

V 1.5, 2003-12

Device C515C-8R,

C515C-L

Marking/Step Step AA

Package P-MQFP-80

This Errata Sheet describes the deviations from the current user documentation.

The module oriented classification and numbering system uses an ascending sequence over several derivatives, including already solved deviations. So gaps inside this enumeration can occur.

Current Documentation

C515C User's Manual 11.97

C515C Data Sheet Feb. 2003
Instruction Set Manual 07.2000

Note: Devices marked with EES- or ES are engineering samples which may not be completely tested in all functional and electrical characteristics, therefore they should be used for evaluation only.

The specific test conditions for EES and ES are documented in a separate Status Sheet.

Contents

Section	 	. Page
History List/Change Summary	 	2
Functional Deviations	 	4
Deviations from Electrical- and Timing Specification	 	10
Application Hints		

History List/Change Summary

1 History List/Change Summary

(no previous device step, since previous Errata Sheet V1.4)

Table 1 Functional Deviations

Functional Deviation	Short Description	Fixed in Step	Change	
PIN.1	Pins 32 V _{CCE1} and 35 V _{SSE1} are not available for use			
CAN.2	Unexpected Remote Frame Transmission			
CAN.3	Description in User's Manual regarding the reception of remote frames and the data length code (DLC) field is incorrect			
CAN.4	Flowchart sequence in figure in User's Manual regarding Micro-controller handling of the Last Message Object is partly incorrect			
CAN.5	Description in User's Manual section 6.5.5 regarding the Configuration of the Bit Timing is partly incorrect			
WDT.1	Watchdog Timer is not halted in Idle Mode			
OWD.1	The bit 7 (OWDS) of SFR IP0 cannot be set by software			
SWPD.1	Corrupt wake-up from Software Power-Down Mode			
SWPD.2	PSEN# signal at exit from Software-Power Down Mode: wrong description in User's Manual 08.96			
HWPD.1	Unspecified hardware Power Down Mode exit behaviour caused by oscillator hysteresis of the XTAL2 input			
ROM.1	ROM Verification Mode 2 and verification error signaling at Port 3.5			

History List/Change Summary

Table 2 AC/DC Deviations

AC/DC Deviation	Short Description	Fixed in Step	Change
DC.5	Minimum value of -3 μA for the logic 0 input current (Ports 1, 2, 3, 4, 5, 7)		New
DC.6	Maximum limit values of the power supply current (I _{DD})for Active Mode and Idle Mode		New

Table 3 Application Hints

Application Hint	Short Description	Fixed in Step	Change
SSC.H1	SSC Baud Rate Generation		Updated

2 Functional Deviations

PIN.1: Pins 32 V_{CCE1} and 35 V_{SSE1} are not available for use

For the ROM / ROMless version, the pins 32 and 35 are NC (Not Connected) pins instead of V_{CCE1} and V_{SSE1} . On the target board, whether these pins are connected or not to supply will not affect chip performance and behavior.

Workaround:

None.

CAN.2: Unexpected Remote Frame Transmission

The on-chip CAN module may send an unexpected remote frame with the identifier=0, when a pending transmit request of a message object is disabled by software.

There are three possibilities to disable a pending transmit request of a message object (n=1..14):

- Set CPUUPDn element
- Reset TXRQn element
- Reset MSGVALn element

Either of these actions will prevent further transmissions of message object n.

The symptom described above occurs when the CPU accesses CPUUPD, TXRQ or MSGVAL, while the pending transmit request of the corresponding message object is transferred to the CAN state machine (just before start of frame transmission). At this particular time the transmit request is transferred to the CAN state machine before the CPU prevents transmission. In this case the transmit request is still accepted from the CAN state machine. However the transfer of the identifier, the data length code and the data of the corresponding message object is prevented. Then the pre-charge values of the internal "hidden buffer" are transmitted instead, this causes to a remote frame transmission with identifier = 0 (11 bit) and data length code = 0.

This behavior occurs only when the transmit request of message object n is pending and the transmit requests of other message objects are **not** active (single transmit request). If this remote frame loses arbitration (to a data frame with identifier = 0) or if it is disturbed by an error frame, it is **not** retransmitted.

Effects to other CAN nodes in the network

The effect leads to delays of other pending messages in the CAN network due to the high priority of the Remote Frame. Furthermore the unexpected remote frame can trigger other data frames depending on the CAN node's configuration.

