

Appl icat ion Note, V 1.0, November 2008

Microcontrol lers

Tr iCore
AUDO-NG Flash Download
Using Bootstrap Loader

AP32136

Edition 2008-11
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
81669 München, Germany
© Infineon Technologies AG 2008.
All Rights Reserved.

LEGAL DISCLAIMER:
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION
OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY
ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY
DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY
THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies. Life support devices or systems are intended to be implanted in the human
body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume
that the health of the user or other persons may be endangered.

http://www.infineon.com

TC1766, TC1796

Revision History: V 1.0, 2008-11
Previous Version(s): none
Version Subjects (major changes since last revision)
V1.0 Initial release for TC1766 andTC1796

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

mailto:mcdocu.comments@infineon.com

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Introduction
1 Introduction
The TriCore microcontrollers of the AUDO Next Generation (AUDO-NG) family TC1766
and TC1796 have a built-in Bootstrap Loading (BSL) mechanism that can be used for
flash programming (readers can refer to the BootROM chapter of the User's Manual).
However, the TriCore family does not provide any hard coded Bootstrap Loader routines
for flash programming (small programs embedded in the BootROM to carry out flash
functions, e.g. writing, reading, erasing, verification, etc.). Thus, a flash loader program
providing flash programming routines must be implemented by the user.
In TriCore family, Asynchronous Serial Interface (ASC) BSL and Controller Area
Network (CAN) BSL are supported. This example will demonstrate Bootstrap Loading
using both interfaces.
The target device is connected to a PC via one of the interfaces. The flash loader system
demonstrated in this application note consists of two parts:
• The flash loader program is sent to the target device using the built-in Bootstrap

Loading mechanism. Once sent and executed, the flash loader program establishes
a communication protocol to receive commands from a HOST program (a program
running on the PC that controls the flash programming of the target device).

• The HOST program running on a PC uses the communication protocol defined by the
flash loader. It sends flash programming commands and the code bytes to be
programmed. The HOST program may vary with the specific application it is used for.
Thus, the HOST program in this application note is considered to be an example.

The flash loader programs for ASC and CAN BSL are developed for two arbitrary
toolchains:
• Tasking VX-toolset for Tricore v3.0r1(http://www.tasking.com/tricore).
• HighTec GNU Toolchain for Tricore v3.4.5.1 (http://www.hightec-rt.com.
The project files for both toolchains provided in this example are completely independent
from each other. The user can choose either toolchain.
As an example flash program, the project LED_Blinking, which toggles some LEDs
controlled by Port 5, is provided for both toolchains as well. The file LED_Blinking.hex
can be downloaded to flash memory.
Note: Depending on the application, toggling Port 5 of the target device might not

always be suitable.

The TriLoad HOST program is developed in Microsoft Visual C++ 6.0. TriLoad
supports both the ASC and CAN interface. TriLoad also supports flash programming for
TriCore devices other than the AUDO-NG family. Upon program start, the user must
specify which device shall be programmed.
Application Note 1 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Introduction
In general, this example includes the following source code, which will be introduced in
detail in later sections.
• In the folder .\Tasking\Loader2, ASC BSL Loader 2 (both the source files and the

HEX file developed using TASKING VX-TriCore Toolset) is provided.
• In the folder .\GNU\Loader2, ASC BSL Loader 2 (both the source files and the HEX

file developed using the HighTec GNU TriCore Compiler) is provided.
• In the folder .\Tasking\Loader3, ASC BSL Loader 3 (both the source files and the

HEX file developed using TASKING VX-TriCore Toolset) is provided.
• In the folder .\GNU\Loader3, ASC BSL Loader 3 (both the source files and the HEX

file developed using the HighTec GNU TriCore Compiler) is provided.
• In the folder .\Tasking\CANLoader, CAN BSL Loader (both the source files and the

HEX file developed using TASKING VX-TriCore Toolset) is provided.
• In the folder .\GNU\CANLoader, CAN BSL Loader (both the source files and the HEX

file developed using the HighTec GNU TriCore Compiler) is provided.
• In the folder .\Tasking\LED_Blinking the flash example program (both the source

files and the HEX file developed using the TASKING VX-TriCore Toolset) is provided.
• In the folder .\GNU\LED_Blinking the flash example program (both the source files

and the HEX file developed using the HighTec GNU TriCore Compiler) is provided.
• In the folder .\Tasking\LED_Blinking_SPRAM the SPRAM example code (both the

source files and the HEX file developed using the TASKING VX-TriCore Toolset) is
provided.

• In the folder .\GNU\LED_Blinking_SPRAM the SPRAM example code (both the
source files and the HEX file developed using the HighTec GNU TriCore Compiler)
is provided.

• In the folder .\TriLoad an example HOST program that demonstrates the whole
process of flash programming. The project files can be compiled with Microsoft
Visual C++ 6.0.
Application Note 2 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
2 ASC Bootstrap Loading
The communication between PC and the target device is established via the ASC
interface. Figure 2-1 shows a hardware setup for this application, in which the following
two pins are used as RxD and TxD, respectively.
• receive pin RxD at pin P3.0 (TC1766) or P5.0 (TC1796) respectively
• transmit pin TxD at pin P3.1(TC1766) or P5.1 (TC1796) respectively

Figure 2-1 The connection between a PC and the target system for TriCore
Bootstrap Loading

The flash loader itself is divided into two parts: Loader 21) and Loader 3. The boot-
loader procedure is shown in Figure 2-2.

1) The built-in Bootstrap Loading mechanism handles the first interaction between PC and target device and can
be considered as Loader 1.

TargetPC

GND

TxD

RxD RxD

TxD
TriCore

COM
Port
Application Note 3 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
Figure 2-2 The bootloader procedure for flash programming

To run this program, the first step is to make the target device enter BSL mode.

