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1 Introduction 
 
TriCore, the new processors family generation based on TC1.6 core provides high performance architecture for 
embedded applications. To fully utilize its capability, the necessary steps involving hardware configuration and 
software optimization are described for achieving the best application performance. 

Hardware configuration is a well defined task of parameters setting appropriate for defined target system. 
Completeness and correctness of these settings are crucial for best performance. Software optimization is 
iterative process of compiler/linker settings with no clear convergence to optimum. Interaction between various 
settings and not unique best selection satisfying all application functions determine the optimization complexity. 

This application note will guide you through the optimization process to achieve best application performance. 
Included application benchmarks results will demonstrate the effect of various optimization settings. 

1.1 Naming Convention 

TC1.6    - TriCore Architecture V1.6   

TC1.3.1 -  TriCore Architecture V1.3.1 

TC1793 -  Processor based on TC1.6 Architecture 

TC1797 -  Processor based on TC1.3.1 Architecture  

SFR-R -  TriCore registers stored in Altium TASKING install directory under regtc179x.sfr 

1.2 Tool chain and Target Hardware 
• All included tool chain configuration data are based on Altium TASKING VX-toolset for TriCore V3.4r1. 
• Target Hardware for performance evaluation - TC1793 and TC1797 TriBoards 

1.3 Application Benchmarks 

Included 
• APP-1 Application with code size smaller than cache size, linear code with limited loops. 
• APP-2 Application with code size smaller than cache size, including many loops. 
• APP-3 Complete application with code size significantly exceeding the cache size. Intensive use of load 

store operation and integer arithmetic. 
• APP-4 DSP fixed point algorithm.   

2 Application Performance Optimization 

2.1 Performance Criteria 

In this document performance optimization and measurement will focus on 
• Code size 
• CPU execution time 
 
Performance evaluation is used to: 
• Demonstrate that the system meets performance criteria.  
• Compare two systems to find which performs better.  
• Measure what parts of the system or workload cause the system to perform badly 
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In performance testing, it is often crucial for the test conditions to be similar to the expected actual use. Included 
performance data is primary based on real applications expected to be implemented on described devices.  

2.2 Measuring Performance using TriCore Performance Counters 

Real-time measurement of core performance provides useful insights to system developers, compiler 
developers, application developers and OS developers. TriCore includes the ability to measure different 
performance aspects of the processor without any real-time effect on its execution. 

Following performance counters are integrated in the TriCore core module: 
• Dedicated counters 

o CCNT: CPU Clocks Counter 
o ICNT: Instruction Counter 

• Configurable counters, each with selectable one of four count modes  
o M1CNT:  

1. IP_DISPACTH_STALL,  2. PCACHE_HIT,  3.DCACHE_HIT,  4.TOTAL_BRANCH  
o M2CNT:  

1. LS_DISPACTH_STALL, 2. PCACHE_MISS,  3. DCACHE_MISS_CLEAN,  4. PMEM_STALL 
o M3CNT: 

1. LP_DISPACTH_STALL,  2. MULTI_ISSUE,  3. DCACHE_MISS_DIRTY,  4.  DMEM_STALL 
 
You can use directly all the available performance counters to measure execution time, instruction count or 
other values. Alternatively dedicated performance analyzing tools integrated within debuggers can be used.   

Instruction Per Cycle (IPC) defined as ratio of (Number of Instruction)/(CPU Clocks) is very useful as a measure 
of optimization progress. It reflects a compiler configuration quality, efficiency of memory system and code/data 
location.   

 Figure 1 shows measured IPC values of some representative benchmarks using TriCore Performance 
Counters and calculated by ratio of ICNT/CCNT. This measurement is very accurate and can be evaluated 
without any special equipment.  
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// Start Measure 
   t1a=__mfcr(CCNT); 
   t1b=__mfcr(ICNT); 
    
   Benchmark(); 
 
// Stop Measure 
  t2a=__mfcr(CCNT); 
  t2b=__mfcr(ICNT); 
  cpu_clk = t2a-t1a; 
  instr_cnt = t2b-t1b; 
 
 
// CCNT, ICNT are  
// defined in SFR file 

Figure 1 IPC  Measurement with TriCore Performance Counters 

Note: Performance Counters need be enabled before can be used. 
To enable all the counters set the CCTRL.CE bit to 1. 
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3 Hardware Configuration 
Hardware configuration is a well defined task of parameters setting, appropriate for defined target system, 
including: 
• CPU and other clocks frequencies 
• Flashes wait states 
• ICACHE and DCACHE configuration 

3.1 CPU Clock 

CPU Clock is the most fundamental configuration parameter having impact on the other system settings and a 
primary factor determining execution time. 

 Figure 2 shows the clock control unit providing separate clocks for several TriCore modules.  Each clock 
frequency is configurable by the dedicated divider driven by PLL or PLL_ERAY clocks. Output frequency is the 
result of the input frequency and the divider value. Due to common input clock the output frequency to each 
module is not free selectable. Maximal allowable frequencies and some defined constraint determine the 
possible clocks frequencies. 
 

