AN238090 infineon

Connecting to cloud services using ModusToolbox™

About this document
Scope and purpose

This application note delves into the IoT cloud connectivity solutions on Infineon Microcontrollers (MCUs).
Application note provides in-depth information on how to seamlessly connect to cloud services, such as
Microsoft's Azure and Amazon's AWS for loT applications leveraging Infineon MCUs. It covers the fundamental
concepts of connectivity and cloud provider services and guides through the creation of connectivity
applications, including configuring loT cloud service assets, generating authentication credentials,
programming application code, and running projects, ultimately empowering developers to design and
implement efficient loT solutions using Infineon MCUs.

Intended audience

This application note is intended for users who wants to work on cloud connectivity applications on Infineon
MCUs such as PSOC™ Edge E8 using the ModusToolbox™ software.

Application note Please read the sections "Important notice" and "Warnings" at the end of this document 002-38090 Rev. *A
www.infineon.com 2025-09-04

https://www.infineon.com

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

Table of contents

Table of contents

About thisdocument e 1
Tableof contents e e 2
1 IntrodUction e 4
1.1 AMazon Web ServiCes (AW S) . .. e e ettt e 4
1.2 Microsoft AZUre Web Servicesot e e e 4
1.3 L0 Y= T 5
2 Hardware and softwarerequirements i e 6
2.1 Hardware reqUIremMeNtS . ..o ettt ettt ettt e 6
2.2 SOt WA FEQUITEMENTS . . ettt et e e 6
221 ModusToolbox™ for cloud SErvicesot e e 6
222 Pyt 0N L e 7
2.2.3 AWS 10T Device SDK POt Library ... ettt ettt 7
2.2.4 Azure C SDK POrt Library ... e et e e e 7
2.2.5 MQTT Client library . .o i e ettt e e 8
3 Getting started with AWS communication..................... i ... 9
3.1 AWS credential SEtUD . .. e e e 9
3.11 AWS 10T FESOUICES . . vttt ettt e e ettt ittt e nes 9
3.1.2 AW S TN . e ettt et e e e e e e e e e 9
3.13 CertifiCate . . oot ee eea 10
3.14 POl CY o v vttt e e 10
3.1.5 Creating an AWS 10T @CCOUNTo e e e 10
3151 Create TN . ottt e et e et e et e 10
3.1.5.2 Usingthe AWS MQTT test clientot e e 17
3.2 Connecting to MQTT client using AWSo e e 18
3.2.1 P e QUISIEES . o vttt e e 18
3.2.2 Application developmento e e 18
3.2.3 AboUt the design e e 18
3.2.4 Create anew application o i i e e 19
3.2.5 SeleCt @ NEW WOIKSPACE . . e i et e 19
3.2.6 Create a new ModusToolbox™ application......... ..ot 20
3.2.7 Select PSOC™ Edge E84 MCU-based target hardware 21
3.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for
“Working from Scratch” flow)o e 21
3.2.9 CoNfigUIE dESIgN MESOUICES . .\ttt ettt ettt ettt ettt ettt et aieeenns 22
3.2.10 Add librariesand middlewaret e e 22
3.2.11 Write the application Code e s e e 25
3.2.12 User application code entry ooi it et e e e 31
3.2.13 Build, program, and test your design . ..ottt e e 31
Application note 2 002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

Table of contents
4 Getting started with Azure communication.................... 34
4.1 Azure credential SEtUP . ..o oo e 34
4.1.1 AZUIrE HUD SBTUD . ottt et e e e e e e e 34
4.1.2 Shared access signature (SAS)-based authenticationmodel 42
4.1.3 X509 certificate-based authenticationmode i 45
4.2 Connecting to Azure loT services using Azure SDK for Embedded C................ 47
4.2.1 P O QUISIEES . o\ttt e e 47
422 Application developmeEnt i i e e e 48
4.2.3 AbOUt the desigNnt e e 48
4231 SAS aUtheNtiCatioN o e 48
4232 X.509 aUtheNntiCationttt e e e e 48
4.2.4 Create anew application oo i i i s e e e e e e 48
4.2.5 SeleCt @ NEW WOTKSPACE . . ottt ettt e et e et e e 49
4.2.6 Create a new ModusToolbox™ application ... i 49
4.2.7 Select PSOC™ Edge E84 MCU-based target hardware 50
4.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for
“Working from Scratch” flow)o e e 51
4.2.9 ConfigUIre deSigN rESOUINCES . .\ttt ettt ettt e ettt ettt e e 51
4.2.10 Add librariesand middlewarettt e 51
42.11 Write the application Code i i i s i et e et e 55
4.2.12 Build, program, and test your designoiiiiiii i e 58
4.2.13 Code example OULPULo e e 59
42.13.1 AZUIE DBVICE AP D e e vttt ettt ettt et e e e 60
4.2.13.2 PP <Plug and Play> e e 64
5 QUMM ALY . . oottt et ettt e e e e e e e 67
RefErENCES e e 68
[1 233 T T 69
ReVISION MiStOry e e e e 70
Trademarks e e 71
DiSClaimer e e 72
Application note 3 002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

1 Introduction

1 Introduction

This application note will provide information how loT applications on Infineon MCUs using ModusToolbox™
software tools can establish connection with cloud services like Amazon Web Services (AWS) and Microsoft
Azure.

Third-party loT Embedded SDKs like Azure SDK for Embedded C and AWS IoT Device SDK for Embedded C uses
to simplify connecting these devices to cloud platforms (Azure or AWS) by providing secure communication,
data management, and device management functionalities. These SDKs save development time and ensure
security, making them valuable tools for building efficient loT applications.

See AN236697 - Getting started with PSOC™ Edge MCU and AIROC™ connectivity devices to know more about the
Infineon’s connectivity devices. See AN228571 - Getting started with PSOC™ 6 MCU on ModusToolbox™ software
for PSOC™ 6 family series and Getting started with PSOC™ Edge E8 on ModusToolbox™ software to know how to
use Infineon MCUs. These application notes provide an overview of the MCU and the information needed to get
started. Additionally, see the datasheet of the corresponding MCU for more information. PSOC™ Edge MCU is
used to demonstrate a range of applications within this document.

1.1 Amazon Web Services (AWS)

AWS is a secure cloud services platform offering compute power, database storage, content delivery, and other
functionalities. AWS is built from a vast array of both virtual and actual servers and networks as well as a large
number of web server software and administrative tools.

AWS loT: A cloud platform that provides cloud services for IoT devices. The AWS IoT Cloud service supports
MQTT Message Brokers, HTTP access, and a bunch of server-side functionality that includes:

+ Avirtual MQTT Message Broker and HTTP server
« Thing Registry: A web interface to manage the access to your AWS Things

« Security and identity: A web interface to manage the certificates and rules about things. You can create
encryption keys and manage access privileges

+ Shadow: An online cache of the most recent state of your thing

+ Rules Engine: An application that runs in the cloud can subscribe to topics and take programmatic actions
based on messages - for example, configure it to subscribe to an "Alert" topic, and if a thing publishes a
warning message to the "Alert" topic, it uses Amazon SNS to send an SMS text message to your cellphone

« loT applications: An SDK to build webpages and cellphone applications

The AWS IoT Device SDK for Embedded C is a collection of C source files provided by AWS that allow developers
to securely connect embedded devices to AWS loT Core. This lightweight SDK is specifically designed for
embedded systems with limited processing power and memory resources.

1.2 Microsoft Azure Web Services

Microsoft Azure is a comprehensive suite of cloud computing services from Microsoft. It provides a wide range of
on-demand services for building, deploying, and managing applications across a global network of data
centers. It is a web-based interface that acts as the central command center for managing all resources in
Microsoft's Azure cloud computing platform. It provides a user-friendly graphical interface, eliminating the need
for complex code commands.

The Azure SDK for Embedded C is a development tool designed to connect resource-constrained
microcontroller devices to Microsoft Azure services. The Azure Core Library for Embedded C acts like a shared
toolkit for various Azure client libraries written in C code. This library provides common building blocks and
functionalities, ensuring a consistent experience when working with different Azure services.

Application note 4 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/AN228571
https://www.infineon.com/AN238090
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/tree/main/sdk/docs/core

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

1 Introduction

1.3 Overview

This document provides comprehensive guidance on initiating interactions with AWS and Azure platforms.
Detailed instructions on establishing authentication credentials for communication with AWS and Azure web
services are provided, along with illustrative code examples which are described in sections Getting started
with AWS communication and Getting started with Azure communication respectively. Hardware and software
requirements section provides the required hardware and software prerequisites.

Application note 5 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

2 Hardware and software requirements

2 Hardware and software requirements

This section describes the required hardware and software prerequisites for the code example demonstration
exhibited in Getting started with AWS communication and Getting started with Azure communication sections.

2.1 Hardware requirements

This document applies to PSOC™ Edge E84 Evaluation Kit with the Edge Protect Category 2 (EPC 2) part
(KIT_PSE84_EVAL_EPC2), Edge Protect Category 4 (EPC 4) part (KIT_PSE84_EVAL_EPC4) and PSOC™ 6 family
series (PSOC™ 61, PSOC™ 62, PSOC™ 63, PSOC™ 64). Adapt the prerequisites and other sections that are specific
to PSOC™ Edge E84 and PSOC™ 6 according to the kit that you are using. See the References section for
documents related to the kit.

For the design example shown in this application note, the minimum required revision for the PSOC™ Edge E84
Evaluation kit (KIT_PSE84_EVAL_EPC2) is Rev *G.

2.2 Software requirements

This section provides a brief overview of the software dependencies utilized.

2.2.1 ModusToolbox™ for cloud services

The ModusToolbox™ software is a modern, extensible development environment for Infineon MCUs for
applications ranging from wireless and cloud-connected systems, edge Al/ML, embedded sense and control, to
wired USB connectivity using PSOC™ Industrial/loT MCUs, AIROC™ Wi-Fi and Bluetooth® connectivity devices,
XMC™ Industrial MCUs, and EZ-USB™/EZ-PD™ wired connectivity controllers. It provides a flexible set of tools and
a diverse, high-quality collection of application-focused software. These include configuration tools, low-level
drivers, libraries, and operating system support, most of which are compatible with Linux, macOS, and
Windows-hosted environments.

The complete set of run-time software connectivity libraries fit together with the core PSOC™ libraries as shown
in Figure 1.

Application note 6 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ ‘ |n f| neon

2 Hardware and software requirements

Applications

Code Examples Application Notes KB Articles Device

Configurator

Libraries (Middleware)

Bluetooth®
Configurator
OTA MQTT Secure Sockets LwIP LPA
AWS IoT Devi DFU Host Tool
HTTP Server HTTP Client btstack Azure C SDK ‘;DK‘*‘"“*

Library Manager

Board Support Packages (BSPs)

Project Creator

Peripheral Driver Library (PDL)

Figure 1 ModusToolbox™ for connectivity

The run-time software is distributed as a collection of libraries that work together to help you easily get your loT
device up and running on the cloud. Some of the libraries are from Infineon, while others are industry standard
open-source libraries and can be pulled into a ModusToolbox™ application easily by using the Library Manager.

2.2.2 Python

Download the official Python version 3.8-3.12 from the Python website. After installation, add the Python
directory to your system path environment variables, which allows you to easily run the Python commands
from anywhere in your terminal.

2.2.3 AWS loT Device SDK Port Library

AWS IoT Device SDK Port Library is a port layer implementation for Infineon MQTT client library and HTTP client
library. It can work with AWS loT Device SDK Embedded C library on Infineon connectivity-enabled MCU
platforms. See aws-iot-device-sdk-port for more information on the library.

This port library is a dependency for the PSOC™ Edge MCU: Wi-Fi MQTT client code example and is automatically
pulled into the project at the time of application creation.

2.2.4 Azure C SDK Port Library

Azure C SDK Port Library implements the port layer for the Azure SDK for Embedded C to work on PSOC™ Edge
E8 MCU and PSOC™ 6 MCU connectivity-enabled platforms. This library automatically pulls the Azure SDK for

Application note 7 002-38090 Rev. *A
2025-09-04

https://www.python.org/
https://github.com/Infineon/aws-iot-device-sdk-port
https://github.com/Infineon/mqtt
https://github.com/Infineon/http-client/
https://github.com/Infineon/http-client/
https://github.com/aws/aws-iot-device-sdk-embedded-C
https://github.com/Infineon/aws-iot-device-sdk-port
https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/azure-c-sdk-port
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

2 Hardware and software requirements

Embedded C library and the port layer functions implemented by this library are used by the Azure SDK for
Embedded C library. If your application needs an Azure SDK for Embedded C library with MQTT client
functionality, it needs to explicitly import the MQTT library.

See the azure-c-sdk-port for more information on the library.
A few dependencies as follows:

« Microsoft Azure SDK for Embedded C library

+ Wi-Fi middleware core

+ HTTPclient

« AzureloT SDK port

+ FreeRTOS PKCS11 PSA

This port library is a dependency for the PSOC™ Edge MCU: Connecting to Azure loT using Azure SDK for C code
example and is automatically pulled into the project at the time of application creation.

2.2.5 MQTT Client library

« It contains an MQTT Client library that can work with the family of Infineon connectivity devices. This
library uses the AWS loT Device SDK MQTT Client library and implements the glue layer that is required for
the library to work with Infineon connectivity platforms

+ ModusToolbox™AWS MQTT Client and Azure loT code examples download this library automatically, so you
do not need to. ModusToolbox™ AWS MQTT Client and Azure loT code examples download this library
automatically, so you do not need to

Application note 8 002-38090 Rev. *A
2025-09-04

https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Infineon/azure-c-sdk-port
https://github.com/Azure/azure-sdk-for-c/releases/tag/1.1.0
https://github.com/Infineon/wifi-mw-core
https://github.com/Infineon/http-client/releases/tag/release-v1.0.0
https://github.com/Infineon/aws-iot-device-sdk-port/releases/tag/release-v1.0.0
https://github.com/Linaro/freertos-pkcs11-psa
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot

o~ _.
Connecting to cloud services using ModusToolbox™ ‘ |n f| neon

3 Getting started with AWS communication

3 Getting started with AWS communication

3.1 AWS credential setup

Infineon's connectivity device for loT solutions will connect and communicate using the AWS IoT Device SDK
and MQTT libraries. This section will discuss some of the concepts that are important to know when connecting
your loT device to AWS.

AWS Management Console

O aws |
(_—

o

I Create Policy (Optional) Download Certificate

= —
;IQ

Create a Thing

0O

MQTT Broker AWS loT Core

MQTT Client (@}b
{Local)
) Subscribe
MQTT Topic R .
Topic

I

Publish Topic

Figure 2 AWS authentication process

3.1.1 AWS loT resources

There are three types of resources in AWS: Things, Certificates, and Policies. The following sections will guide
you into the step-by-step process to create each of them.

3.1.2 AWS Thing

A thing is a representation of a device or logical entity. It can be a physical device or sensor (for example, a light
bulb or a switch on a wall). It can also be a logical entity like an instance of an application or a physical entity
that does not connect to AWS loT but can be related to other devices that do (for example, a car that has engine
sensors or a control panel).

Application note 9 002-38090 Rev. *A
2025-09-04

infineon

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

3.1.3 Certificate

AWS IoT provides mutual authentication and encryption at all points of connection so that data is never
exchanged between things and AWS loT without a proven identity. AWS IoT supports X.509 certificate-based
authentication. Connections to AWS use certificate-based authentication. You must attach policies to a
certificate to allow or deny access to AWS loT resources. Your device uses a root CA (certification authority) to
ensure itis communicating with the actual Amazon Web Services site. You can only connect your thing to the
AWS IoT Cloud via TLS.

3.14

After creating a certificate for your internet-connected thing, you must create and attach an AWS IoT policy that
will determine what AWS loT operations the thing can perform. AWS loT policies are JSON documents and they
follow the same conventions as AWS Identity and Access Management policies. You can specify permissions for
specific resources such as topics and shadows.

Policy

3.1.5

To create a new AWS account, you need to provide billing information. The basic account is free for the first year

Creating an AWS loT account

and is chargeable after that. Please read the terms and conditions on the AWS website for the details of the
same. When you create an AWS loT account, Amazon will create a new virtual machine for you in the cloud and
will turn on an MQTT Message Broker and an HTTP server on that machine. To connect your device to the
machine, you need to know the DNS name of the virtual machine. To find the virtual machine's DNS name, click
on Settings at the lower left corner of the AWS IoT console window as shown in Figure 3. The name is listed as

the Endpoint.

