

M icrocont ro l le rs

EMIL-EYE
E m u l a t i n g I n t e r p r o c e s s o r L i n k I n t e r f a c e b y
S S C a n d P E C f o r X C 1 6 6 f a m i l y
m i c r o c o n t r o l l e r s

A “Companionship”
via SSC & PEC for
a Companion Chip

App l i ca t i on No te , V1 .0 , Aug . 2006

AP16100

Edition 2006-09-11

Published by
Infineon Technologies AG
81726 München, Germany

© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

 AP16100
 EMIL-EYE

Application Note 3 V1.0, 2006-07

AP16100
Revision History: 2006-08 V1.0

Previous Version: none

Page Subjects (major changes since last revision)

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

 AP16100
EMIL-EYE

Table of Contents Page

Application Note 4 V1.0, 2006-08

1 Introduction ...5
1.1 Idea Embryo (Dialog Behind)..5
1.2 What is PEC - The Peripheral Event Controller?..6
1.3 Application Example with EMIL-EYE setup via SSC and PEC ..7
1.4 Application Example with EMIL-EYE access to actions in Drive & Control....................................7

2 EMIL-EYE Basics ..8
2.1 Properties..8
2.2 Protocol ...8
2.3 Clarifying example ..9
2.4 Protocol handler in Companion Chip (Slave) ...9

3 EMIL-EYE Download / Upload protocols ..9
3.1 Download – The DOWNL template ...9
3.2 Upload – The UPL template ..9
3.3 Block Upload – The BLKUPL template..9

4 EMIL-EYE Initialization ...9
4.1 EOP Interrupt handling ...9
4.2 The Frame Cell EOP Interrupt template ...9
4.3 The SSCx Transmit Interrupt template ...9
4.4 Companion Chip (Slave) Setup Template ..9

5 EMIL-EYE Implementation Guide ..9
5.1 Companion Chip with EMIL-EYE implementation on the XC166 eFlash9
5.1.1 SSCx initialization SW by DAvE Code Generator - Example...9
5.2 Companion Chip without EMIL-EYE implementation on the XC166 eFlash9
5.2.1 SSCx initialization by Bootstrap Loader – HW setup..9
5.2.2 SSCx initialization Code by Bootstrap Loader into PSRAM – Example ...9

6 Appendix..9
6.1 XC166 family ASC Bootstrap Loader ...9
6.2 XC166 family CAN Bootstrap Loader – AP16092 ..9
6.3 XC166 family SSC Bootstrap Loader ...9

7 Last words… ...9

 AP16100
EMIL-EYE

 Introduction

Application Note 5 V1.0, 2006-08

1 Introduction

1.1 Idea Embryo (Dialog Behind)

- How do I get another CAN channel (or two) plus maybe an ADC and even an RTC unit added to an
application with the 32-bit Microcontroller TC1115?

- Well – you have to use some kind of companion chip or some other external devices.

- Could I use an XC164xM derivative, which is small, cost effective and would cover all the extra peripheral
functions that are needed here?!

- Well – how should you find some partnership between those devices? They don’t speak the same
language and you would need two different development tool systems!

- Why not go for some protocol over SSC then, the High-Speed Synchronous Serial Interface, and let all
execution be performed at the host side and just let PEC transfers perform setup and control on the
companion chip (XC164xM)?! By this primitive methodology you might not even need the eFlash on the
slave. Essentially you don’t need to have any program running there. In principal you might just need the
BSL (Bootstrap Loader) functionality and the PSRAM set up to handle a couple of interrupt vectors!

- OK – what would you call it?

- EMIL-EYE, of course, the Emulated Inter-processor Link Interface – where the host “keeps an eye” on
everything he needs and wants to control on the companion chip.

- It means, you could also use it as a tool for Test and Calibration in XC166 based applications – e g to
manipulate parameters in field tests etc?

- Yes – even the C166 family could benefit from this idea!

- By the way, what do you mean “you don’t need to have any program running” on the companion chip?!!
How would actions be performed then on that chip?

- Well, nothing hinders you from using the eFlash (it would be waste of resources not to use it), but
principally the PEC (Peripheral Event Controller) can be setup initially to handle all commands from the host
for control and data transfers to and from the slave! An appropriate Bootstrap procedure supervised by the
host is necessary of course.

- You’ve mentioned “PEC” at least twice now and it seems to have a basic role here. You have to explain
what it is PEC - so I can follow.

- Well, yes you’ve hit the point. This “DMA-like” feature of all the Infineon 16-bit microcontrollers has to be
clarified – so, let’s start with a brief explanation of PEC.

Author: Per Engdahl
Infineon Technologies Nordic AB (IFND)

 AP16100
EMIL-EYE

 Introduction

Application Note 6 V1.0, 2006-08

1.2 What is PEC - The Peripheral Event Controller?

The Peripheral Event Controller (PEC) offers up to eight “DMA-like” service channels which move a copy of a
single byte or word between any two locations that are addressable externally as well as internally by an
XC166 device or a C166 device.

A PEC transfer can be triggered by an interrupt service request and is the fastest possible alternative to a
conventional interrupt service routine for the simple task of just copying data from one location to another!. In
many cases a PEC transfer is sufficient to service the respective peripheral request (for example the SSC in
this application note).

