

 Microcontrol lers

Tr iCore Fami ly

AP32168

Application Performance Optimization for TriCore V1.6 Architecture

Appl icat ion Note
V1.0 2011-03

Edition 2011-03
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN
THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life
support devices or systems are intended to be implanted in the human body or to support and/or maintain and
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other
persons may be endangered.

 AP32168
 Application Performance Optimization for TriCore V1.6 Architecture

Device1
Revision History: V1.0, 2011-03
Previous Version: none
Page Subjects (major changes since last revision)

We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

Application Note 3 V1.0, 2011-03

 AP32168
 Application Performance Optimization for TriCore V1.6 Architecture

 Table of Contents

Table of Contents

1 Introduction ..5
1.1 Naming Convention..5
1.2 Tool chain and Target Hardware..5
1.3 Application Benchmarks...5

2 Application Performance Optimization..5
2.1 Performance Criteria ..5
2.2 Measuring Performance using TriCore Performance Counters...6

3 Hardware Configuration ..7
3.1 CPU Clock..7
3.2 Memory System ...9
3.2.1 PMU0 and PMU1 Flash memories...10
3.2.1.1 PMU0 and PMU1 Flashes wait states configuration..11
3.2.2 Caches: ICACHE and DCACHE ..11
3.2.3 Instruction Cache ICACHE...12
3.2.4 Data Cache: DCACHE ...12
3.2.5 ICACHE and DCACHE configuration...13
3.2.6 Evaluating execution time in cacheable architecture ...13

4 Application Software ...15
4.1 Compiler Optimizations ..15
4.1.1 Predefined compiler configurations..15
4.1.2 Optimizations Tradeoffs: speed vs. code size ..16
4.1.3 Short addressing ..17
4.1.3.1 Near Addressing...17
4.1.3.2 Configuration for near addressing..17
4.1.3.3 Base + Long Offset addressing using global Base Registers (A0, A1, A8, A9).................................18
4.1.3.4 Configuration for A0 / A1 and A8 / A9 addressing ...18
4.1.3.5 Qualifiers controlling all addressing modes ...19
4.1.4 Memory Location (Typical Use Case) ..19
4.2 Linker Script files ..20
4.3 Additional optimization options...20
4.3.1 Floating-point arithmetic/algorithms ...20
4.3.2 Fixed-point arithmetic/algorithms ...20
4.3.3 Intrinsic Functions ..20
4.3.4 Inline assembler ...21

5 Performance Optimization Checklist ...21

6 Performance relevant differences TC1.6 vs. TC1.3.1 ...21
6.1 Pipeline...21
6.2 Base + Long Offset addressing..22
6.3 Hardware Floating Point Unit (FPU)...22
6.4 Integer Division...22
6.5 Performance TC1.6 vs. TC1.3.1 architecture ..22

7 References ..24

8 Appendix A ...25
8.1 Compiler Options..25
8.2 Compiler optimizations flags ..28
8.3 Predefined compiler optimization profiles ..28
8.4 Compiler generated sections ...29
8.5 Compiler memory qualifiers ...30
8.6 Libraries..30

Application Note 4 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Introduction

1 Introduction

TriCore, the new processors family generation based on TC1.6 core provides high performance architecture for
embedded applications. To fully utilize its capability, the necessary steps involving hardware configuration and
software optimization are described for achieving the best application performance.

Hardware configuration is a well defined task of parameters setting appropriate for defined target system.
Completeness and correctness of these settings are crucial for best performance. Software optimization is
iterative process of compiler/linker settings with no clear convergence to optimum. Interaction between various
settings and not unique best selection satisfying all application functions determine the optimization complexity.

This application note will guide you through the optimization process to achieve best application performance.
Included application benchmarks results will demonstrate the effect of various optimization settings.

1.1 Naming Convention

TC1.6 - TriCore Architecture V1.6

TC1.3.1 - TriCore Architecture V1.3.1

TC1793 - Processor based on TC1.6 Architecture

TC1797 - Processor based on TC1.3.1 Architecture

SFR-R - TriCore registers stored in Altium TASKING install directory under regtc179x.sfr

1.2 Tool chain and Target Hardware
• All included tool chain configuration data are based on Altium TASKING VX-toolset for TriCore V3.4r1.
• Target Hardware for performance evaluation - TC1793 and TC1797 TriBoards

1.3 Application Benchmarks

Included
• APP-1 Application with code size smaller than cache size, linear code with limited loops.
• APP-2 Application with code size smaller than cache size, including many loops.
• APP-3 Complete application with code size significantly exceeding the cache size. Intensive use of load

store operation and integer arithmetic.
• APP-4 DSP fixed point algorithm.

2 Application Performance Optimization

2.1 Performance Criteria

In this document performance optimization and measurement will focus on
• Code size
• CPU execution time

Performance evaluation is used to:
• Demonstrate that the system meets performance criteria.
• Compare two systems to find which performs better.
• Measure what parts of the system or workload cause the system to perform badly

Application Note 5 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Application Performance Optimization

In performance testing, it is often crucial for the test conditions to be similar to the expected actual use. Included
performance data is primary based on real applications expected to be implemented on described devices.

2.2 Measuring Performance using TriCore Performance Counters

Real-time measurement of core performance provides useful insights to system developers, compiler
developers, application developers and OS developers. TriCore includes the ability to measure different
performance aspects of the processor without any real-time effect on its execution.

Following performance counters are integrated in the TriCore core module:
• Dedicated counters

o CCNT: CPU Clocks Counter
o ICNT: Instruction Counter

• Configurable counters, each with selectable one of four count modes
o M1CNT:

1. IP_DISPACTH_STALL, 2. PCACHE_HIT, 3.DCACHE_HIT, 4.TOTAL_BRANCH
o M2CNT:

1. LS_DISPACTH_STALL, 2. PCACHE_MISS, 3. DCACHE_MISS_CLEAN, 4. PMEM_STALL
o M3CNT:

1. LP_DISPACTH_STALL, 2. MULTI_ISSUE, 3. DCACHE_MISS_DIRTY, 4. DMEM_STALL

You can use directly all the available performance counters to measure execution time, instruction count or
other values. Alternatively dedicated performance analyzing tools integrated within debuggers can be used.