Connect
Connect one device

Connect many devices

Test

MQTT test client

Manage
All devices
Software packages New
Remote actions
Message routing
Retained messages
Security

Fleet Hub

AWS loT » Settings

Settings we

Device data endpoint info C

Your devices can use your account's device data endpoint to connect to AWS.

Each of your things has a REST API available at this endpoint. MQTT clients and AWS loT Device SDKs [also use this endpoint.

Endpoint

l .amazonaws.com

Select security policy Info

To customize your TLS settings, such as TLS versions and supported cipher suites, choose a security policy

‘ loTSecurityPolicy_TLS13_1_2.2022_10 v ‘

Compare security policies [

Domain conﬁgurations Info ‘ Create domain configuration

You can create domain configurations to simplify tasks such as migrating devices to AWS 0T Core, migrating application infrastructure to AWS IoT Core and maintaining brand identity

Device software Name Domain name Status Domain type Service type Date updated
Billing groups
B No domain configurations
Figure 3 DNS name
.
3.1.5.1 Create Thing

1. Create a new AWS Thing, provision a new thing in the AWS loT Cloud, and establish its policy and

credentials

2. After log in from the Services menu, select loT Core

Application note

10 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

Amazon Compl’ehend AIMazon >Hmpte cimait >er
VPC
Console Home X ClondFront Amazon Forecast Amazon WorkDocs
oudkron Amazon Fraud Detector Amazon WorkMail
Route 53 Amazon Kendra AWS Supply Chain
myApplications AFI Gateway Amazon Personalize AWS AppFabric
) Direct Connect Amazon Polly AWS Wickr
All services AWS App Mesh . A Chime SDK
Amazon Rekognition mazon Lhime
Global Accelerator Amazon Textract Amazon One Enterprise
AwS Cloud Map Amazon Transcribe Amazon Pinpoint
Route 53 Application Recovery Amazon Translate AWS End User Messaging
Controller AWS DeepComposer
i 1] End User Computine
AWS Private 5G AWS DeepRacer P .
Developer Tools AWS Panorama WorkSpaces
Amazon Monitron AppStream 2.0
CodeStar AWS HealthLake WorkSpaces Secure Brow:
CodeCommit Amazon Lookout for Vision WorkSpaces Thin Client
CodeBuild Amazon Lookout for Equipment X
CodeDeploy Amazon Lookout for Metrics . Internet of Things
CodePipeline
P Amazon Lex loT Analytics
Cloud9 Amazon Comprehend Medical]
10T Device Defender
CloudShell AWS HealthOmics ;
loT Device Management
X-Ray Amazon Bedrock
loT Greengrass
AWS FIS AWS Healthimaging iteWi
. loT SiteWise
CodeArtifact Amazon Q
Amazon CodeCatalyst Amazon Q Business
X loT Events
AWS AppConfig AWS [0T FleetWi
: oT FleetWise
Amazon Q Developer (Including Analytics A I
X loT TwinMaker
Amazon CodeWhisperer) Athena
Application Composer Amazon Redshift Game Development
AWS App Studio CloudSearch
. Amazon Gamelift

Figure 4 AWS Services - loT Core
3. Select Things from the Manage section and click Create things

AWS loT X AWS IoT > Manage > Things

Monitor Things (0) info C ‘ Advanced search Run aggregations Edit Delete

An [0 thing is a representation and record of your physical device in the cloud. A physical device
needs a thing record in order to work with AWS loT.

Connect
Q Filter things by: name, type, group, billing, or searchable attribute. 1 &

Connect one device

» Connect many devices Name

No things
Test
No things to display in this Region

Create things

MQTT test client

Manage

v All devices

Thing groups
Thing types
Fleet metrics
Software packages New

» Remote actions

» Message routing
Retained messages
» Security

» Fleet Hub

Figure 5 Create Thing
4, Select Create single thing from Create things and click Next

Application note 11 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

555 Services Q

AWS lIoT » Manage » Things » Create things

Create things e

A thing resource is a digital representation of a physical device or logical entity in AWS loT. Your device or entity needs a thing
resource in the registry to use AWS loT features such as Device Shadows, events, jobs, and device management features.

Number of things to create

© Create single thing
Create a thing resource to register a device. Provision the certificate and policy necessary to allow the device to connect to AWS
loT.

() Create many things
Create a task that creates multiple thing resources to register devices and provision the resources those devices reguire to
connect to AWS loT.

Cancel Next

Figure 6 Create single thing
5. Name your thing, select No shadow in Device Shadow, and click Next. Here, Aws_Test_1 name is used
for the thing that will be used for development

Application note 12 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

iif Services Q, Searct

AWS lIoT » Manage » Things » Create things) Create single thing

Step 1

Specify thing properties .

A thing resource is a digital representation of a physical device or logical entity in AWS loT. Your device or entity needs a thing

Specify thing properties

Step 2 | resource in the registry to use AWS loT features such as Device Shadows, events, jobs, and device management features.
ep 2 - optional

Configure device certificate

Thing properties info

Step 3 - optional

Attach policies to certificate
Thing name

Aws_Test_1

Enter a unique name containing only: letters, numbers, hyphens, colons, or underscores. A thing name can't contain any spaces.

Additional configurations

You can use these configurations to add detail that can help you to organize, manage, and search your things.
» Thing type - optional

P Searchable thing attributes - optional

P Thing groups - optional

» Billing group - optional

P Packages and versions - optional

Device Shadow info

Device Shadows allow connected devices to sync states with AWS. You can also get, update, or delete the state information of this thing's
shadow using either HTTPs or MQTT topics

© Noshadow

(O Named shadow
Create multiple shadows with different names to manage access to properties, and logically group
your devices properties.

(O Unnamed shadow (classic)

A thing can have only one unnamed shadow:

Cancet

Figure 7 Thing name
6. Before you access the broker from your kit, you need to create the encryption keys that enables you to
identify it as an allowed device. To do this, find your thing in the list of things and select it. If you do not
see it in the list, you can search for it using the search box at the upper right corner of the window. One
you get to your thing's page, click Security, select Auto-generate a new certificate (recommended)
from Device certificate and then click Next

Application note 13 002-38090 Rev. *A
2025-09-04

Connecting to cloud services using ModusToolbox™

infineon

3 Getting started with AWS communication

Step 1

Specify thing properties

Step 2 - optional

Configure device certificate

Step 3 - optional

Attach policies to certificate

AWS lIoT » Manage » Things » Create things » Create single thing

Configure device certificate - optional .«

A device requires a certificate to connect to AWS loT. You can choose how to register a certificate for your device now, or you
can create and register a certificate for your device later. Your device won't be able to connect to AWS loT until it has an active

certificate with an appropriate policy.

Device certificate

(] Auto-generate a new certificate (recommended)
Generate a certificate, public key, and private key using AWS loT's certificate authority.

) Use my certificate
Use a certificate signed by your own certificate authority.

(O Upload CSR

Register your CA and use your own certificates on one or many devices.

() Skip creating a certificate at this time

You can create a certificate for this thing and attach a policy to the certificate at a later

,

Figure 8 Configure device certificate

7. Click Create policy from Policies

aws B Sevices | Q

Step 1

Specify thing properties

Step 2 - optional

Configure device certificate

Step 3 - optional

Attach policies to certificate

AWS loT » Manage » Things » Create things » Create single thing

Attach policies to certificate - optional i

AWS loT policies grant or deny access to AWS loT resources. Attaching policies to the device certificate applies this access to

the device

Policies (6)

Select up to 10 policies to attach to this certificate.

Create policy [

| Q Filter policies

1 @

Figure 9 Create policy
8. Enter the Policy name that you want to create. Here, the Aws_Test_1_Policy name is used. While
setting up your device, ensure that the policy associated with this device permits all MQTT operations
(iot:Connect, iot:Publish, iot:Subscribe, and iot:Receive) for the resource used by this device. For testing
purposes, use the following Policy document properties that allows you to all the MQTT Policy Actions
on all Amazon Resource Names (ARNs) as shown in Figure 10

Application note

14

002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

AWS loT X Policy name
‘ Aws_Test_1_Policy ‘
Monitor 'R policy name is an alphanumeric string that can also contain period (), comma (), hyphen(-), underscore (), plus sign (+), equal sign (=), and at sign (@) characters, but no spaces.
» Tags - optional
Connect
Connect one device
» Connect many devices Policy statements Policy examples

Test Policy document info Builder JSON

MQTT test client An AWS IoT policy contains one or more policy statements. Each policy statement contains actions, resources, and an effect that grants or denies the actions by the resources.
Policy effect Policy action Policy resource
Manage @ EEE= emesses s
= 7] [iowcome a0 =3
» All devices
Software packages New
rrrrrr [t 7] [e =3
» Remote actions
> Message routing = 7] [swaae aBE I=a
Retained messages
sy = = 2Bk =
Intro
Cortificates Add new statement
Policies
Certificate authorities
Certificate signing New Cancel

Figure 10 Policy details
9. Select the created policy and click Create thing

AWS loT » Manage » Things » Createthings > Create single thing

Step 1

it i oromerties Attach policies to certificate - optional

AWS loT policies grant or deny access to AWS loT resources. Attaching policies to the device certificate applies this access to
the device.

Select up to 10 policies to attach to this certificate.

Step 2 - optional
Configure device certificate

Step 3 - optional
Attach policies to certificate

| Q Filter policies ‘ 1 (o]

Name

‘ ’ Aws_Test_1_Policy ‘
[SE——————————

Cancel I Create thing

Figure 11 Attach policy
10. After attaching the policy, it shows all the required certificates that can be downloaded as shown in
Figure 12 to download. Note that these certificates cannot be downloaded in the later steps and click
Done

Application note 15 002-38090 Rev. *A
2025-09-04

o .
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

Download certificates and keys X

Download certificate and key files to install on your device so that it can connect to
AWS.

Device certificate

You can activate the certificate now, or later. The certificate must be active for a device to connect to
AWS loT.

Device certificate Deactivate certificate | ‘ [Download
7b0ec7?375fh...te.pem.crt

Key files
The key files are unique to this certificate and can't be downloaded after you leave this page.
Download them now and save them in a secure place.

/\ This is the only time you can download the key files for this certificate.

Public key file ‘ M Download
7b0ec7375th9b67 1b064149...5ceaf26-public.pem.key

Private key file ‘ M Download
7b0ec7375fb9b67 1b064F49.. ceaf26-private.pem.key

Root CA certificates

Download the root CA certificate file that corresponds to the type of data endpoint and cipher suite
you're using. You can also download the root CA certificates later.

Amazon trust services endpoint ‘ M Download |
RSA 2048 bit key: Amazon Root CA 1

Amazon trust services endpoint ‘ M Download |
ECC 256 bit key: Amazon Root CA 3

If you don't see the root CA certificate that you need here, AWS loT supports additional
root CA certificates. These root CA certificates and others are available in our developer
guides. Learn more [4

Figure 12 Certificate and keys
11. After that the Thingis created as shown in Figure 13

Application note 16 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

AWS lIoT » Manage » Things

Things (2) info | (&} H Advanced search H Run aggregations Create things

An loT thing is a representation and record of your physical device in the cloud. A physical device
needs a thing record in order to work with AWS loT.

| Q Filter things by: name, type, group, billing, or searchable attribute. ‘ 1 [

O Name Thing type
O Aws _Test_1

Figure 13 AWS Thing

3.1.5.2 Using the AWS MQTT test client

To test the MQTT client, the AWS website has an MQTT test client to test publishing and subscribing to topics.
Consider the MQTT test client as a terminal window into your message broker, or as a generic loT thing that can
publish and subscribe topics and use this client to test the tasks. Alternately, you can run two tabs in your
browser - one to subscribe and one to publish.

1. Select Test > MQTT test client on the left side of the AWS loT

2, Enter a topic that you want to subscribe in the Topic filter such as Test_1_status

3. Select Display payloads as strings and click Subscribe to topic

AWS loT X AWS IoT » MQTT test client

MQTT test client i

Monitor

You can use the MQTT test client to monitor the MQTT messages being passed in your AWS account. Devices publish MQTT messages that are identified by topics to
communicate their state to AWS loT. AWS loT also publishes MQTT messages to inform devices and apps of changes and events. You can subscribe to MQTT message topics
and publish MQTT messages to topics by using the MQTT test client.

Connect
Connect one device

» Connect many devices . .
» Connection details @© Connected

You can update the connection details by choosing Disconnect and making updates on the Establish connection to continue page.

Test

MQTT test client

Device Location New Subscribe to a topic Publish to a topic
Manage Topic filter Info
v All devices ’ he topic filter describes the topic(s) to which you want to subscribe. The topic filter can include MQTT wildcard characters.
Things Test_1_status

Thing groups » Additional configuration

Thing types

Fleetmetric

» Greengrass devices
» LPWAN devices

Software packages New Subscriptions Topic

Figure 14 Subscribe to a topic

4, Enter a topic that you want to publish such as Test_2_status in the Topic name, click Publish. The
payload will be sent to the subscriber

Application note 17 002-38090 Rev. *A
2025-09-04

https://aws.amazon.com/

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

AWS loT X @ AWSIST > MQTT testclient

MQTT test client

ed in your AWS account. Devices publish MQTT mess
ibe to MQTT message topics and publish MQTT mess:

hat are identified by topics to
to topics by using the MQTT t

ate their state to AWS IoT. AWS IoT also publishes MQTT

» Connection details © Connected

Subscribe to a topic Publish to a topic

.
E |

Message payload
{

"message": "Hello from AWS loT console’

}

» Additional configuration

Figure 15 Publish Topic
3.2 Connecting to MQTT client using AWS

This section describes how to build an AWS-based application for PSOC™ Edge E84 device using Eclipse IDE for
ModusToolbox™. This code example (PSOC™ Edge MCU: Wi-Fi MQTT client) that is going to be demonstrated
implements an MQTT client using the MQTT library on PSOC™ Edge MCU. The library uses the AWS loT Device
SDK Port library and implements the glue layer that is required for the library to work with Infineon
connectivity platforms.

3.2.1 Prerequisites

Before you start, ensure that you have the appropriate development kit for the PSOC™ Edge E84 MCU product
line, and have installed the required software. For more details, see Hardware and software requirements.

3.2.2 Application development

The following sections provide guidelines on how to develop an application:
+ Create a new application

+ View and modify the design

+ Develop your application

« Build the application

+ Program the device

+ Testyourdesign

Note: This design is developed for the PSOC™ Edge E84 Evaluation Kit (KIT_PSE84_EVAL_EPC2).

3.2.3 About the design

This example implements three RTOS tasks: MQTT client, publisher, and subscriber. The main function
initializes the BSP and the retarget-io library, and creates the MQTT client task.

Application note 18 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/mqtt

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

The MQTT client task initializes the Wi-Fi Connection Manager (WCM) and connects it to a Wi-Fi Access Point
(AP) using the Wi-Fi network credentials that are configured in the wifi_config.h file. After a successful Wi-Fi
connection, the task initializes the MQTT library and establishes a connection with the MQTT broker/server.

The MQTT connection is configured to be secure by default; the secure connection requires a client certificate.
Client certificate contains information about your device and is signed by a trusted Certificate Authority (CA), a
Private Key (private key that is to be kept secured), and the Root CA certificate (during connection, verifies the
authenticity of the server certificate presented by AWS IoT) of the MQTT broker that are configured in the
mqtt_client_config.h file.

After a successful MQTT connection, the subscriber and publisher tasks are created. The MQTT client task then
waits for commands from the other two tasks and callbacks to handle events like unexpected disconnections.

The subscriber task initializes the user LED GPIO and subscribes to messages on the topic specified by the
MQTT_SUB_TOPIC macro that can be configured in the mqtt_client_config.h file. When the subscriber task
receives a message from the broker, it turns the user LED ON or OFF depending on whether the received
message is "TURN ON" or "TURN OFF" (configured using the MQTT_DEVICE_ON_MESSAGE and
MQTT_DEVICE_OFF_MESSAGE Macros).

The publisher task sets up the user button GPIO and configures an interrupt for the button. The ISR notifies the
publisher task upon a button press. The publisher task then publishes messages (TURN ON/OFF) on the topic
specified by the MQTT_PUB_TOPIC macro. When the publish operation fails, a message is sent over a queue to the
MQTT client task.

An MQTT event callback function mgtt_event_callback() invoked by the MQTT library for events like MQTT
disconnection and incoming MQTT subscription messages from the MQTT broker. In the case of an MQTT
disconnection, the MQTT client task is informed about the disconnection using a message queue. When an
MQTT subscription message is received, the subscriber callback function implemented in subscriber_task.c file
is invoked to handle the incoming MQTT message.

