
1

Implementing Complex
Motor Control Algorithms
with a Standard ARM®

Processor Core
By Mike Copeland, Senior Staff Applications Engineer, Infineon Technologies

Technology In-Depth

n the real-time MCU world, cost-effective complex motor control
designs have been dominated by specialized cores. In many cases

dual-core systems have been used, with the main core handling the
control algorithm and a second “mini” core managing the real-time I/O
and data manipulation.

n the real-time MCU world, cost-effective complex motor control
designs have been dominated by specialized cores. In many cases

dual-core systems have been used, with the main core handling the
control algorithm and a second “mini” core managing the real-time I/O
and data manipulation.

II

To efficiently control the motor the goal is to produce stator flux that is
90 degrees out of phase with the rotor flux. The torque of the motor is
then proportional to the amplitude of the stator flux.

Several years ago I worked on an MCU-based Uninterruptable Power
Supply (UPS) project. I used the MCU with an integrated ADC and PWM
module connected to a half bridge and a transformer to generate
sinusoidal voltages. The output voltage was supposed to be a clean 110V
60 Hz sinusoid independent of the load. To generate the PWM values,
I first used a simple PI controller with a 110V 60 Hz reference signal. The
intention was to read the actual voltage via an ADC channel and compare
it to the desired voltage, feed the error into a PI controller and use the
output to control the PWM value. Unfortunately this did not work very
well and I nearly fried the board before I had to give up.

I thought about implementing a complex non-linear control law instead of
a PI controller. Non-linear control was not one of my strengths in college,
so I decided to look for an easier solution. I created a look-up table of
sinusoidal PWM values and stored it in the MCU memory. Once every
PWM interrupt, I incremented the index into the look-up table and copied
the value into the PWM register. This produced a nice 60 Hz sinusoidal
signal, but it was very dependent on the load. To control the amplitude of
this sinusoidal voltage, I multiplied the values from the look-up table by a
scale factor before transferring them to the PWM register. Then I used a
simple PI controller to control the scale factor. This worked much better.
With some trigonometry (in this case just a simple sin() calculation via
a lookup table), the simple PI controller could work just on the magnitude
of the voltage which was approximately DC.

FOC works on a similar principle. Remove the sinusoidal properties of the
system with trigonometry, then apply simple linear PI controllers on the
amplitudes.

To see how this works, let’s simplify the drawing of Figure 1(B) by using
vectors. Figure 2 is similar to Figure 1, except all of those little circles that
were so difficult to draw are replaced by the a, b and c axes. Current
flowing through phase “a” (the winding that was drawn in dark blue in
Figure 1) can be represented as a vector on the “a” axis (ia). The same is
true for phases b (the red winding) and c (the green winding).

This article describes how complex motor control algorithms can be
implemented easily and straight forward using MCUs that contain a single
Cortex™-M4 core, when used in combination with smart connected
peripherals such as those found in the new Infineon XMC4000 family
of products.

As an example, we will look at the equations involved in Field Oriented
Control (FOC) of a Permanent Magnet Synchronous Motor (PMSM), and
show how they can be handled using the CMSIS DSP Library. The same
principles used in this example can be applied to other control algorithms
and other motor types. We will see how smart peripherals eliminate the
need for a second core, and describe some of the many benefits of using
a single industry standard core with the CMSIS DSP Library.

Before we look at the control algorithms and equations, it is important to
understand the structure and operation of an PMSM.

A simple three-phase PMSM consists of a permanent magnet rotor and a
stationary stator with three sinusoidally distributed windings. Figure 1
shows a cross-section of a simple PMSM (Yes, it did me take a long time
to draw all of those circles!)

The sinusoidally distributed windings in the stator are similar to what
would be found in a three-phase induction motor. In single phase (e.g.
phase A) the number of turns of wire at any angle (α) is approximately NS
cos(α). The other two phases are identical, but shifted 120 degrees. In
reality, the windings are only approximately sinusoidally distributed.
Fortunately for FOC, close is good enough.