Instruction Per Cycle (IPC) defined as ratio of (Number of Instruction)/(CPU Clocks) is very useful as a measure
of optimization progress. It reflects a compiler configuration quality, efficiency of memory system and code/data
location.

 Figure 1 shows measured IPC values of some representative benchmarks using TriCore Performance
Counters and calculated by ratio of ICNT/CCNT. This measurement is very accurate and can be evaluated
without any special equipment.

Higher is better

0.476

0.898

0.554

1.700

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

APP-1 APP-2 APP-3 APP-4

IP
C

// Start Measure
 t1a=__mfcr(CCNT);
 t1b=__mfcr(ICNT);

 Benchmark();

// Stop Measure
 t2a=__mfcr(CCNT);
 t2b=__mfcr(ICNT);
 cpu_clk = t2a-t1a;
 instr_cnt = t2b-t1b;

// CCNT, ICNT are
// defined in SFR file

Figure 1 IPC Measurement with TriCore Performance Counters

Note: Performance Counters need be enabled before can be used.
To enable all the counters set the CCTRL.CE bit to 1.

Application Note 6 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

3 Hardware Configuration
Hardware configuration is a well defined task of parameters setting, appropriate for defined target system,
including:
• CPU and other clocks frequencies
• Flashes wait states
• ICACHE and DCACHE configuration

3.1 CPU Clock

CPU Clock is the most fundamental configuration parameter having impact on the other system settings and a
primary factor determining execution time.

 Figure 2 shows the clock control unit providing separate clocks for several TriCore modules. Each clock
frequency is configurable by the dedicated divider driven by PLL or PLL_ERAY clocks. Output frequency is the
result of the input frequency and the divider value. Due to common input clock the output frequency to each
module is not free selectable. Maximal allowable frequencies and some defined constraint determine the
possible clocks frequencies.

Figure 2 Clock Control Unit

Application Note 7 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

Rules for calculation of modules clocks:
• fCPU: fFSI 1:1 or 2:1
• fCPU: fFPI n:1 (n = 1...16)
• fPCP: fFPI 1:1 or 2:1
• fFPI: fMCDS 1:n or special case fFPI : fMCDS = 2:3
• fCPU: fSRI 1:1
• fMCDS: fCPU 1:2; 1:1 or 2:1
• fBBB: fMCDS 1:1 or 1:2

Table 1 Examples of modules clocks configuration
fPLL
[MHz]

SRIDIV

fCPU
[MHz]

FSIDIV fFSI
[MHz]

PCPDIV fPCP
[MHz]

FPIDIV fFPI
[MHz]

600 1 300 3 150 2 200 5 100
520 1 260 3 130 2 173.3 5 86.6
200 0 200 1 100 0 200 1 100

Note: In the Table 1 to have the real clock divider values you need add 1 to the table FSDIV values (e.g. FSIDIV

= 3 means divide by (3+1))

Note: Configuration of PLL Module used for generation of CPU Clock involves correct sequence of register
configuration, monitoring of lock condition and final configuration.

Application Note 8 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

3.2 Memory System
The gap between processor and memory performance is steadily growing. To compensate this speed
differences, primary between PMU Flash units and the TriCore CPU, two 16KB caches ICACHE for instruction
and DCACHE for data are part of TriCore memory hierarchy. 32KB Program Scratchpad RAM (PSPR) and
128KB Data Scratchpad RAM (DSPR) provides a fast, deterministic program fetch and data access for use by
performance critical code sequences.

PMI

32KB PSPR
16KB ICACHE

TriCore
CPU

DMI

128KB DSPR
16KB DCACHE

PMU0

2MB PFlash
192KB DFlash
16KB BROM

XBAREBU

PMU1

2MB PFlash

LMU

128KB SRAM

EXT
RAM

EXT
Flash

Cross Bar Interconnect (SRI)

Bridge

16KB PRAM

32KB CMEM

PCP2
Core

Figure 3 TriCore Memory Hierarchy (TC1.6)

 Table 2 contains additional details of available TriCore memories, organized from the fasted to slowest.
“Memory Config. WS” column includes a memory configurable wait states which should be set according to
working conditions. Segment NC/C (not cacheable/cacheable) column contains segments addressable by each
memory and whether it’s cacheable or not.

Application Note 9 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

Table 2 TriCore TC1.6 Memories (Start from fastest)
Memory Type Memory Config.

Wait States (WS)
Segment NC*
Segment C

Remarks

PSPR:
Program Scratch-Pad RAM

- 0xC
-

Used for deterministic and performance
critical code (e.g. DSP Algorithms, OS)

ICACHE:
Instruction Cache

- - Reduce significantly average access time
for memories using cacheable segments

DSPR:
Data Scratch-Pad RAM

- 0xD
-

Used for deterministic and performance
critical data access (e.g. DSP alg., OS)

DCACHE:
Data Cache

- - Reduce significantly average access time
for memories using cacheable segments

PMU0 - PFlash:
Program Flash

1..15

0xA
0x8

See WS Table 3

PMU1 - PFlash:
Program Flash

1..15

0xA
0x8

See WS Table 3

LMU SRAM - 0xB
0x9

Used as overlay RAM, general data and
code

EXT RAM Memory type
dependent

0xA
0x8

To be set according to used memory type
and EBU frequency

EXT FLASH Memory type
dependent

0xA
0x8

To be set according to used memory type
and EBU frequency

*NC –Not cacheable, C- Cacheable

3.2.1 PMU0 and PMU1 Flash memories

CPU and PMU-Flashes are connected to separate clocks which are derived from the same PLL output but using
dedicated clock dividers SRIDIV and FSIDIV. Flashes and CPU can use the same clock frequency if it doesn’t
exceed 150 MHz, otherwise higher FSIDIV value need be used because FSI frequency is limited to 150MHz.

