
Application Note
V 1.3 2009-02

Microcontrol lers

8-Bit
Microcontroller

AP08089
XC878 Class B Software Library

Edition 2009-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

AP08089
XC878 Class B Software Library

Application Note V 1.3, 2009-02

XC878 Series Application Note

Revision History: V 1.3 2009-02
Previous Versions:
Page Subjects (major changes since last revision)
–
–

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

mailto:mcdocu.comments@infineon.com

AP08089
XC878 Class B Software Library

Table of Contents Page
1 Introduction . 3
1.1 Purpose . 3
1.2 Software Library Certification According to Class B 3
1.3 Acronyms Abbreviations and Special Terms . 3
1.4 References . 3

2 Overview . 4
2.1 IEC60730 Standard Compliance . 4
2.1.1 IEC60730 Annex H Standard . 4
2.1.1.1 Software Controls . 4
2.1.1.2 Components to be Tested For Single-Chip MCU 4
2.2 ClassB Software Library for XC878-16FF Microcontroller 5
2.2.1 XC878 Competitive Advantages . 5

3 CPU Registers Test . 8
3.1 Test Routine . 8

4 SFRs Tests . 10
4.1 Timer Tests . 10
4.1.1 Test Routines . 10
4.1.1.1 Timer0 and Timer1 Test Routines . 10
4.1.1.2 Timer2 Test Routine . 11
4.2 SSC Test . 13
4.2.1 Test Routine . 13
4.3 GPIO Test . 14
4.3.1 Test Routine . 14
4.4 UART0 Test . 16

5 CPU Program Counter Test . 18
5.1 Test Routines . 18
5.1.1 Enable WDT Routine . 18
5.1.2 Refresh WDT Routine . 19
5.1.3 Forced WDT Reset Routine . 20

6 Invariable Memory Test . 21
6.1 PFlash ECC Logic Test Routine . 21
6.2 DFlash ECC Logic Test Routine . 21

7 Variable Memory Test . 24
7.1 MarchC Memory Test Routines . 24
7.1.1 MarchC Algorithm . 24
7.1.2 IRAM Test At Startup . 24
7.1.3 IRAM Test At Runtime . 25
7.1.4 XRAM Test At Startup . 26
7.1.5 XRAM Test At Runtime . 26
Application Note I-1 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Table of Contents Page
7.2 MarchX Memory Test Routines . 27
7.2.1 MarchX Algorithm . 27
7.2.2 IRAM Test At Runtime . 27
7.2.3 XRAM Test At Runtime . 28

8 System Framework . 29
8.1 CANscheduler Operation Overview . 29
8.2 XC878 Starter Kit Setting and Modification . 30
8.3 Resources Requirements . 32
8.4 Flowcharts of the CANscheduler . 32
Application Note I-2 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Introduction

Application Note 1-3 V 1.3, 2009-02

1 Introduction
This document describe the Class B Software Library implemented for the XC878-16FF
microcontroller chip with 64K Flash. The specification is organised into the following
major sections
• Overview
• Descriptions of each component in the Software Library
• An example of a working framework which incorporates the Class B Software Library

test routines.

1.1 Purpose
The document forms the basis for the implementation of the Class B software library in
a user application.

1.2 Software Library Certification According to Class B
The Software Library test routines described can be used for microcontroller internal
supervisory functions and for self-diagnostics. They fulfill the requirements according to
the Class B standard and were approved by VDE (reference number 5007865-9999-
0001/112626). The implementation has to be tested in each application.
A quick start step by step testing guide on Software Library will be provided to the user
upon request.

1.3 Acronyms Abbreviations and Special Terms
List of terms and abbreviations used throughout the document:
• ECC Error Checking and Correction
• GPIO General Purpose Input / Output
• MCU Microcontroller Unit
• SSC Synchronous Serial Communication
• SFR Special Function Register
• WDT Watchdog Timer

1.4 References
1. IEC60730 Annex H -Requirements for Electronic Controls
2. IEC60335-1 Annex R - Software Evaluation
3. XC878 User Manual version 1.0

AP08089
XC878 Class B Software Library

Overview
2 Overview
This document includes the description of the API for each user routine provided in the
software library.

2.1 IEC60730 Standard Compliance
From Oct 2007, home appliances to be sold in Europe have to comply with IEC60730
standard. For MCU, the IEC60730 Annex H explains the detail of the tests and
diagnostic methods to ensure safe operation of embedded control hardware and
software for household appliances.

2.1.1 IEC60730 Annex H Standard
This standard documents the requirements for electronic controls. It contains detailed
tests and diagnostic methods to ensure the safe operation of embedded control
hardware and software for household appliances.

2.1.1.1 Software Controls
Structure of Control
• Single Channel with functional test structure
• Single Channel with periodic self test - periodically check various critical functions

without conflicting with end user application operation.

Software Classification
IEC60730 Annex H has 3 software classifications for automatic electronic controls:
• Class A - Not intended to be relied upon for the safety of the equipment. Examples:

humidity controls, lighting controls, timers.
• Class B - Intended to prevent unsafe operation of the controlled equipment.