As Mr. Tesla discovered, if you apply three-phase sinusoidal currents to
this type of stator, a rotating sinusoidally distributed flux is created. We
can prove this mathematically. The flux generated by a winding is propor-
tional to the current through the winding and the number of coils in the
winding. So by multiplying the number of coils by the current in that
phase, we get an indication of the flux generated by that stator phase.
This is called the Magnetomotive Force (MMF). When combined with the
result from the other two phases, we get the total flux in the stator. Then,
find a high school student and ask him or her to use the “Law of Cosines”
to reduce the long equation into a simple one, as shown below.

2

Technology In-Depth

Simplified FOC Theory

Figure 2: (A) Vector representation of the three-phase PMSM showing the
three-phase currents (ia, ib, ic) and their vector sum (is). In (B) the rotor is also
shown with its flux oriented around the spinning “d” axis. For maximum effi-
ciency, is must be aligned with the rotor quadrature (q) axis.

PMSM Structure and Operation

Figure 1: Cross-section of a basic PMSM with a two pole rotor and a single
stator winding (A), and the complete three-phase windings separated by 120
degrees (B). The stator windings are distributed sinusoidally. Circles with a
dot or an X in the middle represent wires directed out of or into (respective-
ly) the page.

(A) (B)

(A) (B)

3

Technology In-Depth

DAVE™ 3 – Infineon’s Free Tool-Chain for XMC4000 MCUs,
with DAVE™ Apps for Component-Based Programming

DAVE™ 3 is a free tool-chain for Infineon’s new XMC4000
family of ARM® Cortex™-M4 microcontrollers. Built on
the Eclipse platform, DAVE™ 3 includes the GCC ARM®

embedded compiler/assembler/linker-locator, and a
hardware debugger.

There are no code size or time restrictions with DAVE™ 3, and a code gener-
ator (DAVE™ 3 CE) is included to support component-based programming via
DAVE™ Apps.

DAVE™ 3, DAVE™ 3 CE and DAVE™ Apps are all, 100% free.

Eclipse-Based Integrated Development Environment (IDE)
The open source Eclipse IDE has become a standard among embedded devel-
opers. Many MCUs are supported via an Eclipse-based IDE provided either by
a third party tool supplier or by the silicon vendor themselves. An Eclipse plug-
in from one supplier can be inserted into the Eclipse environment from anoth-
er, so DAVE™ 3 can utilize plug-ins from other tool suppliers and vice versa.
The DAVE™ Eclipse platform includes plug-ins for:
• GCC ARM embedded compiler (maintained by ARM)
• A hardware debugger and simulator. The debugger uses the Infineon
DAP MiniWiggler or SEGGER J-Link as the HW interface and includes all
the typical debugger features, such as a flash programmer, HW break
points and single stepping.

• DAVE™ CE for code generation
• X-Spy for transmitting and receiving MCU data via a virtual COM. X-Spy
allows you to create your own GUI to interact with your target hardware
without any PC side programming. X-Spy also includes an oscilloscope
feature.

Component-Based Programming and DAVE™ Apps
In component-based programming, software is partitioned according to
functionality. Programmers often do this partitioning naturally without
even noticing. The DAVE™ 3 logo, of a head comprised of small boxes
(components), illustrates this principle.

DAVE™ Apps are used to create software components for specific functions.

Features include:
• Optional Graphical User Interface (UI) to configure the DAVE™ App.
• API with initialization and run-time functions. (All source code is included).
• Documentation and example App API use.
• Interconnection between DAVE™ Apps via “virtual signals”. Virtual
signals represent the connection matrix that connects XMC4000
peripherals to each other and to I/O pins.

• Apps can be written to consume specific pieces of hardware (e.g.
CCU40_Slice1, ADC0_Channel6), or can be written to use a generic
hardware resource (e.g. any CCU4 slice, any ADC channel). The user is
then free to constrain the DAVE™ App to use specific resources as
required (e.g. use Port 3 Pin 9 for PWM output, use Port 14 Pin 1 for
ADC input). The integrated “Solver” will then choose resources that are
not constrained.

