (C2D, Telemetry, Methods,
Device Twin) and PnP (Plug and Play) menu options of the ModusToolbox™ application.
Create a SAS authentication-based device on the Azure IoT Hub by following these steps:
1. Register a new device in the IoT Hub

In this section, you create a device identity in the identity registry in your IoT hub. A device cannot
connect to a hub unless it has an entry in the identity registry. For more information, see the IoT Hub
developer guide
• In your IoT hub navigation menu, open Devices, select Add Device as shown in Figure 40 to add a

device in your IoT hub created in Azure Hub setup

Figure 40 Add Device
• In Create a device, provide a name for your new device, such as my-device-id, and select Save as

shown in Figure 41. It creates a device identity for your IoT hub. Select Auto-generate keys so that
the primary and secondary keys will be generated automatically

Figure 41 Add Device ID

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 42 002-38090 Rev. *A
2025-09-04

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry#identity-registry-operations
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry#identity-registry-operations

• Click Save. After creating the device, open the device from the list in the Devices pane. Copy the
value of the Primary connection string. This connection string is used by device code to
communicate with the IoT hub

Figure 42 Device ID details
• By default, the keys and connection strings are masked because they are sensitive information as

shown in Figure 42. Click the eye icon to reveal the password. It is not necessary to reveal them to
copy them with the copy button

2. Visual Studio Code setup
Download and install Visual Studio Code if you do not have in the system

3. Azure IoT tools
Install Azure IoT Hub to connect it to Visual Studio

4. Set up your Azure IoT Hub in VS Code
Set up your Azure IoT Hub in VS Code after installation. You will see the device list to interact with your
IoT hub and devices after setup
• In Explorer of VS Code, click Azure IoT Hub Devices in the bottom-left corner
• Click Select IoT Hub in the context menu
• If you did not sign in to Azure, a pop-up will show to let you sign in to the Azure platform
• After sign in, select your Azure subscription
• Select your IoT Hub from the list
• The device list will be displayed as shown in Figure 43

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 43 002-38090 Rev. *A
2025-09-04

https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-toolkit

Figure 43 Generate SAS Token for Device
• For SAS token generation, right-click your device and select Generate SAS Token for Device
• Enter the expiration time in hours as shown in Figure 44

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 44 002-38090 Rev. *A
2025-09-04

Figure 44 Enter the expiration time
• Copy the generated SAS token to the clipboard

Figure 45 Copy the generated SAS token

4.1.3 X509 certificate-based authentication mode
1. Use the following steps to generate the device's X509 self-signed certificate and private key to setup the

X509 authentication-based device on Azure IoT Hub
2. Create a certificates directory
3. Run the following command in the modus-shell in the certificates folder to generate the device private

key.

openssl req -newkey rsa:2048 -nodes -keyout dev_priv_key.pem

4. To run this command, enter the additional information, as shown in the following example. The
Common Name can be your choice but must match the registration ID on the Azure DPS portal's
enrollment or the device ID on the Azure IoT Hub portal is created in the following steps:

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 45 002-38090 Rev. *A
2025-09-04

The A challenge password and An optional company name fields are left blank.

Country Name (2 letter code) [XX]:US

State or Province Name (full name) []:CA

Locality Name (e.g, city) [Default City]:SJ

Organization Name (e.g, company) [Default Company Ltd]:IFX

Organizational Unit Name (e.g, section) []:INFINEON

Common Name (e.g, your name or your server's hostname) []:x509-cert

Email Address []:

Enter the following 'extra' attributes to be sent with your certificate request

A challenge password []:

An optional company name []:

5. Copy the x509_config.cfg file from the scripts folder to the certificates folder
6. Run the following command in the modus-shell in the certificates folder to generate the X.509

certificate.