Bootstrap
Loader

PC

Initialize
Serial Interface

Send 0x00

Send 0xD5

Send Loader 2

Send 0x55, Checksum

Send Loader 3 (4896 bytes)

(128 bytes)

Loader 2

Call Loader 2

Call Loader 3

Loader 3

Send Command (refer to Chapter 5)

Response Code (refer to Chapter 5)

Flash
Routines

Call Flash
Routine

(HOST)
Application Note 4 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
ASC Bootstrap Loader mode is entered upon a device reset, if the following values are
applied at the configuration pins P4[3:0] of Port 4 for TC1766 or P10[3:0] of Port 10 for
TC1796:

Px[3:0] = 0000
A “0” means a low-level voltage is applied at the pin.
After entering Bootstrap Loader mode, the device switches the clock system from initial
PLL Freerunning Mode (VCO base frequency) to Prescaler Mode with a frequency
divider of 1. Hence the system frequency becomes equal to the frequency of an external
crystal which must be obligatorily connected between XTAL1/XTAL2 pins, if a Bootstrap
Loader mode is selected upon power-on. The crystal frequency must be at least 10
MHz.
Further on, the HOST sends 0x00. Based on this byte, the baud rate used by the PC will
be automatically detected by the target device. The TriCore device supports baud rates
of up to 115200 bits/s. The ASC interface will be initialized for 8 data bits and 1 stop
bit. Once the baud rate is detected and the ASC interface is configured, 0xD5 is sent
back to the PC in case of success.
Then the Bootstrap Loader enters a loop and waits to receive exactly 128 bytes from the
HOST. These 128 bytes represent the secondary loader (Loader 2) and will be stored
at the beginning of PMI Scratchpad RAM (SPRAM, base address 0xD4000000).
Once Loader 2 received, the BootROM jumps to the start address of the secondary
loader: Loader 2 is executed. In this application note Loader 2 is stored in the file
loader2.hex. Its functionality is to receive further bytes from the PC and store them in
SPRAM (following its own code section at address 0xD4000080).
The file loader3.hex contains this further received code (Loader 3). After Loader 3 is
downloaded to SPRAM and executed, it will first establish the communication between
PC and the target device and then carry out flash operations.
Application Note 5 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
2.1 Loader 2
Before the Loader 2 can receive further bytes from the PC, a basic device initialization
needs to be done. Due to the size constraint of 128 bytes, this startup code must be as
small as possible.
Once the device jumps to address 0xD4000000, its configuration status is as follows:
• The ENDINIT bit is cleared1). System control registers that are protected by the

ENDINIT feature can be modified.
• The watchdog timer is enabled, which means that the device will be reset if the

watchdog timer is not disabled within a certain period of time.
• The serial interface ASC0 is configured. The baud rate is the same as calculated by

the BootROM code.
• Stack pointers and Context Save Areas (CSA) are not initialized.
• Interrupt and trap vectors are not defined.
Based on the above conditions, Loader 2 does the following initialization:
• The watchdog timer is disabled. The watchdog timer register can be modified since

the ENDINIT bit is cleared.
• The ENDINIT bit is set.
Subsequently the code enters a loop waiting to receive exactly 48962) (0x1320, size of
Loader 3) bytes which are stored in SPRAM starting from address 0xD4000080. Each
byte written to memory is read back and the XOR sum with the previous bytes is
calculated.
After reception of the 4896 bytes, the Loader 2 sends 0x55 and XOR checksum to the
PC. Finally a jump to address 0xD4000080 is performed in order to execute Loader 3.
The entire code is contained in the files Loader2.c (Tasking) and Loader2.s (GNU).

1) Some system control registers are protected by the ENDINIT feature. These registers can only be modified, if
the ENDINIT bit is cleared. Please refer to the ENDINIT function description in the User’s Manual.

2) The actual code size of Loader 3 is less than 4896 bytes. Please refer to Chapter 2.2 for further details.
Application Note 6 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
2.1.1 Tasking Project Settings
Since the code size of Loader 2 is limited to 128 bytes, the startup code automatically
created by Tasking must be replaced by the user startup code (function __initdevice).
The code does neither define any stack, nor initializes the stack pointer. Hence, the
usage of function calls is not possible. Therefore functions are defined as inline.
Beside the default configuration the Tasking project settings need to be configured as
follows:
• C/C++ Build -> Processor -> AUDO NextGeneration Family -> Check TC17661)

• C/C++ Build -> Settings ->
• C/C++ Compiler -> Allocation -> Threshold for putting data in __near: 0
• C/C++ Compiler -> Optimization -> Optimization level: 0 - None
• Linker -> Output Format: Check Generate Intel Hex format file, Size of

addresses: 4
• Linker -> Libraries: Uncheck Link default libraries
• Linker -> Miscellaneous: Uncheck Include debugger synchronization utility

The Linker Script Language file Loader2.lsl defines 128 bytes in SPRAM memory of
type rom starting from address 0xD4000000. This meets the size constraint of 128 bytes
required by the target device and the user will be informed of an exceedance already
during compilation.
The reset start address is set to 0xD4000000.

1) In the case that another AUDO-NG device is used, the same setting TC1766 applies.
Application Note 7 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
2.1.2 GNU Project Settings
The HighTec GNU settings for the Loader 2 project define one build target RAM. The
output file Loader2.elf is created in the subdirectory RAM. If build target RAM does not
exist, the user must create it to comply with the following project settings.

Beside the default configuration the build options for this build target must be configured
as follows:
• RAM -> Compiler settings: Check Do not link against the default crt0.s
• RAM -> Compiler settings: Check Do not link against standard system startup

files
• RAM -> Compiler settings -> Check Optimize generated code (for size)
• RAM -> Compiler settings -> Check Tricore 17661)

• RAM -> Linker settings -> Other linker options, add line:-Wl,Loader2.ld -nocrt0 -
nostartfiles

• RAM -> Linker settings -> Other linker options, add line: -mcpu=tc17661)

• RAM -> Linker settings -> Other linker options, add line: -T Loader2.ld
• RAM -> Linker settings -> Other linker options, add line: -Wl,-Map,mapfile.lst
• RAM -> Pre/post build steps -> Post-build steps: tricore-objcopy -O ihex

RAM/Loader2.elf RAM/Loader2.hex
• RAM -> Pre/post build steps -> Post-build steps: tricore-objdump -t

RAM/Loader2.elf

The final output file Loader2.hex is created in the subdirectory .\RAM.
The linker description file Loader2.ld in the project’s root directory defines the entire
available memory of the TC17661) device.
The only memory used is the SPRAM code memory 0xD4000000 - 0xD4000080. The
startup section is located at address 0xD4000000.