• Apps can be used to generate low level drivers for specific peripherals
(similar to DAVE™ 2), or they can be used to generate and configure
complex SW components such as an RTOS or file system.

As an example, let’s look at an application that needs to produce some
PWM signal and store data on an SD card. In DAVE™ 3 this type of
application can be built in minutes using the DAVE™ Apps.

• Double clicking the PWM App (PWMSP001) in the App Selection View
window automatically inserts the PWM App and any other DAVE™ Apps
that are required (the Clock App, Reset App, I/O App and Debug App).

• Double clicking the SDMMC App (SDMMC001) adds the SDMMC App and
its required Apps (SDMMC low level driver App, Clock App, Reset App and
Debug App).

• A FAT32 files system can be added if required by simply double clicking on
the App (FATFS002).

Once the Apps are inserted into the project they can be individually configured
via their UIs as shown in the center window for the PWM App. Additionally, the
“Pin Configurator” can be used to specify exactly which pins are used for WM
and SDMMC, if required. Any constraints not specified (e.g. which CCU4 slice
or which I/O pins are used) can be automatically selected via the Solver. The
Solver is a key feature of DAVE™ 3. The user develops their application
based on the functionality that they need, but then the Solver handles the task
of mapping that functionality to the actual hardware.

In our example PWM and SDMMC application, we can easily continue to add
more features by including more DAVE™ Apps. To add additional PWM
channels for example, simply double-click on the PWM App again and a new
instance of the App is inserted. The App source code is not duplicated, but a
new handle is created to use when calling the API.

The code generated by DAVE™ Apps in DAVE™ 3 is included in the project
and is freely available for modification, as are the templates used to generate
the source code based on the UI settings. So if there is something you would
like to change in an App, you can easily do so.

The Future of DAVE™ 3
DAVE™ 3 continues to grow as Infineon constantly adds Apps for the
XCM4000. In the long term, to further increase the number of available Apps,
Infineon plans to release a DAVE™ 3 SDK to allow anyone to create their
own Apps. It is then the developer’s choice to decide whether to keep the
App confidential, sell it via an on-line store, or make it freely available to the
wider community.

DAVE™ 3 can be downloaded for free from the Infineon website:
www.infineon.com END

Clarke Transform:
𝑖𝛼= 𝑖𝑎
𝑖𝛽= 1 (𝑖b − 𝑖c)3
Park Transform:
𝑖𝑑=𝑖𝛼cos𝜑+𝑖𝛽sin𝜑
𝑖𝑞=𝑖𝛽cos𝜑−𝑖𝛼sin𝜑

Once you have id and iq, they can be run through the PI controllers. One
PI controller controls id to zero to ensure that the stator flux is 90 degrees
from the rotor flux, and the other PI controller controls iq to the command-
ed motor torque.

The CMSIS DSP Library contains fixed point and floating point versions of
the Clarke and Park transforms, as well as a PID controller (a PI controller
is simply a PID controller with the derivative constant, KD, set to zero).
Figure 5 shows the block diagram of a simple PI controller. The error
signal e(t) is the difference between the commanded id or iq and the
actual id or iq that is calculated from the measured stator currents and
rotor position.

Note that the output of the PI controller is a voltage, vd or vq. These are
voltages that have no real physical meaning. You cannot directly convert vd
and vq into duty cycles for a PWM unit, so more trigonometry is required.

There are many ways to convert vd and vq into duty cycles for a three-
phase inverter. We will look at just one method called Space Vector
Modulation (SVM). An entire article could easily be devoted to the theory of
SVM (indeed, I wrote one several years ago!), but for the sake of brevity
we will focus on the basics.

vd and vq are referenced to the rotor position. We need to project these
voltages onto actual voltage vectors that can be produced by a three-

phase inverter.

Figure 6 shows a three-phase inverter. There
are six non-zero voltages that can be produced
by the inverter. Each vector is produced by
turning on one high-side switch and two low-
side switches, or two high-side switches and
one low-side switch. These voltage vectors and
the inverter state that is used to reach them are
shown in Figure 7B.

We will use a two step process to project vd
and vq onto inverter voltage vectors.

