Infineon

<<

Application Note, V1.0, Sep. 2007

MultiCAN

Interaction

~ CAN-Gateway Functionality W
Microcontrollers

i

CTS
Pl‘l_
F...*-a-

Never stop thinking

Edition 2007-09-28

Published by
Infineon Technologies AG
81726 Miinchen, Germany

© Infineon Technologies AG 2007.
All Rights Reserved.

LEGAL DISCLAIMER

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE
IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE
REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR
QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION
NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON
TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND
(INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN
IN THIS APPLICATION NOTE.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.

/

AP29005

Revision History: 2007-09 V1.0
Previous Version: none

Page Subjects (major changes since last revision)

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?

Your feedback will help us to continuously improve the quality of this document.

Please send your proposal (including a reference to this document) to: |Z|
mcdocu.comments@infineon.com

Application Note 3 V1.0, 2007-09

/

Table of Contents Page
1 T e N (e To [UTox 1T] o H PP TP PURTTN 5
2 Gateway FUNCHIONAITY ..ottt e e e e e e e be e e e e e e e e e e nbneeeas 5
3 (07N N\ N (o To [T T = (U] I PP PRRTRPR 6
4 MESSAGE ODJECT SEIUPD ..eeieitiiiie ittt e et e e e st e e e st e e e s s bb e e e e anreeeee 7
5 Extentions to the Gateway FUNtiONality........ccuuviiiiiiiiii e 8
51 FIFO SITUCTUIE ...ttt e s e e e nnrn 8
5.2 FOreign REMOLE REQUESESuviiiiiii it et e e e s e e e e e s e st e e e e e e s e st e e e e e e e e e s e snnnranneeeeeas 8
5.3 Interrupt and Error HANAIING..........cvviiiiiie et e e e e e st e e e e e e e s nnnraaee e e s enanes 9
6 EXAMPIE With XC2287ccoiiiiiei ittt s et et e e e st e e e s bt e e e s asbaeeesssbaeeessntaeeeesteeenns 9
7 Y o1 oL =LV AT= 1 410 Y o ISR PPPPPTPPIRS 16
8] E= 10T B Lo Y oa U 4 1= o SRR 16

Application Note 4 V1.0, 2007-09

. AP29005
@Iﬂ% CAN-Gateway Functionality

Gateway Functionality

1 Introduction

Today the CAN bus is widespread in many applications and not seldom you find more than one CAN bus in
a system. These busses could run on different speeds and exchange different classes of information. For
example in a vehicle you can find separated CAN busses for engine management, safety functions, body
and chassis functions and infotainment.

For some reasons data from e.g. a sensor connected on one CAN bus is as well used by an ECU (electronic
control unit) connected to a different CAN bus. To transfer the data it is required to pass over from one CAN
bus to another. Usually a microcontroller handles the CAN messages and needs to control the reception and
transmission.

The MultiCAN Module, implemented in different microcontroller products, offer a so called Gateway Mode to
transfer CAN messages from on one CAN bus to another without CPU involvement. This offloads the CPU
and displaces the workload to hardware. An intelligent and autarchic peripheral like the MultiCAN takes over
this functionality.

This Application Note describes the basic Gateway Functionality and gives an example on how to setup the
peripheral registers.

2 Gateway Functionality

The Gateway Mode allows establishing an automatic information transfer between two independent CAN bus
systems without CPU interaction. For each CAN bus a different CAN-node is used. Each CAN-node can be
setup and act independently in terms of bus-speed, used I/O pins and assigned message objects.

The Gateway Mode operates on message object level. In Gateway mode, information is transferred between
two message objects, resulting in an information transfer between the two CAN nodes to which the message
objects are allocated. A gateway may be established between any pair of CAN nodes and there may be as
many gateways as there are message objects available to build the gateway structure. Usually you need to
define a message object for a specific message direction (receive or transmit).

< CAN_A >
s

A\ 4

Node A Node B
Message Object a .’ Message Objﬁ)"t a
*ID °
. Data « Data
Message Object b Message Object b
<D 1 <D
« Data « Data
Message Object ¢ Message Object ¢
*ID *ID
* Data * Data

!

< CAN_B >
Figurel Gateway between two CAN-busses

Application Note 5 V1.0, 2007-09

@ineon
-

AP29005

CAN-Gateway Functionality

3 CAN-Node Setup

For each CAN bus a separate CAN node is required. A CAN-node can be setup independently from each
other. So each node can run its own bus speed. A very flexible port pin routing allows the adaptation to your

PCB layout.