The big benefits of the PEC transfers are:

1. They do not change the current context, so the current program status and context need not be
saved and restored as with standard interrupts.

2. They do no arbitrate conventionally with the CPU to get the bus, i.e. they do not waste bus cycles by
“hold & hold acknowledge” protocol, but rather “steal” cycles from the CPU.

The PEC channels (‘x’= channel number 0..7) are controlled by a dedicated set of registers which are
assigned to dedicated PEC resources:

� A 24-bit source pointer for each channel, by an 8-bit source segment pointer (SRCSEGx =00..FFh)
and a 16-bit pointer SRCPx for the chosen segment.

� A 24-bit destination pointer for each channel, by an 8-bit destination segment pointer
(DSTSEGx=00..FFh) and a 16-bit destination pointer DSTPx.

� A Channel Counter/Control register (PECCx) for each channel, selecting the number of PEC
transfers to be performed (0..254) and operating mode

� Two interrupt control registers to control the operation of block transfers

The PECC registers control the action performed by the respective PEC channel.

A PEC channel ‘x’ is enabled by setting the 8 bit bit field COUNT >00h in PECCx and by setting the
associated, triggering interrupt service request register priority bit field to 14 or 15.

If the COUNT value in the register PECCx is set 01h or any value up to FEh then it will be decremented by
each PEC transfer. When decremented to zero a standard interrupt service routine is performed. If the
COUNT value is initiated by the value 255 (FFh), then no decount of the COUNT value will be done, i.e only
PEC transfers will be performed, without any so called End-Of-PEC interrupt (EOP).

PEC pointers (SRCPCx respective DSTPx) may be set by PECCx to be incremented by 1 or 2 (after a byte
or word transfer) individually, none or both (for block transfers

 AP16100
EMIL-EYE

 Introduction

Application Note 7 V1.0, 2006-08

1.3 Application Example with EMIL-EYE setup via SSC and PEC

In figure 1 it is shown how 14 ADC channels plus an RTC could be added for an application with the 32-bit
Microcontroller TC1115 by using a Companion Chip.

Figure 1 XC164xM as Companion Chip for the TriCore TC1115

As a matter of fact, all peripherals on the companion chip (XC164xM) can be accessed by the TC1115 via
SSC and PEC transfers without SW on the companion chip.

Even the embedded Flash on the XC164xM could be used, and even programmed first time, by the host.
This feature opens the opportunity to let some intelligence run on the companion chip – for example some
signal conditioning, filtering, pattern generation or recognition and some event control.

The Bootload process can be controlled by the host at power on reset. As a consequence the companion
chip can be applied totally implementation specific, i.e. entirely controlled by SW from the host.

1.4 Application Example with EMIL-EYE access to actions in Drive & Control

Since the EMIL-EYE processes lie on nearly debug priority level (seen from interrupt priority levels point of
view in a XC166 device) it is feasible to utilize the concept for field tests and tuning of parameters in any
XC166 based application – e.g. in Drive & Control, as shown here.

Figure 2 Realtime access via EMIL-EYE for test and calibration of an XC166 in Drive & Control

External bus
16 / 32

TriCore (TC1.3)

LFI Bridge

DMI
28KB SPRAM

4kB Cache

PMI
32KB SPRAM
16KB Cache

FPU

MMU

EBU
SDRAM,BFLASH

DMU
64KB SRAM

CPS

Fl
e x

ib l
e

Pe
ri p

he
ra

lB
us

(F
P I

)

64

256128

32
Boot ROM

16KB BROM

OCDS/JTAG

STM

PORTS

Multi
CAN

4 Nodes

BCU SCU

PLL

GPTU

CCU60

CCU61

SMIF

B
I0

Mem
Check

MLI0

ASC0

ASC1

ASC2

SSC1

I2C

MLI1

CAN 4 Channels

DSRAM

Flash

������

SSC0

DMA

Local Memory Bus(LMB)

�������

Flash
64 K

RAM
6 K

@ 40MHz

THE Standard for 16- bit Solutions

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

�������

Flash
64 K

RAM
6 K

@ 40MHz

THE Standard for 16- bit SolutionsTHE Standard for 16- bit Solutions

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

CAP
COM

2

GPT
1 + 2

RTC

CAP
COM

2

CAP
COM

2

GPT
1 + 2

RTC

GPT
1 + 2

RTC SSC0

ASC0

SSC1

ASC1

SSC0SSC1

ASC0ASC0

SSC0

ASC1

ADC
14

Channels

	���
��

RTC

Level Shift
5V to 3,3V

External bus
16 / 32

TriCore (TC1.3)

LFI Bridge

DMI
28KB SPRAM

4kB Cache

PMI
32KB SPRAM
16KB Cache

FPU

MMU

EBU
SDRAM,BFLASH

DMU
64KB SRAM

CPS

Fl
e x

ib l
e

Pe
ri p

he
ra

lB
us

(F
P I

)

64

256128

32
Boot ROM

16KB BROM

OCDS/JTAG

STM

PORTS

Multi
CAN

4 Nodes

BCU SCU

PLL

GPTU

CCU60

CCU61

SMIF

B
I0

Mem
Check

MLI0

ASC0

ASC1

ASC2

SSC1

I2C

MLI1

CAN 4 Channels

DSRAM

Flash

������

SSC0SSC0

DMA

Local Memory Bus(LMB)