Examples: thermal cut-offs and door locks for laundry equipment.
• Class C - Intended to prevent special hazards, like explosion of the controlled

equipment. Example: automatic burner controls, gas fired controlled dryer.
For our device to be used in home appliances, it has to fulfill Class B requirements.

2.1.1.2 Components to be Tested For Single-Chip MCU
Manufactures of electronics controls are required to test 14 components, but only 10 of
those components are relevant to a single-chip MCU, as listed in Table 2-1.
The Software Library is developed to cover 6 components. The other 4 components are
to be implemented in the application code.
Application Note 2-4 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Overview
The numbering in the first column of the table makes reference to the components
numbered in IEC60730 Annex H table H.11.12.7.

2.2 ClassB Software Library for XC878-16FF Microcontroller
The Software Library provides self test routines which the user can call at system startup
or periodically at system run time. Figure 2-1 shows the overview of the Class B
Software Library. Table 2-2 shows the mapping of requirements to the self test routines
implemented in the Library.

2.2.1 XC878 Competitive Advantages
Dedicated safety features of the XC878 microcontroller family offer significant
competitive advantages. In particular, the embedded flash module with its hardware
error correction (ECC), and the invariable memory tests which are done without the need
to implement the time consuming CRC-memory checker routines. The ECC can correct
single bit error and can inherently signal such events to the application with every flash
access. This increases CPU performance, frees-up memory space and makes user
software easier and safer.
The XC878 microcontroller comes with a sophisticated clock supervisory feature. The
clock control with it’s on-chip oscillator and PLL, can detect clock faults such as the loss
of lock, or double and half frequency. If clock failure occurs, the system is automatically
brought into a safe-state and a signal is sent to the event application.
The features described make an application safer without additional cost and overhead.

Table 2-1 Components to be tested
Component Fault / Error

1.1 CPU registers / SFR registers Stuck at fault
1.3 Programme counter Stuck at fault
2 Interrupt handling and execution1) No Interrupt or too frequent Interrupt
3 CPU clock1) Wrong frequency
4.1 Invariable memory All single bit faults
4.2 Variable memory DC fault
4.3 Addressing Stuck at fault
5.1 Internal Data Path Stuck at fault
6 External Communications1)

1) To be implemented in user application code.

Hamming distance 3
6.3 Timing1) Wrong point in time/sequence
Application Note 2-5 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Overview
Table 2-2 Requirements Matrix
Description Self Test Routines
Compliance to IEC60730
ClassB Annex H

CPU_Registers_Test(),
Enable_WDT(), Refresh_WDT(),
Forced_WDT_Reset(), PFlash_ECC_Logic_Test(),
DFlash_ECC_Logic_Test(),
IRAM_MarchC_ST_Test(),
XRAM_MarchC_ST_Test(),
IRAM_MarchC_RT_Test(),
XRAM_MarchC_RT_Test(),
IRAM_MarchX_RT_Test(),
XRAM_MarchX_RT_Test().

CPU SFRs test
(Optional to application)

Timer0_Test(), Timer1_Test(), Timer2_Test(),
SSC_Test(), GPIO_Test(),
UART_Test()
Application Note 2-6 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Overview
Figure 2-1 Class B Software Library Overview

Requirements Test Methods Results

MEMORY

CPU Registers Test routine
Functional test and periodic self test
using static memory test are
implemented to detect single bit stuck
at ‘1’ and ‘0’.

Detect CPU Registers
Stuck at Fault

 Test Pass: Return byte = 0x01
 Test Fail: Return byte = 0x02

WDT Test routines
Functional test at system startup to
check the functionality of WDT
- Forced WDT Reset routine

Detect CPU Program
Counter Stuck at Fault

 Test Pass: PSW.CY = 0
 Test Fail: Normal operation not
 started.

Special Function Registers (SFRs)
Test Routines (Optional)
Registers in Timers, UART, GPIO
and SSC are tested.
Functional test using static memory
test is implemented to detect single
bit stuck at ‘1’ or ‘0’.

 Test Pass: PSW.CY = 0
 Test Fail: PSW .CY = 1

Periodic self test in runtime .
- Enable WDT routine to be called at
system startup
- Refresh WDT routine to refresh the
WDT at periodic time.

 Test Pass: Normal operation
 continue
 Test Fail: Watchdog reset is
 triggered

CPU

Word protection with single bit
redundancy
- Hardware ECC is implemented in
on-chip flash memory. ECC interrupt
to be enabled at system startup.

Detect all s ingle bit
faults in invariable
memory

NMI ECC interrupt service
routine is executed when there is
ECC error.

ECC_Logic_Test routine
Functional test to check ECC logic at
system startup

 Test Pass:PSW.CY = 0
 Test Fail: PSW .CY=1

IRAM / XRAM MarchC Test Routines
System startup and periodic static
memory tests are implemented using
MarchC- memory test method.

Detect all s ingle bit
faults in variable
memory

 Test Pass: PSW.CY=0
 Test Fail: PSW .CY=1

IRAM / XRAM MarchX Test Routines
Periodic static memory test .