Note: The value of the common name field in the following command - CN can be your choice but
must match the registration ID on the Azure DPS portal's enrollment or the device ID on the
Azure IoT Hub portal is created as mentioned in the following steps:

openssl req -new -days 1024 -nodes -x509 -key dev_priv_key.pem -out device_cert.pem
-extensions client_auth -config x509_config.cfg -subj "/CN=azure_dps_dev_test1"

7. Run the following command in the modus-shell in the certificates directory to get the SHA thumbprint
of the device certificate created in Step 3. Copy the fingerprint generated in the following command:

openssl x509 -noout -fingerprint -in device_cert.pem | sed 's/://g'| sed 's/\(SHA1
Fingerprint=\)//g'

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 46 002-38090 Rev. *A
2025-09-04

Example of a fingerprint from the previous command:

902E7A49F252A49D0AB30AB1D2FBEAE702495F2F

8. Follow these steps to create a device in the IoT Hub created in Azure Hub setup. Ensure to give the same
name for the Device ID that is given for the Common name. Use the fingerprint generated in Step 3 for
both Primary Thumbprint and Secondary Thumbprint. Click Save as shown in Figure 46

Figure 46 Create a device
9. Download DigiCertAssuredIDRootG2.pem certificate and use the following command to convert the

certificate from .crt to .pem. The out parameter must be azure_rootCA.pem

openssl x509 -inform der -in DigiCertAssuredIDRootG2.crt -out azure_rootCA.pem

Note: If the Azure IoT Device is configured to use the DigiCert Global G2 Root certificate, use the same

10. The .pem format of the certificates and keys needs to be used in the file. Use scripts/
format_X509_cert_key.py to generate the formatted pem. Copy and paste this script in certificates
folder and use it as follows:

python format_X509_cert_key.py azure_rootCA.pem device_cert.pem dev_priv_key.pemx

4.2 Connecting to Azure IoT services using Azure SDK for Embedded C
This section describes how to build an Azure IoT based application for PSOC™ Edge E84 device using Eclipse IDE
for ModusToolbox™. It uses the Azure SDK for Embedded C library to connect the device with Azure.

4.2.1 Prerequisites
Before you start, ensure that you have the appropriate development kit for the PSOC™ Edge E84 MCU product
line, and have installed the required software. See Hardware and software requirements for more details.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 47 002-38090 Rev. *A
2025-09-04

https://cacerts.digicert.com/DigiCertGlobalRootG2.crt.pem

4.2.2 Application development
The following sections provide guidelines on how to develop an application:
• Create a new application
• View and modify the design
• Develop your application
• Build the application
• Program the device
• Test your design

Note: This design is developed for the PSOC™ Edge E84 Evaluation Kit (KIT_PSE84_EVAL_EPC2).

4.2.3 About the design
This example implements two RTOS tasks to demonstrate Azure IoT Hub features: Cloud to Device (C2D),
Telemetry, methods, Device Twin, and plug and play (PnP). The main function initializes the BSP and the
retarget-io library and calls the Menu function which shows the list of Azure features. After selecting a feature, a
task is created for running the feature. Every feature task requires valid certificates or tokens that need to be
passed either from the flash or secured hardware.
After the validation of IoT device credentials, the data exchange can then take place between the Hub and the
device.

4.2.3.1 SAS authentication
SAS tokens are generated using symmetric keys provided during device enrollment. The device then uses this
key to generate SAS tokens. These SAS tokens have a hashed signature, which is used to verify the authenticity
of these tokens. Once the device is authenticated, these SAS tokens are used to connect to the Azure IoT Hub
and send messages.

4.2.3.2 X.509 authentication
X.509 certificate (Public Key Infrastructure) is used to authenticate devices to the IoT Hub and secure the IoT
Hub endpoints. The process begins with registering and uploading the X.509 certificates to an IoT Hub which
will be used for authentication of IoT devices to the IoT Hub whenever they connect. This authentication
process saves from generating private secure keys for every IoT device. With the X.509 CA feature, you need to
register the certificate once, and then use it to connect and authenticate as many devices as you want.