�������

Flash
64 K

RAM
6 K

@ 40MHz

THE Standard for 16- bit Solutions

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

�������

Flash
64 K

RAM
6 K

@ 40MHz

THE Standard for 16- bit SolutionsTHE Standard for 16- bit Solutions

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

CAP
COM

2

GPT
1 + 2

RTC

CAP
COM

2

CAP
COM

2

GPT
1 + 2

RTC

GPT
1 + 2

RTC SSC0

ASC0

SSC1

ASC1

SSC0SSC1

ASC0ASC0

SSC0

ASC1

ADC
14

Channels

	���
��

RTC

�������

Flash
64 K

RAM
6 K

@ 40MHz

THE Standard for 16- bit Solutions

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

�������

Flash
64 K

RAM
6 K

@ 40MHz

THE Standard for 16- bit SolutionsTHE Standard for 16- bit Solutions

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

up to 47 I/O, PG-TQFP-64
5V ± 10%

ADC

CAP
COM

2

GPT
1 + 2

RTC

CAP
COM

2

CAP
COM

2

GPT
1 + 2

RTC

GPT
1 + 2

RTC

CAP
COM

2

GPT
1 + 2

RTC

CAP
COM

2

CAP
COM

2

GPT
1 + 2

RTC

GPT
1 + 2

RTC SSC0

ASC0

SSC1

ASC1

SSC0SSC1

ASC0ASC0

SSC0

ASC1

SSC0

ASC0

SSC1

ASC1

SSC0SSC1

ASC0ASC0

SSC0

ASC1

ADC
14

Channels

	���
��

RTC

Level Shift
5V to 3,3V
Level Shift
5V to 3,3V

SSC SSC/PEC AccessSSC SSC/PEC Access

 AP16100
EMIL-EYE

 EMIL-EYE Basics

Application Note 8 V1.0, 2006-08

2 EMIL-EYE Basics

2.1 Properties

� Up to 10 Mbit/s SSC (SPI) protocol.

� Core independent primitives, just DATA transfers – no instructions.

� PEC Service at the Slave side. (I.e. no code execution! Code is optional.)

� Master-Slave hierarchy. The Master supervises the Slave via SSC and PEC.

� Simple, generic protocol with Frame Cells sent by a Master.

� No Control Lines needed!

� Generic Boot-up of Slave (Companion Chip) by the Master (Host).

� Each 32-bit Frame Cell consists of two 16-bit words - “whereto” and “what”:

2.2 Protocol

Figure 3 The EMIL-EYE protocol

SSC PEC

Host: Companion:

Ports

ADC

RTC

ASC
SSC

CC6

CCU

RAM

GPT

{Resources:

SSC Protocol:

ADDR DATA

Action

Any
Microcontroller

with
SSC
(SPI)

Host Command: ADDR DATA

Companion Response: Action

Frame Cell:

(2 x 16 bits

3,2 us @ 10 Mbit/s)

SSC PEC

Host: Companion:

Ports

ADC

RTC

ASC
SSC

CC6

CCU

RAM

GPT

{Resources:

SSC Protocol:

ADDR DATA

Action

Any
Microcontroller

with
SSC
(SPI)

Host Command: ADDR DATA

Companion Response: Action

Frame Cell:

(2 x 16 bits

3,2 us @ 10 Mbit/s)

 AP16100
EMIL-EYE

 EMIL-EYE Basics

Application Note 9 V1.0, 2006-08

2.3 Clarifying example

The key to the EMIL-EYE functionality is that the PEC Destination Pointer in the Slave, which transfers
received 16-bit words from the SSC Receive Buffer to a certain address in the Slave, will point at itself when
a Frame Cell comes in from the host.

So, the first 16-bit word of each Frame Cell will setup the PEC Destination Pointer (DSTPx) to aim at a
target object, i.e an ADDRESS, e.g an SFR, in the Slave.

Thus the second 16-bit word of each Frame Cell contains the DATA to be written into an object by a PEC
transfer from the SSC Receive Buffer - for example into an ADC control register, SFR (e g ADC_CON).

After each Frame Cell the PEC destination pointer is restored by an End of PEC interrupt routine, by which
the PEC pointer will regard itself as first target object again.

A stream of Frame Cells may form a protocol for a certain task to be performed by the Slave – see the ADC
example below.

Note that no program has to be running on the Slave! All operations are supervised by the Master via Frame
Cells, which can handle setups and start activities in the Slave.

Figure 4 Example: Setup an ADC channel in the companion and get samples

D283h

D283h

00FFh

0008h

Example: Get samples from the ADC in the Slave by
first setting up Channel #3 and then receive samples...

ADC_CON = 0xd203; //Init conversion timings

ADC_CON1 = 0x0000; //Don’t use Enhanced Mode

ADC_CIC = 0x007B; //Enable Intr. & Prio.

SRCP3 = &ADC_DAT; //PEC Ch3 reads results

DSTP3 = 0xf05a; //Result to Master via SSC1

P5DIDIS = 0x0008; //Disable Ch3 digital func.

PECC3 = 0x00ff; //Set PEC, no EOP interrupt

ADC_CON = 0xd203 | 0x0080; //Start single conversion!