The MQTT client task handles unexpected disconnections in the MQTT or Wi-Fi connections by initiating
reconnection to restore the Wi-Fi/MQTT connections. Upon failure, the publisher and subscriber tasks are
deleted, cleanup operations of various libraries are performed, and then the MQTT client task is terminated.

3.24 Create a new application

This section provides a step-by-step guideline for creating a new application. It uses the Empty App starter
application and manually adds the functionality from the Wi-Fi MQTT Client application. ModusToolbox™ is
used in the instructions, but you can use any IDE or the command-line tool if you prefer.

If you are familiar developing projects with ModusToolbox™, you can use PSOC™ Edge MCU: Wi-Fi MQTT client
starter application for PSOC™ Edge and MQTT client code example for PSOC™ 6 application. It is a complete
design with all the firmware written for the supported kits. You can walk through the instructions and observe
how the steps are implemented in the code example.

Launch Eclipse IDE for ModusToolbox™ to get started. It requires the Internet connection to download the assets
from GitHub repositories.

The following sections provide the steps to start with a new empty application.

3.25 Select a new workspace

At launch, Eclipse IDE for ModusToolbox™ shows a dialog box to choose a directory as the workspace directory.
The workspace directory is used to store workspace preferences and development artifacts such as device
configuration and application source code. You can choose an existing empty directory by clicking the Browse
button. Alternatively, you can type in a directory name to be used as the workspace directory along with the
complete path, and ModusToolbox™ will create the directory for you.

Application note 19 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/mtb-example-wifi-mqtt-client

Connecting to cloud services using ModusToolbox™

3 Getting started with AWS communication

infineon

Eclipse IDE for ModusToolbox™

Select a directory as workspace

uses the workspace directory to store its preferences and development artifacts.

CAmtb_projects V‘ [Browse...]
(] Use this as the default and do not ask again
» Recent Workspaces
Launch Cancel

Figure 16 Select a directory as workspace

3.2.6 Create a new ModusToolbox™ application

Click New Application in the Quick Panel, see Figure 17. Alternatively, go to File > New and click

ModusToolbox™ Application.

E mitb_projects - Eclipse IDE for ModusTool... — O X
File Edit Navigate Search Project Run Window Help
] 57 &~ %~-0~-Q~-i® v~ B
|5 =]
- - - - | Q |
| Qui.. *-=Vari.. ¢ Exp.. % Bre. — B =B

| Eclipse IDE for
| ModusToolbox™

|~ Start

| ksl New Application

I Import Ex sting Application In-Place

| & Search Online for Code Examples
| @ Search Online for Libraries and BSPs

& Training Materia

% Refresh Quick Pane

~ Project

~ Launches
~ Tools

~ BSP Configurators

Figure 17 Create a new ModusToolbox™ application

Application note

20

002-38090 Rev. *A
2025-09-04

. []
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

3.2.7 Select PSOC™ Edge E84 MCU-based target hardware

ModusToolbox™ lists the Infineon kits to start your application development. In this case, develop an
application on the PSOC™ Edge E84 Evaluation Board that uses the PSOC™ Edge line device. Select
KIT_PSE84_EVAL_EPC2 and click Next as shown in Figure 18.

Settings Help

Source Template

Enter filter text Create from MPN... |Browse for BSP...| [=] [#] KT pses4 EvAL 2
Kit Name MCU/SOC/SIP Connectivity The PSOC™ Edge E84 Evaluation Kit (KIT_PSES4_EVAL) is based on the PSOC™ Edge family of
5 AIROC™ Bluetooth® BSPs devices. It enables the evaluation and development of applications for the PSOC™ Edge E84

> AIROC™ Connectivity BSPs EPC2 MCU.
> PMG BSPs
. poocm 4 asps This evaluation kit carries a PSOC™ E84 EPC2 MCU (PSE846GPS2DBZC4A) on a SODIMM
based detachable SOM board connected to the base-board. The MCU SOM also has 128 Mb
> PSOC™6BSPs QSPI flash, 1 Gb Octal flash, 128 Mb Octal RAM, PSOC™ 4000T as CAPSENSE™ co-processor
> PSOC™ Control BSPs and on-board AIROC™ Wi-Fi & Bluetooth® combo (CYW55513IUBG).
v PSOC™ Edge BSPs
[[T_PSEs4_EVAL EPC2_PSEB46GPS2DBZC4A CYWS55131UBG The base-board has M.2 interface connectors for interfacing external radio modules based on
KIT_PSEB4_EVAL EPC4 PSEBAGGPSADBZCAA CYW555131UBG AIROC™ Wi-Fi & Bluetooth® combos and external memory interfaces. The base-board

features an on-board programmer/debugger(KitProg3), ETM/ATAG/SWD debug headers,
custom display capacitive touch panel connector, R-Pi compatible MIPI-DSI and MIPI-DSI
custom display, Analog and PDM microphones, Headphone connector, Speaker, USB Host

> Reference Design BSPs
> TRAVEO™ BSPs

7 USBEBSPs Type-A and USB device Type-C connectors, RI45 Ethernet connector, M.2 (B-key) memory
> Wireless Charging BSPs interface and M.2 (E-key) radio interface, Infineon’s Shield2Go interface, Mikroelektronika's
> XMC™ BSPs mikroBUS compatible headers, 6-Axis IMU sensor, 3-axis Magnetometer, microSD cardholder,

CAPSENSE™ buttons and slider, user LEDs and user buttons. The MCU power domain supports
following operating voltages - 2.7 V, 3.3V, 42 V and the peripheral power domain supports
operating voltages - 1.8V and 3.3 V.

Finished download of file ‘https: //Q\Ihub CDm/\nfmeon/mlb -wifi-mw-i manllEsl/raw/vZ X/mtb -wifi-mw-— dependen(\es ‘manifestxml’

Finished download of file 'https://gith ra /avnet iotc-mitb nifest-f2xml
Finished download of file ‘https:/github. com/(yberanBU/(b tb- 1/eyberon-mtb-m fest-fu2.xml
Finished download of file ‘https://github.com/golioth/mtb-golioth-m: raw/main/mtb-golioth xml

Finished download of e tos;/githud.com/memfauit/msb-memfaul ifest/raw/main ult-mw-m; xml
Finished download of file ‘https://github.com/rtlabs-com/mtb-rtl 1/rtlabs-mtb-mw-manifest-fw2-rtlabs.xml’

Finished download of file ‘https://github.col nsiml fest-fu2xml’

Finished loading the manifest data (25573 ms)
0 error(s), 0 waming(s)
Summary:

BSP: KIT_PSE84_EVAL_EPC2

Press "Next" to select application.

Next > Close

Figure 18 Choose target hardware

3.2.8 Select a PSOC™ Edge Empty application and create the application
(applicable only for “Working from Scratch” flow)

Use an existing empty application as the starting point for the Working from Scratch development flow.

This is a minimal empty application template for PSOC™ Edge MCU devices. This example uses FreeRTOS to

blink two LEDs with different frequencies respectively from the Arm’ Cortex’-M33 CPU and the Arm’ Cortex’-M55

CPU. This code example has a three project structure that is, CM33 secure, CM33 non-secure, and CM55

projects. All three projects are programmed to an external QSPI flash and executed in the XIP mode. Extended

boot launches the CM33 secure project from a fixed location in an external flash, which then configures the

protection settings and launches the CM33 non-secure application. Additionally, the CM33 non-secure

application enables the CM55 CPU and launches the CM55 application.

The application code of PSOC™ Edge MCU: Wi-Fi MQTT client uses only the CM33 CPU of the PSOC™ Edge E84

MCU. Therefore, the application is written under the CM33 non-secure project (proj_cm33_ns) and the CM55

CPU (in proj_cm55) is subsequently put to Deep Sleep mode.

1. To create an Empty_app, select PSOC Edge Empty Application as shown in Figure 19

2, In the Name Application Name field, type a required name for the application if required and click Next;
the application summary dialog appears

3. Click Create and wait for the application to download and create in the workspace

4, Click Close to complete the application creation process. Here, the application is named as AWS_MQTT
as shown in Figure 19

Application note 21 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

Settings Help

Application(s) Root Path: C/mtb_projects

Target IDE: Eclipse IDE for ModusToolbox™

Enter filter text..

Browse for Application... 3‘:: Z =] [+

Template Application New Application Name New BSP Name
> Bluetooth®
v Getting Started

PSOC Edge Empty Application {AWS MQTT APP_KIT_PSE84_EVAL EPC2 ‘
(] PSOC Edge Hello World

> Graphics
> Peripherals
> Security

> Sensing

> Wi-F

Summary:

BSP: KIT_PSE84_EVAL_EPC2
Template Application(s): PSOC Edge Empty Application
Application(s) Root Path: C:/mtb_projects

Press "Create" to create the selected application(s).

Figure 19 Create PSOC™ Edge Empty Application

You have successfully created a new ModusToolbox™ application for the PSOC™ Edge E84 MCU.

3.2.9 Configure design resources

In this step, you will configure the design resources for your application and generate the configuration code.
You will also be adding the required middleware libraries.

3.2.10 Add libraries and middleware

ModusToolbox™ provides a Library Manager tool to select various middleware components for developing
applications.

To launch the Library Manager, select the AWS_MQTT application, the application name will vary based on the

name you provide while creating the empty_app and in the Quick Panel, click Library Manager as shown in
Figure 20. Click Add Library to add the required libraries and middleware for your application.

Application note 22 002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

[Project Explorer X %5 Debug ! Registers . Peripherals = O
= S 7 $
> 125 AWS_MATT
> = mtb_shared
= 0

[&d Quick Panel - Variables & Expressions % Breakpoints
p p

Eclipse IDE for
ModusToolbox™

» Start

» AWS_MQTT (APP_KIT_PSES4_EVAL EPC2)
» Launches

* Tools

BSP Assistant

& Device Firmware Update Host Too

I Library Manager

& ModusToolbox Setup
ModusToolbox™ archiving and sharing
& ModusToolbox™ settings

mtb-programmer

Figure 20 Open Library Manager

For the AWS_MQTT code example design, follow these steps to add the required libraries:

1. Add the retarget-io middleware to redirect the standard input and output streams to the UART
configured by the BSP. The initialization of the middleware will be done in main.c file. Click Add Library,
select proj_cm33_ns the target project and search the library name retarget-io in the Enter filter text box.

For more information about the library, Refer the website Retarget-io.

002-38090 Rev. *A

Application note 23
2025-09-04

https://github.com/Infineon/retarget-io

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

Target Project: | proj_cm33_ns
|retarget-i3 2| T B E retarget-io
=
Mame Version The Retarget IO library provides APls for transmitting messages to or from the board
v Peripheral via standard printf/scanf functions using a UART connection which is generally
@ retarget-io connected to a host machine,
Figure 21 Add retarget-io library

2, Add the wifi-core-freertos-lwip-mbedtls library. This bundle library comprises core components needed
for Wi-Fi connectivity support. It bundles FreeRTOS, lwIP TCP/IP stack, and mbed TLS for security, Wi-Fi
Host Driver (WHD), Wi-Fi Connection Manager, Secure Sockets interface, and configuration files. Click

Add Library, select proj_cm33_ns as the Target Project, and select Wi-Fi > wifi-core-freertos-lwip-
mbedtls, see Figure 22

Target Project:| proj_cm33_ns ~
‘ww'fi-core-freertus-\wip-mbedlls =R wifi-core-freertos-lwip-mbedtls
Name Version Wi-Fi core freertos lwip mbedtls bundle library comprises core components needed
~ Wi-Fi for Wi-Fi connectivity support. The library bundles FreeRTOS, IwlP TCP/IP stack, and
“' wifi-core-freertos-lwip-mbedils T mbed TLS for security, Wi-Fi Host Driver (WHD), Wi-Fi connection manager, Secure
1 Sockets interface, and configuration files.
Additional Information:
* Wi-Fi core freertos lwip mbedtls bundle library README.md
* Wi-Fi core freertos Iwip mbedtls bundle library RELEASE.md
Figure 22 Add wifi-core-freertos-lwip-mbedtls library

3. Add the MQTT Library as this library supports multi-core architecture by making a subset of APIs
available as virtual APIs

Application note 24 002-38090 Rev. *A
2025-09-04

o _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

Target Project: proj_cm33_ns ~

maqtt y (=] [+ mgtt
Name Version This MQTT client library works with the family of PSOC™ & MCU based connectivity
v Middleware platforms. This library uses the AWS loT Device SDK MQTT Client library and

implements the glue layer that is required for the library to work with PSOC™ 6 MCU
based platforms with network connectivity.

[aws-iot-device-sdk-embedded-C
O aws-iot-device-sdk-port

U azure-c-sdk-port Additional Information:

8 matt
® MQTT Client Library README.md
® MQTT Client Library RELEASE. md
« MQTT Client Library API reference quide
Figure 23 Add MQTT Library

4, After selecting all the libraries, click OK and Update as shown in Figure 24

Application Directory: C:/mtb_projects/AWS_MQTT Browse.
= [®

Name Update Available Remove
v BSPs
© APP_KIT_PSE84_EVAL EPC2 (ACTIVE)
v proj_cm33_ns Libraries
abstraction-rtos
async-transfer
aws-iot-device-sdk-embedded-C
aws-iot-device-sdk-port A
bt-fu-ift-cyw55500a1
clib-support
cmsis
connectivity-utilities A
core-lib
core-make
device-db A
freertos X
if-mbedtls
wip
Iwip-freertos-integration
Iwip-network-interface-integration
mbedTLS Acceleration
matt x
mtb-device-support-pseBixgp
retarget-io x
secure-sockets
whd-bsp-integration
wifi-connection-manager A

> >

AddBSP | Add Library

Iwip-network-interface-integration version release-v1.5.090 added
Iwip version STABLE-2_1_2_RELEASE added
ifx-mbedtls version release-v3.6.200 added I

secure-sockets version release-v3.4.190 added

Figure 24 Update libraries

3.2.11 Write the application code

At this point in the development process, you created an application and added the required libraries. This part
examines the application code that implements the AWS_MQTT code example.

Note: The empty application of the PSOC™ Edge E84 MCU has a three project structure (proj_cm33_ns,
proj_cm33_s, and proj_cmb55). The application code of the AWS_MQTT example is to be written on the
proj_cm33_ns project that uses the M33 core and subsequently the proj_cm55 project that uses the
M55 core is put to Deep Sleep mode.

Add files to your project (required only for the Working from Scratch flow).

+ Visit the website, mtb-example-psoc-edge-wifi-mqtt-client which contains the application files that can be
downloaded.

+ Copy the following folders from the mtb-example-psoc-edge-wifi-mqtt-client code example under

proj_cm33_ns to your proj_cm33_ns folder of the Empty_App inside the ModusToolbox™ workspace folder,
which contains:

Application note 25 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client

Connecting to cloud services using ModusToolbox™

infineon

3 Getting started with AWS communication

Table 1 Code example files
File name File definitions
main.c This is the source code for the MQTT Client example running on a CM33 CPU.

core_mqtt_config.h

This file contains the configuration macros for the MQTT library.

mbedtls_user_config.h

This file is part of the mbed TLS Library.

mgqtt_client_config.c

This file contains the configuration structures used by the MQTT client for MQTT
connect operation.

mgtt_client_config.h

This file contains all the configuration macros used by the MQTT client in this
example.

mqtt_task.c This file contains the task that handles initialization and connection of Wi-Fi and
the MQTT client. The task then starts reconnection mechanisms to handle Wi-Fi
and MQTT disconnections. The task also handles all the cleanup operations to
gracefully terminate the Wi-Fi and MQTT connections in case of any failure.
mgtt_task.h This file is the public interface of mqtt_task.c file.

publisher_task.c

This file contains the task that sets up the user button GPIO for the publisher and
publishes MQTT messages on the topic MQTT_PUB_TOPIC to control a device that
is actuated by the subscriber task. The file also contains the ISR that notifies the
publisher task about the new device state to be published.

publisher_task.h

This file is the public interface of publisher_task.c file.

subscriber_task.c

This file contains the task that initializes the user LED GPIO, subscribes to the
topic MQTT_SUB_TOPIC, and actuates the user LED based on the notifications
received from the MQTT subscriber callback.

wifi_config.h

This file contains the configuration macros required for the Wi-Fi connection.

All PSOC™ Edge E84 MCU applications have a dual-CPU three-project structure to develop code for the CM33
and CM55 cores. The CM33 core has two separate projects for the Secure Project Environment (SPE) and Non-
Secure Project Environment (NSPE). A project folder consists of various subfolders, each denoting a specific
aspect of the project. See Figure 25 for the final project structure.