 Test Pass:PSW.CY = 0
 Test Fail: PSW .CY=1

Detect Addressing and
Data stuck at Fault

Detect Addressing and
Data stuck at Fault
Application Note 2-7 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

CPU Registers Test
3 CPU Registers Test
The following CPU core registers are tested:
• Accumulator
• B Register
• Data Pointers, DPTR0 and DPTR1
• Program Status Word
A CPU registers test routine is created to test these core registers. The routine can be
called in a startup test and during a periodic test routine.
Note: Register banks are in IRAM and are therefore not tested in this routine. They are

tested in the variable memory test. See Chapter 7.

3.1 Test Routine
The test will check the CPU core registers for stuck at ‘1’ and stuck at ‘0’ faults.
This test is non-destructive. The registers contents are saved into stack before the test
is run, and then restored on completion.
Steps to test the registers:
• Storing the register content into stack
• Clearing the register contents.
• Writing 0xAA
• Reading back the contents from register and compare
• Writing the inverse data into the register
• Reading back the contents and compare.
• Restoring the register content from stack
• Testing the next register
This will detect single bit stuck at 1 and stuck at 0 errors.

Precondition before calling this routine:
• Disabled interrupts

Table 3-1 CPU Core Register Test Routine
Routine CPU_registers_Test()
Inputs -
Return R7 of current register bank

0x01 - Test Passed
0x02 - Test Failed

Stack Requirements 5
Application Note 3-8 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

CPU Registers Test
Memory destroyed R7
Execution Time 9.75usec

Table 3-1 CPU Core Register Test Routine (cont’d)

Routine CPU_registers_Test()
Application Note 3-9 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
4 SFRs Tests
In addition to CPU Core registers, the following SFRs are tested:
• Timer registers
• SSC registers
• GPIO registers
• UART0 registers
The recommendation is to run the tests during system startup.
Note that for GPIO test, customisation is required to implement the tests in the user
application.

4.1 Timer Tests
List of timer 0, timer 1 and timer 2 registers / flags that are tested.
• Timer registers - THx and TLx (x=0,1), T2L, T2H => Test for Stuck at fault
• Timer run control flags - TCON.TRx (x=0,1), T2CON.TR2 => Functional Test
• Timer overflow flags - TCON.TFx (x=0,1), T2CON.TF2 => Functional Test

4.1.1 Test Routines
Three routines will be provided:
• Timer0_Test()
• Timer1_Test()
• Timer2_Test()

4.1.1.1 Timer0 and Timer1 Test Routines
In the Timer0 and Timer1 test routines, THx and TLx registers are tested for stuck at ‘1’
and stuck at ‘0’ fault. After that, the timer is set to 1usec. A software timeout is set to
prevent system hang inside the routine. The timer overflow flag is polled until overflow is
detected or until a software timeout.
Testing Methods:
• Test Timer registers, THx and TLx for stuck at ‘1’ and stuck at ‘0’ faults. If error, set

timer registers back to reset value and return fail
• Initialise Timer.
• Start the timer
• Keep polling until overflow or software timeout
• If timer overflow, set Timer registers back to reset value and return pass
• If software timeout, set Timer registers back to reset value and return fail
Precondition
- Interrupt for the timer under test is disabled
Application Note 4-10 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
- Peripheral clock, FPCLK = 24MHz.
- SFR SYSCON0.RMAP = 0, access non-mapped SFR area

4.1.1.2 Timer2 Test Routine
In the Timer2 test routine, T2H and T2L registers are tested for stuck at ‘1’ and stuck at
‘0’ fault. After that, the timer is set to 1usec, with FPCLK = 24MHz and SFR bit
CF_MISC.T2CCFG=0. A software timeout is set to prevent system hang inside the
routine. The timer overflow flag is polled until overflow is detected or until a software
timeout.
Precondition
- Interrupt for the timer2 is disabled
- Peripheral clock, FPCLK = 24MHz and SFR bit CF_MISC.T2CCFG=0.
- SFR SYSCON0.RMAP = 0, access non-mapped SFR area

Table 4-1 Timer0_Test Routine
Routine --: Timer0_Test
Input -
Output PSW.CY

0 = Test Passed
1 = Test Failed

Stack size required 0
Resource used/
destroyed

Timer0 registers, ACC and R0 set to reset values.

Execution time 4.1usec

Table 4-2 Timer1_Test Routine
Routine --: Timer1_Test
Input -
Output PSW.CY

0 = Test Passed
1 = Test Failed

Stack size required 0
Resource used/
destroyed

Timer1 registers, ACC and R0 set to reset values

Execution time 4.1usec
Application Note 4-11 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
Table 4-3 Timer2_Test Routine
Routine --: Timer2_Test
Input -
Output PSW.CY

0 = Test Passed
1 = Test Failed

Stack size required 0
Resource used/
destroyed

Timer2 registers, ACC and R0 set to reset values

Execution time 4.3usec
Application Note 4-12 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
4.2 SSC Test
This is to test the functionality of SSC using half duplex mode. No SSC data is being sent
out through the GPIO as the SSC are not mapped to the I/O ports.
The registers and flags that are tested:
• RBL, receive buffer register
• TBL, transmit buffer register.
• TIR and RIR flags

4.2.1 Test Routine
Testing Method
• Send data 0xAA
• Poll receive interrupt status flag. If timeout, return error
• Check receive data. Return error if receive data is different from send data
• Clear TIR and RIR flags
• Send data 0x55
• Poll receive interrupt status flag. If timeout return error
• Check receive data. Return error if receive data is different from send data
• Clear TIR and RIR flags
• Set SSC registers back to reset values.
• Return Pass
Precondition
- SSC interrupt and Timer0 interrupt disabled.
- Peripheral clock, FPCLK = 24MHz.
- SFR SYSCON0.RMAP = 0, access non-mapped SFR area
- SSC ports are not mapped to GPIO ports.