: :

ADC_CON = 0xd203 | 0x0080; //Repeat single conversion! FFA0h

FFA0h

FEC6h

FFA4h

EC4Eh F05Ah

EC4Ch FEA0h

007Bh FF98h

0000h FFA6h

D203h FFA0h

:
:

:
:

FRAME CELL WIDTH

ADDR DATA... would look like this in a “conventional” XC16x program:

... will look like this by
sending Frame Cells:

D283h

D283h

00FFh

0008h

Example: Get samples from the ADC in the Slave by
first setting up Channel #3 and then receive samples...

ADC_CON = 0xd203; //Init conversion timings

ADC_CON1 = 0x0000; //Don’t use Enhanced Mode

ADC_CIC = 0x007B; //Enable Intr. & Prio.

SRCP3 = &ADC_DAT; //PEC Ch3 reads results

DSTP3 = 0xf05a; //Result to Master via SSC1

P5DIDIS = 0x0008; //Disable Ch3 digital func.

PECC3 = 0x00ff; //Set PEC, no EOP interrupt

ADC_CON = 0xd203 | 0x0080; //Start single conversion!

: :

ADC_CON = 0xd203 | 0x0080; //Repeat single conversion! FFA0h

FFA0h

FEC6h

FFA4h

EC4Eh F05Ah

EC4Ch FEA0h

007Bh FF98h

0000h FFA6h

D203h FFA0h

:
:

:
:

FRAME CELL WIDTHFRAME CELL WIDTH

ADDR DATA... would look like this in a “conventional” XC16x program:

... will look like this by
sending Frame Cells:

 AP16100
EMIL-EYE

 EMIL-EYE Basics

Application Note 10 V1.0, 2006-08

2.4 Protocol handler in Companion Chip (Slave)

The figure below visualize the “2 steps procedure” during receive of a Frame Cell in the Slave.

Figure 5 PEC transfer interface for Frame Cells via the SSC unit

- STEP 1: The Source Pointer SRCPx of the PEC channel ‘x’ (X=0...7) is pointing at the SSCx Receive
Buffer SSCx_RB (x=0...1) and the destination pointer DSTPx is pointing at itself! So the first 16-bit word of
the Frame Cell that arrives into the receive buffer is automatically transferred into the destination pointer
DSTPx itself and gets the argument <ADDR> by the autonomous PEC operation. That means the DSTPx is
always initialized to point to its own SFR address before each incoming Frame Cell.

- STEP 2: When the second 16-bit word of the Frame Cell arrives from the host with the argument <DATA>
into the SSC receive buffer, a PEC transfer will write that data (“what”) into the location (“whereto”) that was
written into the DSTPx by the previously received argument <ADDR> in STEP 1.

- EOP: An interrupt (End-Of-PEC interrupt) is generated in conjunction with the second PEC transfer since
the PEC counter is decremented to zero. This service routine restores the DSTPx to point at itself again and
reloads the PEC counter to a value =2.

TARGET: <ADDR> “Whereto”

;PECCx
;COUNTx=2 DSTPx:

SRCPx:

SSCx_RB:

<ADDR>

1st 16-bit: ADDR2nd 16-bit: DATA
(I)

(I)(II)

FRAME CELL

“Whereto”“What”

;PECCx
;COUNTx=0
intr: add PECCx , #2

mov DSTPx, init_of_DSTPx
reti

;PECCx
;COUNTx=1

DSTPx:

SRCPx:

SSCx_RB:

<DATA>

1st 16-bit: ADDR2nd 16-bit: DATA

(II)

(I)(II)

“Whereto”“What”

Timeslot (I):
SRCPx points at SSCx
DSTPx points at itself!
Function:
DSTPx becomes pointer
to “Whereto” for the next
timeslot <DATA> “What”.

Timeslot (II):
SRCPx points at SSCx
DSTPx points at target
<ADDR> “Whereto”.
Function:
The data “What” will be
written into “Whereto” -
and afterwards the PEC
counter (PECCx) and the
DSTPx will be restored
by the interrupt task!

<DATA> “What”

SSCx

SSCx

S
T
E
P

I

S
T
E
P

II

<ADDR> “Whereto”

FRAME CELL

... which ends by an EOP Interrupt: TARGET: <ADDR> “Whereto”

;PECCx
;COUNTx=2 DSTPx:

SRCPx:

SSCx_RB:

<ADDR>

1st 16-bit: ADDR1st 16-bit: ADDR2nd 16-bit: DATA2nd 16-bit: DATA
(I)

(I)(II)

FRAME CELLFRAME CELL

“Whereto”“What”

;PECCx
;COUNTx=0
intr: add PECCx , #2

mov DSTPx, init_of_DSTPx
reti

;PECCx
;COUNTx=1

DSTPx:

SRCPx:

SSCx_RB:

<DATA>

1st 16-bit: ADDR1st 16-bit: ADDR2nd 16-bit: DATA2nd 16-bit: DATA

(II)

(I)(II)

“Whereto”“What”

Timeslot (I):
SRCPx points at SSCx
DSTPx points at itself!
Function:
DSTPx becomes pointer
to “Whereto” for the next
timeslot <DATA> “What”.