Message Object Setup

All CAN nodes share a common set of message objects, where each message object may be individually
allocated to one of the CAN nodes. The message objects are organized in double chained lists, where each
CAN node has its own list of message objects. A CAN node stores frames only into message objects that are
allocated to the list of the CAN node. It only transmits messages from objects of this list.

A powerful, command driven list controller performs all list operations.

foan R
Clock
Controlr fee
Address
Decoder
Interrupt
Control j¢—— |

MultiCAN Module Kernel

TXDC,

RXDC, ,

TXDC1

“RXDC1
TXDCO

.| CAN
"INode n-1
[Message
Object .
Buffer Lm_ked
<p»| List
Contro | CAN
"] Node 1
.| CAN
"] Node 0
A h
y
CAN Control

‘7
RXDCO

Port
Control

ﬂ]

ae

A 4

Figure2 Overview of the MultiCAN Module

Application Note

V1.0, 2007-09

@fineon
-

AP29005

CAN-Gateway Functionality

Message Object Setup

Message Object Setup

The Gateway Mode is selected in the Message Object Function Control register by the bit fields MMC.
Another bit field (CUR pointer) defines the gateway destination message object.
autonomous function you need to set the Gateway Data Frame Send bit (GDFS) in the Message Object
Function Control Register. This forces a transmit request of the destination object after data transfer from the
source message object.

The gateway destination object just needs to be valid (MSGVAL = 1), all other settings are not relevant for
the information transfer from the source object to the destination object.

To complete the

A gateway source object behaves like a standard message objects, but when a CAN frame has been
received and stored in the source object, some additional actions are performed by the MultiCAN (Figure 3):

N\

& Source CAN bus

V/

Pointer to Destination Object

/| N
/" Destination CAN bus
N

CUR [
copy if IDC =1
Identifier + IDE souree »{ Identifier + IDE
— copy if DLCC__ .. = 1 R —
copy if DATC =1
Data souree > Data
set if GDFS =1
source > TXRQ
set ——» NEWDAT
set —» RXPND
Source Object,
MMC = 0100, Dest. Object

Gateway Transfer from Source to Destination

Application Note

V1.0, 2007-09

. AP29005
@ln% CAN-Gateway Functionality

Extensions to the Gateway Functionality

1. If bit DLCC is set in the Message Object Function Register of the source object, then the DLC code is
copied from the source object to the destination object.

2. If bit IDC is set in the Message Object Function Register of the source object, then the identifier and the
IDE bit are copied from the source object to the destination object.

3. If bit DATC is set in the Message Object Function Register of the source object, then the data field is
copied from the source object to the destination object.

4. If bit GDFS is set in the Message Object Function Register of the source object, then TXRQ is set in the
Message Object Control Register of the destination object.

5. RXPND and NEWDAT are set in the Message Object Control Register of the destination object.

6. A message interrupt request is generated for the destination object if RXIE is set in the Message Object
Control Register of the destination object.

7. The current pointer CUR in the FIFO/Gateway Pointer Register of the source object is moved to the next
destination object according to the FIFO rules. A gateway with a single (static) destination object is
obtained by means of setting TOP = BOT = CUR = destination object.

The Gateway functionality is in addition to all other settings for a Message Object like identifier, identifier
selection, acceptance mask, message direction, data length, data field, priority class and single transmittion
features.

5 Extensions to the Gateway Functionality

51 FIFO Structure

In case of a series of CAN frames in time a FIFO can be added on the destination site. The link from the
source to the destination object works in the same way as the link from a FIFO source to a FIFO slave. This
means that a gateway with an integrated destination FIFO may be created.

52 Foreign Remote Requests

When a remote frame received on a CAN node is stored in a message object, then a transmit request is set
in order to trigger the answer (data frame transmission) to the request or to automatically issue a secondary
request. If bit FRREN is cleared (FRREN = 0) in the Function Control register of the message object where
the remote request is stored, then TXRQ is set in the Control Register of the same message object. If bit
FRREN is set (FRREN = 1: foreign remote request enabled) then TXRQ is set in the message object that is
referenced by pointer CUR in the FIFO/Gateway Pointer Register. The value of CUR is, however, not
changed by this feature. Although the foreign remote request feature works independently from the selected
message mode, it is especially useful for gateways to issue a remote request on the source of a gateway
upon the reception of a remote request on the gateway destination.