1) In the case that another AUDO-NG device is used, the same setting applies.
Application Note 8 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
2.2 Loader 3
Loader 3 implements the flash routines and establishes the communication between PC
and the target device. Since Loader 2 provides only a simple initialization of the device,
the following further initialization steps are done at startup of Loader 3:
• Set the stack pointers for user and interrupt stack,
• initialize the call depth counter,
• initialize the CSA list.
These steps permit the usage of regular function calls. It is implemented in the file ctr0.s
which is a modified version of the default HighTec startup code. For the Tasking variant
of Loader 3, the startup code is contained in the file cstart.c.
The main part of Loader 3 (main.c) implements flash routines providing the following
features:
• Erase flash sectors1),
• program flash pages1),
• verify a programmed flash page,
• protect PFlash1),
• program SPRAM memory,
• execute flash user code starting from address 0xA0000000,
• execute SPRAM user code starting from address 0xD4001400.
The flash protection enables a write protection of PFlash. Erase or program attempts
result in a protection error, if flash is protected. Upon receiving the protection command,
the protection status of the flash is checked. Unprotected flash memory will be protected
using two 32bit user-passwords. Protected flash memory will be unprotected using the
same passwords. Protection of DFlash is not possible.
Warning: For AUDO-NG devices, the flash protection and unprotection can be
performed up to 4 times only.
For erasing and programming flash, the sector and page address must be specified
respectively. An invalid address (e.g. an address that is not within the flash boundaries)
results in an address error. The memory organization for TC1766 and TC1796 is
described in Chapter 4.
Flash user code is executed starting from the PFlash base address 0xA0000000. Since
Loader 2 and Loader 3 occupy the first 0x1400 bytes in SPRAM, programming SPRAM
is only possible starting from address 0xD4001400. Thus, SPRAM user code is
executed starting from this address.
Loader 3 defines a communication protocol to receive commands from the PC. Based
on the command received, the corresponding flash routine is executed. The
communication structure is described in Chapter 5.

1) Please refer to Chapter 4, Flash Memory Organization
Application Note 9 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
2.2.1 Tasking Project Settings
Beside the default configuration the Tasking project settings for Loader 3 need to be
configured as follows:
• C/C++ Build -> Processor -> AUDO NextGeneration Family -> Check TC17661)

• C/C++ Build -> Settings ->
• C/C++ Compiler -> Allocation -> Threshold for putting data in __near: 0
• C/C++ Compiler -> Optimization -> Optimization level: 1 - Optimize
• C/C++ Compiler -> Optimization -> Trade-off between speed and size: Level4 -

Size
• Linker -> Output Format: Check Generate Intel Hex format file, Size of

addresses: 4
• Linker -> Libraries: Uncheck Link default libraries
• Linker -> Miscellaneous: Uncheck Include debugger synchronization utility

The Linker Script Language file Loader3.lsl defines 4896 (0x1320) bytes in SPRAM
memory of type rom starting from address 0xD4000080 and 68 Kbytes in LDRAM of
type ram starting from address 0xD0000000. CSA, stack, heap and global variables are
located in LDRAM.
The reset start address is set to 0xD4000080.

Note: The actual code size of Loader 3 is less than the assumed 0x1320 bytes,
which permits changes of the code. If a changed Loader 3 exceeds the size
of 0x1320 bytes, Loader 2 must be adapted to this size. A new starting
address for SPRAM user code (see Chapter 5.4) must be taken care of.

1) In the case that another AUDO-NG device is used, the same setting applies.
Application Note 10 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

ASC Bootstrap Loading
2.2.2 GNU Project Settings
The HighTec GNU settings for Loader 3 project define one build target RAM. The output
file Loader3.elf is created in the subdirectory RAM. If build target RAM does not exist,
the user must create it to comply with the following project settings.

Beside the default configuration the build options for this build target must be configured
as follows:
• RAM -> Compiler settings: Check Do not link against the default crt0.s
• RAM -> Compiler settings: Check Do not link against standard system startup

files
• RAM -> Compiler settings -> Check Optimize generated code (for size)
• RAM -> Compiler settings -> Check Tricore 17661)

• RAM -> Linker settings -> Other linker options, add line: -Wl,Loader3.ld -nocrt0 -
nostartfiles

• RAM -> Linker settings -> Other linker options, add line: -mcpu=tc17661)

• RAM -> Linker settings -> Other linker options, add line: -T Loader3.ld
• RAM -> Linker settings -> Other linker options, add line: -Wl,-Map,mapfile.lst
• RAM -> Pre/post build steps -> Post-build steps: tricore-objcopy -O ihex

RAM/Loader3.elf RAM/Loader3.hex
• RAM -> Pre/post build steps -> Post-build steps: tricore-objdump -t

RAM/Loader3.elf

The final output file Loader3.hex is created in the subdirectory .\RAM.
The linker description file Loader3.ld in the project’s root directory defines the entire
available memory of the TC17661) device.
The only memory used is the SPRAM code memory 0xD4000080 - 0xD4001400 and the
internal LDRAM with a size of 68 Kbytes starting from address 0xD0000000. CSA, stack,
heap and global variables are located in LDRAM.

Note: The actual code size of Loader 3 is less than the assumed 0x1320 bytes,
which permits changes of the code. If a changed Loader 3 exceeds the size
of 0x1320 bytes, Loader 2 must be adapted to this size. A new starting
address for SPRAM user code (see Chapter 5.4) must be taken care of.

1) In the case that another AUDO-NG device is used, the same setting applies.
Application Note 11 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
3 CAN Bootstrap Loading
The communication between PC and the target device is established via the CAN
interface. Since the regular PC does not have any CAN-Bus interface, a USB-to-CAN
bridge is used. The TriLoad HOST program example uses the Infineon XC164CM UCAN
start kit for this purpose.

Figure 3-1 Infineon XC164CM UCAN start kit used as USB-to-CAN bridge

The target device is connected to the start kit via the Target CAN Connector.

Figure 3-2 Target CAN Connector of the XC164CM UCAN start kit

The following pins must be connected:
• CAN1L of the start kit to the CAN0L pin of the target device board.
• CAN1H of the start kit to the CAN0H pin of the target device board.
Figure 3-3 shows a hardware setup for this application.