Timeslot (II):
SRCPx points at SSCx
DSTPx points at target
<ADDR> “Whereto”.
Function:
The data “What” will be
written into “Whereto” -
and afterwards the PEC
counter (PECCx) and the
DSTPx will be restored
by the interrupt task!

<DATA> “What”

SSCx

SSCx

S
T
E
P

I

S
T
E
P

II

<ADDR> “Whereto”

FRAME CELLFRAME CELL

... which ends by an EOP Interrupt:

 AP16100
EMIL-EYE

 EMIL-EYE Basics

Application Note 11 V1.0, 2006-08

A step-by-step illustration can be seen in a sequence of figures below.

Figure 6 Step-by-step illustration of a Frame Cell received.

1st 16-bit: ADDR

;PECCx
;COUNTx=1

;PECCx
;COUNTx=2 DSTPx:

SRCPx:

SSCx_RB:2nd 16-bit: DATA

(I)(II)

FRAME

“Whereto”“What”

SSCx

Before STEP 1

1st 16-bit: ADDR

;PECCx
;COUNTx=1

;PECCx
;COUNTx=2 DSTPx:

SRCPx:

SSCx_RB:2nd 16-bit: DATA

(I)(II)

FRAME

“Whereto”“What”

SSCx

1st 16-bit: ADDR1st 16-bit: ADDR

;PECCx
;COUNTx=1

;PECCx
;COUNTx=2 DSTPx:

SRCPx:

SSCx_RB:2nd 16-bit: DATA2nd 16-bit: DATA

(I)(II)

FRAMEFRAME

“Whereto”“What”

SSCx

Before STEP 1

2nd 16-bit: DATA

(II)

“What”

;PECCx
;COUNTx=1

DSTPx:

TARGET:

SRCPx:

SSCx_RB:

SSCx

;PECCx
;COUNTx=1

“Whereto”

(I)

After STEP 1
Before STEP 2

2nd 16-bit: DATA2nd 16-bit: DATA

(II)

“What”

;PECCx
;COUNTx=1

DSTPx:

TARGET:TARGET:

SRCPx:

SSCx_RB:

SSCx

;PECCx
;COUNTx=1

“Whereto”

(I)

After STEP 1
Before STEP 2

(II)

“What”

;PECCx
;COUNTx=1

DSTPx:

TARGET:

SRCPx:

SSCx_RB:

SSCx

“Whereto”

;PECCx
;COUNTx=0
intr: add PECCx , #2

mov DSTPx, addr_of_DSTPx
reti

After STEP 2

(II)

“What”

;PECCx
;COUNTx=1

DSTPx:

TARGET:TARGET:

SRCPx:

SSCx_RB:

SSCx

“Whereto”

;PECCx
;COUNTx=0
intr: add PECCx , #2

mov DSTPx, addr_of_DSTPx
reti

After STEP 2

 AP16100
EMIL-EYE

 EMIL-EYE Download / Upload protocols

Application Note 12 V1.0, 2006-08

3 EMIL-EYE Download / Upload protocols
By regarding Frame Cells as a puzzle of pieces makes it possible to build different protocols by the host
(Master) to manipulate data, operations and even program code in the companion chip (Slave). The smallest
“piece” is the DOWNL template which is one Frame Cell wide (= 2 x 16-bit words as previously described).

3.1 Download – The DOWNL template

The host microcontroller or processor (Master) has to send two consecutive 16-bit arguments over the SSC
(SPI) line, in order to perform a write operation of a data “what” at a location “whereto” on the companion
chip. Since the SSCx SFR registers reside in Segment 00, both PEC segment pointers, DSTSEGx and
SRCSEGx, have to be zero (=00), which they are by default after power on reset though.

Master: Downl (template)
void downl(uword *whereto, uword what);
{
 SSCx_vSendData(whereto); //x=0 or 1 for SSC0 resp SSC1
 SSCx_vSendData(what);
}

To address another segment than 00 requires the use of a second PEC channel (‘z’) and an intersegment
move of the data “what” via an intermediate buffer.

If there is an intention to download more than one data to such a segment (zz<>00), it’s advisable to set up a
second PEC channel first, dedicated for the internal transfers. You may “borrow” the SSCx Transmit Interrupt
PEC Channel for that purpose, by redirecting the according PEC pointers and set the PEC counter value
accordingly:

 downl(&SRCPy,&buffer); //Point at intermediate data buffer
 downl(&DSTPy,whereto); //Point at “whereto” location
 downl(&DSTSEGy,0x00zz);//in segment ‘zz’.
 downl(&PECCy,0x00ff); //No PEC counter decount, nor EOP intr!

 downl(&buffer,what); // OK – now send a data to the buffer!
 downl(&SSCx_TIC,0x79|0x80); //Let it be moved to “whereto” in
 segment ‘zz’ by PEC transfer!

By setting the PECCy for incrementing DSTPy mode, a sequence of data may be written into an array in the
segment ‘zz’ by repeating the last to downl-lines.

3.2 Upload – The UPL template

An Upload protocol can be built by 3 Frame Cells to transmit a 16-bit data from a location “wherefrom” in the
companion chip (slave) to the host (master). A source pointer SRCPy for the SSCx Transmit Buffer has to be
set, a PEC Counter (for one transmission) has to be set and the operation is stimulated by the host when it
sends a Frame Cell that sets the Interrupt Request Flag in the SFR SSCx_TIC!

