

M ic rocont ro l le rs

TC179x
T C 1 7 9 x E x a m p l e s C o l l e c t i o n

App l i ca t i on No te , V3 .0 , June 2006

AP32083

Edition 2006-06-16
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2006.
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

 AP32083
 TC179x Examples Collection

Application Note 3 V3.0, 2006-06

AP32082
Revision History: 2006-06 V3.0
Previous Version: V2.0
Page Subjects (major changes since last revision)
6 Removed 'whetstone' example
7 Changed the name of the installation directory from TC179x to TC179x_examples

(cap. 3).
7 Added entry cstart.asm to the directory structure (cap 3).
9 Changed the values for the Clock System configuration (cap. 4.4.1).
9 Changed the description of the Interrupt System configuration (cap. 4.4.1).
10,11 Changed Altium Tasking version from 2.2r3 to 2.3r1.
11 Reformulated chapter 5.1.2.
11 Changed the name of the installation directory from TC179x to TC179x_examples

(cap. 5.1.3).
12 Changed the description of the Liker/Locator configuration (cap. 5.2).

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

 AP32083
TC179x Examples Collection

Table of Contents Page

Application Note 4 V3.0, 2006-06

1 Introduction ...5
2 TC179x Examples Collection Content ..5
2.1 led_pol...5
2.2 led_int..5
2.3 rs232_o ...5
2.4 tc_clock ...6
2.5 queens...6
3 TC179x Examples Collection Organisation..6
4 TC179x Examples Collection Implementation ...7
4.1 File types.h ..8
4.1.1 Integer Data Types..8
4.2 File reg179x.h ..8
4.3 Files util.c and util.h..8
4.3.1 Intrinsic Functions ...8
4.3.2 EndInit Bit Management..9
4.4 Files init.c and init.h..9
4.4.1 System Clock and Interrupt System..9
4.4.2 System Timer ..9
4.4.3 GPIO ...9
4.5 Files comm.c and comm.h..9
4.5.1 ASC0 Configuration ..9
4.5.2 Communication Management ...10
4.6 Example-Specific Sources ..10
4.7 System Header Files...10
4.8 Portability...10
5 TC179x Examples Collection Usage ...11
5.1 Configuring the Board, Building and Running the Code ...11
5.1.1 Setups ...11
5.1.2 Extract the Sources...11
5.1.3 Build the Code...11
5.1.4 Load and Run the Executables...12
5.2 Linker/Locator Configuration...12

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Content

Application Note 5 V3.0, 2006-06

1 Introduction
The TC179x Examples Collection is a collection of software examples aimed to guide users to get a quick
start to work with microcontrollers belonging to the Infineon Technologies TriCore TC179x family1.

The TC179x Examples Collection shows the main steps the user has to go through in order to have a full-
functional application. In particular configuration and usage of Clock and Interrupt Systems, System Timer
(STM), Ports and Peripheral Input/Output (GPIO) and Asynchronous/Synchronous Serial Interface (ASC) are
addressed.

All software examples are self-contained applications in form of Tasking projects, developed for the TC179x
TriBoard. Therefore the TC179x Examples Collection can also be used to learn how to setup a Tasking
project for the TriCore TC179x and the TC179x TriBoard.

All the information contained in this document is retrieved from the TC179x official documentation and the
TC179x TriBoard User's Manual. Reference should always be made to these documents.

In this document we will use following abbreviations:
• 'Tasking' for the Altium Tasking VX-Toolset for TriCore toolchain (C compiler, assembler, linker).
• 'CrossView' for the Altium Tasking CrossView Pro debugger.
• 'EDE' for the Tasking Embedded Development Environment.

2 TC179x Examples Collection Content
The TC179x Examples Collection contains 5 software examples, showing the usage of some modules of the
TriCore TC179x (e.g. Clock and Interrupt Systems, System Timer, GPIO, and ASC).

All software examples are self-contained applications in form of Tasking projects, developed for the TC179x
TriBoard.

Here below a description of the available examples.

2.1 led_pol

This example makes the TriBoard led blink, by using a polling algorithm based on the System Timer (STM).
The blinking period is set to 1 second, with a duty cycle of 50%.

This example shows how to configure and use the TriCore STM module.

2.2 led_int

This example makes the TriBoard led blink, by using a System Timer (STM) interrupt. The blinking period is
set to 1 second, with a duty cycle of 50%.

This example shows how to configure and use the TriCore STM module.

2.3 rs232_o

This example simply writes a message on a dumb terminal (e.g. Windows 2000 HyperTerminal).

This example shows how to configure and use the TriCore ASC module.

1 The term "TriCore TC179x family" denotes a set of code compatible microcontroller derivatives, all of them named

TC179 plus a derivative number x. An example is the TriCore TC1796.