Table 4-4 SSC_test Routine
Routine --: SSC_Test
Input -
Output PSW.CY

0 = Test Passed
1 = Test Failed

Stack size required 2
Resource used/
destroyed

SSC registers, Timer0 registers and ACC set to reset values

Execution time 10usec
Application Note 4-13 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
4.3 GPIO Test
This test will check the general purpose input / output ports registers. It will check for
stuck at ‘1’ and stuck at ‘0’ faults. The test is to be done at system startup and before
GPIO initialisation.
The user can select which port to be tested by changing the following parameters in the
GPIO_Test.h file:
• P0_SELECT EQU 0xF8 ;P0.3-P0.7 to be tested
• P1_SELECT EQU 0xE4 ;P1.2,P1.5-P1.7, to be tested
• P3_SELECT EQU 0xFF ;ALL to be tested
• P4_SELECT EQU 0xFF ;ALL to be tested
• P5_SELECT EQU 0xFF ;ALL to be tested
Note: Set a bit to ‘1’ to indicate the port pin to be tested.

4.3.1 Test Routine
Testing Method
For port direction registers, each port.pin is written with ‘1’ and ‘0’. After each write, the
register was read back to check the data.
For PUDSEL and DATA registers, the tested I/O port pins are set to input ports. Each
port pin is tested by changing the pull-up/pull down. When pull up is selected, a ‘1’ is
expected to be read from the respective bit in the data register. When pull down is
selected, a ‘0’ is expected.
• Set port pin to input
• Select pull up
• Wait 43usec
• Read port data register and expect ‘1’ on the port pin
• Select pull down
• Wait 43usec
• Read port data register and expect ‘0’ on the port pin
• Repeat for other ports to be tested.
Precondition
- SFR SYSCON0.RMAP = 0, access non-mapped SFR area

Table 4-5 GPIO_test Routine
Routine --: GPIO_Test
Input -
Application Note 4-14 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
Output PSW.CY
0 = Test Passed
1 = Test Failed

Stack size required --
Resource used/
destroyed

GPIO registers, PORT_PAGE, ACC and R0 set to reset values

Execution time 105usec

Table 4-5 GPIO_test Routine (cont’d)
Application Note 4-15 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
4.4 UART0 Test
At system startup, because communication with an external host is not possible, the only
tests made are on the functionality of the transmit flag and whether the SCON register is
stuck at faults. No data is being sent out through GPIO as UART are not mapped to the
I/O ports.
Timer0 is used as timeout to prevent system hang inside the test routine.

Testing Method:
Test SCON register for stuck at ‘1’ and stuck at ‘0’ fault:
• Write 0x55 to register
• Read back
• Write 0xAA
• Read back

Test UART0 transmit flag:
• Setup UART, refer to UART Registers settings.
• Send data 0xAA
• Start Timer0
• Wait for TX flag to be set and check Timer0 overflow flag. If Timer0 overflow and TX

flag not set, return error
• Stop Timer0
• Clear TX flag
• Return pass

Precondition:
- UART interrupt to be disabled.
- Peripheral clock, FPCLK = 24MHz.
- SFR SYSCON0.RMAP=0, access non-mapped SFR area
- UART0 ports are not mapped to GPIO ports.

Table 4-6 UART_test Routine
Routine --: UART_Test
Input -
Output PSW.CY

0 = Test Passed
1 = Test Failed
Application Note 4-16 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

SFRs Tests
Stack size required 2
Resource used/
destroyed

UART registers: SCON, BG, TX flag, and timer0 registers,
SCU_PAGE and ACC are set to reset values.

Execution time 44.5usec

Table 4-6 UART_test Routine (cont’d)
Application Note 4-17 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

CPU Program Counter Test
5 CPU Program Counter Test
The XC878-16FF has a Watchdog Timer (WDT) feature. The WDT provides a reliable
and secure way to detect and recover from software or hardware failure. When the WDT
is enabled, it will cause the XC878 system to be reset if it is not refresh within a specified
time. If the program counter is stuck at one address, then a refresh of the WDT will not
occur and result in WDT timer overflow and a reset.

5.1 Test Routines
Three routines are provided in the Software Library to check the functionality of the WDT:
• Enable WDT
• Refresh WDT
• Forced WDT reset

5.1.1 Enable WDT Routine
The Watchdog window time period, PWDT, is calculated from the input frequency and
reload value.
• Input frequency to the Watchdog Timer can be selected via bit WDTIN in register

WDTCON to be either fPCLK/2 or fPCLK/128.
• Reload value WDTREL for the high byte of WDT can be programmed in register

WDTREL.