(The DSTPy and DSTSEGy pointers are assumed to be set already by initialization SW at power on reset.)

Master: Upload (setup template)
void upl(uword *wherefrom)
{
 downl(&SRCPy,wherefrom);
 downl(&PECCy,0x0001); // PEC Channel #y for 1 Transmit
 downl(&SSCx_TIC,0x79|0x80); // Start transmit via PEC by
 // setting the Interrupt flag!
}

 AP16100
EMIL-EYE

 EMIL-EYE Initialization

Application Note 13 V1.0, 2006-08

Master: Next Upload

 downl(&PECCy,0x0001);
 downl(&SSCx_TIC,0x79 | 0x80);

3.3 Block Upload – The BLKUPL template

A command from the host may be a complex task for the companion chip, for example to upload an entire
data block from the companion chip to the host – as follows:

Block Upload a BLKLEN number of words from location “wherefrom” to the host:
 downl(&SRCPy,wherefrom);
 downl(&DSTPx,&SSCx_TB);
 downl(&PECCx,0x0400|BLKLEN;//Inc SRC along the whole length
 downl(&SSCx_TIC,0x79 | 0x80); //Start the BLKUPL process!

From this moment the host can “put its arms across” and await all the data transmitted. The number of
transmissions is determined by the block length BLKLEN – and when the last word has been transmitted and
the PEC counter has decremented to zero, an EOP interrupt will clear the SSCx_TIC control register
automatically.

4 EMIL-EYE Initialization

4.1 EOP Interrupt handling

Since all actions on the companion chip are based on PEC operations, there has to be a set of End-Of-PEC
(EOP) interrupt service routines that ends each PEC cycle that has been used.

Each Frame Cell that is received by the Slave SSCx unit consumes a PEC cycle of two PEC transfers of 16-
bit data – and requires a restore of the PEC SFR registers in front of each next Frame Cell sent to the SSCx
unit in the companion chip (slave).

The upload procedure (UPL), described above, requires an EOP interrupt handling as well – in order to clear
the SSCx_TIC interrupt control register.

The context switching has been avoided in the templates recommended below. In order to make each
interrupt task as “discrete” as possible in the sense “do not impact on other execution onboard, if such is
programmed and running”, Neither are any PUSH, POP invoked nor system control registers, like the PSW,
manipulated.

4.2 The Frame Cell EOP Interrupt template

In the following EOP template example the PEC Channel #0 is shown how to be used:

_SSCx_viRx PROC TASK SSCx_Rx_TASK INTNO SSCx_Rx_INUM = 052h

add PECCx,#2H ;Restore counter to the value=2.
movw DSTPx , AnyFreeSFR ;Use any free, unlikely used 8-bit
 ;addressable register to carry the
 ;restore value for DSTPx (=#DSTPx)!

 ;So, no register bank is disturbed!

RETI

_SSCx_viRx ENDP

 AP16100
EMIL-EYE

 EMIL-EYE Implementation Guide

Application Note 14 V1.0, 2006-08

4.3 The SSCx Transmit Interrupt template

PEC transfers onboard as well as for transmission of data back to the host is based on the SSCx_TIC PEC
Channel and corresponding EOP interrupt shown below:

_SSCx_viTx PROC TASK SSCx_Tx_TASK_ INTNO SSCx_Tx_INUM_ = 051h

 AND SSCx_TIC , ZEROS ;Disable this channel after use!

 RETI

_SSCx_viTx ENDP

4.4 Companion Chip (Slave) Setup Template

The most essential initializations that have to be performed after power on reset and Boot Loading are
shown here – as a template:

SSC1_vInit(void) ;

/*** Default init: *****/

DSTPx = (uword)(&DSTPx);

SRCPx = (uword)(&SSCx_RB);

PECCx = 0x0002;

AnyFreeSFR = (uword)(&DSTPx); //Used in the SSCx_TIC EOP interrupt
 //routine to restore the DSTPx value

5 EMIL-EYE Implementation Guide
This session will give some hints about some different ways to set up an EMIL-EYE implementation for a
companion chip.

First alternative will show an easy way by using any XC166 microcontroller with a preprogrammed eFlash.
That solution also shows basically how the EMIL-EYE could be implemented as a Test/Calibration add-on
feature for any XC166 single chip application, where it is not utilized as a companion chip. You will need the
appropriate development tool set for the XC166 family to get the embedded Flash programmed.

Second alternative will show implementations that require some kind of Bootload procedure, where maybe
the embedded eFlash is not necessarily used at all. In this case the XC166 header files for SFR declarations
will do plus XC166 Users Manuals.

5.1 Companion Chip with EMIL-EYE implementation on the XC166 eFlash

Let’s assume there is an appropriate START.ASM existing (e.g. easily generated by the SW configuration
tools on the DAvE CD), according to the HW configuration, including XTAL and CPU clock settings that will
be used in a specific application. There might also exist other application specific SW intended to be linked.

The following C file has to be linked as well to invoke the EMIL-EYE add-on features. It’s assumed that
highest priority level (ILVL) = 15 and highest group level (GLVL) =3 will be used.