Since the flux is proportional to the current, the terms flux and current
are interchangeable. The total flux produced by the three stator currents
is shown by the vector is, which is the vector sum of ia + ib + ic. The goal
is to keep is 90 degrees from the flux generated by the rotor magnets.
In Figure 2 (B) the stator flux is aligned properly if is is aligned with the
rotor quadrature or q-axis. In this figure you can see that there is some
misalignment.

To align the stator flux with the rotor, we must first identify the component
of the stator flux that is properly aligned with the rotor. This is the compo-
nent of the flux that is aligned on the rotor q-axis, called iq. We must also
identify the component that is not properly aligned with the rotor. This is
the component of the flux that is aligned on the rotor d-axis, called id.

id and iq are simply the projections of is onto the d and q axes, as shown
in Figure 3.

All of this geometry and trigonometry looks great on paper, but we need
some equations to get id and iq given the stator currents and the rotor
position. Figure 4 is included to assist those of you that would like to
derive the equations yourself. We typically convert the stator currents and
rotor position into id and iq via a two step process. The first step is called
the Clarke Transform. The Clarke transform converts the ia, ib and ic
values into a fictional iα and iβ which are located on the orthogonal α
and β axes shown in Figure 4 (A) in light green. The second step is to
convert iα and iβ into id and iq given the rotor angle (φ). This is called
the Park Transform. To derive these equations you also need to know
that ia + ib + ic = 0.

4

Technology In-Depth

Figure 4: Graphical representation of the Clarke (A) and Park (B) transforms

Figure 5: A simple PI controller in continuous time.

Figure 3: iq is the component of the stator flux that is producing useful torque.
id is the component of the stator flux that should be controlled to zero. They
can be found by projecting is onto the d and q axes. Note that the rotor angle
is represented by φ.

(A) (B)

5

Technology In-Depth

XMC4000 – Infineon’s New ARM® Cortex™-M4 Based
MCUs for Communication and Control
Designed to meet the challenges of industrial and power conversion applica-
tions, Infineon’s new XMC4000 family features the industry standard ARM®

Cortex™-M4 core, industry standard communication peripherals and state of
the art real-time control peripherals.

In addition to the communication peripherals normally resident on Cortex-M4
MCUs such as Ethernet, USB and CAN, Infineon expands the range of Cortex-M4
applications by adding the latest high performance smart peripherals for
real-time control and power conversion, including motor control.

The integrated, programmable, 4-channel Delta Sigma Demodulator (DSD)
reduces system complexity and allows easy connection and isolation of exter-
nal Sigma Delta analog front ends. This, combined with the internal resolver
exciter, makes the XCM4000 family a must have for any resolver motor appli-
cation by dramatically reducing system costs (see Figure 1).

The advanced input capture/output compare peripherals (CAPCOM4 and
CAPCOM8) are ideal for power conversion, motor drives and general purpose
use. They include features such as dithering and floating prescalers to reduce
EMI. Advance output patterns such as phase shifting and asymmetric or
symmetric PWM are easily generated.

In addition to the 4-channel DSD, up to four separate 8-channel, 12-bit ADCs
(successive approximation) are available, with below 1 µsec conversion time,
integrated limit checking, fast compare mode, integrated diagnostics and
advanced trigger scheduling all included. Powerful result handling features
such as automatic data reduction or averaging, and programmable FIR/IIR
filtering, are also handled by the ADC.

But the real power of the XMC4000 family comes from the flexible connec-
tions between the peripherals. This “connection matrix” allows complex tasks
to be performed with minimal CPU intervention. For example, PWM generated
by the CAPCOM4 or CAPCOM8 can temporarily disable the integrators in the
Delta Sigma Demodulator for a programmable amount of time to eliminate
switching noise from the analog conversion.

The XMC4000 family of products provides a complete solution for designs
that need both communication and control.