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Organisation

Application Note 6 V3.0, 2006-06

2.4 tc_clock

This example implements a running clock using the System Timer. A dumb terminal (e.g. Windows 2000
HyperTerminal) via the TriBoard RS232 interface is used to display the running clock.

This example shows how to realize a clock function with the TriCore on-board STM and ASC modules.

2.5 queens

This example is a demonstration of the Eight Queens Problem. It shows all possible ways in which eight
queens can be placed on an 8x8 chessboard without threatening each other. It finishes when it has found all
92 solutions to the problem. Each solution is displayed as a chess diagram on a VT100 terminal (e.g.
Windows 2000 HyperTerminal) via the TriBoard RS232 interface.

This example is a translation/adaptation of the original Pascal version in "Algorithms+Data
Structures=Programs", Niklaus Wirth, Prentice-Hall, 1976.

This example shows how to port a standard algorithm on the TriCore as well as how to implement the VT100
protocol on the TriCore ASC module.

3 TC179x Examples Collection Organisation
The TC179x Examples Collection is organized in several subdirectories, one subdirectory for each example.
An additional subdirectory, common_src, contains sources which may be used by all examples.

Each example directory has a src subdirectory containing the C sources of the example and a make_t
subdirectory containing all files related to the Tasking toolchain.

The resulting directory structure is therefore:

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Implementation

Application Note 7 V3.0, 2006-06

TC179x_examples
 |
 |_ common_src\
 | |_ comm.c
 | |_ comm.h
 | |_ init.c
 | |_ init.h
 | |_ reg179x.h
 | |_ types.h
 | |_ util.c
 | |_ util.h
 |
 |_ <example_x>\
 | |
 | |_ make_t\
 | | |_ cstart.asm
 | | |_ <example_x>_tc179<n>.opt
 | | |_ <example_x>_TC179x.pjt
 | |
 | |_ src\
 | |_ <example_x>.c
 |
 |_ examples_TC179x.psp
 |_ readme.txt

where:

Directory or File Description
common_src\ This directory contains sources which may be used by all of the

examples.
comm.c, comm.h Serial communication routines.
init.c, init.h Initialisation functions for Clock, Interrupt Systems, GPIO and STM.
reg179x.h TC179x registers definitions.
types.h Basic types.
util.c, util.h Common definitions, macros and functions for the TC179x core.
<example_x>\ Example-specific directory. There is one directory for each example.
make_t\ This directory contains all files related to the Tasking toolchain.

Please note that after compilation, much more files are to be found in
this directory.

cstart.asm Tasking TriCore start-up code.
<example_x>_tc179<n>.opt Tasking option file for a specific TriCore derivative.

There will be one option file for each supported derivative.
<example_x>_TC179x.pjt Tasking project file.
src\ This directory contains the example specific C source code file.
<example_x>.c Example-specific C source code file.
examples_TC179x.psp Tasking project space file.
readme.txt Readme file.

4 TC179x Examples Collection Implementation
All definitions, initialisation functions, general purpose functions, as well as functions used by more than one
example, are to be found in the source files stored under directory common_src (i.e. files types.h
reg179x.h, util.h, util.c, init.h, init.c, comm.h, comm.c).

Each example is implemented in one or more dedicated sources, stored in the src subdirectory of the
example-specific directory.

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Implementation

Application Note 8 V3.0, 2006-06

However the whole collection has been developed using the Tasking toolchain, particular attention has been
given to portability issues, so that the user should be able to easily port the whole code to other toolchains.

4.1 File types.h

This C header file contains the definition of some basic types used in the examples.

4.1.1 Integer Data Types

For integer variables following types are defined:

Data Type Data Size
uint8_t 8 bit, unsigned
int8_t 8 bit, signed
uint16_t 16 bit, unsigned
int16_t 16 bit, signed
uint32_t 32 bit, unsigned
int32_t 32 bit, signed
uint64_t 64 bit, unsigned
int64_t 64 bit, signed

4.2 File reg179x.h

This C header file contains the definition of all TC179x registers used in the examples.

Each register definition has the form:

#define <NAME> (*((uint32_t volatile *) <ADDRESS>))

where <NAME> is the register name and <ADDRESS> the register 32-bit address, in hexadecimal notation.

4.3 Files util.c and util.h

These files contain common definitions, macros and functions for the TC179x core.

4.3.1 Intrinsic Functions

The examples make use of some TriCore C intrinsic functions. For portability reasons, these functions are
not used directly as they are defined in the Tasking C compiler, but they are redefined through #define
statements in header file util.h. In particular following instruction are to be found:

DISABLE = Disable Interrupts

ENABLE = Enable Interrupts

MTCR = Move to Core Register

MFCR = Move from Core Register

ISYNC = Insert ISYNC instruction

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Implementation

Application Note 9 V3.0, 2006-06

4.3.2 EndInit Bit Management

EndInit protected registers can be unlocked and locked by using the functions ClearEndinit() and
SetEndinit() respectively.