 AP16100
EMIL-EYE

 EMIL-EYE Implementation Guide

Application Note 15 V1.0, 2006-08

void SSC1_vInit(void)
{
 SSC1_CON_EN = 0; // Enable access to control bits,
 SSC1_BR = 0x0001; // load SSC1 baud rate time reload register
 SSC1_CON = 0x800F; // and load SSC1 control register

 ALTSEL0P1H |= 0x0002; /Select alternate output function,
 P1H = (P1H & ~(uword)0x0002) | 0x0002; //set data register,
 DP1H = (DP1H & ~(uword)0x0002) | 0x0002; //set direction reg.

 SSC1_RIC = 0x007F; // Conf. SSC1 intr. Priority and Group lev.
 PECC7 = 0x0002; // Load PECC7 control reg. bitfield COUNT=2
 SRCP7 = (uword)(&SSC1_RB); //Set source pointer,
 DSTP7 = (uword)(&DSTP7); //set destination pointer to itself,
 AnyFreeSFR =(uword)(0x????); //and set the destination pointer
 //reload register(“loan by free SFR”)
} // End of function SSC1_vInit

(The detailed C file, generated by DAvE Code Generation SW, is shown ahead!)

The following ASM file has also to be linked to invoke the EMIL-EYE add-on features, to handle the end of
PEC down count cycles for SSC1 receive and transmit interrupts:

SSC1_Receive_Interrupt:
 ADD PECC7, #2H ; Restore COUNT (=2)
 MOV DSTP7, AnyFreeSFR ; Restore DST pointer
 RETI ; Return from Intr.

END

SSC1_Transmit_Interrupt:
 AND SSC1_TIC, ZEROS ; Clear and disable!
 RETI ; Return from Intr.
END

Attention: And that should be all you need to implement EMIL-EYE functionality on any XC166
embedded Flash!

 AP16100
EMIL-EYE

 EMIL-EYE Implementation Guide

Application Note 16 V1.0, 2006-08

5.1.1 SSCx initialization SW by DAvE Code Generator - Example

In the following print out from a C-source file generated by DAvE is a deeper documentation to be found
behind the initialization code lines shown in the previous session. SSC1 channel is used in this example.
//--
// @Date 2006-08-02
//
//**

void SSC1_vInit(void)
{
 SSC1_CON_EN = 0; // enable access to control bits

 /// ---
 /// Configuration of the SSC1 Baud Rate Generator:
 /// ---
 /// - required baud rate = 10,000 Mbaud
 /// - real baud rate = 10,000 Mbaud
 /// - deviation = 0,000 %

 SSC1_BR = 0x0001; // load SSC1 baud rate time reload register

 /// ---
 /// Configuration of the SSC1 Operation Mode:
 /// ---
 /// - this device is configured as SSC1 slave
 /// - transfer data width is 16 bit
 /// - transfer/receive LSB first
 /// - shift transmit data on the leading clock edge,
 /// latch on trailing edge
 /// - idle clock line is low, leading clock edge is
 /// low-to-high transition
 /// - ignore transmit error
 /// - ignore receive error
 /// - ignore phase error
 /// - ignore baudrate error

 SSC1_CON = 0x800F; // load SSC1 control register

 /// ---
 /// Configuration of the used SSC1 Port Pins:
 /// ---
 /// - P1H.1 is used for SSC1 Slave Transmit (SSC1_MRST)
 /// - P1H.2 is used for SSC1 Slave Receive (SSC1_MTSR)
 /// - P1H.3 is used for SSC1 Shift Clock Input (SSC1_SCLK)

 ALTSEL0P1H |= 0x0002; // select alternate output function
 P1H = (P1H & ~(uword)0x0002) | 0x0002; //set data register
 DP1H = (DP1H & ~(uword)0x0002) | 0x0002; //set direction reg.

 /// ---
 /// Configuration of the used SSC1 Interrupts:
 /// ---
 /// Rx service request node configuration:
 /// - Rx interrupt priority level (ILVL) = 15
 /// - Rx interrupt group level (GLVL) = 3
 /// - Rx group priority extension (GPX) = 0
 SSC1_RIC = 0x007F;

 AP16100
EMIL-EYE

 EMIL-EYE Implementation Guide

Application Note 17 V1.0, 2006-08

 /// Use PEC channel 7 for SSC1 Rx INT:
 /// - decrement counter
 /// - pointers are not modified
 /// - transfer a word
 /// - service End of PEC intr. by EOP intr. Node is disabled

 PECC7 = 0x0002; // load PECC7 control register

 SRCP7 = (uword)(&SSC1_RB); //set source pointer

 DSTP7 = (uword)(&DSTP7); //set destination pointer to itself
 AnyFreeSFR =(uword)(&DSTP7); //set destination pointer
 //reload register(“loan by free SFR”)

} // End of function SSC1_vInit

5.2 Companion Chip without EMIL-EYE implementation on the XC166 eFlash

In principal the same programming of the companion chip has to be done after Power on Reset when the
eFlash is NOT intended to be used – but the PSRAM instead. That means, the initialization code for the
SSCx unit has to be downloaded into the PSRAM – and so is also required for the EOP Interrupt service
routines (looking the same as when eFlash is used – but the interrupt Vector Segment Pointer will refer to
the root address of the PSRAM instead, i.e. at segment 0Eh!