4.2.4 Create a new application
This section provides a step-by-step guideline for creating a new application. It uses the Empty App starter
application and manually adds the functionality from the PSOC™ Edge MCU: Connecting to Azure IoT using
Azure SDK for C application. The Eclipse IDE for ModusToolbox™ is used in the instructions, but you can use any
IDE or the command-line tool if you prefer.
If you are familiar with developing projects with ModusToolbox™ software, you can use the PSOC™ Edge MCU:
Connecting to Azure IoT using Azure SDK for C starter application directly for PSOC™ Edge and Connecting to
Azure IoT services using Azure SDK for Embedded C for PSOC™ 6 application. It is a complete design with all the
firmware written for the supported kits. You can walk through the instructions and observe how the steps are
implemented in the code example.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 48 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-azure-iot
https://github.com/Infineon/mtb-example-azure-iot

Launch Eclipse IDE for ModusToolbox™ to get started. It requires the Internet connection to download the assets
from GitHub repositories.
The following sections provide the steps to start with a new empty application.

4.2.5 Select a new workspace
At launch, Eclipse IDE for ModusToolbox™ shows a dialog box to choose a directory as the workspace directory.
The workspace directory is used to store workspace preferences and development artifacts such as device
configuration and application source code. You can choose an existing empty directory by clicking the Browse
button. Alternatively, you can type in a directory name to be used as the workspace directory along with the
complete path, and ModusToolbox™ will create the directory for you.

Figure 47 Select a directory as workspace

4.2.6 Create a new ModusToolbox™ application
Click New Application in the Quick Panel. Alternatively, go to File > New and click ModusToolbox™ Application.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 49 002-38090 Rev. *A
2025-09-04

Figure 48 Create a new ModusToolbox™ application

4.2.7 Select PSOC™ Edge E84 MCU-based target hardware
ModusToolbox™ lists the Infineon kits to start your application development. In this case, develop an
application on the PSOC™ Edge E84 Evaluation Board that uses the PSOC™ Edge line device. Select
KIT_PSE84_EVAL_EPC2 and click Next as shown in Figure 49.

Figure 49 Choose target hardware

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 50 002-38090 Rev. *A
2025-09-04

4.2.8 Select a PSOC™ Edge Empty application and create the application
(applicable only for “Working from Scratch” flow)

Use an existing empty application as the starting point for the Working from Scratch development flow.
This is a minimal starter application template for PSOC™ Edge MCU devices. This example uses FreeRTOS to
blink two LEDs with different frequencies respectively from the Arm® Cortex®-M33 CPU and the Arm® Cortex®-M55
CPU. This code example has a three project structure that is, CM33 secure, CM33 non-secure, and CM55
projects. All three projects are programmed to an external QSPI flash and executed in the XIP mode. Extended
boot launches the CM33 secure project from a fixed location in an external flash, which then configures the
protection settings and launches the CM33 non-secure application. Additionally, the CM33 non-secure
application enables the CM55 CPU and launches the CM55 application.
The application code of mtb-example-psoc-edge-azure-iot uses only the CM33 CPU of the PSOC™ Edge E84
MCU. Therefore, the application is written under the CM33 non-secure project (proj_cm33_ns) and the CM55
CPU (in proj_cm55) is subsequently put to Deep Sleep mode.
1. To create an Empty_app, select PSOC Edge Empty Application as shown in Figure 50
2. In the Name Application Name field, type a required name for the application if required and click Next;

the application summary dialog appears
3. Click Create and wait for the application to download and create in the workspace
4. Click Close to complete the application creation process. Here, the application is named as Azure_IoT as

shown in Figure 50

Figure 50 Create PSOC™ Edge Empty Application

You have successfully created a new ModusToolbox™ application for the PSOC™ Edge E84 MCU.

4.2.9 Configure design resources
In this step, you will configure the design resources for your application and generate the configuration code.
You will also be adding the required middleware libraries.

4.2.10 Add libraries and middleware
ModusToolbox™ provides a Library Manager tool to select various middleware components for developing
applications.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 51 002-38090 Rev. *A
2025-09-04

To launch the Library Manager, select the empty application. the application name will vary based on the name
you provide while creating the empty_app and in the Quick Panel, click Library Manager as shown in Figure 51.
Click Add Library to add the required libraries and middleware for your application.