The XMC4500 is the first device in
the XMC4000 family:
XMC4500 System Features
• ARM Cortex-M4, 120 MHz,
including single cycle DSP MAC and
floating point unit (FPU)

• 1 MB eFlash including hardware ECC
• 160 kB RAM
• 12-channel DMA
• Battery-backed real-time (RTC)
• Flexible Connection Matrix for mapping internal/external events to pins and
peripherals

• Extended temperature range up to 125°C

XMC4500 Communication/HMI Peripherals
• IEEE 1588 compliant Ethernet MAC
• USB 2.0 full-speed on-the-go
• 6-channel multifunction serial interface modules
(configurable to standard SPI, Dual SPI, Quad SPI, I2C, I2S, UART)

• 3x CAN nodes
• SD/MMC interface
• Touch interface and LED Matrix
• External bus interface supporting SDRAM, SRAM, NOR-/NAND-Flash and
memory-mapped IO devices (e.g., LCD)

• Flexible CRC Engine (FCE)

XMC4500 Control Peripherals
• Capture/Compare Peripherals each with 4x Edge/Center aligned Timer/
Counters, Dither, Low Pass Filter, Concatenation, Trap and other features

• 4x 4-Channel CAPCOM4 modules
• 2x 8-Channel CAPCOM8 modules
• 4x Delta-Sigma Demodulator (DSD) and Resolver Excitation
• 2x Rotary Position Interface (POSIF)
• 4x 8-channel 12-bit ADCs
• 2x 12-bit DAC
• Die Temperature Sensor (DTS)

Figure 1: 4 Channel Delta Sigma Demodulator (DSD) with resolver carrier
pattern generator used for motor position and current measurement in
a high-end motor drive.

Figure 2: XMC4000 roadmap

END

𝑡1=𝑣𝛼 −
𝑣𝛽
3

𝑡2=
2 𝑣𝛽3

𝑡0= 1−𝑡1−𝑡2

t1 and t2 are the projections of vα and vβ onto the two inverter voltage
vectors that are the closest to the vector sum of vα + vβ. They represent
the percentage of time that each switching state should be active to
produce the desired voltage. When t1 + t2 < 100%, there is some time
left called t0. During t0 all of the high-side or all of the low-side switches
can be turned on.

Some additional rectangular to polar conversions are required to find the
angle and magnitude of vα+vβ. SVM can be complicated, and the details
are outside of the scope of this article.

In the previous section we saw many of the basic equations that must
be handled by an MCU core to perform advanced motor control. There

are also other additional equations that come into play for a full imple-
mentation, and the complexity is doubled in systems with no rotor
position sensor.

Although the equations are complex, they can and have been implement-
ed in many (typically 16- and 32-bit) MCUs. It is clear that a fast CPU with
DSP extensions and floating point capability enables the calculations to be
performed fast and easily. This in turn enables more complex algorithms
(e.g. FOC without a position sensor) to be implemented.

So why are MCUs with asymmetric dual cores so popular in motor control
systems? The answer to this question lies in the fact that a motor control
MCU must do more than crunch numbers. Before any equation can be
calculated the input data must first be read. This data comes from ADC
peripherals, I/O and Serial ports, and is extremely real-time sensitive.

6

Technology In-Depth

The first step is the Inverse (or reverse) Park Transform. As the name
implies, it converts the vd and vq quantities into vα and vβ as shown in
Figure 7 (A) on the next page. The Inverse Park Transform is included in
the CMSIS DSP Library.

Inverse Park Transform:
𝑣𝛼=v𝑑cos𝜑−𝑣𝑞sin𝜑
𝑣𝛽=𝑣𝑞cos𝜑=𝑣𝑑sin𝜑

Once vα and vβ are known, they can be projected onto the switching
state vectors that are closest to their vector sum. This projection is tricky
because it is not done orthogonally, but along 60 degree lines (see Figure
7B). Below is the formula for the projections when the vector sum of vα +
vβ is between u1 and u2. Note that this formula varies depending on the
location of the vector sum of vα + vβ:

Figure 6: A three-phase inverter connected to a three-phase PMSM

Figure 7: (A) shows the conversion of vd and vq into vα and vβ via the Inverse Park Transform and (B) the conversion of vα and vβ into the switching states u1
and u2.