 

Figure 2 Clock Control Unit 
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Rules for calculation of modules clocks: 
• fCPU: fFSI  1:1 or 2:1  
• fCPU: fFPI  n:1 (n = 1...16)  
• fPCP: fFPI  1:1 or 2:1  
• fFPI: fMCDS 1:n or special case fFPI : fMCDS = 2:3  
• fCPU: fSRI  1:1 
• fMCDS: fCPU 1:2; 1:1 or 2:1 
• fBBB: fMCDS 1:1 or 1:2  
 

Table 1 Examples of modules clocks configuration 
fPLL  
[MHz] 

SRIDIV 
 

fCPU 
[MHz] 

FSIDIV fFSI 
[MHz] 

PCPDIV fPCP 
[MHz] 

FPIDIV fFPI 
[MHz] 

600 1 300 3 150 2 200 5 100 
520 1 260 3 130 2 173.3 5 86.6 
200 0 200 1 100 0 200 1 100 

 
Note: In the  Table 1 to have the real clock divider values you need add 1 to the table FSDIV values (e.g. FSIDIV 

= 3 means divide by (3+1) ) 

Note: Configuration of PLL Module used for generation of CPU Clock involves correct sequence of register 
configuration, monitoring of lock condition and final configuration. 
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3.2 Memory System 
The gap between processor and memory performance is steadily growing. To compensate this speed 
differences, primary between PMU Flash units and the TriCore CPU, two 16KB caches ICACHE for instruction 
and DCACHE for data are part of TriCore memory hierarchy. 32KB Program Scratchpad RAM (PSPR) and 
128KB Data Scratchpad RAM (DSPR) provides a fast, deterministic program fetch and data access for use by 
performance critical code sequences. 
  

PMI

32KB PSPR  
16KB ICACHE

TriCore
CPU

DMI

128KB DSPR
16KB DCACHE

PMU0

2MB PFlash
192KB DFlash
16KB BROM

XBAREBU

PMU1

2MB PFlash

LMU

128KB SRAM

EXT
RAM

EXT
Flash

Cross Bar Interconnect (SRI)

Bridge

16KB PRAM

32KB CMEM

PCP2
Core

 
Figure 3 TriCore Memory Hierarchy (TC1.6) 

 Table 2 contains additional details of available TriCore memories, organized from the fasted to slowest. 
“Memory Config. WS” column includes a memory configurable wait states which should be set according to 
working conditions. Segment NC/C (not cacheable/cacheable) column contains segments addressable by each 
memory and whether it’s cacheable or not.  
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Table 2 TriCore TC1.6  Memories (Start from fastest)  
Memory Type Memory Config. 

Wait States (WS)
Segment NC*
Segment C 

Remarks 

PSPR:  
Program Scratch-Pad RAM 

- 0xC 
- 

Used for deterministic and performance 
critical code (e.g. DSP Algorithms, OS) 

ICACHE: 
Instruction Cache 

- - Reduce significantly average access time 
for memories using cacheable segments 

DSPR: 
Data Scratch-Pad RAM 

- 0xD 
- 

Used for deterministic and performance 
critical data access (e.g. DSP alg., OS) 

DCACHE:  
Data Cache 

- - Reduce significantly average access time 
for memories using cacheable segments 

PMU0 - PFlash:  
Program Flash              

1..15 
 

0xA 
0x8 

See WS  Table 3 

PMU1 - PFlash:  
Program Flash 

1..15 
 

0xA 
0x8 

See WS  Table 3 

LMU SRAM - 0xB 
0x9 

Used as overlay RAM, general data and 
code 

EXT RAM Memory type 
dependent 

0xA 
0x8 

To be set according to used memory type 
and EBU frequency 

EXT FLASH Memory type 
dependent 

0xA 
0x8 

To be set according to used memory type 
and EBU frequency 

*NC –Not cacheable, C- Cacheable 

3.2.1 PMU0 and PMU1 Flash memories 

CPU and PMU-Flashes are connected to separate clocks which are derived from the same PLL output but using 
dedicated clock dividers SRIDIV and FSIDIV. Flashes and CPU can use the same clock frequency if it doesn’t 
exceed 150 MHz, otherwise higher FSIDIV value need be used because FSI frequency is limited to 150MHz. 

The required number of wait states for an initial access to PFlash or DFlash is related to the maximum FSI 
frequency. Because the default after reset is a worst case setting sufficient for all frequencies, the access times 
have to be configured by the user according to the application’s frequency for optimum performance. This 
configuration of wait states (in number of FSI clock cycles) must be configured via the 4-bit-fields “WSPFLASH” 
and “WSDFLASH” in register FCON (Flash Configuration Register). 

 Table 3 includes example configurations for some selected CPU frequencies of the TC1.6 derivatives. PLL 
frequency determines the FSIDIV value which is selected to keep the FSI frequency below 150MHz. 