The required number of wait states for an initial access to PFlash or DFlash is related to the maximum FSI
frequency. Because the default after reset is a worst case setting sufficient for all frequencies, the access times
have to be configured by the user according to the application’s frequency for optimum performance. This
configuration of wait states (in number of FSI clock cycles) must be configured via the 4-bit-fields “WSPFLASH”
and “WSDFLASH” in register FCON (Flash Configuration Register).

 Table 3 includes example configurations for some selected CPU frequencies of the TC1.6 derivatives. PLL
frequency determines the FSIDIV value which is selected to keep the FSI frequency below 150MHz.

Table 3 PMU0, PMU1 Flash wait states (WS) with PFLASH Ta=26 ns and DFLASH Ta=50 ns
fPLL
[MHz]

SRIDIV

fCPU
[MHz]

FSIDIV fFSI
[MHz]

PFlash
WS

Computed

PFlash
WS

Rounded

DFlash
WS

Computed

DFlash
WS

Rounded
600 1 300 3 150 3.9 4 7.5 8
520 1 260 3 130 3.4 4 6.5 7
200 0 200 1 100 2.6 3 5.0 5

Note: The calculated wait states are relative to the fFSI. To calculate the wait states relative to fCPU

WScpu =(fCPU / fFSI) * WS. e.g. PFlash WS relative to CPU are 8, 8, 6

Application Note 10 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

3.2.1.1 PMU0 and PMU1 Flashes wait states configuration
To configure FSI clock divider use CCUCON0 register (SFR-R SCU_CCUCON0)
• FSIDIV = [19:16] bits (Divide Value = FSIDIV+1, e.g. FSIDIV=3 means divide by 4)

To configure PMU0 Program and Data Flash wait states use FLASH0 register FCON (SFR-R FLASH0_FCON)
bit fields:
• WSPFLASH = [3:0] bits
• WSECPF = [4] bit
• WSDFLASH = [11:8] bits
• WSECDF = [12] bit

To configure PMU1 Program and Data Flash wait states use FLASH1 register FCON (SFR-R FLASH1_FCON)
bit fields:
• WSPFLASH = [3:0] bits
• WSECPF = [4] bit
• WSDFLASH = [11:8] bits
• WSECDF = [12] bit

Higher is better

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

APP-1 APP-2 APP-3 APP-4

IP
C

4-ws

6-ws

8-ws

15-ws

 -2.6%

-0.1%

 0,0%

 -3.6%

Figure 4 IPC versus PMU0 Program Flash wait states

3.2.2 Caches: ICACHE and DCACHE

16KB of ICACHE and 16KB DCACHE are used to reduce an average access time of much slower but much
bigger PMU0/PMU1 Flashes, LMU RAM and external RAM/Flash. The code and data used can be fully
cacheable partially or not cacheable depended on application requirements.

Application Note 11 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

3.2.3 Instruction Cache ICACHE

The ICACHE is a four-way set-associative cache with a Pseudo Least-Recently-Used (PLRU) replacement
algorithm. Each ICACHE line contains 256 bits of instruction along with a single associated valid bit and
associated ECC bits.

Code located in PMU0/PMU1, external RAM/Flash or LMU will be cacheable if all conditions are fulfilled
• Code located in 0x8 segment (not LMU)
• Code located in 0x9 segment (LMU)
• ICACHE enabled (default, not configurable)
• ICACHE bypass deactivated

Code located in PMU0/PMU1, external RAM/Flash or LMU will be not cacheable if one of the conditions is
fulfilled
• Code located in 0xA segment (not LMU)
• Code located in 0xB segment (LMU)
• ICACHE bypass activated

Note: By default all the segments are defined as described above. Still there is additional register PMA0 that can

partially change the cacheability of some segments.

Note: Code can be located in 0x8 segment but still be not cacheable or in case of LMU 0x9 segment.

Note: If some code should be not cacheable (e.g. deterministic behavior) locate it in 0xA segment or in case of
LMU 0xB segment.

Code located in following memories can be cacheable:
• PMU0-PFlash and BROM
• PMU1-PFlash
• External memories
• LMU

3.2.4 Data Cache: DCACHE

Four-way set associative cache, Pseudo least recently used (PLRU) replacement algorithm
• Cache line size: 256 bits
• Validity granularity: One valid bit per cache line
• Write-back Cache: Writeback granularity: 256 bits
• Refill mechanism: full cache line refill

Data located in PMU0/PMU1, External RAM/Flash and LMU will be cacheable if all conditions are fulfilled
• Data located in 0x8 segment (not LMU)
• Data located in 0x9 segment (LMU)
• DCACHE enabled (default, not configurable)
• DCACHE bypass deactivated

Data located in PMU0/PMU1, External RAM/Flash or LMU will be not cacheable if one of the conditions is
fulfilled
• Data located in 0xA segment (not LMU)
• Data located in 0xB segment (LMU)
• DCACHE bypass activated

Note: By default all the segments are defined as described above. Still there is additional register PMA0 that can

partially change the cacheability of some segments.

Note: Data can be located in 0x8 segment but still be not cacheable or in case of LMU 0x9 segment.

Application Note 12 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

Note: If some data should be not cacheable (e.g. deterministic behavior) locate it in 0xA segment or in case of
LMU 0xB segment.

Data located in following memories can be cacheable:
• PMU0-PFlash, DFlash
• PMU1-PFlash
• External memory
• LMU

3.2.5 ICACHE and DCACHE configuration

After reset DCACHE and ICACHE are enabled but bypassed.