Application note

26 002-38090 Rev. *A
2025-09-04

Connecting to cloud services using ModusToolbox"

3 Getting started with AWS communication

infineon

5 AWS_MQTT

& bsps
& build
v & AWS_MQTT.proj_cm33_ns
#F Binaries
[Includes
= build
= deps
& libs
[§ core_maqtt_configh
{h FreeRTOSConfig.h
| heap_usage.c

|,

[main.c
mbedtls_user_config.h
maqtt_client_config.c
maqtt_client_config.h
maqtt_task.c
magtt_task.h
le] publisher_task.c
publisher_task.h
subscriber_task.c
subscriber_task.h
n wifi_config.h

n Makefile

[¥] README.md
S AWS_MQTT.proj_cm33 s
= AWS_MQTT.proj_cm55
Binaries
® common_app.mk

FPFREFEPREPRFE

Ly

[

i

v % mtb_shared
& Binaries
i, Archives

abstraction-rtos

async-transfer

audio-sw-codecs
audio-voice-core
aws-iot-device-sdk-embedded-C
aws-iot-device-sdk-port
block-storage

» bt-audio-profiles

bt-fw-ifx-cyw55500a1
btstack
btstack-integration
clib-support

Cmsis

= connectivity-ubilities

core-lib

core-make
cy-mbedtis-acceleration
freertos

ifx-mbedtls

kv-store

Iwip

Iwip-freertos-integration
Iwip-network-interface-integration
mcuboot

matt
mib-device-support-psefogp
retarget-io

secure-sockets
se-rt-senices-utils
whd-bsp-integration

& commaon.mk = wifi-connection-manager
2 |ibra!—y‘mﬂnager.lﬂg wifi-core-freertos-lwip-mbeditis
LICENSE wifi-host-driver
g wifi-resources
=l = wpai-external-supplicant
= README.md
Figure 25 Project structure

Follow the steps from AWS credential setup to setup the AWS Things, MQTT broker, and generate a certificate.

Wi-Fi configuration: Set the Wi-Fi credentials in wifi_config.h: Modify the macros WIFI_SSID, WIFI_PASSWORD,
and WIFI_SECURITY to match with that of the Wi-Fi network that you want to connect.

MQTT configuration: Some of the important configuration macros are as follows:
MQTT_BROKER_ADDRESS: Hostname of the MQTT broker

MQTT_PORT: Port number to be used for the MQTT connection. As specified by the Internet Assigned
Numbers Authority (IANA), the port numbers assigned for the MQTT protocol are 1883 for non-secure
connections and 8883 for secure connections. However, MQTT brokers can use other ports. Configure this

macro as specified by the MQTT broker

MQTT_SECURE_CONNECTION: Set this macro to '1' if a secure (TLS) connection to the MQTT broker is

required to be established; else '0’

MQTT_USERNAME and MQTT_PASSWORD: User name and password for client authentication and
authorization if required by the MQTT broker. However, note that this information is generally not
encrypted and the password is sent in plain text. Therefore, this is not a recommended method of client

authentication

Application note

002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

« CLIENT_CERTIFICATE and CLIENT_PRIVATE_KEY: Certificate and private key of the MQTT client used for
client authentication. Note that these macros are applicable only when MQTT_SECURE_CONNECTION is
setto'l’

+ ROOT_CA_CERTIFICATE: Root CA certificate of the MQTT broker
Set up the MQTT client and configure the credentials in mqtt_client_config.h file.
1. Inthe mqtt_client_config.h file, set MQTT_BROKER_ADDRESS to your custom endpoint on the

Settings page of the AWS IoT console. This has the format
ABCDEFG1234567.iot.<region>.amazonaws.com

2. Set the macros MQTT_PORT to 8883and MQTT_SECURE_CONNECTION to 1 in the mqtt_client_config.h file
3. Download the following certificates and keys that are created and activated in the earlier step:

- Acertificate for the AWS IoT Thing:xxxxxxxxxx.cert.pem
- A public key: xxxxxxxxxx.public.key
- Aprivate key: xxxxxxxxxx.private.key

- Root CA RSA 2048 bit key: Amazon Root CA 1 for AWS loT from CA certificates for server
authentication

4, Using these certificates and keys, enter the following parameters in mqtt_client_config.hfilein
Privacy-Enhanced Mail (PEM) format:

- CLIENT_CERTIFICATE: XXXXXXXXXX.cert.pem

- CLIENT_PRIVATE_KEY: XXXXXXXXXX.private.key
- ROOT_CA_CERTIFICATE: Root CA certificate
They must be formatted as shown in Figure 26.

B BEGIN CERTIFICATE----- \n"
"MIIDQTCCAimgAwIBAgITBmyfz5m/jAo54vB4ikPmljZbyjANBgkghkiG9wOBAQsF\n"
"ADASMQswCQYDVQQGEWJVUZEPMABGALIUEChMGQW1hem9uMRkwFwYDVQQDEXBBbWF&\n"
"h24gUm@vdCBDQSAxXMB4XDTEIMDUYNGAWMDAWMFoXDTMAMDEXNZ AWMDAWMFowOTEL\n"
"MAKGALUEBhMCVVMxDzANBgNVBAoTBkFtYXpvbjEZMBcGAIUEAXMQQW1hemQuIFJv\n"
"b3QgQBEgMTCCASIWDQYJKoZIhvcNAQEBBQADgGEPADCCAQoCYgEBALJ4gHHKENXF\n"
"ca9HgFBOFfW7Y14h29J1091ghYP1LONAEVrAItht0gQ3p0sqTQNroBvo3bSMgHFZzZM\n"
"906118c+6zF1tRn4SWiw3te5djgdYZéek/0l2peVKVuRF4fn9tBbédNgemzUSL/ qw\n"
"IFAGbHrQgLKm+a/sRxmPUDgH3IKKHOVj4utWp+UhnMJbulHheb4mjUcAwhmahRWaé\n"
"VOujwSH5SNz/0egwlX0tdHA114gKk957EWW67c4c k8] JGKLhD+rcdgsq@8p8kDill\n"
"93FcXmn/6pUCyziKrlA4b9v7LWIbxcceVOF34GFIDSYHIFY/QCB/IIDEgEW+0yQm\n"
"jgSubJrIqg@CAwEAAaNCMEAWDWYDVROTAQH/BAUWAWEB/zAOBgNVHQ8BATBEBAMC\n"
"AYYWHQYDVROOBBYEFIQYzIUO7LwMLJQuCFmcx7IQTgoIMABGCSqGSIb3DQEBCWUA\N"
"A4IBAQCY8jdaQZChGsV2USggNiMOruYoubr41KSIpDB/G/wkjUuByKGX9rbxenDI\n"
"USPMCCiimCXPIATS3iHTFIUJrUbadTrCC2gJeHZERXhLbI1Bjt/ msvOtadQlwls\n"
"N+gDS63pYaAChvXy8MWy7Vu33PqUXHeeE6V/Ug2VBviT096LXFVKWLJbYKBUFOVV\n"
"o/ufQJVEMVTBQtPHRh8jrdkPSHCa2XV4acdFyQzR1bldZwgJcJmApzyMZFob6IQeXU\N"
"SMsI+yMRQ+hDKXJioaldXgjUkKé642M4UwtBV8ob2xJNDd2ZhwlnoQdeXeGADbkpy\n"
"rgXRfboQnoZsG4gSWTP4685QvvB5\n"

B END CERTIFICATE----- \n"

Figure 26 Certificate format

You can manually format the strings as shown in Figure 26 or use format_aws_certificates.py to
format each files one at a time. To use it:

- Place the format_aws_certificates.py and certificates/keys in the same folder

Application note 28 002-38090 Rev. *A
2025-09-04

https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://docs.aws.amazon.com/iot/latest/developerguide/server-authentication.html#server-authentication-certs
https://github.com/Infineon/training-modustoolbox-level3-wifi/blob/master/Scripts/format_aws_certificates.py

Connecting to cloud services using ModusToolbox™

infineon

3 Getting started with AWS communication

- Open modus-shell, go to the folder with the script and enter the following:

python ./format_certificates.py<filename>

- Copy and paste the formatted strings from the output window to the proper locations in

mgtt_client_config.hfile

For a complete list of configuration macros used in this code example are as follows:

Table 2

Wi-Fi and MQTT configuration macros

Wi-Fi connection configurations

Inwifi_config.hfile.

WIFI_SSID

SSID of the Wi-Fi AP to which the MQTT client connects.

WIFI_SECURITY

Security type of the Wi-Fi AP. See cy_wcm_security_t structure in
the cy_wcm.h file for details.

MAX_WIFI_CONN_RETRIES

Maximum number of retries for Wi-Fi connection.

WIFI_CONN_RETRY_INTERVAL_MS

Time interval in milliseconds in between successive Wi-Fi
connection retries

MQTT connection configurations

Inmgtt_client_config.hfile.

MQTT connection configurations

Hostname of the MQTT broker.

MQTT_PORT

Port number to be used for the MQTT connection. As specified
by the IANA, the port numbers assigned for the MQTT protocol
are 1883 for non-secure connections and 8883 for secure
connections. However, MQTT brokers can use other ports.
Configure this macro as specified by the MQTT broker.

MQTT_SECURE_CONNECTION

Set this macro to '1' if a secure (TLS) connection to the MQTT
broker is required to be established; else '0".

MQTT_USERNAME MQTT_PASSWORD

User name and password for client authentication and
authorization if required by the MQTT broker. However, note that
this information is generally not encrypted and the password is
sent in plain text. Therefore, this is not a recommended method
of client authentication.

MQTT client certificate configurations

Inmgtt_client_config.h file.

CLIENT_CERTIFICATE

CLIENT_PRIVATE_KEY

Certificate and private key of the MQTT client used for client
authentication. Note that these macros are applicable only when
MQTT_SECURE_CONNECTION is setto '1"

ROOT_CA_CERTIFICATE

Root CA certificate of the MQTT broker.

MQTT message configurations

Inmgtt_client_config.h file.

MQTT_PUB_TOPIC

MQTT topic to which the messages are published by the
publisher task to the MQTT broker.

MQTT_SUB_TOPIC

MQTT topic to which the subscriber task subscribes to. The MQTT
broker sends the messages to the subscriber that are published
in this topic (or equivalent topic).

MQTT_MESSAGES_QOS

The Quality of Service (QoS) level to be used by the publisher and
subscriber. Valid choices are '0', '1', and '2".

(table continues...)

Application note

29 002-38090 Rev. *A
2025-09-04

Connecting to cloud services using ModusToolbox™

infineon

3 Getting started with AWS communication

Table 2 (continued) Wi-Fi and MQTT configuration macros

ENABLE_LWT_MESSAGE

Set this macro to '1' if you want to use the 'Last Will and
Testament (LWT)' option; else '0". LWT is an MQTT message that
will be published by the MQTT broker on the specified topic if
the MQTT connection is unexpectedly closed. This configuration
is sent to the MQTT broker during MQTT connect operation; the
MQTT broker will publish the Will message on the Will topic when
it recognizes an unexpected disconnection from the client.

MQTT_WILL_TOPIC_NAME

MQTT_WILL_MESSAGE

The MQTT topic and message for the LWT option described
earlier. These configurations are applicable only when
ENABLE_LWT_MESSAGE is setto '1".

MQTT_DEVICE_ON_MESSAGE

MQTT_DEVICE_OFF_MESSAGE

The MQTT messages that control the device (LED) state in this
code example.

Other MQTT client configurations

Inmgtt_client_config.h file.

GENERATE_UNIQUE_CLIENT_ID

Every active MQTT connection must have a unique client
identifier. If this macro is set to '1', the device will generate a
unique client identifier by appending a timestamp to the string
specified by the MQTT_CLIENT_IDENTIFIER macro. This feature

is useful if you are using the same code on multiple kits
simultaneously.

MQTT_CLIENT_IDENTIFIER

The client identifier (client ID) string to be used during an
MQTT connection. If GENERATE_UNIQUE_CLIENT IDissetto'l’, a
timestamp is appended to this macro value and used as the
client ID; else, the value specified for this macro is directly used
as the client ID.

MQTT_CLIENT_IDENTIFIER_MAX_LEN

The longest client identifier that an MQTT server must accept
(as defined by the MQTT 3.1.1 specification) is 23 characters.
However, some MQTT brokers support longer client IDs.
Configure this macro as per the MQTT broker specification.

MQTT_TIMEOUT_MS

Timeout in milliseconds for MQTT operations in this example.

MQTT_KEEP_ALIVE_SECONDS

The keepalive interval in seconds used for the MQTT ping
request.

MQTT_ALPN_PROTOCOL_NAME

The application layer protocol negotiation (ALPN) protocol name
to be used that is supported by the MQTT broker in use. Note
that this is an optional macro for most of the use cases. Per
IANA, the port numbers assigned for the MQTT protocol are 1883
for non-secure connections and 8883 for secure connections. In
some cases, there is a need to use other ports for MQTT like port
443 (which is reserved for HTTPS). ALPN is an extension to TLS
that allows many protocols to be used over a secure connection.

MQTT_SNI_HOSTNAME

The server name indication (SNI) hostname to be used during
the transport layer security (TLS) connection as specified by the
MQTT broker. SNI is an extension to the TLS protocol. As required
by a few MQTT brokers, SNI typically includes the hostname in
the "Client Hello" message sent during a TLS handshake.

(table continues...)

Application note

30 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

Table 2 (continued) Wi-Fi and MQTT configuration macros

MQTT_NETWORK_BUFFER_SIZE A network buffer is allocated for sending and receiving MQTT
packets over the network. Specify the size of this buffer using
this macro. Note that the minimum buffer size is defined by the
CY_MQTT_MIN_NETWORK_BUFFER_SIZE macro in the MQTT library.

MAX_MQTT_CONN_RETRIES Maximum number of retries for MQTT connection.

MQTT_CONN_RETRY_INTERVAL_MS Time interval in milliseconds in between successive MQTT
connection retries.

3.2.12 User application code entry

In this example, the MQTT client RTOS task establishes a connection with the configured MQTT broker and
creates two tasks: publisher and subscriber. The publisher task publishes messages on a topic when the user
button is pressed on the kit. The subscriber task subscribes to the same topic and controls the user LED1 based
on the messages received from the MQTT broker. If the MQTT or Wi-Fi connection is lost, the application will
automatically try to reconnect.

Operation as follows:
1. User button is pressed

2. GPIO interrupt service routine (ISR) notifies the publisher task

3. Publisher task publishes a message on a topic

4, MQTT broker sends back the message to the MQTT client because it is also subscribed to the same topic

5. When the message is received, the subscriber task turns the User LED1 ON or OFF. As a result, the user
LED toggles every time when you press the User buttonl

3.2.13 Build, program, and test your design

This section shows how to build, program, and test the Wi-Fi MQTT Client application on the
KIT_PSE84_EVAL_EPC2. At this point, it is assumed that you have followed the previous steps in this application
note to develop the Wi-Fi MQTT Client code example.

Note: To understand the build and program process of a simpler application, see the AN235935 - Getting
started with PSOC™ Edge E8 MCU on ModusToolbox™ software application note that explains how to
run a simple hello world application on the KIT_PSE84_EVAL_EPC2.

To build, program, and test the application, do the following:

1. Connect the kit to your PC using the provided USB cable

2, The USB-to-UART serial interface on the kit provides access to the UART interface of the
KIT_PSE84_EVAL_EPC2 device. Use your favorite serial terminal application (Tera Term is used in this
design) and connect to the USB-to-UART serial port. Configure the terminal application to access the
serial port using the following settings:

« Baudrate: 115200 bps; Data: 8 bits; Parity: None; Stop: 1 bit; Flow control: None; New line for
receiving data: Line Feed (LF) or auto setting

3. Build and program the application: In the Project Explorer, select the project. In the Quick Panel, scroll to
the Launches section, and click the Program (KitProg3_MiniProg4) configuration as shown in Figure 27

Application note 31 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/https://www.infineon.com/AN235935
https://www.infineon.com/https://www.infineon.com/AN235935

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

1010

5 Project Explorer X %% Debug 4 Registers 7, Peripherals = O

5 =5 AWS_MATT
» 1= mtb_shared

[&s Quick Panel ©-=Variables €7 Expressions ®e Breakpoints - B

Eclipse IDE for
ModusToolbox™

» Start

» AWS_MQTT (APP_KIT_PSE84 EVAL EPC2)

» Launches

B AWS_MQTT Debug MultiCore (KitProg3_MiniProg4)
QG AWS_MQTT Program Application
% Generate Launches for AWS_MQTT

Figure 27 Program the application
4, You can also use the command-line interface (CLI) to build and program the application. See the Build
system chapter in the ModusToolbox™ tools package user guide
5. After programming, the application starts automatically. Confirm that the text as shown in either one of
the following figures is displayed on the UART terminal. Note that the Wi-Fi SSID and the IP address
assigned will be different, based on the network that you have connected to

Application note 32 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/ModusToolboxUserguide

o _.
Connecting to cloud services using ModusToolbox™ |n f| neon

3 Getting started with AWS communication

¥ COM33 - Tera Term VT

File Edit Setup Control Help

ort ChipId Read from SDIO Core

stomization: vl 23/09/11 Creation: 2024-03-2 29:23

ork 'MY_WIFI_SSID"

to Mor? broker ‘| . i ot .us-cast-1.anazonaws.con’ . . .