Complex Motor Control Systems
with a Standard Core

(A) (B)

7

Technology In-Depth

The Hexagon Application Kit for the XMC4000 Family
The Hexagon Application Kit is a versatile new tool for the XMC4000 family. At
the heart of this development platform is the CPU board with the new
XMC4500 microcontroller. Kit functionality can be expanded to suit specific
applications by means of satellite cards. The actuator satellite, for example,
provides an extensive range of motor control functions thanks to its resolver
circuit, encoder interface and shunt current sensing. The human machine

interface (HMI) board comes with an OLED display plus audio, touch and
SD/MMC functions. The communication satellite enables developers to
implement remote control via Ethernet. This board also supports MultiCAN
and RS485 interfaces. In addition to these three satellites, developers can
also connect their own boards.

END

90 degrees out of phase. Each time an edge is detected on one of the
pins, the rotor has moved some small fraction of a degree. The direction
of the rotation is detected by the phase shift (+90 degrees or -90
degrees) between the sensor pins. Additionally there is usually a third
index pin that indicates when one complete revolution has occurred.
Figure 8 shows the signals from a quadrature encoder.

Figure 9 shows an example of how the smart peripherals in the Infineon
XCM4000 family of products can interface to a quadrature encoder
without the need for a second CPU. The Position Interface peripheral
(POSIF) is set up in Quadrature Decoder mode and conditions the signals
from the encoder.

It is also connected via a connection matrix to one of the capture/compare
modules (CCU4). The counter in Slice 0 of the CCU4 is incremented and
decremented automatically (depending on the motor direction) and
contains the motor position. The counter in Slice 1 is incremented each
revolution based on the IDX signal to provide a revolution count. Slices 2
and 3 are both used to capture velocity. Slice 2 measures the number of
encoder edges per given time interval. Slice 3 measures the time between
a fixed number of encoder edges. This allows very fast and very slow
speeds to be accurately measured without the need for the CPU to
reconfigure the peripheral.

Complex motor control algorithms require sophisticated mathematics
and hard, real-time performance. The ARM Cortex-M4 CPU operating at
>100 MHz with DSP extensions and a hardware floating point unit,
has the CPU bandwidth to perform the high level calculations required
in motor control systems. The CMSIS DSP Library contains many useful
functions such as the Clarke and Park Transforms, and PID controllers
in both fixed and floating point format. This makes the high level
mathematics easier to implement and more portable. With smart
connected peripherals such as those found in the Infineon XMC4000
products, complex high-end motor control algorithms can be easily
implemented with a single, standard core, reducing development effort
and increasing portability.

8

Technology In-Depth

And once the calculations have been completed, the results need to be
scaled and transferred to output peripherals. The synchronization of all of
the input/output functions is just as critical as the ability to perform the
high level calculations.

Using an additional CPU to schedule and read ADC results, setup PWM
values, read and filter sensor inputs, etc., can be very helpful. However
there are also many disadvantages in using a separate asymmetric core.
Extra effort is required to determine the best way to partition and synchro-
nize the tasks between the cores for example. More time is required to
learn the additional instruction set, architecture quirks and tool-chain for
the additional core. When all of that work is finished, almost none of it is
portable to MCUs from another supplier.

Even though the tasks performed by the
additional core are usually quite simple,
those tasks must be performed with hard,
real-time constraints. Using a single core
would clearly be beneficial, but meeting
the real-time requirements while performing
the higher level algorithms and responding
to the user interface can be a challenge,
even for a Cortex-M4 core.

Most of the additional tasks the second
CPU would be used for consist of moving
data and synchronizing I/O events. These
tasks can equally be accomplished by
smart peripherals linked together via a
flexible connection matrix.

As a simple example, consider the task of decoding the rotor position by
processing the signals of a quadrature encoder. A quadrature encoder is a
rotor position sensor that produces pulses on two different pins that are

Figure 8: Output from a quadrature encoder when the motor is spinning
clockwise and counter clockwise.

Figure 9: Connection and configuration of the POSIF and CCU4 for decoding a quadrature encoded rotor posi-
tion and speed.

Conclusion

END