To use ICACHE you need to disable the bypass:
• Set configuration register PCON0.PCBYB=0 (SFR-R PCON0)

To use DCACHE you need to disable the bypass:
• Set configuration register DCON0.PCBYB=0 (SFR-R DCON0)

3.2.6 Evaluating execution time in cacheable architecture

Application code or benchmarks which need to be optimized and the achieved execution speed measured often
include a small selected part of application or in special cases a complete code. During optimization process
reducing of execution time is one of most important targets. The progress can be evaluated based on relative
performance compared to other setting measured under the same conditions.

In case the absolute (not relative) execution times are important, the caches impact under different test
condition is noticeable and the results interpretation is not straight forward. By running the same application
more than one time (assume the same code and conditions are met) it can be observed different run time
values for the first and following tests. Different behavior can be also observed for small code size fully matching
in cache and big application causing cache swapping.

In case of small applications, first execution start with empty cache while in following tests the complete code
and data are in caches, executing as fast as from scratch pad rams. The run time differences are dependent on
the code data structure as seen in Figure 5 APP-1 and APP-2. Small differences are hints to insensitivity to
cache swapping and flashes wait states using cacheable segments. Mapping of the first/second execution time
results to the real execution environment is not straightforward.

In case of big application, the cache swapping takes place already in the first and the following tests. The
execution time of the second run should be similar to real execution environment.

Application Note 13 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Hardware Configuration

Higher is better

0.55

0.78

0.48

0.90

1.70

0.90

0.55

1.72

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

2.000

APP-1 APP-2 APP-3 APP-4

IP
C run1

run2

Figure 5 IPC dependency on ICACHE and DCACHE states (run1, run2)

Application Note 14 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Application Software

4 Application Software

4.1 Compiler Optimizations

The most significant opportunity for influencing the performance of a given application is by compiler and linker
optimizations. Optimizing is a tradeoff between code size and performance. Code optimization is primary
controlled by set of optimization flags which together makes optimization profile. Some proved predefined
optimization profiles are usually provided by compiler vendors with additional tradeoff parameter for speed or
code size.

Application performance optimization is an iterative process of
• Selecting optimization profile
• Executing
• Result recording of execution time and code size
• Comparing to other result
• Repeating if not satisfied

Two main approaches can be used
• Global Optimization: the same optimization setting is applied to complete code
• Profiling driven selective optimization: based on profiling information the critical functions are identified and

the best (custom) optimization is applied.

The focus in this document is on global optimization. Included results are also based on global optimization.

Note: Before you start with compiler optimization you should be aware that many options are predefined (having

default values) influencing the performance without explicitly be defined. To see option summary including
their default values run the ctc.exe using -? option (ctc -?) located in Altium TASKING compiler directory

4.1.1 Predefined compiler configurations

Unless you have your proven preferred configuration you should start the optimization process with available
predefined optimization profiles -O0 till –O3.

Table 4 Predefined compiler optimization profiles
optimize[=flags]
-Oflags

Description

--optimize=0
-O0

No optimization
Alias for -OaCEFGIKLMNOPRSUVWY

--optimize=1
-O1

Optimize
Alias for -OaCefgIKLMNOPRSUVWy

--optimize=2
-O2

Optimize more (default)
Alias for -OacefgIklMNoprsUvwy

--optimize=3
-O3

Optimize most
Alias for -OacefgiklmNoprsuvwy

The predefined optimizations profiles including 18 compiler optimization flags (small letter means active)
building proven recommended configuration. You can see the differences between various settings by
comparing the different letters. For example –O3 has two additional optimization activated m and u. You can

Application Note 15 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Application Software

use your own setting by explicitly defining all options (letters) or make small modification to available
configuration e.g. to use -O2 but disable code compaction (r/R) use –O2 –OR.

Table 5 C Compiler Flags definitions
--optimize[=flags] -O[=flags] Description
+/-coalesce a/A Coalescer: remove unnecessary moves
+/-cse c/C Common sub expression elimination
+/-expression e/E Expression simplification
+/-flow f/F Control flow simplification
+/-glo g/G Generic assembly code optimizations
+/-inline i/I Automatic function inlining
+/-schedule k/K Instruction scheduler
+/-loop l/L Loop transformations
+/-simd m/M Perform SIMD optimizations
+/-align-loop n/N Align loop bodies
+/-forward o/O Forward store
+/-propagate p/P Constant propagation
+/-compact r/R Code compaction (reverse inlining)
+/-subscript s/S Subscript strength reduction
+/-unroll u/U Unroll small loops
+/-ifconvert v/V Convert IF statements using predicates
+/-pipeline w/W Software pipelining
+/-peephole y/Y Peephole optimizations

Optimization profiles are always extended and influenced by –tradeoff parameter controlling the balance of
speed versus code size.

4.1.2 Optimizations Tradeoffs: speed vs. code size

Important part of the optimization is finding appropriate tradeoff between code size and performance. Using
trade of parameter --tradeoff={0|1|2|3|4} or -t{0|1|2|3|4} with default: --tradeoff=4 optimize for size.

--tradeoff=0: optimize for speed

--tradeoff=4: optimize for code size

--tradeoff=2: balance for speed and size

If the compiler uses certain optimizations (e.g. –O2), you can use this option to specify whether the used
optimizations should optimize for more speed (regardless of code size) or for smaller code size (regardless of
speed).

If you have not specified the option –optimize (or –O), the compiler uses the default Optimize more optimization
(-O2). In this case it is still useful to specify a trade-off level.

It is recommended to start with -O2 and --tradeoff=2 setting, analyzing the speed and code size variation as
you modifying the Optimization (-O) and --tradeoff settings using your target Application.

Additionally to compiler optimization settings, using of efficient addressing modes can improve significantly
overall performance and code size as described in next paragraphs.