(5.1)

The Watchdog Timer has a ‘programmable window boundary’, it disallows refresh during
the Watchdog Timer’s count-up. A Refresh during this window-boundary will cause the
Watchdog Timer to activate WDTRST. The window boundary is from 0000H to
(WDTWINB,00H).
In this Enable_WDT routine, the window boundary is set to half of the PWDT. If PWDT is
10msec, the first 5msec is the window boundary where no refresh is allowed. The
window boundary is configurable by changing the setting of SFR WDTWINB in this
routine.
The SFR WDTCON.WDTEN bit, which is used to enable or disable the WDT, is a
protected bit. This means that when the protection scheme is active, this bit cannot be
written directly. Please refer to the XC878 user manual for a detail description of the
protection scheme.

PWDT
2 1 WDTIN+ 6×() 216 WDTREL– 28×()×

fPCLK
--=
Application Note 5-18 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

CPU Program Counter Test
Figure 5-1 Watchdog Timer Timing Diagram

5.1.2 Refresh WDT Routine
This routine is to be called in the main application programme to refresh the WDT. If the
watchdog refresh is performed within the window boundary, a watchdog reset will occur.

Table 5-1 Enable WDT Routine
Routine Enable_WDT()
Inputs 1. R7 - Input Frequency,

 R7.bit0 = 0, FPCLK/2
 R7.bit0 = 1, FPCLK/128
 other bits of R7 is ignored
2. R5 - Reload value, WDTREL

Return -
Stack Requirements 0
Memory destroyed SFR SYSCON0.RMAP
Execution Time 3usec

WDTREL

WDTWINB

Time

Count

FFFFH

No refresh
allowed

Refresh allowed
Application Note 5-19 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

CPU Program Counter Test
5.1.3 Forced WDT Reset Routine
This routine is recommended to be called in the system startup. It is split into two parts.
The first part of the routine is executed if system reset is not triggered by WDT reset. It
will enable the WDT and hang in an endless loop to force WDT reset to occur.
The second part of the routine is executed if system reset is caused by a WDT reset. It
will exit the test routine with the carry flag set to 0.
Note: The WDT reset indication bit, SFR bit PMCON0.WDTRST, is not cleared in this

routine.

Precondition:
All interrupts are disabled.

Table 5-2 Refresh WDT Routine
Routine Refresh_WDT()
Inputs -
Return -
Stack Requirements 0
Memory destroyed -
Execution Time 1.1usec

Table 5-3 Forced WDT Reset Routine
Routine Forced_WDT_reset()
Inputs 1. R7 - Input Frequency,

 R7.bit0 = 0, FPCLK/2
 R7.bit0 = 1, FPCLK/128
 other bits of R7 is ignored
2. R5 - Reload value, WDTREL

Return PSW.CY
0 = Watchdog reset is triggered

Stack Requirements 2
Memory destroyed
Execution Time -
Application Note 5-20 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Invariable Memory Test
6 Invariable Memory Test
Infineon XC800 microcontroller on-chip flash memory has hardware ECC. The invariable
memory test will check the hardware ECC logic to ensure its functionality. There are 2
test routines, one for PFlash ECC logic and one for DFlash ECC logic

6.1 PFlash ECC Logic Test Routine
Reading an erased Pflash memory will trigger ECC error. This can be used to test the
ECC logic for Pflash. The test routine will read the memory location which has erased
data. If ECC error is detected, the routine will return ‘pass’.

Preconditions:
• Data content at that memory address to be read is erased.
• Disabled ECC interrupt

The ECC Logic Test:
• Read the memory location
• Check flash ECC status, if ECC not triggered, return error
• Return pass

6.2 DFlash ECC Logic Test Routine
The test routine will read 2 bytes starting from the input memory address, ADDR. If both
are ‘0xFF” and no ECC error is triggered, it is assumed the contents are erased and
Dflash programming will be executed twice to generate corrupted data.
The first Dflash programming will program both addresses, ADDR and ADDR+1, with
data “0x8A”. The second programming will only program 1 byte at address, ADDR+1
with “0x88”. With that the content at address, ADDR+1, will be corrupted.

Table 6-1 PFlash ECC Logic Test Routine
Routine PFlash_ECC_Logic_Test()
Inputs R6 (MSB), R7(LSB) - Memory address where content is erased
Return PSW.CY, Carry flag

CY = 0 - Test Passed, ECC error detected.
CY = 1 - Test Failed, no ECC error detected.

Stack Requirements 1
Memory destroyed SFR FCS, ACC and DPTR
Execution Time 2.41usec
Application Note 6-21 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Invariable Memory Test
After the second flash programming, a read operation on the memory address, ADDR+1,
is executed. If ECC is triggered, the routine will return “pass”, otherwise return an error.
If the content of the input memory address is corrupted by the previous execution of the
Dflash ECC Logic Test, no flash programming will be done. If read operation on the
memory address, ADDR+1, triggered an ECC error, the routine will return “pass”.