According to the setting of FRREN in the gateway destination object there are two ways to handle remote
requests that appear on the destination side (assuming that the source object is a receive object and the
destination is a transmit object, i.e. DIRsource = 0 and DIRdestination = 1):

FRREN =0 in the Gateway Destination Object

1. Aremote frame is received by gateway destination.
2. TXRQ is set automatically in the gateway destination object.
3. A data frame with the current data stored in the destination object is transmitted on the destination bus.

Application Note 8 V1.0, 2007-09

(infineon.

AP29005

CAN-Gateway Functionality

FRREN =1 in the Gateway Destination Object

1. Aremote frame is received by gateway destination.
2. TXRQ is set automatically in the gateway source object (must be referenced by CUR pointer of the
destination object).

©ONO AW

initial remote request on the destination bus.

5.3

Interrupt and Error Handling

Example with XC2287

A remote request is transmitted by the source object (which is a receive object) on the source CAN bus.
The receiver of the remote request responds with a data frame on the source bus.
The data frame is stored in the source object.
The data frame is copied to the destination object (gateway action).
TXRQ is set in the destination object (assuming GDFSsource = 1).
The new data stored in the destination object is transmitted on the destination bus, as response to the

The Gateway Functionality is by intention without any CPU involvement. This offloads the CPU from low
level data handling. In some cases a notification of the CPU by interrupt is required e.g. in cases of special
received or transmitted frames as well in case of an error handling.

Using the Gateway Functionality allows the same receive, transmit and error interrupt mechanisms as using
without Gateway Functionality

6 Example with XC2287

CAN_A (500Kbaud)

<

ID1

\ 4

A
ID 15

Node 0 (75MHz)

Message Object 11
D=1
* RX data
* MMC=4
+ DATC=1
«DLCC=1
* GDFS=1

* CUR=MO14

>

Node 1 (75MHz)

Message Object 12
* ID=15
* TX data

Message Object 14
D=5
* TX data

Message Object 13
«ID=11
* RX data
* MMC=4
* DATC=1
-DLCC=1
* GDFS=1
* CUR=MO12

ID5

\ 4

A
ID 11

CAN_B (500Kbaud)

<

>

Figure 4

Application Note

Example of a Gateway with ID Modification

V1.0, 2007-09

/

Example with XC2287

The following C-code shows how to setup the MultiCAN for a CAN Gateway Functionality. It's an initialization
code written for a XC2287 device.

The MultiCAN module is found on several 8-,16- and 32-bit devices. The MultiCAN register length is based
on 32-bit. That means for 16- and 8-bit devices the MultiCAN registers need be divided into several portions
like high/low-word for 16-bit.

(R E SRS SRS SRS SRS SR SRR S SR SRR SRR R EEESEEEE]

@Module MultiCAN Controller
@Filename CAN.c

@Project

@Controller Infineon XC2287
@Compiler

@Description This file contains functions that use the CAN module.

NodeO: 500kBaud, use CAN1l output connector
MOl1l: RX, IDO1 -> Nodel, MOl1l4
MO1l2: TX, ID15 <- Nodel, MO1l3

Nodel: 500kBaud, use CAN2 output connector
MO13: RX, ID11 -> NodeO, MO1l2
MO14: TX, IDO5 <- NodeO, MO1l1l

Version: 01 2007-06-13

XXX
//**

N N N S N N N
N N T N N N N N N

~
~
®
o}
Q
I
()

#include "CAN.h"

#define CAN PANCTR_BUSY 0x0100
#define CAN INIT LIST 0x02

Rk ok kb b S Ik R R R Ik R Rk i S b S i kb Sk R R Rk R Ik kR R R R Ik R R R Rk i
@Function void CAN vInit MCAN (void)

@Description This is the initialization function of the CAN function
library. It is assumed that the SFRs used by this library
are in their reset state.

@Returnvalue None

@Parameters None

@Date
//**

void CAN vInit MCAN (void)

N N
N

{
uword uwDummy ;
T SEEEEEEEEE
/// Configuration of the Module Clock:
A R R
Sys_Protection(0) ;
MCAN_ KSCCFG = 0x0003; // Module enable
uwDummy = MCAN KSCCFG; // Dummy read
CAN_ FDRL = 0x83C0; // Fraction divider mode --> fcan = fsys*step/1024
= 75MHz
Sys_Protection(1l) ;
} //End of CAN vInit MCAN

Application Note 10 V1.0, 2007-09

/

Example with XC2287

R E SRS SRS SRS SRS SR SRR S SR SRR SR EEREEE]

@Function void CAN vInit NodeO (void)

@Description This is the initialization function of the CAN function
library. It is assumed that the SFRs used by this library
are in their reset state.