Figure 51 Open Library Manager

For the Azure_IoT code example design, follow these steps to add the required libraries:
1. Add the retarget-io middleware to redirect standard input and output streams to the UART configured by

the BSP. The initialization of the middleware will be done in main.c file. Click Add Library, select
proj_cm33_ns the target project and search the library name retarget-io in the Enter filter text box.You
can find it under the peripheral section.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 52 002-38090 Rev. *A
2025-09-04

For more information about the library, Refer the websiteRetarget-io.

Figure 52 Add retarget-io library
2. Add the wifi-core-freertos-lwip-mbedtls library. This bundle library comprises core components needed

for Wi-Fi connectivity support. It bundles FreeRTOS, lwIP TCP/IP stack, and mbed TLS for security, Wi-Fi
Host Driver (WHD), Wi-Fi Connection Manager, Secure Sockets interface, and configuration files. Click
Add Library, select proj_cm33_ns as the Target Project and select Wi-Fi > wifi-core-freertos-lwip-
mbedtls, see Figure 53

Figure 53 Add wifi-core-freertos-lwip-mbedtls library
3. Add the Azure-c-sdk-port library as this library is used as a port layer where it pulls the library Azure SDK

for Embedded C to work with cloud connectivity applications.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 53 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/retarget-io

Figure 54 Add azure-c-sdk-port
4. Add MQTT library. It works with PSOC™ Edge and PSoC™ 6 MCU-based connectivity platforms. The library

supports multi-core architecture by making a subset of APIs available as virtual APIs.

Figure 55 Add MQTT Library
5. After selecting the required libraries, click OK and Update as shown in Figure 56

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 54 002-38090 Rev. *A
2025-09-04

Figure 56 Update libraries

4.2.11 Write the application code
At this point in the development process, you created an application and added the required libraries. This part
examines the application code that implements the Azure_IoT code example.

Note: The empty application of the PSOC™ Edge E84 MCU has a three project structure (proj_cm33_ns,
proj_cm33_s, and proj_cm55). The application code of the Azure_IoT example is to be written on the
proj_cm33_ns project that uses the M33 core and subsequently the proj_cm55 project that uses the
M55 core is put to Deep Sleep mode.

Operation as follows:
1. Visit the website, PSOC™ Edge MCU: Connecting to Azure IoT using Azure SDK for C which contains the

application files that can be downloaded
2. Copy the following folders from the mtb-example-psoc-edge-azure-iot code example under

proj_cm33_ns to your proj_cm33_ns folder of the Azure_IoT inside the ModusToolbox™ workspace folder,
which contains:

Table 3 Code example files

File name File definitions

main.c This file contains the int main () function that is the entry point for
execution of the user application code after device startup.

menu_task.c This file contains tasks and functions related to Azure feature task
creation and Wi-Fi initialization.

mqtt_iot_azure_device_demo_app.c This file contains tasks and functions related to Azure device demo
task.

(table continues...)

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 55 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-azure-iot

Table 3 (continued) Code example files

File name File definitions

mqtt_iot_common.c This file contains implementation of utility functions for Azure
sample applications on Infineon platforms.

mqtt_iot_common.h This file contains header file for Azure sample applications utility
functions on Infineon platforms.

mqtt_iot_hub_pnp.c This file contains tasks and functions related to Azure Plug and
Play feature task.

mqtt_main.h Contains all the Azure IoT device configurations required by the
Azure application.

azure_common.h Contains all the common configurations required for the Azure
application.

3. All PSOC™ Edge E84 MCU applications have a dual-CPU three-project structure to develop code for the
CM33 and CM55 cores. The CM33 core has two separate projects for the Secure Project Environment
(SPE) and Non-Secure Project Environment (NSPE). A project folder consists of various subfolders, each
denoting a specific aspect of the project. See Figure 57 of the code example project structure and
libraries added

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 56 002-38090 Rev. *A
2025-09-04