TURN OFF" on the topic "'

Figure 28 Application initialization

6. After the initialization is complete, confirm that the message Press the user button (SW2) to publish
"TURN ON"/"TURN OFF" on the topic 'ledstatus’ is printed on the UART terminal. This message may
vary depending on the MQTT topic and publish messages that are configured in the
mgtt_client_config.h file

7. Press the user buttonl (SW2) on the kit to toggle the user LED1 state

8. Confirm that the user LED1 state is toggled and the messages received on the subscribed topic are
printed on the UART terminal

Figure 29 Publish subscribe messages

9. This example can be programmed on multiple kits (only when GENERATE_UNIQUE_CLIENT_IDis setto '1");
the user LEDs on all the kits will synchronously toggle with button presses on any kit

10. Alternatively, the publish and subscribe functionalities of the MQTT client can be individually verified if
the MQTT broker supports a test MQTT client like the AWS loT

11. To verify the subscribe functionality, use the test MQTT client, publish messages such as "TURN ON" and
"TURN OFF" on the topic specified by the MQTT_PUB_TOPIC macro in mqtt_client_config.h file to control
the LED state on the kit

12. To verify the publish functionality, from the Test MQTT client, subscribe to the MQTT topic specified by
the MQTT_suB_ToP1c macro and confirm that the messages published by the kit (when the user button is
pressed) are displayed on the test MQTT client's console

Application note 33 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ < |n f| neon

4 Getting started with Azure communication

4 Getting started with Azure communication

4.1 Azure credential setup

Azure loT Hub is a managed service offered by Microsoft within the Azure Cloud Platform. It acts as a central
hub for communication between millions of internet-connected devices (referred to as "things" on the Internet
of Things or 10T) and cloud-based applications.

Azure loT Hub seamlessly integrates with other Azure services like Azure Stream Analytics, Azure Machine
Learning, and Azure Functions; allowing you to build powerful IoT solutions that analyze device data, generate
insights, and automate actions based on real-time information.

Microsoft Azure Portal

— ____|A

/TN

X500 Certificate-based (SAS)-based Authentication

Authentication

Ii_l Register New Device in
9 —) loT Hub — ®

Set up Azure loT Hub in

Generate Certificates VS Code

(rootCA, device_cert, device_priv_key)

Generate SAS Token for

Device

Figure 30 Azure authentication process
4.1.1 Azure Hub setup

This section describes how to create an loT hub using the Azure portal.

Application note 34 002-38090 Rev. *A
2025-09-04

https://portal.azure.com/

infineon

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

1. Sign in to Azure portal
2, On the Azure homepage, select + Create a resource in the Azure services

_ Microsoft Azure £ search resources, services, and docs (G+/)

Azure services

+ @ 9 ©

N

Create 3 Device Update loT Central Resource All resources loT Hub
resource for loT Hubs Applications groups
Resources
Figure 31 Create resource
3. From the Categories, select Internet of Things, and then select l1oT Hub
Home >
Create a resource bt
Get Started | P Search services and marketplace ",,’ Getting Started? Try our Quickstart center

Recently created

Popular Azure services See more in All services Popular Marketplace products See more in Marketplace

loT Hub

- Azure Blob Storage on loT Edge
:}\ Create | Docs | MS Learn

Create | Learn more

Al + Machine Learning

Create | Docs | MS Learn Create | Learn more

Blockchain

Compute
Containers
Databases
Developer Tools
DevOps
Identity
Integration

IT & Management Teols
Media
Migraticn
Mixed Reality

Monitoring & Diagnostics

loT Hub Device Provisioning Service
Create | Docs | MS Learn

Analytics 7™, loT Central application .I! Azure SQL Edge Developer
@

Azure Digital Twins
Create | Docs | MS Learn

Time Series Insights
Create | Docs | MS Learn

Azure Stack Edge
Create | Docs | MS Learn

Event Grid Topic
Create | Docs

Function App
Create | Docs

Usage-based plan
Set up + subscribe | Learn more

OPC Publisher
Create | Learn more

loT Edge Metrics Collector
Create | Learn more

YOLOv3 gRPC-CPU Extension
Create | Learn more

Free

Create | Learn more

Small EJBCA SaaS Deployment with Azure KeyVault backed keys
l I in a US region

Set up + subscribe | Learn maore

Networking ¢y Getting Started with GPUs Node-RED
Securit # Create| Learn more o™ Create| Lea ,
¥ L...J = reate | Learn more
Storage
Vision Get Started Module CyberGate Pager Flex Plan
Web Create | Docs aa. Set up + subscribe | Learn more
.
Figure 32 Select category

4, Click Create in the loT Hub page

002-38090 Rev. *A
2025-09-04

Application note 35

https://portal.azure.com/

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

infineon

= Microsoft Azure

Home >

loT Hub =

Microsoft

'%l IOT Hl.lb <7 _Add to Favorites
b

Microsoft | Azure Service

K 4.2 (405 ratings)

Plan

L Search resources, services, and dacs (G+/)

loT Hub

o)

Figure 33 loT Hub

5. On the Basics tab, select the required fields as shown in Figure 34 and click Next: Networking >

Application note

Praoject details

organize and manage resources.

Subscription* (@

Resource group * (3

Instance details

loT hub name * (D)
Region * (@

Tier*

Daily message limit * @

Basics Networking Management

Microsoft Azure A2 Search resources, services, and docs (G+/)

Home > loT Hub >

loT hub

Microsoft

Add-ons Tags Review + create

Create an 10T hub to help you connect, monitor, and manage billions of your loT assets. Learn maore

Chaoose the subscription you'll use to manage deployments and costs. Use resource groups like folders to help you

| Playground

| az-euw-dev-rg-ICWCODEEXAMPLES

Create new

| arure-iot-app

| East Us

| Standard (most popular)

Compare tiers

See all options

Review + create | < Previous

| Mext: Networking >

Figure 34 loT Hub Basics details

6. On the Networking tab, select the required fields as shown in Figure 35 and select the TLS version as 1.2
if you are using the latest Baltimore root.ca certificate, and click Next: Management >

36

002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

= Microsoft Azure P Search resources, servicas, and docs (G+/)

Home > Create a resource >

loT hub

Microsoft

Basics Networking Management Add-ons Tags Review + create

You can connect to your loT hub either publicly via its public hostname or privately using a private endpoint.
Learn more '
L.) . /5\ .
Connectivity configuration * (®) Public access
O Private access (Recommended)

o You can change this or configure another connectivity method after this resource has been created.
Learn more

Minimum TLS Version @ @)‘ 1.0

(O 12

l < Previous: Basics] l Next: Management > l

Figure 35 loT Hub Networking details

7. On the Management tab, use the default settings as shown in Figure 36. If required, you can modify any
of the fields. Later, click on Next: Add-ons > to continue to the next page

Application note 37 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Microsoft Azure A2 Search resources, services, and docs {G+/)

Home » loT Hub >

loT hub - X

Microsoft

Basics Metworking Management Add-ons Tags Review + create

Role-based access control

Change the permission model to Azure role-based access contral (RBAC) only, or to a combination of shared access
policies and RBAC. Learn more 7

Permission model O RBAC only
@ Shared access policy + RBAC

To manage the elements within an instance, 2 user needs access to 10T Hub datz APls. Select the suggested rale below
to grant yourself full access to the APls. You can also use Access Control {I1AM) to choose appropriate roles later.
Learn more

Assign me |:| loT Hub Data Centributor rale ©

M You don't have access to do role assignments. Contact your Administrator
to grant access to the APls,

Scale

Device-to-cloud partitions * (O 4 -

| < Previous: Networking | [Mext Add-ons= |

Figure 36 loT Hub Management details
8. On the Add-ons tab, use the default settings as shown in Figure 37. If required, you can modify any of the
fields and then click Next: Tags >

Application note 38 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Microsoft Azure L Search resources, services, and daocs {(G+/)

Home » loT Hub >

loT hub - X

Microsoft

Basics Metworking Management Add-ons Tags Review + create

The fellowing features are optional and billed separately. Microsoft recommends enzabling them to ensure the most
robust protections and capabilities to secure and update your fleet of devices are available. Learn more 7

Device Update for loT Hub
Device Update for loT Hub is an additional service that enables you to deploy over-the-air updates for your loT devices.
vou will be charged separately for this service. See Azure pricing ' for more details.

Enable Device Update for 10T Hub D

Defender for loT

Microsoft Defender for 10T (7' is a separate service which adds an extra layer of threat protection for Azure loT Hub, laT
Edge, and your devicas. You will be charged separately far this service. Defender for 10T may process and store your data
within a different gecgraphic location than your 10T Hub. Learn more .7

Enable Defender for loT per device per month

| < Previous: Management | | Mext: Tags = |

Figure 37 loT Hub Add-ons details
9. On the Tags tab, you can leave the fields empty if you do not need to add any name/value pairs as shown
in Figure 38
Application note 39 002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Microsoft Azure £ Search resources, services, and docs (G+/)

Home » loT Hub >

loT hub - X

Microsoft

Basics Metworking Management Add-ons Tags Review + create

Tags are name/value pairs. To categorize resources and consalidate billing, apply the same tag to multiple resources and
resource groups. Your tags will update automatically if you change your resources, Learn maore '

Name () Value @& Resource

| : | 10T Hub

| < Previous: Add-ons | [mMext: Review + create > |

Figure 38 loT Hub Tags details
10. Select Next: Review + create to review your choices

11. Select Create to start the deployment of your new hub. Your deployment will be in progress a few
minutes while the hub is being created. After the deployment is complete, select Go to resource to open

the new hub

40 002-38090 Rev. *A

Application note
2025-09-04

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

infineon

Home > loT Hub >

loT hub

Microsoft

Basics Metwarking

Pricing

loT hub

Add-ons total

Basics

Subscription

Resource group

10T hub name

Region

Disaster recovery enabled
Tier

Daily message limit

Metworking

Connectivity configuration
Private endpoint connections
Allow public network access

Minimum TLS Version

Management

Tier

Number of 51 10T hub units
Device-to-cloud partitions

Enable Defender for loT

Device Update for loT Hub

Disabled

Tags

Management

= e

Add-ons Tags Review + create

per month
Change basics

per device per month
Change add-ons

Playground
az-euw-dev-rg-ICWCODEEXAMPLES
azure-iot-app

East Us

Yes

Standard

Public access
MNone
Enabled

1.2

51
1
4

Microsoft Defender for 10T is a separate service which adds an extra layer of
threat protection for Azure |oT Hub, loT Edge, and your devices. You will be
charged separately for this service, See Defender for [oT Pricing. Defender for
10T may process and store your data within a different geographic location
than your loT Hub. Learn more

| < Previous: Tags | || Next > || Automation options

Figure 39

loT Hub Review details

If you require additional updates, see Create and manage Azure loT hubs.

Application note

41 002-38090 Rev. *A

2025-09-04

https://learn.microsoft.com/en-us/azure/iot-hub/create-hub?tabs=portal

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

There are two ways to setup the X509 or SAS credentials-based on the hardware for the Azure loT Hub that is
explained in detail in the following section.

4.1.2 Shared access signature (SAS)-based authentication mode

Shared Access Signature (SAS) token functions as a digital keycard, granting controlled access to specific Azure
resources for a limited duration. This approach ensures security by providing granular access permissions.

The following steps are used to generate the output of the Azure Device App (C2D, Telemetry, Methods,
Device Twin) and PnP (Plug and Play) menu options of the ModusToolbox™ application.

Create a SAS authentication-based device on the Azure l1oT Hub by following these steps:
1. Register a new device in the loT Hub

In this section, you create a device identity in the identity registry in your loT hub. A device cannot
connect to a hub unless it has an entry in the identity registry. For more information, see the loT Hub
developer guide

+ InyourloT hub navigation menu, open Devices, select Add Device as shown in Figure 40 to add a
device in your loT hub created in Azure Hub setup

Home > AzureloT-Hub
{a} AzureloT-Hub | Devices = X

loT Hub
[search o« View, create, delete, and update devices in your loT Hub. Learn more
- 2
oA Overview |- Add Device| == Edit columns () Refresh [Find devices using a query
@ Activity log

Y enter device ID Types: All ~+ Add filter
A3 Access control (IAM)
@ Tags
Device ID Type Status Last status update Authentication type C2D.. Tags
X Diagnose and solve problems
Events CY8CKIT-064B0S2-4343W-2 loT Device Enabled - Shared Access Signature 0

' Device management azure_dps

.
azure_dps_dev_test2

© IoT Edge

loT Device Enabled - Self-signed X509 Certific. 0
IoT Device Enabled - Self-signed X509 Certific.. 0

. Configurations + CYBCKIT-064B0S2-4343W-1 IoT Device Enabled - Self-signed X509 Certific.. 0
™ Deployments

azure_dps_dev_test1 0T Device Enabled - Self-signed X509 Certific.. 0
@ Updates

B Queries

Figure 40 Add Device

+ InCreate a device, provide a name for your new device, such as my-device-id, and select Save as
shown in Figure 41. It creates a device identity for your loT hub. Select Auto-generate keys so that
the primary and secondary keys will be generated automatically

Home > AzureloT-Hub | Devices >

N Create a device X
1

@ Find Certified for Azure 0T devices in the Device Catalog

Device ID * ©

[my-device-id |

[10T Edge Device
Authentication type ©

PR e) X509 Self-Signed X509 CA Signed)

Auto-generate keys @

Connect this device to an loT hub ©
@D Dbl
Parent device (O

No parent device

Set a parent device
Figure 41 Add Device ID
Application note 42 002-38090 Rev. *A

2025-09-04

https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry#identity-registry-operations
https://learn.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-identity-registry#identity-registry-operations

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

+ Click Save. After creating the device, open the device from the list in the Devices pane. Copy the
value of the Primary connection string. This connection string is used by device code to
communicate with the loT hub

All services > Azure-Cert | Devices >

my-device-id =

Azure-Cert

= S e . . T T
1 Message to Device >S5 Direct method —+ Add Module Identity Device twin () Refresh

Device ID (D | my-device-id | I

Primary key o | .. @

secondary key © [——— ©

Primary connection string (© | .. S ¢ - | ::

Secondary connaction string (D | .. <3>| ::

Tags (edit) Mo tags
Enable connection to loT Hub @

Parent device (@

Module Identities Configurations

Module ID Connection State Connection State Last Updated ... Last Activity Time (UTC)

Figure 42 Device ID details

+ By default, the keys and connection strings are masked because they are sensitive information as
shown in Figure 42. Click the eye icon to reveal the password. It is not necessary to reveal them to
copy them with the copy button

2. Visual Studio Code setup

Download and install Visual Studio Code if you do not have in the system
3. Azure loT tools

Install Azure 1oT Hub to connect it to Visual Studio
4, Set up your Azure loT Hub in VS Code

Set up your Azure loT Hub in VS Code after installation. You will see the device list to interact with your
loT hub and devices after setup

« InExplorer of VS Code, click Azure loT Hub Devices in the bottom-left corner

+ Click Select IoT Hub in the context menu

+ Ifyoudid not sign in to Azure, a pop-up will show to let you sign in to the Azure platform
+ Aftersignin, select your Azure subscription

+ Select your loT Hub from the list

+ Thedevice list will be displayed as shown in Figure 43

Application note 43 002-38090 Rev. *A
2025-09-04

https://code.visualstudio.com/download
https://marketplace.visualstudio.com/items?itemName=vsciot-vscode.azure-iot-toolkit

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

)