Table 3 PMU0, PMU1 Flash wait states (WS) with PFLASH Ta=26 ns and DFLASH Ta=50 ns 
fPLL  
[MHz] 

SRIDIV 
 

fCPU 
[MHz] 

FSIDIV fFSI 
[MHz] 

PFlash 
WS 

Computed

PFlash 
WS 

Rounded 

DFlash 
WS 

Computed 

DFlash 
WS 

Rounded 
600 1 300 3 150 3.9 4 7.5 8 
520 1 260 3 130 3.4 4 6.5 7 
200 0 200 1 100 2.6 3 5.0 5 

 
Note: The calculated wait states are relative to the fFSI. To calculate the wait states relative to fCPU  

WScpu =( fCPU / fFSI) * WS. e.g. PFlash WS relative to CPU are 8, 8, 6 
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3.2.1.1 PMU0 and PMU1 Flashes wait states configuration 
To configure FSI clock divider use CCUCON0 register (SFR-R SCU_CCUCON0) 
• FSIDIV = [19:16] bits (Divide Value = FSIDIV+1, e.g. FSIDIV=3 means divide by 4)  

 
To configure PMU0 Program and Data Flash wait states use FLASH0 register FCON (SFR-R FLASH0_FCON) 
bit fields: 
• WSPFLASH =  [3:0] bits 
• WSECPF     =  [4] bit 
• WSDFLASH =  [11:8] bits 
• WSECDF     =  [12] bit 
 
To configure PMU1 Program and Data Flash wait states use FLASH1 register FCON (SFR-R FLASH1_FCON) 
bit fields: 
• WSPFLASH =  [3:0] bits 
• WSECPF     =  [4] bit 
• WSDFLASH =  [11:8] bits 
• WSECDF     =  [12] bit 
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Figure 4 IPC versus PMU0 Program Flash wait states 

3.2.2 Caches: ICACHE and DCACHE 

16KB of ICACHE and 16KB DCACHE are used to reduce an average access time of much slower but much 
bigger PMU0/PMU1 Flashes, LMU RAM and external RAM/Flash. The code and data used can be fully 
cacheable partially or not cacheable depended on application requirements. 
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3.2.3 Instruction Cache ICACHE 

The ICACHE is a four-way set-associative cache with a Pseudo Least-Recently-Used (PLRU) replacement 
algorithm. Each ICACHE line contains 256 bits of instruction along with a single associated valid bit and 
associated ECC bits. 

Code located in PMU0/PMU1, external RAM/Flash or LMU will be cacheable if all conditions are fulfilled 
• Code located in 0x8 segment (not LMU) 
• Code located in 0x9 segment (LMU) 
• ICACHE enabled (default, not configurable) 
• ICACHE bypass deactivated 
 
Code located in PMU0/PMU1, external RAM/Flash or LMU will be not cacheable if one of the conditions is 
fulfilled 
• Code located in 0xA segment (not LMU) 
• Code located in 0xB segment (LMU) 
• ICACHE bypass activated  
 
Note: By default all the segments are defined as described above. Still there is additional register PMA0 that can 

partially change the cacheability of some segments.  

Note: Code can be located in 0x8 segment but still be not cacheable or in case of LMU 0x9 segment. 

Note: If some code should be not cacheable (e.g. deterministic behavior) locate it in 0xA segment or in case of 
LMU 0xB segment. 

Code located in following memories can be cacheable: 
• PMU0-PFlash and BROM 
• PMU1-PFlash 
• External memories 
• LMU 

3.2.4 Data Cache: DCACHE 

Four-way set associative cache, Pseudo least recently used (PLRU) replacement algorithm 
• Cache line size: 256 bits 
• Validity granularity: One valid bit per cache line 
• Write-back Cache: Writeback granularity: 256 bits 
• Refill mechanism: full cache line refill 
 
Data located in PMU0/PMU1, External RAM/Flash and LMU will be cacheable if all conditions are fulfilled 
• Data located in 0x8 segment (not LMU) 
• Data located in 0x9 segment (LMU) 
• DCACHE enabled (default, not configurable) 
• DCACHE bypass deactivated 
 
Data located in PMU0/PMU1, External RAM/Flash or LMU will be not cacheable if one of the conditions is 
fulfilled 
• Data located in 0xA segment (not LMU) 
• Data located in 0xB segment (LMU) 
• DCACHE bypass activated  
 
Note: By default all the segments are defined as described above. Still there is additional register PMA0 that can 

partially change the cacheability of some segments.  

Note: Data can be located in 0x8 segment but still be not cacheable or in case of LMU 0x9 segment. 
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Note: If some data should be not cacheable (e.g. deterministic behavior) locate it in 0xA segment or in case of 
LMU 0xB segment. 

Data located in following memories can be cacheable: 
• PMU0-PFlash, DFlash 
• PMU1-PFlash 
• External memory 
• LMU 

3.2.5 ICACHE and DCACHE configuration 

After reset DCACHE and ICACHE are enabled but bypassed. 

To use ICACHE you need to disable the bypass: 
• Set configuration register PCON0.PCBYB=0 (SFR-R PCON0) 
 
To use DCACHE you need to disable the bypass: 
• Set configuration register DCON0.PCBYB=0 (SFR-R  DCON0) 
 

3.2.6 Evaluating execution time in cacheable architecture 

Application code or benchmarks which need to be optimized and the achieved execution speed measured often 
include a small selected part of application or in special cases a complete code. During optimization process 
reducing of execution time is one of most important targets. The progress can be evaluated based on relative 
performance compared to other setting measured under the same conditions.  

In case the absolute (not relative) execution times are important, the caches impact under different test 
condition is noticeable and the results interpretation is not straight forward. By running the same application 
more than one time (assume the same code and conditions are met) it can be observed different run time 
values for the first and following tests. Different behavior can be also observed for small code size fully matching 
in cache and big application causing cache swapping. 

In case of small applications, first execution start with empty cache while in following tests the complete code 
and data are in caches, executing as fast as from scratch pad rams. The run time differences are dependent on 
the code data structure as seen in  Figure 5 APP-1 and APP-2. Small differences are hints to insensitivity to 
cache swapping and flashes wait states using cacheable segments. Mapping of the first/second execution time 
results to the real execution environment is not straightforward. 