5.2.1 SSCx initialization by Bootstrap Loader – HW setup

An XC166 microcontroller may be initialized by Bootstrap via ASC, CAN or the SSC after a Power on Reset.
The HW protocols and communication procedures are available by the hints noted in the APPENDIX.

Figure 7 Bootstrap Loader connection between host and slave (companion chip) for EMIL-EYE
initialization w/o using the eFlash

The purpose of the Bootstrap functionality is to get the SSCx initialization SW and appropriate Interrupt
Service Routines for the respective PEC cycle maintenances in place on the PSRAM of the XC166 device.

HOST
(Master)

Companion
Chip
(Slave)

ASCx ASCx

SSCx
HOST
(Master)

Companion
Chip
(Slave)

CANx CANx

SSCx
HOST
(Master)

Companion
Chip
(Slave)

ASCx ASCx

SSCx
HOST
(Master)

Companion
Chip
(Slave)

ASCx ASCx

SSCx
HOST
(Master)

Companion
Chip
(Slave)

CANx CANx

SSCx
HOST
(Master)

Companion
Chip
(Slave)

CANx CANx

SSCx

 AP16100
EMIL-EYE

 EMIL-EYE Implementation Guide

Application Note 18 V1.0, 2006-08

5.2.2 SSCx initialization Code by Bootstrap Loader into PSRAM – Example

The following code sequence has to be written and executed in the PSRAM. SSC1 channel is used in this
example:

E021 MOV R1,#02h
A8DC MOV R13,[R12]
66FDFF7F AND R13,#07FFFh
B8DC MOV [R12],R13
E01C MOV R12,#01h
F6FC5EF0 MOV 0F05Eh,R12
E6FD0F80 MOV R13,#0800Fh
F6FD5EFF MOV 0FF5Eh,R13
A8FE MOV R15,[R14]
1FFF BSET R15.1
B8FE MOV [R14],R15
F2FC06FF MOV R12,0FF06h
1EFC BCLR R12.1
1FFC BSET R12.1
F6FC06FF MOV 0FF06h,R12
F2FD06F1 MOV R13,0F106h
1EFD BCLR R13.1
1FFD BSET R13.1
F6FD06F1 MOV 0F106h,R13
E6FF7F00 MOV R15,#07Fh
F6FFACF1 MOV 0F1ACh,R15
F6F1CEFE MOV 0FECEh,R1
E6F25CF0 MOV R2,#0F05Ch
F6F25CEC MOV 0EC5Ch,R2
E6F35EEC MOV R3,#0EC5Eh
F6F35EEC MOV 0EC5Eh,R3
F6F3---- MOV 0----h,R3 ;Depends on which “AnyFreeSFR” that is used!

 AP16100
EMIL-EYE

 Appendix

Application Note 19 V1.0, 2006-08

6 Appendix
The following hints show different approaches to Bootstrap the EMIL-EYE initialization at Power on Reset
when the eFlash is not preprogrammed on the XC166 microcontroller...

6.1 XC166 family ASC Bootstrap Loader

In the chapter “The Bootstrap Loader” in any XC166’s “Users Manuals System Units” the detailed description
of the Bootstrap functionality is to be found. Using the ASC communication for this purpose will “cost” one
ASC resource on both the host as well as on the companion chip – but is en easy, straight forward
alternative solution though.

6.2 XC166 family CAN Bootstrap Loader – AP16092

If the application, where the XC166 as companion chip is going to be implemented, uses CAN anyway, it
could be recommendable to utilize CAN communication for the initialization of the EMIL-EYE.

There is an Application Note available on the Infineon Internet website:

http://www.infineon.com/upload/Document/AIM/Microcontroller/16bit/ap1609210_CAN_Bootloader.pdf

This PDF file contains the procedures for the HW setup and SW templates in detail.

The code restored in PSRAM may be the final application code. It may also contain a code sequence to
change the system configuration and enable the bus interface to store the received data into external
memory. For example, the flash driver may be loaded and used for the on-chip flash programming via CAN
BSL. For details please refer to the application note AP16048 “XC166 Flash-on-the-Fly”:

http://www.infineon.com/upload/Document/cmc_upload/documents/097/556/AP1604811_flash_on_the_fly.p
df

6.3 XC166 family SSC Bootstrap Loader

This alternative wouldn’t impact on other serial communication unit resources of neither the host nor the
companion chip as the CAN or the ASC alternatives would do.

The SSC Bootloader alternative has to be defined.

 AP16100
EMIL-EYE

 Last words…

Application Note 20 V1.0, 2006-08

7 Last words…
Attention: All documents like datasheets, user’s manuals or addendums for the selected device

should be crosschecked in all aspects regarding new functions or deviations to former
versions and the latest documents should always be used.

The latest XC166 family related documents can be found by the following link:

http://www.infineon.com/xc166

In case for any reason this link does not work you can find such information by the links:

Infineon home page: http://www.infineon.com

Infineon microcontroller home page: http://www.infineon.com/microcontrollers

 AP16100
EMIL-EYE

 Last words…

Application Note 21 V1.0, 2006-08

http:/ /www.inf ineon.com

Published by Infineon Technologies AG