File Edit Selection View Go Run Terminal Help

EXPLORER

> NO FOLDER OPENED
> OUTLINE
> TIMELINE
~ AZURE IOT HUB
;i'.' Azure-Cert
v Devices
> £k CYscKIT-06252-43012
> 3 CY8CKIT-064B0S2-4343W-1234
v £ my-device-id (o] J
> Modules Send D2C Message to loT Hub

> Distributed Tracing Seti Send C2D Message to Device

N : .
Endpoints Invoke Device Direct Method

Edit Device Twin

Start Monitoring Built-in Event Endpoint

Start Receiving C2D Message

Generate Code

Generate SAS Token for Device

Get Device Info

Copy Device Connection String

Delete Device

Figure 43 Generate SAS Token for Device

+ For SAS token generation, right-click your device and select Generate SAS Token for Device

+ Enterthe expiration time in hours as shown in Figure 44

Application note

44 002-38090 Rev. *A
2025-09-04

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

4.1.3

1.

infineon

) File Edit Selection View Go Run Terminal Help ‘-I

EXPLORER Enter expiration time (hours) (Press ‘Enter’ to confirm or ‘Escape’ to cancel)
> NO FOLDER OPENED

> OUTLINE

> TIMELINE
v AZURE IOT HUB

X Azure-Cert

Vv Devices

> Y8CKIT-06252-43012

Y8CKIT-064B0S2-4343W-1234
y-device-id («)
Modules

> Distributed Tracing Setting (Preview)

> Endpoints
Figure 44 Enter the expiration time
+ Copy the generated SAS token to the clipboard
%) File Edit Selection View Go Run Terminal Help P search D Do -
> NO FOLDER OPENED
> OUTLINE
(9]
ouTPUT EB SOLE ERMINAL PORTS Azure loT Hub viE o -
[sAsToken] SAS token for [my-device-id] is generated and copied to clipboard:
SharedAccessSignature sr=Azure-Cert.azure-devices.net%2rdevices%2Fmy-device-id&
51g=qONW%2F cypW63hRfhMAEWDAa6Y2jhInLx%2F1t0B9Se JEDE%3D&se=1711461079

Figure 45 Copy the generated SAS token

X509 certificate-based authentication mode

Use the following steps to generate the device's X509 self-signed certificate and private key to setup the

X509 authentication-based device on Azure loT Hub

2. Create a certificates directory

3. Run the following command in the modus-shell in the certificates folder to generate the device private
key.

openssl req -newkey rsa:2048 -nodes -keyout dev_priv_key.pem

4, To run this command, enter the additional information, as shown in the following example. The
Common Name can be your choice but must match the registration ID on the Azure DPS portal's
enrollment or the device ID on the Azure loT Hub portal is created in the following steps:

Application note 45 002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

The A challenge password and An optional company name fields are left blank.

Country Name (2 letter code) [XX]:US

State or Province Name (full name) []:CA

Locality Name (e.g, city) [Default City]:S3J

Organization Name (e.g, company) [Default Company Ltd]:IFX

Organizational Unit Name (e.g, section) []:INFINEON

Common Name (e.g, your name or your server's hostname) []:x509-cert

Email Address []:

Enter the following 'extra' attributes to be sent with your certificate request

A challenge password []:

An optional company name []:

5. Copy the x509_config.cfg file from the scripts folder to the certificates folder

6. Run the following command in the modus-shell in the certificates folder to generate the X.509
certificate.
Note: The value of the common name field in the following command - ¢cn can be your choice but

must match the registration ID on the Azure DPS portal's enrollment or the device ID on the
Azure loT Hub portal is created as mentioned in the following steps:

openssl req -new -days 1024 -nodes -x509 -key dev_priv_key.pem -out device_cert.pem
-extensions client_auth -config x509_config.cfg -subj "/CN=azure_dps_dev_testl"

7. Run the following command in the modus-shell in the certificates directory to get the SHA thumbprint
of the device certificate created in Step 3. Copy the fingerprint generated in the following command:

openssl x509 -noout -fingerprint -in device_cert.pem | sed 's/://g'| sed 's/\(SHAl
Fingerprint=\)//g"

Application note 46 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Example of a fingerprint from the previous command:

902E7A49F252A49D0AB30AB1D2FBEAE702495F 2F

8. Follow these steps to create a device in the loT Hub created in Azure Hub setup. Ensure to give the same
name for the Device ID that is given for the Common name. Use the fingerprint generated in Step 3 for
both Primary Thumbprint and Secondary Thumbprint. Click Save as shown in Figure 46

Home > AzureloT-Hub | Devices >

7 Create a device - X
1
@ Find Certified for Azure IoT devices in the Device Catalog

Device ID* ®

[x509-cert

[1T Edge Device

Authentication type ©
(“symmetric key CEEIRTIIRD X509 CA Signed)

Primary Thumbprint * @
‘ 902E7A49F252A49D0AB30AB1D2FBEAE702495F2F J‘

Secondary Thumbprint * @
[[902E7A49F252A49D0AB30AB1D2FBEAET02495F2H M

Connect this device to an loT hub ©

(@=EEEY Disable)

Parent device O

No parent device
Set a parent device

Figure 46 Create a device
9. Download DigiCertAssuredIDRootG2.pem certificate and use the following command to convert the
certificate from .crt to .pem. The out parameter must be azure_rootCA. pem

openssl x509 -inform der -in DigiCertAssuredIDRootG2.crt -out azure_rootCA.pem

Note: If the Azure IoT Device is configured to use the DigiCert Global G2 Root certificate, use the same

10. The .pemformat of the certificates and keys needs to be used in the file. Use scripts/
format_X509_cert_key.py to generate the formatted pem. Copy and paste this scriptin certificates
folder and use it as follows:

python format_X509_ cert_key.py azure_rootCA.pem device_cert.pem dev_priv_key.pemx

4.2 Connecting to Azure loT services using Azure SDK for Embedded C

This section describes how to build an Azure 10T based application for PSOC™ Edge E84 device using Eclipse IDE
for ModusToolbox™. It uses the Azure SDK for Embedded C library to connect the device with Azure.

4.2.1 Prerequisites

Before you start, ensure that you have the appropriate development kit for the PSOC™ Edge E84 MCU product
line, and have installed the required software. See Hardware and software requirements for more details.

Application note 47 002-38090 Rev. *A
2025-09-04

https://cacerts.digicert.com/DigiCertGlobalRootG2.crt.pem

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

4.2.2 Application development

The following sections provide guidelines on how to develop an application:
+ Create a new application

+ View and modify the design

+ Develop your application

« Build the application

+ Program the device

+ Testyourdesign

Note: This design is developed for the PSOC™ Edge E84 Evaluation Kit (KIT_PSE84_EVAL_EPC2).

4.2.3 About the design

This example implements two RTOS tasks to demonstrate Azure loT Hub features: Cloud to Device (C2D),
Telemetry, methods, Device Twin, and plug and play (PnP). The main function initializes the BSP and the
retarget-io library and calls the Menu function which shows the list of Azure features. After selecting a feature, a
task is created for running the feature. Every feature task requires valid certificates or tokens that need to be
passed either from the flash or secured hardware.

After the validation of loT device credentials, the data exchange can then take place between the Hub and the
device.

4.2.3.1 SAS authentication

SAS tokens are generated using symmetric keys provided during device enrollment. The device then uses this
key to generate SAS tokens. These SAS tokens have a hashed signature, which is used to verify the authenticity
of these tokens. Once the device is authenticated, these SAS tokens are used to connect to the Azure loT Hub
and send messages.

4.2.3.2 X.509 authentication

X.509 certificate (Public Key Infrastructure) is used to authenticate devices to the loT Hub and secure the loT
Hub endpoints. The process begins with registering and uploading the X.509 certificates to an loT Hub which
will be used for authentication of loT devices to the loT Hub whenever they connect. This authentication
process saves from generating private secure keys for every loT device. With the X.509 CA feature, you need to
register the certificate once, and then use it to connect and authenticate as many devices as you want.

4.2.4 Create a new application

This section provides a step-by-step guideline for creating a new application. It uses the Empty App starter
application and manually adds the functionality from the PSOC™ Edge MCU: Connecting to Azure loT using
Azure SDK for C application. The Eclipse IDE for ModusToolbox™ is used in the instructions, but you can use any
IDE or the command-line tool if you prefer.

If you are familiar with developing projects with ModusToolbox™ software, you can use the PSOC™ Edge MCU:
Connecting to Azure loT using Azure SDK for C starter application directly for PSOC™ Edge and Connecting to
Azure |oT services using Azure SDK for Embedded C for PSOC™ 6 application. It is a complete design with all the
firmware written for the supported kits. You can walk through the instructions and observe how the steps are
implemented in the code example.

Application note 48 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-azure-iot
https://github.com/Infineon/mtb-example-azure-iot

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Launch Eclipse IDE for ModusToolbox™ to get started. It requires the Internet connection to download the assets
from GitHub repositories.

The following sections provide the steps to start with a new empty application.

4.2.5 Select a new workspace

At launch, Eclipse IDE for ModusToolbox™ shows a dialog box to choose a directory as the workspace directory.
The workspace directory is used to store workspace preferences and development artifacts such as device
configuration and application source code. You can choose an existing empty directory by clicking the Browse
button. Alternatively, you can type in a directory name to be used as the workspace directory along with the
complete path, and ModusToolbox™ will create the directory for you.

Select a directory as workspace

Eclipse IDE for ModusToolbox™ uses the workspace directory to store its preferences and development artifacts.

CA\mtb_projects ~ ‘ [Browse...]

C] Use this as the default and do not ask again

» Recent Workspaces

Launch Cancel

Figure 47 Select a directory as workspace

4.2.6 Create a new ModusToolbox™ application

Click New Application in the Quick Panel. Alternatively, go to File > New and click ModusToolbox™ Application.

Application note 49 002-38090 Rev. *A
2025-09-04

Connecting to cloud services using ModusToolbox™

infineon

4 Getting started with Azure communication

Eclipse IDE for
| ModusToolbox™

&= Import Exist ng Application In-Place
& Search Online for Code Examples

| & Search Online for Libraries and BSPs
& Train ng Materia

% Refresh Quick Pane

~ Project

~ Launches
~ Tools

~ BSP Configurators

E mtb_projects - Eclipse IDE for ModusTool... — m] X
File Edit Mavigate Search Project Run Window Help
[milg [Bri%~0~-Q~-®@y~ B
| =%

- E - " Q @@
| Qui.. *=Vari.. % Exp.. ®%Bre. — B =

Figure 48

4.2.7

Create a new ModusToolbox™ application

Select PSOC™ Edge E84 MCU-based target hardware

ModusToolbox™ lists the Infineon kits to start your application development. In this case, develop an
application on the PSOC™ Edge E84 Evaluation Board that uses the PSOC™ Edge line device. Select
KIT_PSE84_EVAL_EPC2 and click Next as shown in Figure 49.

Settings Help

Source Template

Kit Name:

AIROC™ Bluetooth® BSPs
AIROC™ Connectivity BSPs
PMG BSPs.

PSQC™ 4 BSPs

PSOC™ 6 BSPs

PSOC™ Control BSPs
PSOC™ Edge BSPs

MCU/SOC/sIP Connectivity

Cvvv vy

Create from MPN...

Browse for BSP..

7

KIT PSE84 EVAL EPC2

The PSOC™ Edge E84 Evaluation Kit (KIT_PSE84_EVAL) is based on the PSOC™ Edge family of
devices. It enables the evaluation and development of applications for the PSOC™ Edge E84
EPC2 MCU.

This evaluation kit carries a PSOC™ E84 EPC2 MCU (PSE846GPS2DBZC4A) on a SODIMM
based detachable SOM board connected to the base-board. The MCU SOM also has 128 Mb
QSPI flash, 1 Gb Octal flash, 128 Mb Octal RAM, PSOC™ 4000T as CAPSENSE™ co-processor
and on-board AIROC™ Wi-Fi & Bluetooth® combo (CYW55513IUBG).

l ‘ KIT_PSE84_EVAL EPC2 PSE846GPS2DBZC4A CYW55513IUBG [

The base-board has M.2 interface connectors for interfacing external radio modules based on

KIT_PSES4_EVAL EPC4 PSEB46GPSADBZCAA CYWSS513IUBG
Reference Design BSPs

TRAVEO™ BSPs

USE BSPs

Wireless Charging BSPs

XMC™ BSPs

AIROC™ Wi-Fi & Bluetooth® combos and external memory interfaces. The base-board
features an on-board programmer/debugger(KitProg3), ETM/TAG/SWD debug headers,
custom display capacitive touch panel connector, R-Pi compatible MIPI-DSI and MIPI-DSI
custom display, Analog and PDM microphones, Headphone connector, Speaker, USB Host
Type-A and USB device Type-C connectors, RIS Ethernet connector, M.2 (B-key) memory
interface and M.2 (E-key) radio interface, Infineon's Shield2Go interface, Mikroelektronika's
mikroBUS compatible headers, 6-Axis IMU sensor, 3-axis Magnetometer, microSD cardholder,
CAPSENSE™ buttons and slider, user LEDs and user buttons. The MCU power domain supports
following operating voltages - 2.7 V, 33 V, 42 V and the peripheral power domain supports
operating voltages - 1.8V and 3.3 V.

Finished download of file "https://github.com/Infineor fi 2.X/mtb-wifi-m\ ifestxml’
Finished download of file ‘https://github.com/avnet-iotconnect/avnet-iotc-mtb-mw-manifest/raw/main/avnet-iotc-mtb-mw-manifest-fv2 xml*

Finished download of file ‘https:/github.com/CyberonEBU;cybr 1/cyberon-mtb-m: xml
Finished download of file ‘https:/github.com/golioth/mtb-golioth- fest/raw/main/mtb-golioth fest-fu2xml
Finished download of file ‘https://github.com/memfault/mtb-memfault -memnfault-mw-manifest-f2xml

Finished download of file *https://github.com/rtlabs-com/mtb-rtlabs-manifest/raw/main/rtlabs-mtb-mw-manifest-fw2-rtiabs.xml’
Finished download of file 'http thub.cc nsiml- i i ifest-fu2xml’
Finished loading the manifest data (25573 ms)

0 error(s), 0 waming(s)
Summary:
BSP: KIT_PSES4_EVAL_EPC2

Press "Next" to select application.

Next > Close

Figure 49 Choose target hardware

Application note 50

002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

4.2.8 Select a PSOC™ Edge Empty application and create the application
(applicable only for “Working from Scratch” flow)

Use an existing empty application as the starting point for the Working from Scratch development flow.

This is a minimal starter application template for PSOC™ Edge MCU devices. This example uses FreeRTOS to
blink two LEDs with different frequencies respectively from the Arm’ Cortex’-M33 CPU and the Arm’ Cortex’-M55
CPU. This code example has a three project structure that is, CM33 secure, CM33 non-secure, and CM55
projects. All three projects are programmed to an external QSPI flash and executed in the XIP mode. Extended
boot launches the CM33 secure project from a fixed location in an external flash, which then configures the
protection settings and launches the CM33 non-secure application. Additionally, the CM33 non-secure
application enables the CM55 CPU and launches the CM55 application.

The application code of mtb-example-psoc-edge-azure-iot uses only the CM33 CPU of the PSOC™ Edge E84
MCU. Therefore, the application is written under the CM33 non-secure project (proj_cm33_ns) and the CM55
CPU (in proj_cmb55) is subsequently put to Deep Sleep mode.

1. To create an Empty_app, select PSOC Edge Empty Application as shown in Figure 50

2, In the Name Application Name field, type a required name for the application if required and click Next;
the application summary dialog appears
3. Click Create and wait for the application to download and create in the workspace
4, Click Close to complete the application creation process. Here, the application is named as Azure_loT as
shown in Figure 50
Settings Help
Application(s) Root Path: C;/mtb_projects Browse.
Target IDE: Eclipse IDE for ModusToolbox™
Enter filter text Browse for Application.. ¥ = = [=] [[#] Thisisaminimal starter application template for PSOC™
Edge MCU devices.
New Application Name ~ New BSP Name
v Getting Started
PSOC Edge Empty Application Azure_lot ‘APP_KIT_PSE84_EVAL EPC2
PSOC Edge Hello World
> Graphics
> Peripheral
> Security
> Sensing g
Wi-Fi
Summary:
BSP: KIT_PSEB4_EVAL_EPC2
Template Application(s): PSOC Edge Empty Application
Application(s) Root Path: C:/mtb_projects
Press "Create” to create the selected application(s).
Figure 50 Create PSOC™ Edge Empty Application

You have successfully created a new ModusToolbox™ application for the PSOC™ Edge E84 MCU.