Steps to check DFlash ECC logic:
1. Clear ECC status.
2. Read the memory address, ADDR and check content
3. If ADDR= 0x8A, goto step 6
4. Else if both content= 0xFF, called BootROM flash programming twice. Goto step 6
5. Else return error.
6. Read memory address, ADDR+1 and check ECC status
7. If ECC is triggered, return pass
8. Else return error

Preconditions:
• Data content in memory address, ADDR and ADDR+1, are erased. Or
• Data content in Memory address is corrupted by previous execution of

DFlash_ECC_Logic_Test().
• Disabled ECC interrupt

Table 6-2 DFlash ECC Logic Test Routine
Routine DFlash_ECC_Logic_Test()
Inputs ADDR:

R6 (MSB),R7(LSB)-Memory address where content of the first 2
bytes are erased
 OR
R6 (MSB),R7(LSB)-Memory address where content is corrupted
by previous execution of DFlash_ECC_Logic_Test().

Return PSW.CY, Carry flag
CY = 0 - Test Passed, ECC error detected
CY = 1 - Test Failed, ECC error not detected or input memory not
erased or corrupted.

Stack Requirements 12
Application Note 6-22 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Invariable Memory Test
Memory destroyed With inputs memory address contents being erased, BootROM
Flash programming is called and the following memories are
destroyed:
- XRAM memory, address 0xF000 and 0xF001
- IRAM memory, address 0x37 to 0x3E
- Current register bank, R0 - R7.
- ACC, DPTR0, DPTR1, MEX1, FCS.
- Set MEX3 = 0x1F

Execution Time 3.15usec or
200msec with BootROM Dflash programming executed.

Table 6-2 DFlash ECC Logic Test Routine (cont’d)

Routine DFlash_ECC_Logic_Test()
Application Note 6-23 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Variable Memory Test
7 Variable Memory Test
This chapter described the variable memory tests in software library. The variable
memory is referred to the volatile memory. In our system, IRAM and XRAM will be tested.
Two types of memory test are provided to check the RAM in the MCU.
• MarchC
• MarchX
In order to detect the bit coupling fault, both the MarchC and MarchX test routines are
implemented based on the physical layout of the IRAM and XRAM.

7.1 MarchC Memory Test Routines
This algorithm is based on the MarchC algorithm by Van De Goor, 1991. Four user
routines are provided, to test IRAM and XRAM in startup and runtime.

7.1.1 MarchC Algorithm
MarchC test can find stuck-at fault, addressing fault, transition fault and coupling fault.
The startup tests are destructive, i.e. all data in the memory under test is destroyed.
These tests are to be called at system startup, before the memories are initialised. It will
test the complete memory. Running the test in small memory blocks will reduce its
capability to detect address decoder faults.
The runtime tests are run in blocks. The data of the memory under test are preserved by
storing the contents in XRAM area.
The following is a list of steps in the MarchC memory test:
1. Write all zeros to memory under test.
2. Starting at lowest address, read zeros, write ones, increment address.
3. Starting at lowest address, read ones, write zeros, increment address.
4. Starting at highest address, read zeros, write ones, decrement address.
5. Starting at highest address, read ones, write zeros, decrement address.
6. Read all zeros from memory.

7.1.2 IRAM Test At Startup
This test routine runs the MarchC test on the complete IRAM; i.e. from address 0x00 to
0xFF. Because the test is destructive, the return address is stored in the data address
pointer, DPTR, at the start of the routine. Before exiting the test routine, the return
address is pushed back to the stack area.
The content of PSW register is changed and register bank 0 is selected.
Precondition:
- All interrupts are disabled.
- IRAM not initialised.
Application Note 7-24 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Variable Memory Test
7.1.3 IRAM Test At Runtime
This routine tests the memory in block, where the block length is to be specified by the
user. This test is non-destructive; i.e. The IRAM data under test is stored into XRAM
before the MarchC test is run, and then the IRAM data is restored before the return to
user code.
Attention: Current register bank (R0-R7) address and stack area should not be

tested.

Precondition:
All interrupts are disabled.

Table 7-1 IRAM MarchC Startup Test Routine
Routine --: IRAM_MarchC_ST_Test
Input -
Output PSW.CY

0 = Test Passed
1 = Test Failed

Stack size required 0
Resource
used/destroyed

PSW, EO, DPTR1, ACC
All IRAM under test is cleared to ‘0’

Execution time 620usec

Table 7-2 IRAM MarchC Runtime Test Routine
Routine --: IRAM_MarchC_RT_Test
Input 1. R7 - Start address of IRAM to be tested

2. R4(MSB), R5(LSB) - XRAM start address to store the IRAM data
3. R3 - Number of bytes to be tested, range 1 to X,
 where X = 256 - stack area - register banks

Output PSW.CY
0 = Test Passed
1 = Test Failed

Stack size required 2
Resource
used/destroyed

PSW, ACC, DPTR, R0-R7 of current register bank, XRAM memory
area where contents of memory under test are stored
MEX3 set to 0x1F

Execution time 530usec with R3=128bytes
Application Note 7-25 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Variable Memory Test
7.1.4 XRAM Test At Startup
Destructive test. The contents of the complete XRAM will be destroyed.

7.1.5 XRAM Test At Runtime
This test is non-destructive, and so the test can be executed when the application is
running. It is tested in block, where the block length is to be specified by the user.
The XRAM data under test is stored into another user specified location in XRAM. The
content is restored before it returns to user code.
Precondition:
All interrupts are disabled.