@Returnvalue None

@Parameters None

@Date
/**

void CAN vInit NodeO (void)

N N
N N N N

[]] e e e e
/// Configuration of CAN Node O0:

A ———S———ASSNE
/// General Configuration of the Node 0:

/// - set INIT and CCE

CAN NCRO = 0x0041; // load node 0 control register SUSEN=1

/// Configuration of the used CAN Port Pins: I/O PIN Configuration for CAN 1
CAN NPCRO = 0x0002; // P2.0 Rx = receive input C NO LOOP BACK

/// Configuration of the used CAN Port Pins: I/O PIN Configuration for CAN 1

P2 IOCRO0 = 0x0020; // P2.0 as input (pull up)
P2 IOCRO1 = 0x0090; // P2.1 as output (ALT1, push pull)
/// Configuration of the Node 0 Baud Rate:
/// - required baud rate = 500,000 kbaud
CAN NBTROL = BAUD 0500 000 WITH MHZ 75; // Set Baud Rate of Node 0 at 500
kbaud at 75 MHz
... - L

/// Configuration of the CAN Message Object List Structure:

A
/// Allocate MOs for list 1/NodeO:

SetListCommand (1, 11, CAN INIT LIST);

SetListCommand (1, 12, CAN INIT LIST);

} //End of CAN vInit NodeO

R RS RS SRS SRS SRS SRR RS S S SRR SRR R R EEESEEEE]

@Function void CAN vInit Nodel (void)

@Description This is the initialization function of the CAN function
library. It is assumed that the SFRs used by this library
are in their reset state.

N e N
N N N N

//**
void CAN vInit Nodel (void)

A P LECEEEEEE R EEEEEEEEREES
/// Configuration of CAN Node 1:

A e SRR
/// General Configuration of the Node 1:

/// - set INIT and CCE

CAN NCR1 = 0x0041; // load node 1 control register SUSEN=1
Application Note 11 V1.0, 2007-09

/

Example with XC2287

CAN NIPR1 = 0x0000; // load node 1 interrupt pointer register

/// Configuration of the used CAN Port Pins: I/O PIN Configuration for CAN 1
CAN _NPCR1 = 0x0000; // P2.4 Rx = receive input A + NO LOOP BACK

P2 IOCR04 = 0x0020; // P2.4 as input (pull up)

P2 IOCR02 = 0x0090; // P2.2 as output (ALT1, push pull)

/// Configuration of the Node 1 Baud Rate:

CAN NBTR1L = BAUD 0500 000 WITH MHZ 75; // Set Baud Rate of Node 1 at 500
Kbaud at 75 MHz

T S EE R e PR

/// Configuration of Service Request Nodes 0 - 15:

A R EE R

//IE<<6 ILEV<<2 | GLEV
CAN 0IC = (l<<6) (5<<2) | 0;
T G C LR EEEEEEERRES

/// Configuration of the CAN Message Object List Structure:

A
/// Allocate MOs for list 2/Nodel:

SetListCommand (2, 13, CAN INIT LIST);

SetListCommand (2, 14, CAN INIT LIST);

} // End of function CAN vInit Nodel

Rk ok kb b S Ik R R R R Rk I R R Rk ik R b R b kR Rk bk b Ik R R Rk Ik b I S i R S i

@Function void CAN vInit MessageObjects (void)

@Description This is the initialization function of the CAN function
library. It is assumed that the SFRs used by this library
are in their reset state.

N
N e

//**
void CAN vInit MessageObjects (void)

[/ e e e e e e
/// Configuration of Message Object 11:

J1] e e e
/// - message object 11 is valid

/// - message object is used as receive object

/// - this message object is assigned to list 1 (node 0)

CAN MOCTR11L = 0x0000; // load MO1ll control register

CAN MOCTR11H = 0x0080; // load MO1ll control register

CAN MOFCR11L = 0x0D04; // load MO1l1l function control register

CAN MOFCR11H = 0x0100; // MOl1ll function control register

CAN MOFGPR11L = O0xOEOE; // load MO1l1l function control register

CAN MOFGPR11H = OxOEOE; // MOll function control register

CAN MOAR11L = 0x0000; // load MO1ll arbitration register

CAN MOAR11H = 0x8004; // MOll arbitration register

CAN MODATA11LL = 0x1111; // load MO1l1l data register low

CAN MODATA11LH = 0x1111; // load MO1ll data register low

CAN_MODATA11HL = 0x1111; // load MOll data register high

CAN MODATA11HH = 0x1111; // load MOll data register high

Application Note 12 V1.0, 2007-09

(infineon.