Figure 3-3 Hardware setup for flash programming using TriLoad

1 Target CAN Connector
2 USB Connector
3 COM LED (yellow)
4 RUN LED (green)
5 USER LED (red)

1 +5V
2 DIO3
3 CAN2L
4 CAN2H
5 AIN1

6 GND
7 CAN1H
8 CAN1L
9 DIO2

10 DIO1

TargetPC

GND

TriCore
USB
Port

XC164CM
UCAN
start kit

CAN-BUS

CAN1L CAN0L

CAN1H CAN0H CAN
Transceiver
Application Note 12 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
The USB-to-CAN transceiver in the XC164CM UCAN start kit is automatically started by
TriLoad. The blinking red LED indicates the running application. The start kit should be
the only USB device connected to the PC.
Note: The TriLoad example code is developed for the XC164CM UCAN start kit

only. If another USB-to-CAN bridge is used, the TriLoad routines to send and
receive CAN messages must be adapted.

The flash loader program CANLoader is independent from the USB-to-CAN bridge. The
bootloader procedure is shown in Figure 3-4.

Figure 3-4 The bootloader procedure for flash programming

CAN Bootstrap Loader mode is entered upon a device reset, if the following values are
applied at the configuration pins P4[3:0] of Port 4 for TC1766 or P10[3:0] of Port 10 for
TC1796:

Bootstrap
Loader

PC

Setup
CAN Interface

Send CANLoader
(5120 bytes

CANLoader

Call CANLoader

Send Command (refer to Chapter 5)

Response Code (refer to Chapter 5)

Flash
Routines

Call Flash
Routine

(HOST)

Send CAN
Initialization Frame

Send CAN
Acknowledge Frame

in 640 Data Frames)
Application Note 13 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
Px[3:0] = 0001
A “0” means a low-level voltage is applied at the pin.
After entering Bootstrap Loader mode, the device switches the clock system from initial
PLL Freerunning Mode (VCO base frequency) to Prescaler Mode with a frequency
divider of 1. Hence the system frequency becomes equal to the frequency of an external
crystal which must be obligatorily connected between XTAL1/XTAL2 pins, if a Bootstrap
Loader mode is selected upon power-on. The crystal frequency must be at least 10
MHz.
Further on, the HOST sends the Initialization CAN Frame to the device. The CAN-Bus
baud rate used by the HOST is automatically detected based on this frame.

Data Message Count DMSGC specifies the number of CAN Data Frames sent
subsequently to the device.
Data Message Identifier DMSGID specifies the identifier that all subsequent CAN Data
Frames must carry. The identifier will be internally stored in the device and every
incoming CAN Data Frame will be checked for the same identifier. Only 11 bit out of the
16 bit are stored internally as identifier:
The upper 3 bits of the 16-bit-word will be disregarded and the remaining word will
be right-shifted by 2. This yields the 11-bit-identifier.

Initialization Frame
Parameter Description

Identifier 11-bit, don’t care
DLC = 8 Data Length Code: 8 bytes within this CAN frame
Data Byte 0 0x55
Data Byte 1 0x55
Data Byte 2 Acknowledge Message Identifier ACKID, low byte
Data Byte 3 Acknowledge Message Identifier ACKID, high byte
Data Byte 4 Data Message Count DMSGC, low byte
Data Byte 5 Data Message Count DMSGC, high byte
Data Byte 6 Data Message Identifier DMSGID, low byte
Data Byte 7 Data Message Identifier DMSGID, high byte
Application Note 14 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
After reception of a correct initialization frame, the device sends back the Acknowledge
Frame.

After the device has sent the acknowledge frame, it enters a loop waiting to receive
exactly the number of CAN Data Frames specified by DMSGC. Each data frame carries
8 bytes of data content.

DMSGC specifies the number of 640 data frames (5120 bytes). These 51201) (0x1400)
bytes represent the CANLoader program and will be stored at the beginning of PMI
Scratchpad RAM (SPRAM, base address 0xD4000000).
Once CANLoader received, the BootROM jumps to its start address: CANLoader is
executed. In this application note, CANLoader is stored in the file CANLoader.hex.

Note: The UCAN USB-to-CAN bridge does not provide any high-speed CAN bus
connection. The programming procedure using UCAN is slower compared
to ASC BSL.

Acknowledge Frame
Parameter Description

Identifier Acknowledge Message Identifier ACKID as received by
data bytes [3:2] of the initialization frame

DLC = 4 Data Length Code: 4 bytes within this CAN frame
Data Byte 0/1 Contents of bit-timing register
Data Byte 2/3 Copy of acknowledge identifier from initialization frame

Data Frame
Parameter Description

Identifier Data Message Identifier DMSGID as sent by data bytes [7:6] of the
initialization frame and transformed as described above

DLC = 8 Data Length Code: 8 bytes within this CAN frame
Data Byte 0..7 Data bytes, assigned to increasing destination addresses in

SPRAM

1) The actual code size of CANLoader is less than 5120 bytes. Please refer to Chapter 3.1.1 for further details.
Application Note 15 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
3.1 CANLoader
Before the CANLoader can provide flash programming functionality, a further device
initialization needs to be done. Once the device jumps to address 0xD4000000, its
configuration status is as follows:
• The ENDINIT bit is cleared1). System control registers that are protected by the

ENDINIT feature can be modified.
• The watchdog timer is enabled, which means that the device will be reset if the

watchdog timer is not disabled within a certain period of time.
• The CAN interface CAN0 is configured. The CAN baud rate is the same as calculated

by the BootROM code.
• Stack pointers and Context Save Areas (CSA) are not initialized.
• Interrupt and trap vectors are not defined.
Based on the above conditions, CANLoader does the following initialization:
• The watchdog timer is disabled.
• The ENDINIT bit is set.
• Stack pointers for user and interrupt stack are set.
• The call depth counter is initialized.
• The CSA list is initialized.
These steps are implemented in the file ctr0.s which is a modified version of the default
HighTec startup code. For the Tasking variant of CANLoader, the startup code is
basically contained in the file cstart.c. The main part of CANLoader (main.c)
implements flash routines providing the following features:
• Erase flash sectors2),
• program flash pages2),
• verify a programmed flash page,
• protect PFlash2),
• program SPRAM memory,
• execute flash user code starting from address 0xA0000000,
• execute SPRAM user code starting from address 0xD4001400.

The flash protection enables a write protection of PFlash. Erase or program attempts
result in a protection error, if flash is protected. Upon receiving the protection command,
the protection status of the flash is checked. Unprotected flash memory will be protected
using two 32bit user-passwords. Protected flash memory will be unprotected using the
same passwords. Protection of DFlash is not possible.