Figure 57 Project structure
4. Follow the steps from Azure Hub setup to setup the Azure IoT Hub. There are two types of authentication

modes: Shared Access Signatures (SAS) and X.509 certificates. SAS grants short-lived, granular access to
Azure resources for applications. X.509 certificates provide strong, mutual authentication for users and
services. Both are secured connections but SAS is simpler for resources, while X.509 is ideal for user
authentication
Select either of the following methods for authentication of the Azure IoT device with the Azure Hub
Shared access signature (SAS)-based authentication mode
• Set the SAS_TOKEN_AUTHmacro to '1' in source/azure_common.h file
• Use the following steps to generate the output of the Azure Device App (C2D, Telemetry, Methods,

Device Twin) and PnP (Plug and Play) menu options of this ModusToolbox™ application
• Create a SAS authentication-based device on the Azure IoT Hub by referring to About the design

section
• Generate a SAS token for the device using the following instructions as mentioned in SAS token

generation. The VS Code's Get device info can be used for acquiring device information like the host
name and device ID as shown in Shared access signature (SAS)-based authentication mode

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 57 002-38090 Rev. *A
2025-09-04

https://github.com/Microsoft/vscode-azure-iot-toolkit/wiki/Generate-SAS-Token-for-Device
https://github.com/Microsoft/vscode-azure-iot-toolkit/wiki/Generate-SAS-Token-for-Device
https://github.com/Microsoft/vscode-azure-iot-toolkit/wiki/Get-Device-Info

• Update the files as follows in source/azure_common.h file
• - Set the SAS_TOKEN_LOCATION_FLASH macro as true

- Update the device ID in MQTT_CLIENT_IDENTIFIER_AZURE_SAS

- Update host name/hub name of the created IoT Hub in IOT_DEMO_SERVER_AZURE

- Update device ID in IOT_AZURE_USERNAME

- Update the generated SAS token in IOT_AZURE_PASSWORD
These changes are required for to identify the specified IoT Hub that device needed to be connected
to and provide device ID where the hub uses this ID to route the messages from the device

X509 certificate-based authentication mode

• Follow these steps to generate the output of the Azure Device App (C2D, Telemetry, Methods,
Device Twin) and PnP (Plug and Play) menu options of this ModusToolbox™ application

• Create an X509-based device, it is a certificate and private key for Azure IoT Hub by referring to X509
certificate-based authentication mode

• In source/mqtt_main.h file update the following macros:
- Update the device ID in the MQTT_CLIENT_IDENTIFIER_AZURE_CERT macro
- Update the host name/hub name on which the device will be registered in macro

IOT_DEMO_SERVER_AZURE

- Update the device ID in the IOT_AZURE_USERNAME macro
- Update the pem format value of certificates and keys in the azure_root_ca_certificate,

azure_client_cert, and azure_client_key as mentioned in the Azure credential setup section for
a non-secure kit

- Azure root ca certificate - Contains the public key of the Azure Root CA. When your device
connects to Azure IoT Hub (or any Azure Service), it uses this certificate to verify that the
certificates presented by Azure are genuine

- Azure client certificate - X.509 client certificate containing your device's unique identity and
signed by a trusted CA

- Azure client key - Private key that goes with your device's certificate
Update the Wi-Fi details to the network that you want to connect to by changing the WIFI_SSID and
WIFI_PASSWORD in the source/mqtt_main.h file

4.2.12 Build, program, and test your design
This section shows how to build, program, and test the Azure IoT application on the KIT_PSE84_EVAL_EPC2. It
also explains how to run the Python script on the server side (your PC). At this point, it is assumed that you
have followed the previous steps in this application note to develop the Azure IoT code example.

Note: To understand the build and program process of a simpler application, see the AN235935 - Getting
started with PSOC™ Edge E8 MCU on ModusToolbox™ software application note that explains how to
run a simple hello world application on the KIT_PSE84_EVAL_EPC2.