Function ClearEndinit() clears the EndInit bit, which controls access to system critical registers. Clearing
the EndInit bit unlocks all EndInit protected registers. Modifications of the EndInit bit are monitored by the
watchdog timer such that after clearing EndInit, the watchdog timer enters a defined time-out mode. EndInit
must be set again before the time-out expires.

Function SetEndinit() sets the EndInit. Setting the EndInit bit locks all EndInit protected registers.

4.4 Files init.c and init.h

These files contain initialisation functions and values for almost all TC179x modules used in the examples.

4.4.1 System Clock and Interrupt System

Function InitSystem() initialises the Clock and Interrupt Systems.

The Clock System is configured in PLL mode, i.e. the CPU clock is derived from the oscillator clock, divided
by the input divider P, multiplied by the feedback divider N and divided by the output divider K:

OSCCPU f
KP
Nf ⋅
⋅

=

Furthermore, a CPU Clock to System Clock ration of 2:1 is chosen.

Assuming an external (i.e. on the TC179x TriBoard) 20 MHz oscillator, P = 2, N = 60 and K = 5, we will have
a CPU Clock frequency of 120 MHz and a System Clock frequency of 60 MHz.

The Interrupt System is configured with two arbitration cycles (max. 15 interrupt sources) and two clocks per
arbitration cycle.

4.4.2 System Timer

Function InitSTM() does a minimal configuration of the STM module. It simply configures the STM Clock
equal to the System Clock.

Function InitSTMCmp(uint32_t CmpTime), beside configuring the STM Clock equal to the System
Clock, configures also the STM capture match interrupt control logic. Compare register 0 is here used.
Parameter CmpTime specifies the time interval, in ms, between two successive interrupts. Constant
STM_ISR_PRIO specifies the STM ISR priority number.

4.4.3 GPIO

Function InitTriboardLed() initialises the microcontroller port pin connected to the TriBoard led, i.e. pin
15 of port 1 (P1.15). This pin is configured as a GPIO push/pull output pin, medium driver, and is set to high
level.

4.5 Files comm.c and comm.h

These files contain functions and values for the RS232 serial communication via the TriCore ASC module.

4.5.1 ASC0 Configuration

Function InitRS232(uint32_t BaudRate) configures the ASC0 module to operate in asynchronous
mode, with 8 data bit, 1 stop bit, no parity check, no framing check. The receiver is disabled. The baud rate

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Implementation

Application Note 10 V3.0, 2006-06

generator is programmed according to parameter BaudRate (e.g. 9600 Baud). The ASC0 clock is set equal
to the System Clock.

The serial output of ASC0 is connected to GPIO pin P5.1 (i.e. pin 1 of port 5), which in turn is configured as
an output pin in Alternate Mode 1 (ALT1) and set to low level.

The communication protocol is interrupt driven, where constant RS232_TX_INT specifies the ASC0
transmission ISR priority number.

4.5.2 Communication Management

Function _interrupt(RS232_TX_INT) RS232TxISR() is the ASC0 transmission Interrupt Service
Routine. Constant RS232_TX_INT specifies its priority number.

Function RS232Write(char *pchMsg) writes the string pointed by parameter *pchMsg on the ASC0
serial output.

Function VT100InitScreen() initializes the VT100 terminal. It writes a VT100 escape sequence on the
ASC0 serial output for clearing the screen, switching off inverse mode, turning off the cursor and setting its
position at the upper left corner of the screen.

Function VT100ExitScreen() restores some terminal settings. It writes a VT100 escape sequence on the
ASC0 serial output for changing to the next line, switching off inverse mode and turning the cursor on again.

Function VT100SetCursor(uint16_t u16Line, uint16_t u16Col) writes a VT100 escape
sequence on the ASC0 serial output for setting the cursor position on the coordinates specified by
parameters u16Line and u16Col.

Function VT100PrintNormal (const char *pchStr) writes the string pointed by parameter *pchStr
on the ASC0 serial output, in normal video mode.

Function VT100PrintReversed (const char *pchStr) writes the string pointed by parameter
*pchStr on the ASC0 serial output, in reversed video mode.

4.6 Example-Specific Sources

Each example is implemented in one or more dedicated sources, stored in the src subdirectory of the
example-specific directory.

We don't give here a description of these files. Please refer to the source code itself, which is generously
commented.