1) Some system control registers are protected by the ENDINIT feature. These registers can only be modified, if
the ENDINIT bit is cleared. Please refer to the ENDINIT function description in the User’s Manual.

2) Please refer to Chapter 4, Flash Memory Organization
Application Note 16 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
Warning: For AUDO-NG devices, the flash protection and unprotection can be
performed up to 4 times only.
For erasing and programming flash, the sector and page address must be specified
respectively. An invalid address (e.g. an address that is not within the flash boundaries)
results in an address error. The memory organization for TC1766 and TC1796 is
described in Chapter 4.
Flash user code is executed starting from the PFlash base address 0xA0000000. Since
CANLoader occupies the first 0x1400 bytes in SPRAM, programming SPRAM is only
possible starting from address 0xD4001400. Thus, SPRAM user code is executed
starting from this address.
CANLoader defines a communication protocol to receive commands from the PC. Based
on the command received, the corresponding flash routine is executed. The
communication structure is described in Chapter 5.
Application Note 17 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
3.1.1 Tasking Project Settings
Beside the default configuration the Tasking project settings for CANLoader need to be
configured as follows:
• C/C++ Build -> Processor -> AUDO NextGeneration Family -> Check TC17661)

• C/C++ Build -> Settings ->
• C/C++ Compiler -> Allocation -> Threshold for putting data in __near: 0
• C/C++ Compiler -> Optimization -> Optimization level: 2 - Optimize more
• C/C++ Compiler -> Optimization -> Trade-off between speed and size: Level4 -

Size
• Linker -> Output Format: Check Generate Intel Hex format file, Size of

addresses: 4
• Linker -> Libraries: Uncheck Link default libraries
• Linker -> Miscellaneous: Uncheck Include debugger synchronization utility

The Linker Script Language file CANLoader.lsl defines 5120 (0x1400) bytes in SPRAM
memory of type rom starting from address 0xD4000000 and 68 Kbytes in LDRAM of
type ram starting from address 0xD0000000. CSA, stack, heap and global variables are
located in LDRAM.
The reset start address is set to 0xD4000000.

Note: The actual code size of CANLoader is less than the assumed 0x1400 bytes,
which permits changes of the code. If a changed CANLoader exceeds the
size of 0x1400 bytes, a new starting address for SPRAM user code (see
Chapter 5.4) must be taken care of.

1) In the case that another AUDO-NG device is used, the same setting applies.
Application Note 18 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

CAN Bootstrap Loading
3.1.2 GNU Project Settings
The HighTec GNU settings for the CANLoader project define one build target RAM. The
output file CANLoader.elf is created in the subdirectory RAM. If build target RAM does
not exist, the user must create it to comply with the following project settings.

Beside the default configuration the build options for this build target must be configured
as follows:
• RAM -> Compiler settings: Check Do not link against the default crt0.s
• RAM -> Compiler settings: Check Do not link against standard system startup

files
• RAM -> Compiler settings -> Check Optimize generated code (for size)
• RAM -> Compiler settings -> Check Tricore 17661)

• RAM -> Linker settings -> Other linker options, add line: -Wl,CANLoader.ld -nocrt0
-nostartfiles

• RAM -> Linker settings -> Other linker options, add line: -mcpu=tc17661)

• RAM -> Linker settings -> Other linker options, add line: -T CANLoader.ld
• RAM -> Linker settings -> Other linker options, add line: -Wl,-Map,mapfile.lst
• RAM -> Pre/post build steps -> Post-build steps: tricore-objcopy -O ihex

RAM/CANLoader.elf RAM/CANLoader.hex
• RAM -> Pre/post build steps -> Post-build steps: tricore-objdump -t

RAM/CANLoader.elf

The final output file CANLoader.hex is created in the subdirectory .\RAM.
The linker description file CANLoader.ld in the project’s root directory defines the entire
available memory of the TC17661) device.
The only memory used is the SPRAM code memory 0xD4000000 - 0xD4001400 and the
internal LDRAM with a size of 68 Kbytes starting from address 0xD0000000. CSA, stack,
heap and global variables are located in LDRAM.

Note: The actual code size of CANLoader is less than the assumed 0x1400 bytes,
which permits changes of the code. If a changed CANLoader exceeds the
size of 0x1400 bytes, a new starting address for SPRAM user code (see
Chapter 5.4) must be taken care of.

1) In the case that another AUDO-NG device is used, the same setting applies.
Application Note 19 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Flash Memory Organization
4 Flash Memory Organization
The devices of the AUDO-NG family have a Program Memory Unit (PMU). The
following memories belong to the Program Memory Unit:
• PFlash: Flash memory for code or constant data (called Program Flash)
• DFlash: Additional flash memory used for emulation of EEPROM data (called Data

Flash)
PFlash and DFlash memories are characterized by their sector architecture and by their
page structure. Sectors are flash memory partitions of different sizes. The flash modules
and sectorization of the AUDO-NG devices are shown in the following tables.
Flash erasure is sector-wise. Sectors are subdivided into pages. Flash memory
programming is page-wise. A PFlash page contains 256 bytes. A DFlash page contains
128 bytes.

4.1 TC1766
In TC1766, the flash module PFlash includes 1504 KB of PFlash memory.

DFlash includes 32 Kbyte of additional data flash memory.

PFlash0 sector Address range Size in bytes
0 0xA0000000 - 0xA0003FFF 0x4000
1 0xA0004000 - 0xA0007FFF 0x4000
2 0xA0008000 - 0xA000DFFF 0x4000
3 0xA000C000 - 0xA000FFFF 0x4000
4 0xA0010000 - 0xA0013FFF 0x4000
5 0xA0014000 - 0xA0017FFF 0x4000
6 0xA0018000 - 0xA001DFFF 0x4000
7 0xA001C000 - 0xA001FFFF 0x4000
8 0xA0020000 - 0xA003FFFF 0x20000
9 0xA0040000 - 0xA007FFFF 0x40000
10 0xA0080000 - 0xA00FFFFF 0x80000
11 0xA0100000 - 0xA0177FFF 0x78000

DFlash sector Address range Size in bytes
0 0xAFE00000 - 0xAFE03FFF 0x4000
1 0xAFE10000 - 0xAFE13FFF 0x4000
Application Note 20 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Flash Memory Organization
The SPRAM memory is not subdivided into sectors or pages and can be programmed
by half-words (2 bytes).
TC1766 includes 16 Kbytes of SPRAM in an address range of 0xD4000000 -
0xD4003FFF.