In case of big application, the cache swapping takes place already in the first and the following tests. The 
execution time of the second run should be similar to real execution environment.    
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Figure 5 IPC dependency on ICACHE and DCACHE states (run1, run2) 
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4 Application Software 

4.1 Compiler Optimizations 

The most significant opportunity for influencing the performance of a given application is by compiler and linker 
optimizations. Optimizing is a tradeoff between code size and performance. Code optimization is primary 
controlled by set of optimization flags which together makes optimization profile. Some proved predefined 
optimization profiles are usually provided by compiler vendors with additional tradeoff parameter for speed or 
code size. 

Application performance optimization is an iterative process of  
• Selecting optimization profile 
• Executing 
• Result recording of execution time and code size 
• Comparing to other result 
• Repeating if not satisfied  
 

Two main approaches can be used 
• Global Optimization: the same optimization setting is applied to complete code 
• Profiling driven selective optimization: based on profiling information the critical functions are identified and 

the best (custom) optimization is applied.  
 

The focus in this document is on global optimization. Included results are also based on global optimization. 
 
Note: Before you start with compiler optimization you should be aware that many options are predefined (having 

default values) influencing the performance without explicitly be defined. To see option summary including 
their default values run the ctc.exe using -? option ( ctc -?)  located in Altium TASKING compiler directory  

4.1.1 Predefined compiler configurations 

Unless you have your proven preferred configuration you should start the optimization process with available 
predefined optimization profiles -O0 till –O3.  

Table 4 Predefined compiler optimization profiles 
optimize[=flags] 
-Oflags 

Description 

--optimize=0 
-O0 

No optimization 
Alias for -OaCEFGIKLMNOPRSUVWY 

--optimize=1 
-O1 

Optimize 
Alias for -OaCefgIKLMNOPRSUVWy 

--optimize=2 
-O2 

Optimize more (default) 
Alias for -OacefgIklMNoprsUvwy 

--optimize=3 
-O3 

Optimize most 
Alias for -OacefgiklmNoprsuvwy 

 

The predefined optimizations profiles including 18 compiler optimization flags (small letter means active) 
building proven recommended configuration. You can see the differences between various settings by 
comparing the different letters. For example –O3 has two additional optimization activated m and u. You can 
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use your own setting by explicitly defining all options (letters) or make small modification to available 
configuration e.g. to use -O2 but disable code compaction (r/R) use –O2 –OR.  

Table 5 C Compiler Flags definitions  
--optimize[=flags] -O[=flags] Description 
+/-coalesce a/A Coalescer: remove unnecessary moves 
+/-cse c/C Common sub expression elimination 
+/-expression e/E Expression simplification 
+/-flow f/F Control flow simplification 
+/-glo g/G Generic assembly code optimizations 
+/-inline i/I Automatic function inlining 
+/-schedule k/K Instruction scheduler 
+/-loop l/L Loop transformations 
+/-simd m/M Perform SIMD optimizations 
+/-align-loop n/N Align loop bodies 
+/-forward o/O Forward store 
+/-propagate p/P Constant propagation 
+/-compact r/R Code compaction (reverse inlining) 
+/-subscript s/S Subscript strength reduction 
+/-unroll u/U Unroll small loops 
+/-ifconvert v/V Convert IF statements using predicates 
+/-pipeline w/W Software pipelining 
+/-peephole y/Y Peephole optimizations 

 

Optimization profiles are always extended and influenced by –tradeoff parameter controlling the balance of 
speed versus code size.   

4.1.2 Optimizations Tradeoffs:  speed vs. code size 

Important part of the optimization is finding appropriate tradeoff between code size and performance. Using 
trade of parameter --tradeoff={0|1|2|3|4} or -t{0|1|2|3|4} with default: --tradeoff=4 optimize for size. 

--tradeoff=0:  optimize for speed 

--tradeoff=4:  optimize for code size 

--tradeoff=2:  balance for speed and size 

 

If the compiler uses certain optimizations (e.g. –O2), you can use this option to specify whether the used 
optimizations should optimize for more speed (regardless of code size) or for smaller code size (regardless of 
speed). 

If you have not specified the option –optimize (or –O), the compiler uses the default Optimize more optimization 
(-O2). In this case it is still useful to specify a trade-off level. 

It is recommended to start with -O2 and --tradeoff=2 setting, analyzing the speed and code size variation as 
you modifying the Optimization (-O) and --tradeoff settings using your target Application. 

Additionally to compiler optimization settings, using of efficient addressing modes can improve significantly 
overall performance and code size as described in next paragraphs.   
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4.1.3 Short addressing 

TriCore Architecture has an address width of 32 bit and can access up to 4 GB of memory. Within limited 
addressing ranges more efficient code and faster execution time can be achieved. Absolute addressing is 
available for the first 16 KB of each segment. Base + Long Offset addressing using global Base Registers (A0, 
A1, A8, A9) provide efficient data access in the address range of 64KB. Appropriate tool-chain settings are 
required to use these memory segments. 

4.1.3.1 Near Addressing 
 Figure 6 shows the location of near segments occupying first 16kB of each TriCore 256MB memory segment. . 
You can use it to locate variables (initialized or not) and constants. The included example demonstrates the 
efficiency of absolute addressing used in near segment.  Table 6 shows the memories suitable for near 
addressing. 