Application Note 16 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Application Software

4.1.3 Short addressing

TriCore Architecture has an address width of 32 bit and can access up to 4 GB of memory. Within limited
addressing ranges more efficient code and faster execution time can be achieved. Absolute addressing is
available for the first 16 KB of each segment. Base + Long Offset addressing using global Base Registers (A0,
A1, A8, A9) provide efficient data access in the address range of 64KB. Appropriate tool-chain settings are
required to use these memory segments.

4.1.3.1 Near Addressing
 Figure 6 shows the location of near segments occupying first 16kB of each TriCore 256MB memory segment. .
You can use it to locate variables (initialized or not) and constants. The included example demonstrates the
efficiency of absolute addressing used in near segment. Table 6 shows the memories suitable for near
addressing.

Note: Do not block near segment with CSA, Stacks, etc. that are not accessed with near addressing

Figure 6 Near versus far Addressing

Table 6 Memories suitable for near data addressing (memories including 0..0x3FFF range)
Memory Data types Compiler default Section
PMU0-PFlash constant .zrodata
DSPR variables initialized, uninitialized .zdata .zbss .nearnoclear
LMU variables initialized, uninitialized .zdata .zbss .nearnoclear

4.1.3.2 Configuration for near addressing

Near addressing can be enabled by
• Compiler option: --default-near-size [=threshold]

(To put all data objects with a size of [threshold] bytes or smaller in __near sections (default threshold =8))
• Pragma in C source code: default_near_size [value] [default | restore]
• Memory qualifier: __near
By using compiler option, the setting is valid for the entire program unless not the same options are used for all
modules. Pragmas overrules the compiler options and can be used for defined code blocks. With __near
memory qualifier you can control the location for single data objects.

Application Note 17 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Application Software

4.1.3.3 Base + Long Offset addressing using global Base Registers (A0, A1, A8, A9)
 Figure 7 shows the location of A0/A1, A8/A9 addressing range occupying 64kB memory segment. The simple
example demonstrates the efficiency of this addressing mode.

Figure 7 A0/A1 versus far addressing

A0 register is only available for variables (initialized or not). A1 register is only available for constants. In case of
A8 and A9 both are available for variables (initialized or not) and constants.

Table 7 Memories suitable for A0/A1 addressing
Memory Data types Compiler default Section
PMU0-PFlash Constant (A0) .ldata
DSPR* variables initialized, uninitialized (A1) .sdata .sbss
LMU variables initialized, uninitialized (A1) .sdata .sbss
Ext. RAM variables initialized, uninitialized (A1) .sdata .sbss
Ext. FLASH Constant (A0) .ldata

Table 8 Memories suitable for A8/A9 addressing
Memory Data types Compiler default Section
PMU0-PFlash constant .rodata_a8 or .rodata_a9
DSPR* variables initialized, uninitialized .data_a8 .bss_a8 or .data_a9 .bss_a9
LMU variables initialized, uninitialized .data_a8, .bss_a8 or .data_a9 .bss_a9
Ext. RAM variables initialized, uninitialized .data_a8 .bss_a8 or .data_a8 .bss_a9
Ext. FLASH constant .rodata_a8 or .rodata_a9

4.1.3.4 Configuration for A0 / A1 and A8 / A9 addressing
A0/A1 addressing can be enabled by
• Compiler option: --default-a0-size [=threshold]

(To put all data objects with a size of [threshold] bytes or smaller in A0 section (default threshold =0))
• Compiler option: --default-a1-size [=threshold]

(To put all data objects with a size of [threshold] bytes or smaller in A1 section (default threshold =0))

Application Note 18 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Application Software

• Pragma in C source code: default_a0_size [value] [default | restore]
• Pragma in C source code: default_a1_size [value] [default | restore]
• Memory qualifier: __a0, __a1

A8/A9 addressing can be enabled by
• Memory qualifier: __a8, __a9

By using compiler option, the settings are valid for the entire program unless not the same options are used for
all modules. Pragmas overrules the compiler options and can be used for defined code blocks. With __a0, __a1,
__a8, __a9 memory qualifier you can control the location for single data objects.

Note: A8/A9 location options doesn’t include default-a8/a9-size with threshold as in A0/A1 (e.g. --default-a1-
size)

4.1.3.5 Qualifiers controlling all addressing modes

Following qualifiers controlling all addressing modes
• for_constant_data_use_memory memory
• for_extern_data_use_memory memory
• for_initialized_data_use_memory memory
• for_uninitialized_data_use_memory memory

Use the specified memory for the type of data mentioned in the pragma name. You can specify the following
memories: near, far, a0, a8 or a9. For pragma for_constant_data_use_memory you can also specify the a1
memory.

4.1.4 Memory Location (Typical Use Case)

Figure 8 Memory locations (Typical Use Case)

Application Note 19 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Application Software

4.2 Linker Script files

TriCore memory system with its hierarchy of different memories and caches plays important role in overall
system performance. Controlling the location of data and code whether it should be cacheable or not in fast or
slow memories is primary resolved by linker scripts files. Altium TASKING provides predefined linker script file
for each device stored in *.lsl files

4.3 Additional optimization options

You can further improve the performance of your software if following measures are suitable to your application.

4.3.1 Floating-point arithmetic/algorithms
FPU: TriCore architecture includes high performance IEEE-754 compliant single-precision Floating Point Unit.
Set the compiler option –fpu-present to use the FPU instead of emulation library.

Double as float: In some cases double precision floating point data is included in the source code (e.g. model
based automatic code generation) but single precision can be used. By setting --no-double option the compiler
treats variables of the type double as float.

Exception handling: Hardware implemented FPU exception monitoring with appropriate trapping functionality
releasing the application from continuous monitoring in software

4.3.2 Fixed-point arithmetic/algorithms
TriLib - TriCore DSP Library: Hand-coded assembly implemented C-callable highly optimized library of
common DSP algorithms using fixed-point arithmetic.