4.2 TC1796
In TC1796, the flash module PFlash includes 2 MB of PFlash memory.

DFlash includes 128 Kbyte of additional data flash memory.

The SPRAM memory is not subdivided into sectors or pages and can be programmed
by half-words (2 bytes).
TC1796 includes 48 Kbytes of SPRAM in an address range of 0xD4000000 -
0xD400BFFF.

PFlash0 sector Address range Size in bytes
0 0xA0000000 - 0xA0003FFF 0x4000
1 0xA0004000 - 0xA0007FFF 0x4000
2 0xA0008000 - 0xA000DFFF 0x4000
3 0xA000C000 - 0xA000FFFF 0x4000
4 0xA0010000 - 0xA0013FFF 0x4000
5 0xA0014000 - 0xA0017FFF 0x4000
6 0xA0018000 - 0xA001DFFF 0x4000
7 0xA001C000 - 0xA001FFFF 0x4000
8 0xA0020000 - 0xA003FFFF 0x20000
9 0xA0040000 - 0xA007FFFF 0x40000
10 0xA0080000 - 0xA00FFFFF 0x80000
11 0xA0100000 - 0xA017FFFF 0x80000
12 0xA0180000 - 0xA01FFFFF 0x80000

DFlash sector Address range Size in bytes
0 0xAFE00000 - 0xAFE0FFFF 0x10000
1 0xAFE10000 - 0xAFE1FFFF 0x10000
Application Note 21 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Communication Protocol
5 Communication Protocol
The flash loader programs Loader 3 or CANLoader establish a communication
structure to receive commands from the PC HOST. The HOST sends commands via
transfer blocks. Three types of blocks are defined:

The header block has a length of 16 bytes.

The data block has a length of 264 bytes.

The EOT block has a length of 16 bytes.

The action required by the HOST is indicated in the Mode byte of the header block. The
flash loader program waits to receive a valid header block and performs the
corresponding action. The correct reception of a block is judged by its checksum which
is calculated as follows:
The XOR sum of all block bytes excluding block type byte and checksum byte itself.
The different modes specify the flash routines that will be executed by the loader. The
modes and their corresponding communication protocol are described as follows.

In ASC BSL mode, all block bytes are sent at once via the UART interface. In CAN BSL
mode, each block to be sent must be split into 8-byte-parts and sent in a sequence of
CAN Data Frames. This yields 2 CAN frames for Header and EOT block and 33 CAN
frames for a Data block. The CAN Data Frames must carry the same identifier as
specified in DMSGID (refer to Chapter 3).

1) Header Block

Byte 0 Byte 1 Bytes 2...14 Byte 15
Block
Type

(0x00)
Mode Mode-specific content Checksum

2) Data Block

Byte 0 Byte 1 Bytes 2...257 Bytes 258...262 Byte 263
Block
Type

(0x01)

Verifi-
cation
option

256 data bytes Not
Used Checksum

3) EOT Block

Byte 0 Bytes 1...14 Byte 15
Block
Type

(0x02)
Not Used Checksum
Application Note 22 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Communication Protocol
5.1 Mode 0: Program Flash Page

PageAddress (32bit): Address of the flash page to be programmed. The address must
be 256-byte-aligned (128-byte-aligned for DFlash) and in a valid range (see Chapter 4).
Otherwise an address error will occur. Byte 2 indicates the highest byte while Byte 5
indicates the lowest byte.
After reception of the header block, the device sends either 0x55 as acknowledgement
or an error code in case of an invalid block.
The loader enters a loop waiting to receive the subsequent data blocks in the following
format. The loop is terminated by sending an EOT block to the target device.

VerificationOption: Set this byte to 0x01 to request a verification of the programmed
page bytes. If this byte is 0x00, no verification is performed.
Code bytes: Page content.
Since a DFlash page contains only 128 bytes, the second 128 bytes are irrelevant
and not used in case of DFlash programming.
After each received data block, the device sends either 0x55 to the PC as
acknowledgement or an error code.

After each received EOT, block the device sends either 0x55 to the PC as
acknowledgement or an error code

Header Block

Byte 0 Byte 1 Byte 2...5 Byte 6...14 Byte 15
Block
Type

(0x00)
Mode
(0x00)

Page
Address

Not
Used Checksum

Data Block

Byte 0 Byte 1 Bytes 2...257 Bytes 258...262 Byte 263
Block
Type

(0x01)

Verifi-
cation
option

256 code bytes Not
Used Checksum

EOT Block

Byte 0 Bytes 1...14 Byte 15
Block
Type

(0x02)
Not

Used Checksum
Application Note 23 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Communication Protocol
5.2 Mode 1: Execute User Program in PFlash

The command causes a jump to the flash base address 0xA0000000. The device will
exit BSL mode after sending 0x55 as acknowledgement.

5.3 Mode 2: Program SPRAM

Address (32bit): Starting address of the SPRAM section to be programmed. The
address must be 4-byte-aligned and in a valid range (see Chapter 4). Otherwise an
address error will occur. Byte 2 indicates the highest byte while Byte 5 indicates the
lowest byte.
After reception of the header block, the device sends 0x55 as acknowledgement or an
error code in case of an invalid block.
The loader enters a loop waiting to receive the subsequent data blocks in the following
format. The loop is terminated by sending an EOT block to the target device.

Code bytes: Data content.
The data content of SPRAM is not verified.
After each received data block the device sends 0x55 to the PC as acknowledgement or
the according error code.

Header Block

Byte 0 Byte 1 Byte 2...14 Byte 15
Block
Type

(0x00)
Mode
(0x01)

Not
Used

Check
sum

Header Block

Byte 0 Byte 1 Bytes 2...5 Byte 6...14 Byte 15
Block
Type

(0x00)
Mode
(0x02) Address Not

Used Checksum

Data Block

Byte 0 Byte 1 Bytes 2...257 Bytes 258...262 Byte 263
Block
Type

(0x01)

Verifi-
cation
option

256 code bytes Not
Used Checksum
Application Note 24 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Communication Protocol
After each received EOT block, the device sends either 0x55 to the PC as
acknowledgement or the according error code.