To build, program, and test the application, do the following:
1. Connect the kit to your PC using the provided USB cable
2. The USB-to- UART serial interface on the kit provides access to the UART interface of the

KIT_PSE84_EVAL_EPC2 device. Use your favorite serial terminal application (Tera Term is used in this

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 58 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/https://www.infineon.com/AN235935
https://www.infineon.com/https://www.infineon.com/AN235935

design) and connect to the USB-to-UART serial port. Configure the terminal application to access the
serial port using the following settings:
• Baud rate: 115200 bps; Data: 8 bits; Parity: None; Stop: 1 bit; Flow control: None; New line for

receiving data: Line Feed (LF) or auto setting
3. Build and program the application: In the Project Explorer, select the project. In the Quick Panel, scroll to

the Launches section, and click the program (KitProg3_MiniProg4) configuration as shown in Figure 58

Figure 58 Program the application

Note: You can also use the command-line interface (CLI) to build and program the application. See
the Build system chapter in the ModusToolbox™ tools package user guide

4.2.13 Code example output
After programming, the application starts automatically. Confirm that the text as shown in either one of the
following figures is displayed on the UART terminal. Note that the Wi-Fi SSID and the IP address assigned will be
different, based on the network that you have connected to.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 59 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/ModusToolboxUserguide

Figure 59 Application initialization

Select 1. to see the output for Azure Device App
Select 2. to see the output for PnP <Plug and Play>

4.2.13.1 Azure Device App
Cloud-to-device (C2D) messaging :
The Azure Device App receives the incoming C2D messages sent from the Azure IoT Hub to the device.
To send a C2D message, select your device's Message to device tab in the IoT Hub of the Azure portal. Enter a
message in the Message Body and click Send Message.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 60 002-38090 Rev. *A
2025-09-04

Figure 60 Message to device

See Figure 61 to see a message from the cloud printed in the terminal.

Figure 61 C2D message

Telemetry :
The Azure Device App sends 100 telemetry messages to the Azure IoT Hub. If the network disconnects, the
application will exit. The device metrics can be checked on the Azure Hub for analysis of Telemetry, Menu > Add
metric > select Telemetry message send attempts.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 61 002-38090 Rev. *A
2025-09-04

Figure 62 Telemetry message

Methods :
The Azure Device App receives incoming method commands invoked from the Azure IoT Hub to the device. It
receives all method commands sent from the service. If the network disconnects while waiting for a message,
the application will exit.
To send a method command, select your device's Direct Method tab in the IoT Hub of the Azure portal. Enter a
method-named ping in the Method Name field and click the Invoke method, which if successful will return the
following JSON payload visible in the Result section of the Direct method tab in the Azure portal.

{"response":
 "pong"}

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 62 002-38090 Rev. *A
2025-09-04

Figure 63 Direct method

No other method commands are supported. If any other methods are attempted to be invoked, the log will
report that the method is not found.

Figure 64 Incoming Methods

Device twin :
The Azure Device App uses the Azure IoT Hub to get the device twin document, send a reported property
message, and receive up to five desired property messages. When the desired property message is received, the
application will update the twin property locally and send a reported property message back to the service. If
the network disconnects while waiting for a message from the Azure IoT Hub, the application will exit.
A property named Test_count is supported for this application. To send a device twin desired property message,
select the device's Device twin tab in the IoT Hub of the Azure portal. Add the Test_count property along with

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 63 002-38090 Rev. *A
2025-09-04

the corresponding value to the desired section of the JSON, an example is shown below. Click Save to update
the twin document and send the twin message from the cloud to the device.

"properties": {
 "desired": {
 "Test_count": 141,
 "$metadata": {
 "$lastUpdated": "2024-05-23T11:19:40.5236057Z"
 },
 "$version": 1
 },

Figure 65 Incoming Device Twin

4.2.13.2 PnP <Plug and Play>
The application connects an IoT Plug and Play enabled device with the Digital Twin Model ID (DTMI). The
application waits for a message and will exit if the network disconnects.
To interact with the application, use the Azure IoT Explorer or use the Azure portal directly. The capabilities are
Device twin, Direct method (Command), and Telemetry.
Device Twin :
Two device twin properties are supported in this application:
1. The desired property is named targetTemperature with a double value for the desired temperature
2. A reported property named maxTempSinceLastReboot with a double value for the highest temperature

reached since device boot.
To send a device twin desired property message, select your device's Device Twin tab in the Azure
portal. Add the targetTemperature property along with a corresponding value to the desired section of

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 64 002-38090 Rev. *A
2025-09-04

the JSON object, as shown below. Select Save to update the twin document and send the twin message
to the device.