4.3.3 Intrinsic Functions

Some specific assembly instructions have no equivalence in C. Intrinsic functions give the possibility to use
these instructions. Intrinsic functions are predefined functions that are recognized by the compiler which always
inlines the corresponding assembly instructions in the assembly source (rather than calling it as a function).

Table 9 Intrinsic Functions overview
Intrinsic functions groups Example Description

Minimum and maximum of (short) integers int __min(int, int) Return minimum of two integers

Fractional data type support __sfract __round16(__fract) Convert __fract to __sfract

Packed data type support char __extractbyte1(__packb
)

Extract first byte from a __packb

Interrupt handling void __enable (void) Enable interrupts immediately at
function entry

Insert single assembly instruction void __nop(void) Insert NOP instruction

Register handling int __clz (int) Count leading zeros in int

Insert / extract bit-fields and bits void __putbit(int value, int*
address, int bitoffset)

Store a single bit

Application Note 20 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Performance Optimization Checklist

4.3.4 Inline assembler

Using inline assembly you can use assembly instructions in the C source and pass C variables as operands to
the assembly code. Primary usable for small and efficient code sequences or target specific operations not
available in ANSI-C.

5 Performance Optimization Checklist

Table 10 Hardware Configuration
Description Details Default (after reset)

CPU Clock Check the CPU Clock frequency See 3.1 Free running mode (~17 MHz)
ICACHE Verify the ICACHE is usable = bypass is disabled

See 3.2.5
Enabled but bypassed

DCACHE Verify the DCACHE is usable = bypass is
disabled See 3.2.5

Enabled but bypassed

PMU0 FLASH0,
PMU1 FLASH1

Check the wait state setting for PFLASH and
DFLASH see 3.2.1.1

PFLASH 8 wait states
DFLASH 15 wait states

Performance Counters To be used need first be enabled see Note: Disabled

Table 11 Software Configuration
Description Details Default

Compiler configuration To check used compiler configuration see *.src
generated files.

You can see the defaults settings
by running ctc -?

Linker configurations
and location

Check the MAP file to control used memories,
segments and data/code location

-

Using of cacheable
segments

To use caches, additionally to HW configuration
the code/data need to be located in cacheable
segment see 3.2.3 and 3.2.4

-

Using FPU FPU should be used instead of emulation library.
To verify check MAP file, should include
libc_fpu.a or libcs_fpu.a and libfp_fpu.a.
See 4.3.1 and Table 17

Derived from --cpu option or
explicitly defined by
--fpu-present

Double as Single If applicable, replace double with single
precision. libcs_fpu.a instead of libc_fpu.a will be
used. See 4.3.1 and Table 17

Not set.

6 Performance relevant differences TC1.6 vs. TC1.3.1
TriCore 1.6 architecture includes many hardware improvements having impact on the application performance
but not visible for software developer. Still there are changes as longer pipeline, new instruction or extended
instruction functionality having impact on performance and should be considered in optimization process.

6.1 Pipeline

Longer pipeline of TC1.6 has impact on optimal coding for dual issue instruction involving the Load/Store and
Integer pipeline. It is primary relevant for hand-coded assembly implementations. In case of C- language the
compiler is already adapted to handle this change.

Application Note 21 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Performance relevant differences TC1.6 vs. TC1.3.1

6.2 Base + Long Offset addressing

TC1.3.1 Load/Store instructions using Base + Long offset addressing is limited to Word data type.

TC1.6 supports Word, Halfword and Byte data types. This addressing mode, used for A0/A1 and A8/A9
addressing segments, can be used for all three data types over full segment range of 64 KB.

6.3 Hardware Floating Point Unit (FPU)

TC1.6 implements a fully pipelined FPU working in parallel with the existing integer pipeline. Overall higher
floating point performance is expected.

6.4 Integer Division

TC1.3.1 32bit/32bit division ~20cyc

dvinit e8,d4,d0
dvstep e8,e8,d0
dvstep e8,e8,d0
dvstep e8,e8,d0
dvstep e8,e8,d0
dvadj e8,e8,d0

TC1.6 new instructions DIV & DIV.U have been implemented executing in ~9 cycles.

6.5 Performance TC1.6 vs. TC1.3.1 architecture

 Figure 9 and Figure 10 shows the performance comparison of both architectures using the same test
conditions. Usually the new TC-1.6 architecture is faster and generated smaller code size.

Figure 9 Execution Time of TC-1.6 vs. TC-1.3.1 (same configuration and CPU Clk)

Application Note 22 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Performance relevant differences TC1.6 vs. TC1.3.1

Lower is better

0.000

0.200

0.400

0.600

0.800

1.000

1.200

APP-1 APP-2 APP-3 APP-4

R
el

at
iv

e
C

od
e

Si
ze

TC-1.3.1

TC-1.6

-11.9% -7.1% -3.5% 0.0%

Figure 10 Code Size of TC-1.6 vs. TC-1.3.1 (same configuration and CPU Clk)

Application Note 23 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 References

7 References
[1] Infineon: TriCore V1.6 User Manual (Vol1)

[2] Infineon: TriCore V1.6 User Manual (Vol2)

[3] Altium TASKING User Manual: ctc_user_guide.pdf

[4] Altium TASKING AppNote: LSL Sample Cases using the Control Program

Application Note 24 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Appendix A

8 Appendix A
Summary of Altium TASKING configuration options and naming conventions

8.1 Compiler Options

Table 12 Compiler Options (command line syntax)
Long option name
Short option name

Default Description

optimize[=flags]
-Oflags

-O2 C Compiler optimization options.
Options can have flags or suboptions. To switch a flag 'on',
use a lowercase letter or a +longflag. To switch a flag off, use
an uppercase letter or a -longflag. Separate longflags with
commas. See also Table 13 and Table 14.