5.4 Mode 3: Execute User Program in SPRAM

The command causes a jump to the SPRAM user code base address 0xD4001400. The
device will exit BSL mode after sending 0x55 as acknowledgement.

5.5 Mode 4: Erase Flash Sector

SectorAddress (32bit): Address of the flash sector to be erased. The address must be
a valid sector address (see Chapter 4), an address error will occur otherwise. Byte 2
indicates the highest address byte while Byte 5 indicates the lowest byte.
SectorSize (32bit): Size of the flash sector to be erased. The size must be a valid sector
size (see Chapter 4). Byte 6 indicates the highest address byte while Byte 9 indicates
the lowest byte.
The device sends either 0x55 to the PC as acknowledgement or an error code.

EOT Block

Byte 0 Bytes 1...14 Byte 15
Block
Type

(0x02)
Not

Used Checksum

Header Block

Byte 0 Byte 1 Byte 2...14 Byte 15
Block
Type

(0x00)
Mode
(0x03)

Not
Used

Check
sum

Header Block

Byte 0 Byte 1 Bytes 2...5 Bytes 6...9 Bytes 10...14 Byte 15
Block
Type

(0x00)
Mode
(0x04)

Sector
Address

Sector
Size

Not
Used

Check
sum
Application Note 25 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Communication Protocol
5.6 Mode 6: Protect / Unprotect PFlash

UserPassword1 (32bit): First user password. Byte 2 indicates the highest byte while
Byte 5 indicates the lowest byte.
UserPassword2 (32bit): Second user password. Byte 6 indicates the highest byte while
Byte 9 indicates the lowest byte.
FlashModule: PFlash module to be protected:

ProtectionConfig (16bit): Selection of the flash sectors to be protected. The protection
configuration word has the following structure:

Sn = 0: Sector n will not be protected.
Sn = 1: Sector n will be protected.

Note: Not all AUDO-NG devices have 13 PFlash sectors. In the case that sector n
does not exist, Bit Sn should be set to 0. Please refer to Chapter 4 for
detailed information about the flash sectorization.

After sending an acknowledgement, the device needs to be reset. All erase or program
commands sent to a flash-protected device will cause a protection error.
If the PFlash is unprotected, it will be protected after sending this header block. The
same block sent with the same passwords to a flash-protected device will unprotect the
PFlash. Protection of DFlash is not possible.
Warning: For AUDO-NG devices, the flash protection and unprotection can be
performed up to 4 times only.

Header Block

Byte 0 Byte 1 Bytes 2...5 Byte 6...9 Byte 10 Byte 11...12 Byte 13-14 Byte 15
Block
Type

(0x00)
Mode
(0x06)

User
Password1

User
Password2

Flash
Module

Protection
Config

Not
Used

Check
sum

0 PFlash0
1 PFlash1
X PFlashX

ProtectionConfig bit scheme

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 S12 S11 S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0
Application Note 26 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Communication Protocol
5.7 Response Code to the HOST
The lash loader program will let the HOST know whether a block has been successfully
received and whether the requested flash routine has been successfully executed by
sending out a response code.

Response Code Description
0x55 Acknowledgement, no error
0xFF Invalid block type
0xFE Invalid mode
0xFD Checksum error
0xFC Invalid address
0xFB Error during flash erasing
0xFA Error during flash programming
0xF9 Verification error
0xF8 Protection error
Application Note 27 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

TriLoad - Example HOST Program
6 TriLoad - Example HOST Program
The TriLoad HOST program developed in C++ uses the above communication structure
(Chapter 5). The file TriLoad_API.cpp contains the API for direct communication with
Loader 3 or CANLoader.
The API includes the following functions:

The main program (TriLoad.cpp) initializes ASC or CAN BSL and sends Loader 2 and
Loader 3 or CANLoader respectively to the target device.
The user must specify the HEX file to be downloaded and the target memory for
programming.

API Function Description
init_uart Initialize PC COM interface
init_ucan_uart Initialize PC COM interface and the UCAN

XC164CM USB-to-CAN bridge
init_ASC_BSL Initialize ASC BSL
send_loader2 Send the Loader 2
send_loader3 Send the Loader 3
send_CANinit_frame Send the CAN Initialization Frame
send_CANdata_frame Send a CAN Data Frame
send_CANLoader Send the CANLoader
bl_send_header Send header block via ASC interface
blCAN_send_header Send header block via CAN interface
bl_send_data Send data block via ASC interface
blCAN_send_data Send data block via CAN interface
bl_send_EOT Send EOT block via ASC interface
blCAN_send_EOT Send EOT block via CAN interface
bl_erase_flash Erase PFlash/ DFlash sectors
bl_download_pflash Download code to PFlash
bl_download_dflash Download code to DFlash
bl_download_spram Download code to SPRAM
make_flash_image Create a flash image from HEX file
make_flash_hexfile Generate a dummy HEX file to fill the entire

flash. The code is not executable
Application Note 28 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

TriLoad - Example HOST Program
An example HEX file is provided for each memory type:
• PFlash (led_blinking.hex)
• DFlash (DFlash_data.hex)
• SPRAM (led_blinking_SPRAM.hex)
If PFlash is protected, the user needs to enter two correct passwords to unprotect the
flash. Then the user code is downloaded to PFlash and the flash is protected if desired.
Finally the user can execute the downloaded code from either PFlash or SPRAM.
The flash erasing procedure is shown in Figure 6-1. The procedure is implemented in
the function bl_erase_flash().
The PFlash programming procedure is shown in Figure 6-2. The procedure is
implemented in the function bl_download_pflash().
The procedures for DFlash and SPRAM programming are implemented accordingly.
Note: TriLoad also supports programming of TriCore devices other than the

AUDO-NG family. Upon program start, the user must specify which device
shall be programmed. The HEX files according to supported TriCore families
are included in subfolders (e.g. AUDO-F, AUDO-NG) in the project folder.

Figure 6-1 Flash erasing procedure implemented in bl_erase_flash()

Read HEX line

Determine flash sector
according to address

Sector already erased? yes

mode=4
bl_send_header()

no

mark sector as erased

Start

End

End of file
Application Note 29 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

TriLoad - Example HOST Program
Figure 6-2 Programming procedure implemented in bl_download_pflash()

Start

Read HEX line End of file

Address continuous? yes

no

First cycle? yes

no

bl_send_data()

bl_send_EOT()

(send remaining bytes)

mode = 0
bl_send_header()

Store bytes from HEX
file in write-buffer

size ofno

yes

write-buffer >= 256?

bl_send_data()

size ofno

yes

write-buffer > 0?

bl_send_data()

bl_send_EOT()

(send remaining bytes)

End

bl_erase_flash ()

Delete the first 256
bytes in write-buffer
Application Note 30 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

List of Provided Files
7 List of Provided Files
The following project files are provided in this application note.