Save to update the twin document and send the twin message to the device.
"properties": {
 "desired": {
 "targetTemperature": 68.5,
 "$metadata": {
 "$lastUpdated": "2024-05-23T11:25:53.7315952Z"
 },
 "$version": 1
 },

When the desired property message is received, the application will update the twin property locally and
send a reported property of the same name back to the service. This message will include a set of "ack"
values: ac for the HTTP-like ack code, av for the ack version of the property, and an optional ad for an ack
description.
Upon selecting the Refresh button on the Device Twin portal, the updated properties can be seen in the
reported section as shown below:

{
 "properties":
 {
 "reported":
 {
 "targetTemperature":
 {
 "value": 68.5,
 "ac": 200,
 "av": 14,
 "ad": "success"
 },
 "maxTempSinceLastReboot": 74.3,
 ...
 }
 }
}

Direct method :
One device command is supported in this application: getMaxMinReport.
If any other commands are attempted to be invoked, the log will report that the command is not found. To
invoke a command, select your device's Direct Method tab in the Azure portal. Enter the command name
getMaxMinReport in the Method Name field along with a payload using an ISO 8061 time format and select
Invoke method. A sample payload is as follows:

"2023-08-18T17:09:29-0700"

The command will send back to the service a response containing the following JSON payload with the
updated values in each field. It is visible in the Result section of the Direct Method tab in the Azure portal. An
example response is shown below:

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 65 002-38090 Rev. *A
2025-09-04

Note: The system time at the time of sending the response is reflected in endTime.

{"status":400,"payload":
{"maxTemp":68.5,"minTemp":22,"avgTemp":45.25,"startTime":"2020-08-18T17:09:29-0700","endTime":"1
970-01-01T00:00:31+0000"}}

Telemetry :
The device sends the value of current temperature in JSON format with the field name temperature as telemetry
data using the Twin and Direct methods.

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

Application note 66 002-38090 Rev. *A
2025-09-04

5 Summary
The application note introduced the cloud connectivity services offered by Infineon Technologies. It also
explained the module partners and cloud connectivity solutions provided by ModusToolbox™. It has explained
the step-by-step demonstration on how to build a AWS_MQTT and Azure_IoT code examples to test it on the
PSOC™ Edge E84 MCU.

Connecting to cloud services using ModusToolbox™

5 Summary

Application note 67 002-38090 Rev. *A
2025-09-04

References
Contact Infineon Support to obtain these documents.
Application notes:
• AN235935 - Getting started with PSOC™ Edge E8 MCU on ModusToolbox™ software
• AN236697 - Getting started with PSOC™ MCU and AIROC™ connectivity devices
• AN228571 - Getting started with PSoC™ 6 MCU on ModusToolbox™ software
Webpages:
• PSoC™ 6 MCU
• ModusToolbox™ software
• ModusToolbox™ for connectivity
• ModusToolbox™ GitHub page
• Infineon's Make IoT work
• AWS IoT Developer Guide
• Getting started with AWS IoT Core
• Azure IoT
Code examples:
• PSOC™ Edge MCU: Wi-Fi MQTT client
• PSOC™ Edge MCU: Connecting to Azure IoT using Azure SDK for C
• MQTT client
• Connecting to Azure IoT services using Azure SDK for Embedded C

Connecting to cloud services using ModusToolbox™

References

Application note 68 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/cms/en/design-support/service/support/
https://www.infineon.com/https://www.infineon.com/AN235935
https://www.infineon.com/https://www.infineon.com/AN236697
https://www.infineon.com/AN228571
https://www.infineon.com/PSoC6
https://www.infineon.com/modustoolbox
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-for-connectivity/
https://github.com/Infineon/modustoolbox-software
https://www.infineon.com/cms/en/about-infineon/make-iot-work/
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://aws.amazon.com/iot-core/getting-started/
https://learn.microsoft.com/en-us/azure/iot/iot-introduction
https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-wifi-mqtt-client
https://github.com/Infineon/mtb-example-azure-iot

Glossary
There are a few terminologies related to cloud services. This document uses the following list of terms.