Note: Do not block near segment with CSA, Stacks, etc. that are not accessed with near addressing 
 

 

Figure 6 Near versus far Addressing 

Table 6 Memories suitable for near data addressing (memories including 0..0x3FFF range) 
Memory  Data types Compiler default Section 
PMU0-PFlash constant .zrodata 
DSPR variables  initialized, uninitialized  .zdata  .zbss  .nearnoclear 
LMU variables  initialized, uninitialized .zdata  .zbss  .nearnoclear 
 

4.1.3.2 Configuration for near addressing 

Near addressing can be enabled by 
• Compiler option: --default-near-size [=threshold] 

(To put all data objects with a size of [threshold] bytes or smaller in __near sections (default threshold =8)) 
• Pragma in C source code: default_near_size [value] [default | restore] 
• Memory qualifier: __near 
By using compiler option, the setting is valid for the entire program unless not the same options are used for all 
modules. Pragmas overrules the compiler options and can be used for defined code blocks. With __near 
memory qualifier you can control the location for single data objects. 
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4.1.3.3 Base + Long Offset addressing using global Base Registers (A0, A1, A8, A9) 
 Figure 7 shows the location of A0/A1, A8/A9 addressing range occupying 64kB memory segment. The simple 
example demonstrates the efficiency of this addressing mode.  
 

 

Figure 7 A0/A1 versus far addressing  
 

A0 register is only available for variables (initialized or not). A1 register is only available for constants. In case of 
A8 and A9 both are available for variables (initialized or not) and constants. 

Table 7 Memories suitable for A0/A1 addressing 
Memory  Data types Compiler default Section 
PMU0-PFlash Constant (A0) .ldata 
DSPR* variables  initialized, uninitialized (A1) .sdata  .sbss  
LMU variables  initialized, uninitialized (A1) .sdata  .sbss 
Ext. RAM variables  initialized, uninitialized (A1) .sdata  .sbss 
Ext. FLASH Constant (A0) .ldata 

Table 8 Memories suitable for A8/A9 addressing 
Memory  Data types Compiler default Section 
PMU0-PFlash constant .rodata_a8 or .rodata_a9 
DSPR* variables  initialized, uninitialized  .data_a8 .bss_a8  or .data_a9 .bss_a9 
LMU variables  initialized, uninitialized .data_a8, .bss_a8  or .data_a9 .bss_a9 
Ext. RAM variables  initialized, uninitialized .data_a8 .bss_a8  or .data_a8 .bss_a9 
Ext. FLASH constant .rodata_a8 or .rodata_a9 
 

4.1.3.4 Configuration for A0 / A1 and A8 / A9 addressing 
A0/A1 addressing can be enabled by 
• Compiler option: --default-a0-size [=threshold] 

(To put all data objects with a size of [threshold] bytes or smaller in A0 section (default threshold =0)) 
• Compiler option: --default-a1-size [=threshold] 

(To put all data objects with a size of [threshold] bytes or smaller in A1 section (default threshold =0)) 
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• Pragma in C source code: default_a0_size [value] [default | restore] 
• Pragma in C source code: default_a1_size [value] [default | restore] 
• Memory qualifier: __a0, __a1 
 
A8/A9 addressing can be enabled by 
• Memory qualifier: __a8, __a9 
 
By using compiler option, the settings are valid for the entire program unless not the same options are used for 
all modules. Pragmas overrules the compiler options and can be used for defined code blocks. With __a0, __a1, 
__a8, __a9 memory qualifier you can control the location for single data objects. 

 

Note: A8/A9 location options doesn’t include default-a8/a9-size with threshold as in A0/A1 (e.g. --default-a1-
size) 

4.1.3.5 Qualifiers controlling all addressing modes 

Following qualifiers controlling all addressing modes 
• for_constant_data_use_memory memory 
• for_extern_data_use_memory memory 
• for_initialized_data_use_memory memory 
• for_uninitialized_data_use_memory memory 

 
Use the specified memory for the type of data mentioned in the pragma name. You can specify the following 
memories: near, far, a0, a8 or a9. For pragma for_constant_data_use_memory you can also specify the a1 
memory. 

4.1.4 Memory Location (Typical Use Case) 
 

 

Figure 8 Memory locations (Typical Use Case) 

 

Application Note 19 V1.0, 2011-03  



 AP32168 
Application Performance Optimization for TriCore V1.6  Architecture 

 
  Application Software 

4.2 Linker Script files 

TriCore memory system with its hierarchy of different memories and caches plays important role in overall 
system performance. Controlling the location of data and code whether it should be cacheable or not in fast or 
slow memories is primary resolved by linker scripts files. Altium TASKING provides predefined linker script file 
for each device stored in *.lsl files    

4.3 Additional optimization options 

You can further improve the performance of your software if following measures are suitable to your application. 

4.3.1 Floating-point arithmetic/algorithms 
FPU: TriCore architecture includes high performance IEEE-754 compliant single-precision Floating Point Unit. 
Set the compiler option –fpu-present to use the FPU instead of emulation library. 

Double as float: In some cases double precision floating point data is included in the source code (e.g. model 
based automatic code generation) but single precision can be used. By setting --no-double option the compiler 
treats variables of the type double as float. 