4.2.9 Configure design resources

In this step, you will configure the design resources for your application and generate the configuration code.
You will also be adding the required middleware libraries.

4.2.10 Add libraries and middleware

ModusToolbox™ provides a Library Manager tool to select various middleware components for developing
applications.

Application note 51 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

To launch the Library Manager, select the empty application. the application name will vary based on the name
you provide while creating the empty_app and in the Quick Panel, click Library Manager as shown in Figure 51.
Click Add Library to add the required libraries and middleware for your application.

10110

5 Project Explorer % 4% Debug ¥ Registers & Peripherals = O

=5 Y

oo

[-:. =5 Azure_lot
» 1= mtb_shared

[Quick Panel ®=Variables 7 Expressions ®e Breakpoints = O

Eclipse IDE for
ModusToolbox™

» Start

» Azure lot (APP_KIT_PSE84 EVAL EPC2)
» Launches

~ Tools

BSP Assistant

& Device Firmware Update Host Too

= Library Manager

ModusToolbox Setup

MaodusToolbox™ archiving and sharing
&4 ModusToolbox™ settings

mtb-programmer

Figure 51 Open Library Manager

For the Azure_loT code example design, follow these steps to add the required libraries:

1. Add the retarget-io middleware to redirect standard input and output streams to the UART configured by
the BSP. The initialization of the middleware will be done in main.c file. Click Add Library, select
proj_cm33_ns the target project and search the library name retarget-io in the Enter filter text box.You
can find it under the peripheral section.

Application note 52 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

For more information about the library, Refer the websiteRetarget-io.

Application Directory: C:/mtb_projects/Azure_loT Target Project: proj_cm33_ns v

Enter filter text..

retarget-io

=
[
7

Name Update Available Remove Name Version

~ BSPs v Peripheral
© APP_KIT PSEB4_EVAL EPC2 (ACTIVE) |8 retarget-io

~ proj_cm33_ns Libraries
abstraction-rtos A
bt-fw-ifx-cyw55500a1
clib-support
Cmsis

core-lib
core-make
device-db A
freertos ?(
mtb-hal-cat1 A
mtb-pdl-cat1
recipe-make-cat1d
v proj_cm33_s Libraries
bt-fw-ifx-cyw55500a1
cmsis

core-lib

core-make

device-db A
mtb-hal-cat1 A
mtb-pdl-cat1

Add BSP Add Library

Figure 52 Add retarget-io library
2, Add the wifi-core-freertos-lwip-mbedtls library. This bundle library comprises core components needed
for Wi-Fi connectivity support. It bundles FreeRTOS, lwIP TCP/IP stack, and mbed TLS for security, Wi-Fi
Host Driver (WHD), Wi-Fi Connection Manager, Secure Sockets interface, and configuration files. Click

Add Library, select proj_cm33_ns as the Target Project and select Wi-Fi > wifi-core-freertos-lwip-
mbedtls, see Figure 53

Target Project:| proj_cm33_ns ~
‘ww’fi—ccre—freerms—\wip—mbedtls v =] wifi-core-freertos-lwip-mbedtls
Name Version Wi-Fi core freertos lwip mbedtls bundle library comprises core components needed
~ Wi-Fi for Wi-Fi connectivity support. The library bundles FreeRTOS, IwlP TCP/IP stack, and
rﬁ wifi-core-freertos- lwip-mbedtis mbed TLS for security, Wi-Fi Host Driver (WHD), Wi-Fi connection manager, Secure
] Sockets interface, and configuration files.
Additional Information:
* Wi-Fi core freertos Iwip mbedtls bundle library README.md
* Wi-Fi core freertos Iwip mbedtls bundle library RELEASE. md
Figure 53 Add wifi-core-freertos-lwip-mbedtls library

3. Add the Azure-c-sdk-port library as this library is used as a port layer where it pulls the library Azure SDK
for Embedded C to work with cloud connectivity applications.

Application note 53 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/retarget-io

Connecting to cloud services using ModusToolbox™

infineon

4 Getting started with Azure communication

Target Project:

Enter filter te; | V= azure-c-sdk-port
Name Version This library implements the port layer for the Azure SDK for Embedded C to work on
> Bluetooth® PSoC™

MCU based platforms with network connectivity. This library automatically
> Core pulls the Azure SDK for Embedded C library; the port layer functions implemented by
> Ethernet this library are used by the Azure SDK for Embedded C library. If application needs

> Graphics Azure SDK for Embedded C library with MQTT client functionality, it needs to

explicitly import MQTT library. Refer README.md located in ./sample_app/
~_Middleware README.md for additional information.
(] audio-front-end

1.0.1 release
() audio-sw-codecs 1.0.1 release Additional Information:
[:] audio-voice-core 1.0.1 release

® Azure C SDK Port Library README md
* Azure C SDK Port Library RELEASE.md
* Azure C SDK Port Library API reference guide

() Avnet Modustoolbox SDK
[:] aws-iot-device-sdk-embedded-C

release-v5.0.0
v4_beta release

() aws-iot-device-sdk-port 2.5.0 release
[_] azure-c-sdk-port 1.4.090 release l
"] block-storage 1.0.1 release
&Y bt-fw 1.0.0 release Version details: 1.4.090 release
) buffer-pool-manager 1.0.1 release
Figure 54 Add azure-c-sdk-port

4, Add MQTT library. It works with PSOC™ Edge and PSoC™ 6 MCU-based connectivity platforms. The library
supports multi-core architecture by making a subset of APIs available as virtual APIs.

Target Project: proj_cm33_ns ~

mgtt ‘ v = mat

Name Version
v Middleware

This MQTT client library works with the family of PSOC™ & MCU based connectivity
platforms. This library uses the AWS loT Device SDK MQTT Client library and

[aws-iot-device-sdk-embedded-C
O aws-iot-device-sdk-port
[azure-c-sdk-port

implements the glue layer that is required for the library to work with PSOC™ 6 MCU
based platforms with network connectivity.

Additional Information:

8 matt
® MQTT Client Library README.md
® MQTT Client Library RELEASE. md
« MQTT Client Library API reference quide
Figure 55 Add MQTT Library

5. After selecting the required libraries, click OK and Update as shown in Figure 56

Application note 54 002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Enter filter text. =] [+

Naﬂme Update Available Remove

v~ BSPs

© APP_KIT PSE84 EVAL EPC2 (ACTIVE)
v proj_cm33_ns Libraries

abstraction-rtos

aws-iot-device-sdk-embedded-C

aws-iot-device-sdk-port A

azure-c-sdk-port X

azure-sdk-for-c

bt-fw-ifx-cyw55500a1

clib-support

cmsis

connectivity-utilities A

core-lib

core-make

device-db A
freertos

http-client

lwip

Iwip-freertos-integration

Iwip-network-interface-integration

mbedTLS Acceleration

mbedtls

mqtt K
mtb-hal-cat1 A
mtb-pdl-catl A

cine-make-rat1d

Add BSP Add Library

Loading the ModusToolbox Technology Packs and Early Access Packs
Finished loading the ModusToalbox Technology Packs and Early Access Packs (2 ms) I

Loading the tools information
Update Close

Finished loading the tools information (42 ms)

Figure 56 Update libraries

4.2.11 Write the application code

At this point in the development process, you created an application and added the required libraries. This part
examines the application code that implements the Azure_loT code example.

Note: The empty application of the PSOC™ Edge E84 MCU has a three project structure (proj_cm33_ns,
proj_cm33_s, and proj_cm55). The application code of the Azure_loT example is to be written on the
proj_cm33_ns project that uses the M33 core and subsequently the proj_cmb5 project that uses the
M55 core is put to Deep Sleep mode.

Operation as follows:
1. Visit the website, PSOC™ Edge MCU: Connecting to Azure loT using Azure SDK for C which contains the
application files that can be downloaded

2. Copy the following folders from the mtb-example-psoc-edge-azure-iot code example under
proj_cm33_ns to your proj_cm33_ns folder of the Azure_loT inside the ModusToolbox™ workspace folder,
which contains:

Table 3 Code example files
File name File definitions
main.c This file contains the int main () function that is the entry point for

execution of the user application code after device startup.

menu_task.c This file contains tasks and functions related to Azure feature task
creation and Wi-Fi initialization.

mgtt_iot_azure_device demo_app.c |This file contains tasks and functions related to Azure device demo
task.

(table continues...)

Application note 55 002-38090 Rev. *A
2025-09-04

https://github.com/Infineon/mtb-example-psoc-edge-azure-iot

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Table 3 (continued) Code example files

File name File definitions

mqtt_iot_common.c This file contains implementation of utility functions for Azure
sample applications on Infineon platforms.

mqtt_iot_common.h This file contains header file for Azure sample applications utility
functions on Infineon platforms.

mqtt_iot_hub_pnp.c This file contains tasks and functions related to Azure Plug and
Play feature task.

mgtt_main.h Contains all the Azure 10T device configurations required by the
Azure application.

azure_common.h Contains all the common configurations required for the Azure
application.

3. All PSOC™ Edge E84 MCU applications have a dual-CPU three-project structure to develop code for the
CM33 and CM55 cores. The CM33 core has two separate projects for the Secure Project Environment
(SPE) and Non-Secure Project Environment (NSPE). A project folder consists of various subfolders, each
denoting a specific aspect of the project. See Figure 57 of the code example project structure and
libraries added

Application note 56 002-38090 Rev. *A
2025-09-04

Connecting to cloud services using ModusToolbox™

infineon

4 Getting started with Azure communication

4
I

%06

[}

v 15 PSOC_Edge_Azure_loT

bsps

TARGET_APP_KIT_PSEB4_EVAL_EPC2
build

= images
» scripts

v 1% mtb_shared

= abstraction-rtos

= async-transfer

» aws-iot-device-sdk-embedded-C
» aws-iot-device-sdk-port

> azure-c-sdk-port

» azure-sdk-for-c

PSOC_Edge_Azure_loT.proj_cm33_ns & bt-fw-ifx-cyw55500a1
1] - o
#. Binaries & clib-support
w Includes &= cmsis
= build & connectivity-utilities
= ers & core-lib
& libs
= core-make

W azure_commonh
h FreeRTOSConfig.h

- cy-mbedtis-acceleration

L = freertos
L main.c :
» & http-client
v menu_task.c :
3 i : = ifx-mbedtls
4 maqtt_iot_azure_device_demo_app.c R

& Iwip

Y mgtt_iot_common.c
i matt_iot_common.h
! mqtt_iot_hub_pnp.c

h mqgtt_main.h

» Makefile
PSOC_Edge_Azure_loT.proj_cm33_s
PSOC_Edge_Azure_loT.proj_cm55
Binaries

) common_app.mk
» common.mk

LICENSE

5 Makefile
| README.md

» [wip-freertos-integration

. lwip-network-interface-integration
= mgtt

= mtb-device-support-pse8xxgp

- retarget-io

. secure-sockets

. se-rt-services-utils

&= whd-bsp-integration

- wifi-connection-manager

= wifi-core-freertos-lwip-mbedtls
> wifi-host-driver

= wifi-resources

= wpa3-external-supplicant

Figure 57

Project structure

Follow the steps from Azure Hub setup to setup the Azure loT Hub. There are two types of authentication
modes: Shared Access Signatures (SAS) and X.509 certificates. SAS grants short-lived, granular access to
Azure resources for applications. X.509 certificates provide strong, mutual authentication for users and
services. Both are secured connections but SAS is simpler for resources, while X.509 is ideal for user

authentication

Select either of the following methods for authentication of the Azure IoT device with the Azure Hub

Shared access signature (SAS)-based authentication mode
« Setthe sas_TOKEN_AUTHmMacro to '1' in source/azure_common.h file

« Usethe following steps to generate the output of the Azure Device App (C2D, Telemetry, Methods,
Device Twin) and PnP (Plug and Play) menu options of this ModusToolbox™ application

+ Create a SAS authentication-based device on the Azure loT Hub by referring to About the design
section
+ Generate a SAS token for the device using the following instructions as mentioned in SAS token

generation. The VS Code's Get device info can be used for acquiring device information like the host
name and device ID as shown in Shared access signature (SAS)-based authentication mode

002-38090 Rev. *A
2025-09-04

Application note 57

https://github.com/Microsoft/vscode-azure-iot-toolkit/wiki/Generate-SAS-Token-for-Device
https://github.com/Microsoft/vscode-azure-iot-toolkit/wiki/Generate-SAS-Token-for-Device
https://github.com/Microsoft/vscode-azure-iot-toolkit/wiki/Get-Device-Info

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

« Update the files as follows in source/azure_common.h file

* - Setthe SAS_TOKEN_LOCATION_FLASH macro as true
- Update the device ID in MQTT_CLIENT_IDENTIFIER_AZURE_SAS
- Update host name/hub name of the created loT Hub in I0T_DEMO_SERVER_AZURE
- Update device ID in I0T_AZURE_USERNAME

- Update the generated SAS token in I0T_AZURE_PASSWORD

These changes are required for to identify the specified loT Hub that device needed to be connected
to and provide device ID where the hub uses this ID to route the messages from the device

X509 certificate-based authentication mode
+ Follow these steps to generate the output of the Azure Device App (C2D, Telemetry, Methods,
Device Twin) and PnP (Plug and Play) menu options of this ModusToolbox™ application

+ Create an X509-based device, it is a certificate and private key for Azure loT Hub by referring to X509
certificate-based authentication mode

+ Insource/mqtt_main.h file update the following macros:
- Update the device ID in the MQTT_CLIENT_IDENTIFIER_AZURE_CERT macro

- Update the host name/hub name on which the device will be registered in macro
IOT_DEMO_SERVER_AZURE

- Update the device ID in the I0T_AZURE_USERNAME macro

- Update the pem format value of certificates and keys in the azure_root_ca_certificate,
azure_client_cert, and azure_client_key as mentioned in the Azure credential setup section for
a non-secure kit

- Azure root ca certificate - Contains the public key of the Azure Root CA. When your device
connects to Azure loT Hub (or any Azure Service), it uses this certificate to verify that the
certificates presented by Azure are genuine

- Azure client certificate - X.509 client certificate containing your device's unique identity and
signed by a trusted CA
- Azure client key - Private key that goes with your device's certificate

Update the Wi-Fi details to the network that you want to connect to by changing the wIr1_ssip and
WIFI_PASSWORD in the source/mqtt_main.h file

4.2.12 Build, program, and test your design

This section shows how to build, program, and test the Azure loT application on the KIT_PSE84_EVAL_EPC2. It
also explains how to run the Python script on the server side (your PC). At this point, it is assumed that you
have followed the previous steps in this application note to develop the Azure IoT code example.

Note: To understand the build and program process of a simpler application, see the AN235935 - Getting
started with PSOC™ Edge E8 MCU on ModusToolbox™ software application note that explains how to
run a simple hello world application on the KIT_PSE84 _EVAL_EPC2.

To build, program, and test the application, do the following:

1. Connect the kit to your PC using the provided USB cable
2, The USB-to- UART serial interface on the kit provides access to the UART interface of the
KIT_PSE84_EVAL_EPC2 device. Use your favorite serial terminal application (Tera Term is used in this

Application note 58 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/https://www.infineon.com/AN235935
https://www.infineon.com/https://www.infineon.com/AN235935

Connecting to cloud services using ModusToolbox™

4 Getting started with Azure communication

4.2.13

After programming, the application starts automatically. Confirm that the text as shown in either one of the
following figures is displayed on the UART terminal. Note that the Wi-Fi SSID and the IP address assigned will be
different, based on the network that you have connected to.