--tradeoff={0|1|2|3|4}

-t{0|1|2|3|4}

4 If the compiler uses certain optimizations (option --optimize),
you can use this option to specify whether the used
optimizations should optimize for more speed (regardless of
code size) or for smaller code size (regardless of speed).

--default-near-size
[=threshold]

-N[threshold]

8 With this option you can specify a threshold value for __near
allocation. If you do not specify __near or __far in the
declaration of an object, the compiler chooses where to place
the object. The compiler allocates objects smaller or equal to
the threshold in __near sections. Larger objects are allocated
in __a0, __a1 or __far sections.
If you omit a threshold value, all objects will be allocated
__near, including arrays and string constants.

--default-a0-size
[=threshold]

-Z[threshold]

0 Used for data: initialized/uninitialized (a0data,a0bss)
Allocation in __a0 memory means that the object is addressed
indirectly, using A0 as the base pointer.
The total amount of memory that can be addressed this way is
64 KB.
With this option you can specify a threshold value for __a0
allocation. If you do not specify a memory qualifier such as
__near or __far in the declaration of an object, the compiler
chooses where to place the object based on the size of the
object.
First, the size of the object is checked against the near size
threshold, according to the description of the --default-near-
size (-N) option. If the size of the object is larger than the near
size threshold, but lower or equal to the a0 size threshold, the
object is allocated in __a0 memory. Larger objects, arrays and
strings will be allocated __far.

--default-a1-size
[=threshold]

-Y[threshold]

0 Same as -a0 but used for constant (a1rom)

--fpu-present - With this option the compiler can generate single precision
floating-point instructions in the assembly file.
If you select a valid target processor (command line option --
cpu (-C)), this option is automatically set, based on the

Application Note 25 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Appendix A

chosen target processor.
--core=core derived from --cpu,

if used, otherwise
tc1.3

With --core=tc1.6, the compiler can generate TriCore 1.6
instructions in the assembly file.
If you select a valid target processor (command line option --
cpu (-C)), the core is automatically set, based on the chosen
target processor

--cpu=cpu
-Ccpu

- With this option you define the target processor for which you
create your application. Based on this option the compiler
always includes the special function register file regcpu.sfr,
unless you disable the option Automatic inclusion of '.sfr' file
on the Preprocessing page (option--no-tasking-sfr).
Based on the target processor the compiler automatically
detects whether a FPU-unit is present and whether the
architecture is a TriCore1.6. This means you do not have to
specify the compiler options --fpu-present and --core=tc1.6
explicitly when one of the supported derivatives is selected.

--switch=auto auto You can give one of the following arguments:
auto Choose most optimal code
jumptab Generate jump tables
linear Use linear jump chain code
lookup Generate lookup tables

--align=value 0 By default the C compiler aligns objects to the minimum
alignment required by the architecture. With this option you
can increase this alignment for objects of four bytes or larger.
The value must be a power of two.

--inline-max-size=
threshold

-1 With the option --inline-max-size you can specify the
maximum size of functions that the compiler inlines as part of
the optimization process. The compiler always inlines all
functions that are smaller than the specified threshold. The
threshold is measured in compiler internal units and the
compiler uses this measure to decide which functions are
small enough to inline. The default threshold is -1, which
means that the threshold depends on the option --tradeoff.

--inline-max-incr=
percentage

-1 After the compiler has inlined all functions that have the
function qualifier inline and all functions that are smaller than
the specified threshold, the compiler looks whether it can
inline more functions without increasing the code size too
much. With the option --inline-max-incr you can specify how
much the code size is allowed to increase. The default value
is -1, which means that the value depends on the option --
tradeoff.

--immediate-in-code - By default the TriCore C compiler creates a data object to
represent an immediate value of 32 or 64 bits, then loading
this constant value directly into a register. With this option you
can tell the compiler to code the immediate values directly into
the instructions, thus using less data, but more code.
Actually when option --default-near-size < 4, 32-bit
immediates will be coded into instructions anyhow, when it is
>= 4 they will be located in neardata. When --default-near-size
< 8, 64-bit immediates will be located in fardata, when it is >=
8 they will be located in neardata as well.

--compact-max-size=
value

200 This option is related to the compiler optimization --
optimize=+compact (Code compaction or reverse inlining).
Code compaction is the opposite of inlining functions: large
sequences of code that occur more than once are

Application Note 26 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Appendix A

transformed into a function. This reduces code size (possibly
at the cost of execution speed).
However, in the process of finding sequences of matching
instructions, compile time and compiler memory usage
increase quadratically with the number of instructions
considered for code compaction. With this option you tell the
compiler to limit the number of matching instructions it
considers for code compaction.

--max-call-depth=
value

-1 This option is related to the compiler optimization --
optimize=+compact (Code compaction or reverse inlining).
During code compaction it is possible that the compiler
generates nested calls. This may cause the program to run
out of its stack. To prevent stack overflow caused by too
deeply nested function calls, you can use this option to limit
the call depth. This option can have the following values:
-1 Poses no limit to the call depth (default)
 0 The compiler will not generate any function calls.
(Effectively the same as if you turned off code compaction
with option --optimize=-compact)
>0 Code sequences are only reversed if this will not lead to
code at a call depth larger than specified with value. Function
calls will be placed at a call depth no larger than value-1.

(Note that if you specified a value of 1, the option --
optimize=+compact may remain without effect when code
sequences for reversing contain function calls.)