Exception handling: Hardware implemented FPU exception monitoring with appropriate trapping functionality 
releasing the application from continuous monitoring in software  

4.3.2 Fixed-point arithmetic/algorithms 
TriLib - TriCore DSP Library: Hand-coded assembly implemented C-callable highly optimized library of 
common DSP algorithms using fixed-point arithmetic. 

4.3.3 Intrinsic Functions 

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to use 
these instructions. Intrinsic functions are predefined functions that are recognized by the compiler which always 
inlines the corresponding assembly instructions in the assembly source (rather than calling it as a function). 

Table 9 Intrinsic Functions overview 
Intrinsic functions groups Example Description 

Minimum and maximum of (short) integers int __min( int, int ) Return minimum of two integers 

Fractional data type support __sfract __round16( __fract ) Convert __fract to __sfract 

Packed data type support char __extractbyte1( __packb 
) 

Extract first byte from a __packb 

Interrupt handling void __enable ( void ) Enable interrupts immediately at 
function entry 

Insert single assembly instruction void __nop( void ) Insert NOP instruction 

Register handling int __clz ( int ) Count leading zeros in int 

Insert / extract bit-fields and bits void __putbit( int value, int* 
address, int bitoffset ) 

Store a single bit 
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4.3.4 Inline assembler 

Using inline assembly you can use assembly instructions in the C source and pass C variables as operands to 
the assembly code. Primary usable for small and efficient code sequences or target specific operations not 
available in ANSI-C. 

5 Performance Optimization Checklist 

Table 10 Hardware Configuration 
Description Details Default (after reset) 

CPU Clock Check the CPU Clock frequency See  3.1  Free running mode (~17 MHz) 
ICACHE Verify the ICACHE is usable = bypass is disabled

See  3.2.5 
Enabled but bypassed 

DCACHE Verify the DCACHE is usable = bypass is 
disabled See  3.2.5 

Enabled but bypassed 

PMU0 FLASH0, 
PMU1 FLASH1 

Check the wait state setting for PFLASH and 
DFLASH see  3.2.1.1 

PFLASH 8 wait states 
DFLASH 15 wait states 

Performance Counters To be used need first be enabled see  Note: Disabled 
 
 

Table 11 Software Configuration 
Description Details Default 

Compiler configuration To check used compiler configuration see  *.src 
generated files. 

You can see the defaults settings 
by running ctc -? 

Linker configurations 
and location 

Check the MAP file to control used memories,  
segments and data/code location 

- 

Using of cacheable 
segments 

To use caches, additionally to HW configuration 
the code/data need to be located in cacheable 
segment see  3.2.3 and  3.2.4 

- 

Using FPU FPU should be used instead of emulation library. 
To verify check MAP file, should include 
libc_fpu.a or  libcs_fpu.a and libfp_fpu.a. 
See  4.3.1 and  Table 17 

Derived from --cpu option or 
explicitly defined by                      
--fpu-present 

Double as Single If applicable, replace double with single 
precision.  libcs_fpu.a instead of libc_fpu.a will be 
used. See  4.3.1 and  Table 17 

Not set. 

 

6 Performance relevant differences TC1.6 vs. TC1.3.1   
TriCore 1.6 architecture includes many hardware improvements having impact on the application performance 
but not visible for software developer. Still there are changes as longer pipeline, new instruction or extended 
instruction functionality having impact on performance and should be considered in optimization process. 

6.1 Pipeline 

Longer pipeline of TC1.6 has impact on optimal coding for dual issue instruction involving the Load/Store and 
Integer pipeline. It is primary relevant for hand-coded assembly implementations. In case of C- language the 
compiler is already adapted to handle this change. 
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6.2  Base + Long Offset addressing 

TC1.3.1 Load/Store instructions using Base + Long offset addressing is limited to Word data type. 

TC1.6 supports Word, Halfword and Byte data types. This addressing mode, used for A0/A1 and A8/A9 
addressing segments, can be used for all three data types over full segment range of 64 KB. 

6.3  Hardware Floating Point Unit (FPU) 

TC1.6 implements a fully pipelined FPU working in parallel with the existing integer pipeline. Overall higher 
floating point performance is expected. 

6.4 Integer Division 

TC1.3.1 32bit/32bit division ~20cyc 

dvinit e8,d4,d0 
dvstep  e8,e8,d0  
dvstep e8,e8,d0    
dvstep e8,e8,d0 
dvstep e8,e8,d0 
dvadj e8,e8,d0 

TC1.6 new instructions DIV & DIV.U have been implemented executing in ~9 cycles. 

6.5 Performance TC1.6 vs. TC1.3.1 architecture 

 Figure 9 and  Figure 10 shows the performance comparison of both architectures using the same test 
conditions. Usually the new TC-1.6 architecture is faster and generated smaller code size.  
 
 

 

Figure 9 Execution Time of TC-1.6 vs. TC-1.3.1 (same configuration and CPU Clk) 
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Figure 10 Code Size of TC-1.6  vs. TC-1.3.1 (same configuration and CPU Clk) 
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8 Appendix A 
Summary of Altium TASKING configuration options and naming conventions 

8.1 Compiler Options  

Table 12 Compiler Options (command line syntax) 
Long option name 
Short option name 

Default Description 

optimize[=flags] 
-Oflags 

-O2 C Compiler optimization options.  
Options can have flags or suboptions. To switch a flag 'on', 
use a lowercase letter or a +longflag. To switch a flag off, use 
an uppercase letter or a -longflag. Separate longflags with 
commas. See also  Table 13 and  Table 14. 