Note:

infineon

design) and connect to the USB-to-UART serial port. Configure the terminal application to access the
serial port using the following settings:

« Baud rate: 115200 bps; Data: 8 bits; Parity: None; Stop: 1 bit; Flow control: None; New line for
receiving data: Line Feed (LF) or auto setting

Build and program the application: In the Project Explorer, select the project. In the Quick Panel, scroll to

the Launches section, and click the program (KitProg3_MiniProg4) configuration as shown in Figure 58

1010

5 Project Explorer % 4% Debug 1 Registers 7. Peripherals

s 1= Azure_loT
s 1= mtb_shared

[Quick Panel ®=Variables ¢ Expressions ®e Breakpoints

Eclipse IDE for
ModusToolbox™

- Start

i New Application

& Import Existing Application In-Place
& Search Online for Code Examples
& Search Online for Libraries and BSPs
& Training Materia

@ Refresh Quick Pane

-~ Azure loT (APP_KIT_PSOCES84 EVK)
@ Build Application

% Clean Application

= Launches

B Azure_loT Debug MultiCore (KitProg3_MiniProg4)

[0 Azure_loT Program Application (KitProg3_MiniProg4)

% Generate Launches for Azure_loT

Figure 58

Application note

Program the application

Code example output

59

You can also use the command-line interface (CLI) to build and program the application. See
the Build system chapter in the ModusToolbox™ tools package user guide

002-38090 Rev. *A

2025-09-04

https://www.infineon.com/ModusToolboxUserguide

o _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

a COMS9 - Tera Term VT — a X

File Edit Setup Control Window Help

PSOC Edge MCU: Azure 10T w6sesesessess s s s s s o o o o

[435]1 chip ID: 55588, chip rev: 1, Support Chipld Read from SDIO Core

[1437] WLAN MAC Address : BB:AB:50:8D:E4:4F

[1448]1 WLAN Firmuware : wlB: Mar 29 2024 91:83:83 version 28.10.198
CaS5f78d3> FUWID BA1-6376a68h

[1443]1 WLAN CLM : API: 268.8 Data: IFX.BRANCH_18_53 Compiler:
-49.5 Clmnlmport: 1.48.8 Customization: vl 23-89-11 Creation: 2824-83
28 23:29:23

(14521 WHD UERSION : 4.8.8.23791
[1452]1 : EAP v4.8.8

[14561] GCC 11.3

[1457] 2024-85-27 22:57:37 -8588

Connecting to Wi-Fi AP...

uccessfully connected to Wi—Fi network *WIFI_SSID’.
IPv4 address assigned: 192.168.13.176

- Azure Device App <C2D, Telemetry, Methods, Twin>
- PnP (Plug and Play>

Figure 59 Application initialization

Select 1. to see the output for Azure Device App
Select 2. to see the output for PnP <Plug and Play>

4,2.13.1 Azure Device App

Cloud-to-device (C2D) messaging :
The Azure Device App receives the incoming C2D messages sent from the Azure loT Hub to the device.

To send a C2D message, select your device's Message to device tab in the loT Hub of the Azure portal. Enter a
message in the Message Body and click Send Message.

Application note 60 002-38090 Rev. *A
2025-09-04

o _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Home » azure_cert_1 »

7 Message to device » X
Py ;

azure_cert_

2 Send Message

@ You can use this tool to send messages to a device in your loT Hub. Messages have both a body and optional properties organized as a collection of key/value string pairs.
Device ld ©
azure_cert_1 (I

Message Body ©

Hello From Azure lot

Properties
key ©

Value @

Figure 60 Message to device

See Figure 61 to see a message from the cloud printed in the terminal.

T COMGE - Tera Term VT = O o
{ File Edit Setup Contrel Window Help
avload: {“"message_number':1%

y_mgtt_publish completed

SUCCESS : Messzage #22: Client published the Telemetry message.

avyload: {“message_number':2%
MOQTT App callback with handle : Bx248e48f8
U IE RIS
Incoming C2D
ULEIEIR ISR
lient received a valid topic response.
opic - devicessazure_cert_l-smessagessdeviceboundsx24.to=x2Fdevicesx2Fazure_cert
1x2Fmessagesx2FdeviceBounddx24.ct=textx2Fplainx3Bx2B8charsetxIDUTF-8&x24._ ce=utf—
Payload: Hello From Azure IoT

lient parsed C2D message.cy_mgtt_publizh completed

Figure 61 C2D message

Telemetry :

The Azure Device App sends 100 telemetry messages to the Azure loT Hub. If the network disconnects, the
application will exit. The device metrics can be checked on the Azure Hub for analysis of Telemetry, Menu > Add
metric > select Telemetry message send attempts.

Application note 61 002-38090 Rev. *A
2025-09-04

o _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

4 COMG - Tera Term VT — O X

File Edit Setup Control Window Help
cy_mgtt_publish completed

SUCCESS: Message H#18: Client published the Telemetry message.
Payload: {"message_numbher':33

cy_mgtt_puhlish completed

SUCCESS: Message #17: Client puhbhlished the Telemetry message.
Payload: {"message_numbher'':43}

cy_mgtt_puhlish completed

SUCCESS: Messzage H2B8: Client pubhlished the Telemetry message.
Payload: {"message_numbher':53

cy_mgtt_puhlish completed

SUCCESS: Message H21: Client pubhlished the Telemetry message.

Payload: {"message_numbher':13

Figure 62 Telemetry message

Methods :

The Azure Device App receives incoming method commands invoked from the Azure loT Hub to the device. It
receives all method commands sent from the service. If the network disconnects while waiting for a message,
the application will exit.

To send a method command, select your device's Direct Method tab in the loT Hub of the Azure portal. Enter a
method-named ping in the Method Name field and click the Invoke method, which if successful will return the
following JSON payload visible in the Result section of the Direct method tab in the Azure portal.

{"response":
“pong"}

Application note 62 002-38090 Rev. *A
2025-09-04

o _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Home >

Direct method - X

azure_cert_1
You can use this tool to invoke direct methods on devices from the cloud. Direct methods have a name, payload, and configurable timeouts. Learn more

Device ID
azure_cert_1 Dy

Method name *
| ping

Payload

Response timeout @ Connection timeout O

30seconds | | Device must already be connected

Result

Figure 63 Direct method

No other method commands are supported. If any other methods are attempted to be invoked, the log will
report that the method is not found.

¥ COME - Tera Term VT = O >

File Edit Setup Control Window Help

Incoming Methods
#ifainaiis

Client received a valid topic response.
Topic : Siothub/methods/POST/ping/?5rid=1

Payload: {3
Client parsed method request.Pushing to direct method gueuwe....
'

Client invoked method ‘ping’.
cy_mgtt_puhlish completed

Client publizhed the Methods response.
Status: 200@

Payload: {"response pong'':
Client received messages.
cy_mgtt_puhlish completed

Figure 64 Incoming Methods

Device twin :

The Azure Device App uses the Azure loT Hub to get the device twin document, send a reported property
message, and receive up to five desired property messages. When the desired property message is received, the
application will update the twin property locally and send a reported property message back to the service. If
the network disconnects while waiting for a message from the Azure loT Hub, the application will exit.

A property named Test_count is supported for this application. To send a device twin desired property message,
select the device's Device twin tab in the loT Hub of the Azure portal. Add the Test_count property along with

Application note 63 002-38090 Rev. *A
2025-09-04

o _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

the corresponding value to the desired section of the JSON, an example is shown below. Click Save to update
the twin document and send the twin message from the cloud to the device.

"properties”: {
"desired": {
"Test_count": 141,
"$metadata”: {
"$lastUpdated": "2024-05-23T11:19:40.5236057Z"
}s
"$version": 1

¥

VT

File Edit Setup Control Window Help

abibhigiisigiiigiidid
Incoming Device Twin
HELEBiREisiaTaIRIE RIS

EUCCESE: Client received a valid topic response.

opic: Sicthub/twin/res-/204/7%rid=reported_prophkSversion=46

Etatus: 284

lient parsed device twin message.

ezzage Type: Reported Properties

y_mgtt_publish completed
EUCCESE: Message #1Z2: Client publizhed the Telemetry message.
Fayload: {"meszszage_number":2%

y_mgtt_publish completed

Figure 65 Incoming Device Twin

4,2.13.2 PnP <Plug and Play>

The application connects an loT Plug and Play enabled device with the Digital Twin Model ID (DTMI). The
application waits for a message and will exit if the network disconnects.

To interact with the application, use the Azure loT Explorer or use the Azure portal directly. The capabilities are
Device twin, Direct method (Command), and Telemetry.

Device Twin:
Two device twin properties are supported in this application:

1. The desired property is named targetTemperature with a double value for the desired temperature

2. A reported property named maxTempSincelLastReboot With a double value for the highest temperature
reached since device boot.

To send a device twin desired property message, select your device's Device Twin tab in the Azure
portal. Add the targetTemperature property along with a corresponding value to the desired section of

Application note 64 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

the JSON object, as shown below. Select Save to update the twin document and send the twin message
to the device.

Save to update the twin document and send the twin message to the device.
"properties": {
"desired": {
"targetTemperature": 68.5,
"$metadata"”: {
"$lastUpdated": "2024-05-23T11:25:53.731595272"
})
"$version": 1

¥

When the desired property message is received, the application will update the twin property locally and
send a reported property of the same name back to the service. This message will include a set of "ack"
values: ac for the HTTP-like ack code, av for the ack version of the property, and an optional ad for an ack
description.

Upon selecting the Refresh button on the Device Twin portal, the updated properties can be seen in the
reported section as shown below:

{
"properties":
{
"reported":
{
"targetTemperature":
{

"value": 68.5,

"ac": 200,

"av": 14,

"ad": "success"
¥
"maxTempSincelLastReboot": 74.3,

}
}
}

Direct method :
One device command is supported in this application: getMaxMinReport.

If any other commands are attempted to be invoked, the log will report that the command is not found. To
invoke a command, select your device's Direct Method tab in the Azure portal. Enter the command name

getMaxMinReport in the Method Name field along with a payload using an I1SO 8061 time format and select
Invoke method. A sample payload is as follows:

"2023-08-18T17:09:29-0700"

The command will send back to the service a response containing the following JSON payload with the
updated values in each field. It is visible in the Result section of the Direct Method tab in the Azure portal. An
example response is shown below:

Application note 65 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

4 Getting started with Azure communication

Note: The system time at the time of sending the response is reflected in endTime.

{"status":400, "payload":
{"maxTemp":68.5,"minTemp"”:22,"avgTemp" :45.25,"startTime":"2020-08-18T17:09:29-0700", "endTime": "1
970-01-01T00:00:31+0000"}}

Telemetry:

The device sends the value of current temperature in JSON format with the field name temperature as telemetry
data using the Twin and Direct methods.

Application note 66 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

5 Summary

5 Summary

The application note introduced the cloud connectivity services offered by Infineon Technologies. It also
explained the module partners and cloud connectivity solutions provided by ModusToolbox™. It has explained
the step-by-step demonstration on how to build a AWS_MQTT and Azure_loT code examples to test it on the
PSOC™ Edge E84 MCU.

Application note 67 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

References

References

Contact Infineon Support to obtain these documents.

Application notes:

+ AN235935 - Getting started with PSOC™ Edge E8 MCU on ModusToolbox™ software
+ AN236697 - Getting started with PSOC™ MCU and AIROC™ connectivity devices
+ AN228571 - Getting started with PSoC™ 6 MCU on ModusToolbox™ software
Webpages:

+ PSoC™6MCU

+ ModusToolbox™ software

+ ModusToolbox™ for connectivity

+ ModusToolbox™ GitHub page

+ Infineon's Make loT work

« AWS IoT Developer Guide

+ Getting started with AWS loT Core

o AzureloT

Code examples:

+ PSOC™Edge MCU: Wi-Fi MQTT client

+ PSOC™Edge MCU: Connecting to Azure loT using Azure SDK for C

+ MQTT client

+ Connecting to Azure loT services using Azure SDK for Embedded C

Application note 68 002-38090 Rev. *A
2025-09-04

https://www.infineon.com/cms/en/design-support/service/support/
https://www.infineon.com/https://www.infineon.com/AN235935
https://www.infineon.com/https://www.infineon.com/AN236697
https://www.infineon.com/AN228571
https://www.infineon.com/PSoC6
https://www.infineon.com/modustoolbox
https://www.infineon.com/cms/en/design-support/tools/sdk/modustoolbox-software/modustoolbox-for-connectivity/
https://github.com/Infineon/modustoolbox-software
https://www.infineon.com/cms/en/about-infineon/make-iot-work/
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://aws.amazon.com/iot-core/getting-started/
https://learn.microsoft.com/en-us/azure/iot/iot-introduction
https://github.com/Infineon/mtb-example-psoc-edge-wifi-mqtt-client
https://github.com/Infineon/mtb-example-psoc-edge-azure-iot
https://github.com/Infineon/mtb-example-wifi-mqtt-client
https://github.com/Infineon/mtb-example-azure-iot

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

Glossary

Glossary

There are a few terminologies related to cloud services. This document uses the following list of terms.
Table 4 Glossary

Term Description

Internet of Things The Internet of Things (loT) is a network of physical devices embedded with

sensors, software, and other technologies that allows them to connect and
exchange data with other devices and systems over the internet.

Web services Web services are software components that interact over networks using
standardized protocols like HTTP and XML. They function as intermediaries,
enabling communication and data exchange between different applications and

systems.

Amazon Web Services A cloud computing platform offered by Microsoft, providing a comprehensive set

(AWS) of services for building, deploying, and managing applications.

Microsoft Azure A cloud computing platform offered by Amazon, providing a wide range of
services for businesses of all sizes, from startups to large enterprises.

Topics It defines the category of a message and allow subscribers to access data through
topics.

MQTT Publisher Devices or any application that send data to the broker.

MQTT Subscriber Devices or any application that are interested to access specific topics.

MQTT Broker The central server responsible for message routing between publishers and

subscribers.

Application note 69 002-38090 Rev. *A
2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

Revision history

Revision history

Document Date Description of changes

revision

*A 2025-09-04 Release to web

Application note 70 002-38090 Rev. *A

2025-09-04

o~ _.
Connecting to cloud services using ModusToolbox™ |n f| neon

Trademarks

Trademarks

The Bluetooth” word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., and any use of
such marks by Infineon is under license.

PSOC™, formerly known as PSoC™, is a trademark of Infineon Technologies. Any references to PSoC™ in this
document or others shall be deemed to refer to PSOC™.

Application note 71 002-38090 Rev. *A
2025-09-04

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2025-09-04
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2025 Infineon Technologies AG
All Rights Reserved.

Do you have a question about any
aspect of this document?

Email: erratum@infineon.com

Document reference
IFX-utt1723478986432

Important notice

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a description
or warranty of a certain functionality, condition
or quality of the product. Before implementation
of the product, the recipient of this application
note must verify any function and other technical
information given herein in the real application.
Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind (including without
limitation warranties of non-infringement of intellectual
property rights of any third party) with respect to any
and all information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.

Warnings

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.

mailto:erratum@infineon.com

	About this document
	Table of contents
	1 Introduction
	1.1 Amazon Web Services (AWS)
	1.2 Microsoft Azure Web Services
	1.3 Overview

	2 Hardware and software requirements
	2.1 Hardware requirements
	2.2 Software requirements
	2.2.1 ModusToolbox™ for cloud services
	2.2.2 Python
	2.2.3 AWS IoT Device SDK Port Library
	2.2.4 Azure C SDK Port Library
	2.2.5 MQTT Client library

	3 Getting started with AWS communication
	3.1 AWS credential setup
	3.1.1 AWS IoT resources
	3.1.2 AWS Thing
	3.1.3 Certificate
	3.1.4 Policy
	3.1.5 Creating an AWS IoT account
	3.1.5.1 Create Thing
	3.1.5.2 Using the AWS MQTT test client

	3.2 Connecting to MQTT client using AWS
	3.2.1 Prerequisites
	3.2.2 Application development
	3.2.3 About the design
	3.2.4 Create a new application
	3.2.5 Select a new workspace
	3.2.6 Create a new ModusToolbox™ application
	3.2.7 Select PSOC™ Edge E84 MCU-based target hardware
	3.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for “Working from Scratch” flow)
	3.2.9 Configure design resources
	3.2.10 Add libraries and middleware
	3.2.11 Write the application code
	3.2.12 User application code entry
	3.2.13 Build, program, and test your design

	4 Getting started with Azure communication
	4.1 Azure credential setup
	4.1.1 Azure Hub setup
	4.1.2 Shared access signature (SAS)-based authentication mode
	4.1.3 X509 certificate-based authentication mode

	4.2 Connecting to Azure IoT services using Azure SDK for Embedded C
	4.2.1 Prerequisites
	4.2.2 Application development
	4.2.3 About the design
	4.2.3.1 SAS authentication
	4.2.3.2 X.509 authentication

	4.2.4 Create a new application
	4.2.5 Select a new workspace
	4.2.6 Create a new ModusToolbox™ application
	4.2.7 Select PSOC™ Edge E84 MCU-based target hardware
	4.2.8 Select a PSOC™ Edge Empty application and create the application (applicable only for “Working from Scratch” flow)
	4.2.9 Configure design resources
	4.2.10 Add libraries and middleware
	4.2.11 Write the application code
	4.2.12 Build, program, and test your design
	4.2.13 Code example output
	4.2.13.1 Azure Device App
	4.2.13.2 PnP <Plug and Play>

	5 Summary
	References
	Glossary
	Revision history
	Trademarks
	Disclaimer