7.1 Tasking VX-toolset for Tricore v3.0r1
Loader 2 (.\Tasking\Loader2):
• Loader2.c
• Loader2.lsl
• tc1766.lsl
• .\Debug\ Loader2.hex
• additional files automatically generated by Tasking
Loader 3 (.\Tasking\Loader3):
• cstart.c
• cstart.h
• main.c
• Loader3.lsl
• tc1766.lsl
• .\Debug\ Loader3.hex
• additional files automatically generated by Tasking
CANLoader (.\Tasking\CANLoader):
• cstart.c
• cstart.h
• CAN_Regs_1766B.h
• main.c
• CANLoader.lsl
• tc1766.lsl
• .\Debug\ CANLoader.hex
• additional files automatically generated by Tasking
LED_Blinking (.\Tasking\LED_Blinking):
• cstart.c
• cstart.h
• main.c
• LED_Blinking.lsl
• tc1766.lsl
• .\Debug\ LED_Blinking.hex
• additional files automatically generated by Tasking
LED_Blinking_SPRAM (.\Tasking\LED_Blinking_SPRAM):
• cstart.c
• cstart.h
• main.c
Application Note 31 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

List of Provided Files
• LED_Blinking_SPRAM.lsl
• tc1766.lsl
• .\Debug\ LED_Blinking_SPRAM.hex
• additional files automatically generated by Tasking

7.2 HighTec GNU Toolchain for Tricore v3.4.5.1
Loader 2 (.\GNU\Loader2):
• .\src\ Loader2.s
• .\src\ reg176x.h
• Loader2.ld
• .\RAM\ Loader2.hex
• additional files automatically generated by HighTec
Loader 3 (.\GNU\Loader3):
• .\src\ crt0.s
• .\src\ main.c
• .\src\ reg176x.h
• Loader3.ld
• .\RAM\ Loader3.hex
• additional files automatically generated by HighTec
CANLoader (.\GNU\CANLoader):
• .\src\ crt0.s
• .\src\ main.c
• .\src\ reg176x.h
• CANLoader.ld
• .\RAM\ CANLoader.hex
• additional files automatically generated by HighTec
LED_Blinking (.\GNU\LED_Blinking):
• .\src\ main.c
• .\src\ reg176x.h
• LED_Blinking.ld
• .\ROM\ LED_Blinking.hex
• additional files automatically generated by HighTec
LED_Blinking_SPRAM (.\GNU\LED_Blinking_SPRAM):
• .\src\ crt0.s
• .\src\ main.c
• .\src\ reg176x.h
• LED_Blinking_SPRAM.ld
• .\RAM\ LED_Blinking_SPRAM.hex
• additional files automatically generated by HighTec
Application Note 32 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

List of Provided Files
7.3 Microsoft Visual C++ 6.0
TriLoad v1.2, Example HOST program (.\TriLoad):
The source files are included in a Microsoft Visual C++ 6.0 project.
• TriLoad.cpp
• TriLoad_API.cpp
• TriLoad_API.h
• Device_Memory.h
• .\AUDO-NG\ Loader2.hex (needs to be in the C++ project folder)
• .\AUDO-NG\ Loader3.hex (needs to be in the C++ project folder)
• .\AUDO-NG\ CANLoader.hex (needs to be in the C++ project folder)
• .\AUDO-NG\ LED_Blinking.hex (needs to be in the C++ project folder)
• .\AUDO-NG\ LED_Blinking_SPRAM.hex (needs to be in the C++ project folder)
• .\AUDO-NG\ DFlash_data.hex (needs to be in the C++ project folder)
• FTCJTAG.lib
• FTCJTAG.dll
• FTCJTAG.h
• FTD2XX.dll
• additional files automatically generated by Microsoft Visual C++
Application Note 33 V 1.0, 2008-11

AP32136
TriCore - AUDO-NG Flash Download via Bootstrap Loader

Reference Documents
8 Reference Documents

Document Description Location
TC1766 User’s Manual User’s Manual for the

TC1766 device
http://www.infineon.com

TC1796 User’s Manual User’s Manual for the
TC1796 device

http://www.infineon.com

ap3208231_tc176x_examples_colle
ction.pdf

Collection of software
examples for TC176x
devices

http://www.infineon.com

tc_v131_instructionset_v__138.pdf Instruction set for
TriCore V1.3 and
V1.3.1 architecture

http://www.infineon.com

Infineon FLASH Samples.pdf Reference samples
for programming
Infineon on-chip flash
memory devices

http://www.infineon.com

U-CAN-XC164CM-
SystemDescription.pdf

System description of
the UCAN XC164CM
start kit, USB-to-CAN
bridge

http://www.infineon.com
Application Note 34 V 1.0, 2008-11

w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

http://www.infineon.com

	1 Introduction
	2 ASC Bootstrap Loading
	2.1 Loader 2
	2.1.1 Tasking Project Settings
	2.1.2 GNU Project Settings

	2.2 Loader 3
	2.2.1 Tasking Project Settings
	2.2.2 GNU Project Settings

	3 CAN Bootstrap Loading
	3.1 CANLoader
	3.1.1 Tasking Project Settings
	3.1.2 GNU Project Settings

	4 Flash Memory Organization
	4.1 TC1766
	4.2 TC1796

	5 Communication Protocol
	5.1 Mode 0: Program Flash Page
	5.2 Mode 1: Execute User Program in PFlash
	5.3 Mode 2: Program SPRAM
	5.4 Mode 3: Execute User Program in SPRAM
	5.5 Mode 4: Erase Flash Sector
	5.6 Mode 6: Protect / Unprotect PFlash
	5.7 Response Code to the HOST

	6 TriLoad - Example HOST Program
	7 List of Provided Files
	7.1 Tasking VX-toolset for Tricore v3.0r1
	7.2 HighTec GNU Toolchain for Tricore v3.4.5.1
	7.3 Microsoft Visual C++ 6.0

	8 Reference Documents