--tradeoff={0|1|2|3|4} 
 
-t{0|1|2|3|4} 

4 If the compiler uses certain optimizations (option --optimize), 
you can use this option to specify whether the used 
optimizations should optimize for more speed (regardless of 
code size) or for smaller code size (regardless of speed). 

--default-near-size 
[=threshold] 
 
-N[threshold] 

8 With this option you can specify a threshold value for __near 
allocation. If you do not specify __near or __far in the 
declaration of an object, the compiler chooses where to place 
the object. The compiler allocates objects smaller or equal to 
the threshold in __near sections. Larger objects are allocated 
in __a0, __a1 or __far sections. 
If you omit a threshold value, all objects will be allocated 
__near, including arrays and string constants. 

--default-a0-size  
[=threshold] 
 
-Z[threshold] 
 

0 Used for data: initialized/uninitialized  (a0data,a0bss) 
Allocation in __a0 memory means that the object is addressed 
indirectly, using A0 as the base pointer. 
The total amount of memory that can be addressed this way is 
64 KB. 
With this option you can specify a threshold value for __a0 
allocation. If you do not specify a memory qualifier such as 
__near or __far in the declaration of an object, the compiler 
chooses where to place the object based on the size of the 
object. 
First, the size of the object is checked against the near size 
threshold, according to the description of the --default-near-
size (-N) option. If the size of the object is larger than the near 
size threshold, but lower or equal to the a0 size threshold, the 
object is allocated in __a0 memory. Larger objects, arrays and 
strings will be allocated __far. 

--default-a1-size  
[=threshold] 
 
-Y[threshold] 
 

0 Same as -a0 but used for constant (a1rom) 
 

--fpu-present - With this option the compiler can generate single precision 
floating-point instructions in the assembly file. 
If you select a valid target processor (command line option --
cpu (-C)), this option is automatically set, based on the 
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chosen target processor. 
--core=core derived from --cpu, 

if used, otherwise 
tc1.3 

With --core=tc1.6, the compiler can generate TriCore 1.6 
instructions in the assembly file. 
If you select a valid target processor (command line option --
cpu (-C)), the core is automatically set, based on the chosen 
target processor 

--cpu=cpu 
-Ccpu 

- With this option you define the target processor for which you 
create your application. Based on this option the compiler 
always includes the special function register file regcpu.sfr, 
unless you disable the option Automatic inclusion of '.sfr' file 
on the Preprocessing page (option--no-tasking-sfr). 
Based on the target processor the compiler automatically 
detects whether a FPU-unit is present and whether the 
architecture is a TriCore1.6. This means you do not have to 
specify the compiler options --fpu-present and --core=tc1.6 
explicitly when one of the supported derivatives is selected. 

--switch=auto auto You can give one of the following arguments: 
auto Choose most optimal code 
jumptab Generate jump tables 
linear Use linear jump chain code 
lookup Generate lookup tables 

--align=value 0 By default the C compiler aligns objects to the minimum 
alignment required by the architecture. With this option you 
can increase this alignment for objects of four bytes or larger. 
The value must be a power of two. 

--inline-max-size= 
threshold 

-1 With the option --inline-max-size you can specify the 
maximum size of functions that the compiler inlines as part of 
the optimization process. The compiler always inlines all 
functions that are smaller than the specified threshold. The 
threshold is measured in compiler internal units and the 
compiler uses this measure to decide which functions are 
small enough to inline. The default threshold is -1, which 
means that the threshold depends on the option --tradeoff. 

--inline-max-incr= 
percentage 

-1 After the compiler has inlined all functions that have the 
function qualifier inline and all functions that are smaller than 
the specified threshold, the compiler looks whether it can 
inline more functions without increasing the code size too 
much. With the option --inline-max-incr you can specify how 
much the code size is allowed to increase. The default value 
is -1, which means that the value depends on the option --
tradeoff. 

--immediate-in-code - By default the TriCore C compiler creates a data object to 
represent an immediate value of 32 or 64 bits, then loading 
this constant value directly into a register. With this option you 
can tell the compiler to code the immediate values directly into 
the instructions, thus using less data, but more code. 
Actually when option --default-near-size < 4, 32-bit 
immediates will be coded into instructions anyhow, when it is 
>= 4 they will be located in neardata. When --default-near-size 
< 8, 64-bit immediates will be located in fardata, when it is >= 
8 they will be located in neardata as well. 

--compact-max-size= 
value 

200 This option is related to the compiler optimization --
optimize=+compact (Code compaction or reverse inlining). 
Code compaction is the opposite of inlining functions: large 
sequences of code that occur more than once are 
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transformed into a function. This reduces code size (possibly 
at the cost of execution speed). 
However, in the process of finding sequences of matching 
instructions, compile time and compiler memory usage 
increase quadratically with the number of instructions 
considered for code compaction. With this option you tell the 
compiler to limit the number of matching instructions it 
considers for code compaction. 