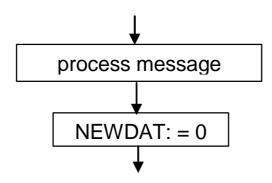
Workaround:

- 1. The behavior can be avoided if a message object is not updated by software when a transmission of the corresponding message object is pending (TXRQ element is set) and the CAN module is active (INIT = 0). If a re-transmission of a message (e.g. after lost arbitration or after the occurrence of an error frame) needs to be cancelled, the TXRQ element should be cleared by software as soon as NEWDAT is reset from the CAN module.
- 2. The nodes in the CAN system ignore the remote frame with the identifier=0 and no data frame is triggered by this remote frame.

<u>CAN.3</u>: Description in User's Manual regarding the reception of remote frames and the data length code (DLC) field is incorrect

It is inaccurately described in the User's Manual on page 6-94 under 'Arbitration Registers' that 'When the CAN controller stores a remote frame, only the data length code is stored into the corresponding message object'. The correct should be that the DLC field remains unchanged in the receiving message object, and that the CPU has the responsibility to define the DLC of the answering data frame.

This correction will be updated to the future versions of the User's Manuals.


Workaround:

Not applicable.

<u>CAN.4</u>: Flowchart sequence in figure in User's Manual regarding Micro-controller handling of the Last Message Object is partly incorrect

For the software flowchart figure 6-48 in User's Manual 11.97, the correct would be to first 'process message contents' and then to 'clear bit NEWDAT'.

This correction will be updated to the future versions of the User's Manuals.

Workaround:

Not applicable.

<u>CAN.5</u>: Description in User's Manual section 6.5.5 regarding the Configuration of the Bit Timing is partly incorrect

As described for the CAN Bit Timing Register High BTR1, the minimum total time requirement for segment 1 and segment 2 is as follows:

$$\begin{array}{l} t_{TSeg1} \geq 3 \ x \ t_q \\ t_{TSeg2} \geq 2 \ x \ t_q \end{array}$$

The total bit time remains at $(t_{TSeg1} + t_{TSeg2} \ge 7 \text{ x t}_q)$.

This correction will be updated to the future versions of the User's Manuals.

Workaround:

Not applicable.

WDT.1: Watchdog Timer is not halted in Idle Mode

The Watchdog Timer (WDT) is not halted in the Idle Mode as defined. However, during the Idle Mode, an overflow condition of the WDT does not initiate an internal reset. In such a case, the WDT starts a new count sequence.

Workaround:

- 1. Do not use the Watchdog Timer function in combination with the Idle Mode
- 2. In case of WDT is running before entry into idle mode, to avoid a WDT initiated reset upon exit of the Idle Mode, the following methods can be used.
 - a) The WDT is refreshed immediately upon exit from Idle Mode.
 - b) A timed interrupt can be used to exit the Idle Mode before the WDT reaches the counter state 7FFCh. This can be achieved by using Timer 0, 1 or 2. This timer can be programmed to generate an interrupt at a WDT counter state prior to overflow, for e.g., at 7F00h. Prior to entering Idle Mode, the WDT can be refreshed and Timer 0, 1 or 2 can be started immediately to synchronize the WDT. In the interrupt service routine of Timer 0, 1 or 2, the WDT must be refreshed. If required, Idle Mode could be entered again.

OWD.1: The bit 7 (OWDS) of SFR IP0 cannot be set by software

The bit 7 (OWDS) of SFR IP0 cannot be set by software. It is inaccurately stated in the manual that this bit can be set by software.

Workaround:

None.

SWPD.1: Corrupt wake-up from Software Power Down Mode

The problem occurs under following conditions:

- Wake-up from software Power Down Mode through P3.2/INT0# pin is used
- C515C-8R is clocked by the on-chip oscillator (with crystal or ceramic resonator)

During the start-up phase of the on-chip oscillator of a wake-up from software Power Down Mode procedure, which follows the latch phase of the P3.2/INT0# low signal, the Oscillator Watchdog unit enables the clock signal to the CPU although the correct frequency of the clock oscillator has not been reached. As a result, the CPU is fed with a clock signal which has irregular fast oscillations or wrong clock pulses. This wrong internal clock signal causes wrong program execution after the wake-up and mutilated ALE and PSEN# signals and may lead to a crash of the system.