Table 7-3 XRAM MarchC Startup Test Routine
Routine --: XRAM_MarchC_ST_Test
Input -
Output PSW.CY

0 = Test Passed
1 = Test Failed

Stack size required --
Resource
used/destroyed

PSW, ACC, DPTR0, SCU_PAGE, XADDRH
All XRAM under test is cleared to ‘0’
MEX3 set to 0x1F

Execution time 14.5msec

Table 7-4 XRAM MarchC Runtime Test Routine
Routine --: XRAM_MarchC_RT_Test
Input 1. R6(MSB),R7(LSB) - Start address of XRAM to be tested

2. R4(MSB),R5(LSB) - Start address of XRAM to store data,
3. R3 - Number of bytes to be tested. If R3 = 0, 256 bytes of
XRAM will be tested.

Output PSW.CY
0 = Test Passed
1 = Test Failed

Stack size required 2
Resource
used/destroyed

PSW, DPTR0, DPTR1, ACC
R0-R7 of current register bank, XRAM memory area where
contents of memory under test are stored

Execution time 1.0msec with R3=128bytes
Application Note 7-26 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Variable Memory Test
7.2 MarchX Memory Test Routines
The MarchX test algorithm is less complex than MarchC algorithm. However the
coupling fault coverage is reduced in MarchX test. It cannot detect:
• Idempotent coupling fault, CFin
• Dynamic coupling fault, CFdyn.
Two routines are provided to perform IRAM and XRAM memory tests at runtime.

7.2.1 MarchX Algorithm
The following list the steps in MarchX memory test:
1. Write all zeros to memory under test.
2. Starting at lowest address, read zeros, write ones, increment address.
3. Starting at highest address, read ones, write zeros, decrement address.
4. Read all zeros from memory.

7.2.2 IRAM Test At Runtime
The IRAM test is non-destructive and therefore can be executed when the application is
running. It is tested in block, where the block length is specified by the user.
The IRAM data under test is stored in an XRAM location before the MarchX test starts.
The data is restored before the test returns control to user code.
Attention: Current register bank (R0-R7) address and stack area should not be

tested.

Precondition:
All interrupts are disabled.

Table 7-5 IRAM MarchX Runtime Test Routine
Routine --: IRAM_MarchX_RT_Test
Input 1. R7 - Start address of IRAM to be tested

2. R4(MSB) R5(LSB) - XRAM start address to store the IRAM data
3. R3 - Number of bytes to be tested, range 1 to X,
 where X = 256 - stack area - register banks

Output PSW.CY
0 = Test Passed
1 = Test Failed

Stack size
required

2

Application Note 7-27 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

Variable Memory Test
7.2.3 XRAM Test At Runtime
The XRAM test is non-destructive and can therefore be executed when the application
is running. It is tested in block, where the block length is to be specified by the user.
The XRAM data under test is stored into another XRAM location specified by the user.
The data is restored before the test returns control to user code.

Precondition:
All interrupts are disabled.

Resource
used/destroyed

PSW, ACC, R0-R7 of current register bank,
XRAM memory area where contents of memory under test are
stored
MEX3 set to 0x1F

Execution time 400usec with R3 = 128bytes

Table 7-6 XRAM MarchX Runtime Test Routine
Routine --: XRAM_MarchX_RT_Test
Input 1. R6(MSB),R7(LSB) - Start address of XRAM to be tested

2. R4(MSB),R5(LSB) - Start address of XRAM to store data
3. R3 - Number of bytes to be tested. If R3 = 0, 256 bytes of
XRAM will be tested.

Output PSW.CY
0 = Test Passed
1 = Test Failed

Stack size required 3
Resource
used/destroyed

PSW, EO, DPTR0, DPTR1, ACC,
R0-R7 of current register bank,
XRAM memory area where contents of memory under test are
stored

Execution time 720usec with R3=128bytes

Table 7-5 IRAM MarchX Runtime Test Routine (cont’d)
Application Note 7-28 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
8 System Framework
An example of a System Framework that monitors the status of the XC878-16FF
microcontroller via a CAN communication interface, is described here.
The System Framework consists of 2 parts:
• CANscheduler to run in the XC878-16FF microcontroller target board.
• DriveMonitor to run on PC.
The framework provides the flexibility to monitor the internal variables using the
DriveMonitor. It enables the user to set and poll the internal variables during runtime.
The CANscheduler will be provided to the user. The DriveMonitor software can be found
in the IFX web site
http://www.infineon.com/cms/en/product/promopages/dave-drive-
download/index.html

8.1 CANscheduler Operation Overview
Overview of the operations in the CANscheduler:
• DriveMonitor sends out a command via CAN to XC878-16FF target board
• Incoming CAN message will trigger a receive interrupt in the XC878-16FF

microcontroller if the ID’s match.
• In the CAN receive interrupt service routine, it will:

– copy the message to the receive buffer;
– set a flag to indicate that a new command is pending.

• In timer21 interrupt service routine, it will:
– check if there is pending new command;
– executes the new command accordingly;
– Clear the flag to indicate the new command is executed.