Application Note 27 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Appendix A

8.2 Compiler optimizations flags

Table 13 Compiler –optimize (-O) Flags (command line syntax)
--optimize[=flags] -O[=flags] Description
+/-coalesce a/A Coalescer: remove unnecessary moves
+/-cse c/C Common sub expression elimination
+/-expression e/E Expression simplification
+/-flow f/F Control flow simplification
+/-glo g/G Generic assembly code optimizations
+/-inline i/I Automatic function inlining
+/-schedule k/K Instruction scheduler
+/-loop l/L Loop transformations
+/-simd m/M Perform SIMD optimizations
+/-align-loop n/N Align loop bodies
+/-forward o/O Forward store
+/-propagate p/P Constant propagation
+/-compact r/R Code compaction (reverse inlining)
+/-subscript s/S Subscript strength reduction
+/-unroll u/U Unroll small loops
+/-ifconvert v/V Convert IF statements using predicates
+/-pipeline w/W Software pipelining
+/-peephole y/Y Peephole optimizations

8.3 Predefined compiler optimization profiles

Table 14 Predefined compiler optimization profiles
optimize[=flags]
-Oflags

Description

--optimize=0
-O0

No optimization
Alias for -OaCEFGIKLMNOPRSUVWY

--optimize=1
-O1

Optimize
Alias for -OaCefgIKLMNOPRSUVWy

--optimize=2
-O2

Optimize more (default)
Alias for -OacefgIklMNoprsUvwy

--optimize=3
-O3

Optimize most
Alias for -OacefgiklmNoprsuvwy

Application Note 28 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Appendix A

8.4 Compiler generated sections

Table 15 Compiler generated sections
Section type Name prefix Description
code .text program code
neardata .zdata initialized __near data
fardata .data initialized __far data
nearrom .zrodata constant __near data
farrom .rodata constant __far data
nearbss .zbss uninitialized __near data (cleared)
farbss .bss uninitialized __far data (cleared)
nearnoclear .zbss uninitialized __near data
farnoclear .bss uninitialized __far data
a0data .sdata initialized __a0 data
a0bss .sbss uninitialized __a0 data (cleared)
a1rom .ldata constant __a1 data
a8data .data_a8 initialized __a8 data
a8rom .rodata_a8 constant __a8 data
a8bss .bss_a8 uninitialized __a8 data (cleared)
a9data .data_a9 initialized __a9 data
a9rom .rodata_a9 constant __a9 data
a9bss .bss_a9 uninitialized __a9 data (cleared)

Application Note 29 V1.0, 2011-03

 AP32168
Application Performance Optimization for TriCore V1.6 Architecture

 Appendix A

8.5 Compiler memory qualifiers

Table 16 Compiler memory qualifiers
Qualifiers Description Location Maximum

object size
Pointer
size

Section types

__near

Near data, direct
addressable

First 16 kB of a 256 MB
block

16 kB 32-bit neardata, nearrom,
nearbss, nearnoclear

__far

Far data, indirect
addressable

Anywhere no limt 32-bit fardata, farrom, farbss,
farnoclear

__a0

Small data Sign-extended 16-bit
offset from address
register A0

64 kB 32-bit a0data, a0bss

__a1

Literal data,
read-only

Sign-extended 16-bit
offset from address
register A1

64 kB 32-bit a1rom

__a8

Data, reserved
for OS

Sign-extended 16-bit
offset from address
register A8

64 kB 32-bit a8data, a8rom, a8bss

__a9 Data, reserved
for OS

Sign-extended 16-bit
offset from address
register A9

64 kB 32-bit a9data, a9rom, a9bss

8.6 Libraries

Table 17 Libraries
Libraries Description
libc[s].a
libc[s]_fpu.a

C libraries
Optional letter:
s = single precision floating-point (compiler option --no-double
_fpu = with FPU instructions (compiler option --fpu-present)

libfp[t].a
libfp[t]_fpu.a

Floating-point libraries:
Optional letter
t = trapping (control program option --fp-trap
_fpu = with FPU instructions (compiler option --fpu-present)

librt.a Run-time library
libpb.a
libpc.a
libpct.a
libpd.a
libpt.a

Profiling libraries
pb = block/function counter
pc = call graph
pct = call graph and timing
pd = dummy
pt = function timing

libcp[s][x].a

C++ libraries
Optional letter:
s = single precision floating-point
x = exception handling

libstl[s]x.a STLport C++ libraries (exception handling variants only)
Optional letter: s = single precision floating-point

Application Note 30 V1.0, 2011-03

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

	Introduction
	Naming Convention
	Tool chain and Target Hardware
	Application Benchmarks

	Application Performance Optimization
	Performance Criteria
	Measuring Performance using TriCore Performance Counters

	Hardware Configuration
	CPU Clock
	Memory System
	PMU0 and PMU1 Flash memories
	PMU0 and PMU1 Flashes wait states configuration

	Caches: ICACHE and DCACHE
	Instruction Cache ICACHE
	Data Cache: DCACHE
	ICACHE and DCACHE configuration
	Evaluating execution time in cacheable architecture

	Application Software
	Compiler Optimizations
	Predefined compiler configurations
	Optimizations Tradeoffs: speed vs. code size
	Short addressing
	Near Addressing
	Configuration for near addressing
	Base + Long Offset addressing using global Base Registers (A0, A1, A8, A9)
	Configuration for A0 / A1 and A8 / A9 addressing
	Qualifiers controlling all addressing modes

	Memory Location (Typical Use Case)

	Linker Script files
	Additional optimization options
	Floating-point arithmetic/algorithms
	Fixed-point arithmetic/algorithms
	Intrinsic Functions
	Inline assembler

	Performance Optimization Checklist
	Performance relevant differences TC1.6 vs. TC1.3.1
	Pipeline
	Base + Long Offset addressing
	Hardware Floating Point Unit (FPU)
	Integer Division
	Performance TC1.6 vs. TC1.3.1 architecture

	References
	Appendix A
	Compiler Options
	Compiler optimizations flags
	Predefined compiler optimization profiles
	Compiler generated sections
	Compiler memory qualifiers
	Libraries