Workaround:

A software workaround is possible. Prior to entering the software Power Down Mode, the Slow Down Mode must be enabled. This slows down the internal CPU clock by a factor of 32. After the start-up phase of the on-chip oscillator the program must then execute a software delay routine, which is located at the wake-up from software Power Down Mode interrrupt address 007BH (first instruction to be executed after the oscillator start-up phase). The Slow Down Mode must stay enabled during this delay routine. The total delay time of the delay routine should cover the typical oscillator start-up time (e.g. 10 ms) but depends on the oscillator circuit which is used.

<u>HWPD.1</u>: Unspecified hardware Power Down Mode exit behavior caused by oscillator hysteresis of the XTAL2 input

Due to an insufficient oscillator hysteresis at the XTAL2 input pin, leaving of hardware Power Down Mode by the HWPD# pin with crystal oscillator operation might produce an unspecified behaviour.

When the on-chip oscillator operates with an external crystal, small oscillation signals at the XTAL2 input can be recognized by the frequency comparator in the Oscillator Watchdog unit (OWD) as a valid clock signal for a short time period directly after leaving hardware Power Down Mode by a low-to-high transition at pin HWPD#. Therefore, the controller starts with program execution for some clock cycles before the frequency comparator in the OWD detects the first external clock fail condition. Thereafter, the controller enters the OWD reset state as specified. If in the OWD reset state the clock frequency (output of the on-chip oscillator) is detected higher than the internal RC-clock (due to the stabilized external oscillation signal), the watchdog starts the final reset delay sequence, which takes typically 1 ms. Within that time the clock is still supplied by the RC oscillator and the part is held in reset condition. After this reset delay sequence, the reset state is left and the controller begins program execution at nominal clock frequency.

Note: This behaviour described above becomes more probable if the HWPD# pin is activated in short periods of approx. 0.1 - 10 ms (depending on the external oscillator circuitry components). However, in most applications, this problem will not negatively affect the overall system behavior.

Workaround:

None.

ROM.1: ROM Verification Mode 2 and verification signaling at Port 3.5

The last block of 16 bytes will always return verification pass in the ROM Verification Mode 2. Therefore, it is not possible to verify the contents of these 16 bytes where the ROM is protected.

Workaround:

Do not utilize the last block of 16 bytes for code. Nevertheless, the possibility of erroneous ROM codes in only the last block of 16 bytes is low.

ROM Verification Mode 1 should be used where the ROM is unprotected.

Deviations from Electrical- and Timing Specification

3 Deviations from Electrical- and Timing Specification

<u>DC.5</u>: Minimum value of - 3 μ A for the logic 0 input current (Ports 1, 2, 3, 4, 5, 7)

The minimum value of the logic 0 input current for ports 1, 2, 3, 4, 5, and 7 is lower than the specified value:

$$I_{II}$$
 min. = - 3 μ A (instead of - 10 μ A)

Workaround:

None.

<u>DC.6</u>: Maximum limit values of the power supply current (I_{DD}) for Active Mode and Idle Mode

The maximum limit values of the power supply current (I_{DD}) for Active Mode and Idle Mode are shown in the table below, instead of the specified values stated in the Data Sheet.

Power Supply Current

Parameter			Symbol	Maximum Limit Values	Unit
Active Mode	C515C-8R/ C515C-LM	6 MHz	I DD	17.32	mA
		10 MHz	I DD	27.18	mA
Idle Mode	C515C-8R/	6 MHz	I DD	10.25	mA
	C515C-LM	10 MHz	I DD	15.51	mA
	C515C-8R/	6 MHz	I DD	6.20	mA
	C515C-LM	10 MHz	I _{DD}	7.13	mA
Idle Mode with Slow-Down enabled	C515C-8R/ C515C-LM	6 MHz	I DD	5.56	mA
		10 MHz	I DD	6.12	mA

Workaround:

None.

Application Hints

4 Application Hints

SSC.H1: SSC Baud Rate Generation

The following description is not mentioned in the C515C User's manual 11.97 on page 6-72, for SSC baud rate generation.

BRS (2-0)	Divide Factor	Example : Baudrate for fosc = 8 MHz
0	2	reserved : can only be used for fosc 5 MHz

Note: This application hint is renamed as SSC.H1

Workaround:

None.

Application Support Group, Singapore