Figure 8-1 System Setup

PC XC878 Starter Kit Board

DriveMonitor S/W

DriveMonitor Stick
Application Note 8-29 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
8.2 XC878 Starter Kit Setting and Modification
This section describes the settings and modifications of the XC878 starter kit that are
required before it can be used to run the system test.
1. Ensure that the jumper, COM, is set to activate CAN node 0, as shown in Figure 8-2.

Figure 8-2 Select CAN node 0

2. Connect CANH0 and CANL0 to the JTAG connector, OCDS, as shown in Figure 8-3.

Figure 8-3 Connection of CANH0 And CANL0 to JTAG Connector
Application Note 8-30 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
3. Remove resistors R201 and R202 so that the starter kit can be powered using USB
from PC.

Figure 8-4 R201 and R202 Locations.

4. Connect the DriveMonitor stick to the starter kit board using the supplied ribbon cable.

Figure 8-5 DriveMonitor to XC878 Starter Kit Board connection

R201 27R
R202 27R

DriveMonitor Ribbon Cable
Application Note 8-31 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
8.3 Resources Requirements
In this framework, the following resources are required in order to run the Class B
software library:
• Watchdog timer (WDT): The WDT requires periodic servicing to ensure that the PC

is not stuck, otherwise a Watchdog reset will occur.
• Timer 0 (T0): This timer is used to keep track of the Watchdog window. Timer

overflow will cause an interrupt. WDT servicing is performed at the application level.
• Timer 1 (T1): Class B runtime test routines will be executed whenever the timer

overflows.
Other resources used in the framework are:
• Timer21 which is used for task scheduling, and
• CAN module for communication with PC
• Port 3 is used as runtime status indication. 'OR' logic is used to set the status, to

ensure that an error will be captured throughout the test.
– P3.0 = 1, CPU_Registers_Test() fail
– P3.2 = 1, IRAM_MarchC_RT_Test() fail
– P3.3 = 1, IRAM_MarchX_RT_Test() fail
– P3.4 = 1, XRAM_MarchC_RT_Test() fail
– P3.5 = 1, XRAM_MarchX_RT_Test() fail
– P3.6 = 1, PLL loss of lock, PLL NMI interrupt service routine is executed
– P3.7 = 1, Double bit ECC detected in Flash, ECC NMI interrupt service is executed

8.4 Flowcharts of the CANscheduler
Figure 8-6 to Figure 8-11 show the flowcharts of the CANscheduler.
Application Note 8-32 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
Figure 8-6 Main Routine Flow

Start

WDTRST bit
set ?

IRAM_MarchC_
ST_Test

ClassB_Startup_Test

Main_vInit

ClassB_sys_init

WDT count >
40 ?

Refresh_WDT

Reset WDT counter

gb_reinit flag
set ?

CC6_vStopTmr
_CC6_TIMER_

12

Clear flag

EA=0

gb_reset flag
set ? Turn off Timer0

While(1)

No
No

No

Yes

Yes

Yes

Clear the bit

While(1)

Yes

A

A

No

Start
Application Note 8-33 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
Figure 8-7 Class B Startup Tests

Figure 8-8 Class B System Init

Start

XRAM_MarchC_
ST_Test

Timer0_Test

Timer1_Test

Timer2_Test

GPIO_Test

SSC_Test

UART_Test

End

Start

Disable ECC NMI
ISR

Enable_WDT

T01_vInit

Reset WDT count

Start Timer 0 & 1

End
Application Note 8-34 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
Figure 8-9 Class B Runtime Tests

Figure 8-10 Interrupt Services Routines

Start

End

CPU_Registers
_Test

ADDR_DATA_
SA_Test

PFlash_ECC_
Logic_Test

DFlash_ECC_
Logic_Test

IRAM_MarchC_
RT_Test

IRAM_MarchX_
RT_Test

XRAM_MarchC
_RT_Test

XRAM_MarchX
_RT_Test

T0
every 5 ms

Increment
ubWDT_Count

return

T1
every 5 ms

Disable global
interrupt

return

Enable global
interrupt

ClassB_Runtime
_Test

CAN – REC
ID5 / ID55

copy to buffers

reti

CAN – TRX
ID7 / ID77 / ID57

transmit buffers

reti

CAN – ERR

handle errors

reti

T21
every 1.6 ms

reti

T12PM
every 67 us

prio high

reti

transmit CAN
messages

(ID7 / ID77)

Scheduler

switch states upon
command
execution

ret

Scheduler
Application Note 8-35 V 1.3, 2009-02

AP08089
XC878 Class B Software Library

System Framework
There are 2 NMI being enabled:
• NMI PLL to detect the PLL loss of lock
• NMI ECC to detect the double bits error in the Program flash and Data flash.
Once an error is detected, the respective Port 3 pin is set and the system enters an
endless loop, although the user could replace the endless loop with their own error
handling code.

Figure 8-11 NMI PLL and NMI ECC Service Routine

NMI ISR

PLL
Loss of lock?

ECC
Detected

RETI

Set P3.6 = 1

Set P3.7 = 1

Endless loop

Endless loop

Yes

No

No

Yes

Clear FNMIPLL

Clear FNMIECC
Application Note 8-36 V 1.3, 2009-02

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG AP08089

http://www.infineon.com