--max-call-depth= 
value 

-1 This option is related to the compiler optimization --
optimize=+compact (Code compaction or reverse inlining). 
During code compaction it is possible that the compiler 
generates nested calls. This may cause the program to run 
out of its stack. To prevent stack overflow caused by too 
deeply nested function calls, you can use this option to limit 
the call depth. This option can have the following values: 
-1  Poses no limit to the call depth (default) 
 0  The compiler will not generate any function calls. 
(Effectively the same as if you turned off code compaction 
with option --optimize=-compact)  
>0  Code sequences are only reversed if this will not lead to 
code at a call depth larger than specified with value. Function 
calls will be placed at a call depth no larger than value-1. 
 
(Note that if you specified a value of 1, the option --
optimize=+compact may remain without effect when code 
sequences for reversing contain function calls.) 
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8.2 Compiler optimizations flags  

Table 13 Compiler –optimize (-O) Flags (command line syntax) 
--optimize[=flags] -O[=flags] Description 
+/-coalesce a/A Coalescer: remove unnecessary moves 
+/-cse c/C Common sub expression elimination 
+/-expression e/E Expression simplification 
+/-flow f/F Control flow simplification 
+/-glo g/G Generic assembly code optimizations 
+/-inline i/I Automatic function inlining 
+/-schedule k/K Instruction scheduler 
+/-loop l/L Loop transformations 
+/-simd m/M Perform SIMD optimizations 
+/-align-loop n/N Align loop bodies 
+/-forward o/O Forward store 
+/-propagate p/P Constant propagation 
+/-compact r/R Code compaction (reverse inlining) 
+/-subscript s/S Subscript strength reduction 
+/-unroll u/U Unroll small loops 
+/-ifconvert v/V Convert IF statements using predicates 
+/-pipeline w/W Software pipelining 
+/-peephole y/Y Peephole optimizations 

 
 

8.3 Predefined compiler optimization profiles 

Table 14 Predefined compiler optimization profiles 
optimize[=flags] 
-Oflags 

Description 

--optimize=0 
-O0 

No optimization 
Alias for -OaCEFGIKLMNOPRSUVWY 

--optimize=1 
-O1 

Optimize 
Alias for -OaCefgIKLMNOPRSUVWy 

--optimize=2 
-O2 

Optimize more (default) 
Alias for -OacefgIklMNoprsUvwy 

--optimize=3 
-O3 

Optimize most 
Alias for -OacefgiklmNoprsuvwy 
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8.4 Compiler generated sections 

Table 15 Compiler generated sections 
Section type Name prefix Description 
code .text program code 
neardata .zdata initialized __near data 
fardata .data initialized __far data 
nearrom .zrodata constant __near data 
farrom .rodata constant __far data 
nearbss .zbss uninitialized __near data (cleared) 
farbss .bss uninitialized __far data (cleared) 
nearnoclear .zbss uninitialized __near data 
farnoclear .bss uninitialized __far data 
a0data .sdata initialized __a0 data 
a0bss .sbss uninitialized __a0 data (cleared) 
a1rom .ldata constant __a1 data 
a8data .data_a8 initialized __a8 data 
a8rom .rodata_a8 constant __a8 data 
a8bss .bss_a8 uninitialized __a8 data (cleared) 
a9data .data_a9 initialized __a9 data 
a9rom .rodata_a9 constant __a9 data 
a9bss .bss_a9 uninitialized __a9 data (cleared) 
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8.5 Compiler memory qualifiers 

Table 16 Compiler memory qualifiers  
Qualifiers Description Location Maximum 

object size 
Pointer 
size 

Section types 

__near 
 

Near data, direct 
addressable 

First 16 kB of a 256 MB 
block 

16 kB 32-bit neardata, nearrom, 
nearbss, nearnoclear 

__far 
 

Far data, indirect 
addressable 

Anywhere no limt 32-bit fardata, farrom, farbss, 
farnoclear 

__a0 
 

Small data Sign-extended 16-bit 
offset from address 
register A0 

64 kB 32-bit a0data, a0bss 

__a1 
 

Literal data, 
read-only 

Sign-extended 16-bit 
offset from address 
register A1 

64 kB 32-bit a1rom 

__a8 
 

Data, reserved 
for OS 

Sign-extended 16-bit 
offset from address 
register A8 

64 kB 32-bit a8data, a8rom, a8bss 

__a9 Data, reserved 
for OS 

Sign-extended 16-bit 
offset from address 
register A9 

64 kB 32-bit a9data, a9rom, a9bss 

8.6 Libraries 

Table 17 Libraries 
Libraries Description 
libc[s].a 
libc[s]_fpu.a 
 

C libraries 
Optional letter: 
s = single precision floating-point (compiler option --no-double 
_fpu = with FPU instructions (compiler option --fpu-present) 

libfp[t].a 
libfp[t]_fpu.a 
 

Floating-point libraries: 
Optional letter 
t = trapping (control program option --fp-trap 
_fpu = with FPU instructions (compiler option --fpu-present) 

librt.a Run-time library 
libpb.a 
libpc.a 
libpct.a 
libpd.a 
libpt.a 

Profiling libraries 
pb = block/function counter 
pc = call graph 
pct = call graph and timing 
pd = dummy 
pt = function timing 

libcp[s][x].a 
 
 
 

C++ libraries 
Optional letter: 
s = single precision floating-point 
x = exception handling 

libstl[s]x.a STLport C++ libraries (exception handling variants only) 
Optional letter: s = single precision floating-point 
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