Table 4 Glossary

Term Description

Internet of Things The Internet of Things (IoT) is a network of physical devices embedded with
sensors, software, and other technologies that allows them to connect and
exchange data with other devices and systems over the internet.

Web services Web services are software components that interact over networks using
standardized protocols like HTTP and XML. They function as intermediaries,
enabling communication and data exchange between different applications and
systems.

Amazon Web Services
(AWS)

A cloud computing platform offered by Microsoft, providing a comprehensive set
of services for building, deploying, and managing applications.

Microsoft Azure A cloud computing platform offered by Amazon, providing a wide range of
services for businesses of all sizes, from startups to large enterprises.

Topics It defines the category of a message and allow subscribers to access data through
topics.

MQTT Publisher Devices or any application that send data to the broker.

MQTT Subscriber Devices or any application that are interested to access specific topics.

MQTT Broker The central server responsible for message routing between publishers and
subscribers.

Connecting to cloud services using ModusToolbox™

Glossary

Application note 69 002-38090 Rev. *A
2025-09-04

Revision history
Document
revision

Date Description of changes

*A 2025-09-04 Release to web

Connecting to cloud services using ModusToolbox™

Revision history

Application note 70 002-38090 Rev. *A
2025-09-04

Trademarks
The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.
PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this
document or others shall be deemed to refer to PSOC™.

Connecting to cloud services using ModusToolbox™

Trademarks

Application note 71 002-38090 Rev. *A
2025-09-04

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-09-04
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?
Email: erratum@infineon.com

Document reference
IFX-utt1723478986432

Important notice
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Amazon Web Services (AWS)
	1.2 Microsoft Azure Web Services
	1.3 Overview

	2 Hardware and software requirements
	2.1 Hardware requirements
	2.2 Software requirements
	2.2.1 ModusToolbox™ for cloud services
	2.2.2 Python
	2.2.3 AWS IoT Device SDK Port Library
	2.2.4 Azure C SDK Port Library
	2.2.5 MQTT Client library

	3 Getting started with AWS communication
	3.1 AWS credential setup
	3.1.1 AWS IoT resources
	3.1.2 AWS Thing
	3.1.3 Certificate
	3.1.4 Policy
	3.1.5 Creating an AWS IoT account
	3.1.5.1 Create Thing
	3.1.5.2 Using the AWS MQTT test client

	3.2 Connecting to MQTT client using AWS
	3.2.1 Prerequisites
	3.2.2 Application development
	3.2.3 About the design
	3.2.4 Create a new application
	3.2.5 Select a new workspace
	3.2.6 Create a new ModusToolbox™ application
	3.2.7 Select PSOC™ Edge E84 MCU-based target hardware
	3.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for “Working from Scratch” flow)
	3.2.9 Configure design resources
	3.2.10 Add libraries and middleware
	3.2.11 Write the application code
	3.2.12 User application code entry
	3.2.13 Build, program, and test your design

	4 Getting started with Azure communication
	4.1 Azure credential setup
	4.1.1 Azure Hub setup
	4.1.2 Shared access signature (SAS)-based authentication mode
	4.1.3 X509 certificate-based authentication mode

	4.2 Connecting to Azure IoT services using Azure SDK for Embedded C
	4.2.1 Prerequisites
	4.2.2 Application development
	4.2.3 About the design
	4.2.3.1 SAS authentication
	4.2.3.2 X.509 authentication

	4.2.4 Create a new application
	4.2.5 Select a new workspace
	4.2.6 Create a new ModusToolbox™ application
	4.2.7 Select PSOC™ Edge E84 MCU-based target hardware
	4.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for “Working from Scratch” flow)
	4.2.9 Configure design resources
	4.2.10 Add libraries and middleware
	4.2.11 Write the application code
	4.2.12 Build, program, and test your design
	4.2.13 Code example output
	4.2.13.1 Azure Device App
	4.2.13.2 PnP <Plug and Play>

	5 Summary
	References
	Glossary
	Revision history
	Trademarks
	Disclaimer