4.7 System Header Files

Following system header files, provided with the Tasking C compiler are used:

Header File Purpose
ctri.h TriCore intrinsic functions
stdio.h I/O functions
math.h Arithmetic functions

4.8 Portability

The TC179x Examples Collection has been developed using the Tasking toolchain. Nevertheless, a great
effort has been spent to reduce to the minimum the dependencies to this specific toolchain. Here below the
remaining critical points.

System header file ctri.h contains the definition of the TriCore C intrinsic functions. It is toolchain-specific
and therefore may have different names in other toolchains.

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Usage

Application Note 11 V3.0, 2006-06

In header file util.h all used TriCore C intrinsic functions are redefined by macros. These definitions may
need to be modified in other toolchain. Please do this accordingly to chapter "Intrinsic functions"

5 TC179x Examples Collection Usage
The TC179x Examples Collection was developed with the Altium Tasking VX-Toolset for TriCore ver. 2.3r1
toolchain, including the Altium Tasking CrossView Pro ver. 2.3r1.

Target hardware is the Infineon Technologies TC179x TriBoard rev. 300, with a 20 MHz on-board oscillator.

Windows 2000 is assumed on the host side.

5.1 Configuring the Board, Building and Running the Code

Windows 2000 is assumed on the host side. Although in this document the C: drive is used, the TC179x
Examples Collection is not drive-specific.

5.1.1 Setups
Verify that the TriBoard on-board oscillator (on 14-pin DIP) socket is marked with 15 MHz.
Verify that you have an Altium Tasking VX-Toolset for TriCore ver. 2.3r1 toolchain installed, CrossView
debugger included.
Check that the TriBoard DIP switches are set as follows:
• SW1 = ON
• SW2 = ON
• SW3 = OFF
• SW4 = ON
• SW5 = ON
• SW6 = ON
• SW7 = OFF
• SW8 = OFF
Connect the TriBoard BD9 connector to a "dumb terminal" like Windows 2000 HyperTerminal, configured as
follows:
• COM1
• 9600 Baud
• 8 data bits
• 1 stop bit
• No parity
• Hardware flow control
• VT100 emulation

5.1.2 Extract the Sources

Run the installer ap3208330_tc179x_examples_collection.exe. This will create the directory
structure described in chapter "TC179x Examples Collection Organisation".

5.1.3 Build the Code

In the installation directory TC179x_examples you can find the already prepared Tasking project space file
examples_TC179x.psp. By double clicking on this file, the Tasking EDE will start and automatically load a
full-configured environment, containing all examples in form of projects. The related project files
(<example_x>_TC179x.pjt) are to be found in the example-specific make_t subdirectories.

In same cases (e.g. if you are using an evaluation version of the Tasking toolchain) when loading a new
project the Tasking EDE may rise a message windows claiming that the loaded project was developed for

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Usage

Application Note 12 V3.0, 2006-06

another toolchain version. Please quit this message window by clicking on the OK button. As the result a
dialog box listing the available toolchains is shown. Please select the toolchain you want to use and then
click on the OK button. In the next windows select Continue. Now your project has been converted for the
toolchain version currently in use.

The examples are implemented to run on different derivatives of the TriCore TC179x family. For each
supported derivative, in each example-specific make_t subdirectory there is a Tasking option file
(<example_x>_tc179<n>.opt). By loading one of these option files in the Tasking EDE, all the settings
for the related target microcontroller are taken on.

In the Tasking EDE, the main steps to go through in order to bring a specific example to run on the desired
target (i.e. desired TriCore TC179x derivative) are:
• Select the example you want to compile and set it as the current project (Project -> Set Current).
• Load the option file related to your specific target (e.g. <example_x>_TC1796.opt for the TriCore

TC1796) in order to correctly setup up the environment (Project -> Load Options).
• Compile the example (Build -> Rebuild).
• As the result an executable file (<example_x>_TC179x.elf) is produced in the example-specific

make_t subdirectory.

5.1.4 Load and Run the Executables

The Altium Tasking CrossView Pro used for downloading the code to the TC179x TriBoard.

You can start CrossView directly form Tasking EDE. Doing this, CrossView is automatically configured for
the TC179x device and the executable of the example being the current project is automatically downloaded
on the target.

You can also start CrossView as a standalone program. In this case you need to select manually the target
as well as the executable you want to download.

Once in CrossView, you can directly start the execution, set breakpoints, step through the code, and so one.

Please refer to the CrossView documentation for more details.

5.2 Linker/Locator Configuration

All examples are linked at address 0xD4000000, i.e. the starting address of internal Code Scratch-Pad
RAM.

 AP32083
TC179x Examples Collection

 TC179x Examples Collection Usage

Application Note 13 V3.0, 2006-06

http://www.inf ineon.com

Published by Infineon Technologies AG