AP29005

CAN-Gateway Functionality

Example with XC2287

CAN_MOCTR11L
CAN_MOCTR11H

0x0000;
0x0020;

// set MSGVAL - enable mssg obj

[]] e e e e oo
/// Configuration of Message Object 12:
st
/// - message object 12 is valid

/// - message object is used as transmit object

/// - this message object is assigned to list 1 (node 0)

CAN MOCTR12L = 0x0000; // load MO1l2 control register

CAN MOCTR12H = O0x0E88; // load MO1l2 control register

CAN_ MOFCR12L = 0x0000; // load MO12 function control register
CAN MOFCR12H = 0x0100; // MOl1l2 function control register

CAN MOFGPR12L = 0x0000; // load MO12 function control register
CAN MOFGPR12H 0x000D; // MOl1l2 function control register

CAN MOAR12L = 0x0000; // load MO1l2 arbitration register

CAN MOAR12H 0x803C; // MOl2 arbitration register

CAN MODATA12LL = 0x1212; // load MO1l2 data register low

CAN MODATA12LH = 0x1212; // load MO1l2 data register low

CAN_ MODATA12HL = 0x1212; // load MOl2 data register high

CAN MODATA12HH = 0x1212; // load MOl2 data register high

CAN MOCTR12L = 0x0000;

CAN:MOCTR12H 0x0020; // set MSGVAL - enable mssg obj

J] S
/// Configuration of Message Object 13:
/A
/// - message object 13 is wvalid

/// - message object is used as receive object

/// - this message object is assigned to list 2 (node 1)

CAN MOCTR13L = 0x0000; // load MO13 control register

CAN MOCTR13H = 0x0080; // load MO1l3 control register

CAN MOFCR13L = 0x0D04; // load MO13 function control register
CAN MOFCR13H = 0x0100; // MO13 function control register

CAN MOFGPR13L = 0x0C0C; // load MO13 function control register
CAN MOFGPR13H 0x0CO0C; // MO13 function control register

CAN MOARI13L = 0x0000; // load MO13 arbitration register

CAN MOARI13H 0x802C; // MO13 arbitration register

CAN MODATA13LL = 0x0202; // load MO13 data register low

CAN MODATA13LH = 0x0202; // load MO13 data register low

CAN MODATA13HL = 0x0202; // load MO13 data register high

CAN MODATA13HH = 0x0202; // load MO13 data register high

CAN MOCTR13L = 0x0000;

CAN MOCTR13H 0x0020; // set MSGVAL - enable mssg obj

- il i I Sk
/// Configuration of Message Object 14:

[e e e e
/// - message object 14 is valid

/// - message object is used as transmit object

/// - this message object is assigned to list 2 (node 1)

CAN MOCTR14L = 0x0000; // load MO1l4 control register

CAN MOCTR14H = O0xO0E88; // load MO1l4 control register

CAN MOFCR14L = 0x0000; // load MO1l4 function control register
CAN MOFCR14H = 0x0100; // MO14 function control register

Application Note

13

V1.0, 2007-09

/

Example with XC2287

CAN MOFGPR14L = 0x0000; // load MO14 function control register
CAN_ MOFGPR14H = 0x000B; // MO14 function control register

CAN MOAR14L = 0x0000; // load MO1l4 arbitration register

CAN MOAR14H = 0x8014; // MO1l4 arbitration register

CAN MODATAl4LL = 0x1414; // load MO1l4 data register low

CAN MODATA1l4LH = 0x1414; // load MO1l4 data register low

CAN MODATA14HL = 0x1414; // load MO1l4 data register high
CAN_MODATA14HH = 0x1414; // load MOl4 data register high

CAN MOCTR14L = 0x0000;

CAN MOCTR14H = 0x0020; // set MSGVAL - enable mssg obj

} // End of function CAN vInit MessageObjects

IR R R R SRR SRR S S SR SRS SRR R R R RS R E R SRR R SRR R R R R R EEEEREREEEEEEEREEEEEEEEE SR
@Function void CAN vStartNodes (void)

@Description This is the initialization function of the CAN function
library. It is assumed that the SFRs used by this library
are in their reset state.

@Returnvalue None

@Parameters None

A e N S
N e N NN

//**
void CAN vStartNodes (void)

CAN NCRO &= ~ (uword) 0x0041; // reset INIT and CCE
CAN NCR1 &= ~ (uword) 0x0041; // reset INIT and CCE

} // End of function CAN vStartNodes

//**
// @Function void CAN vTransmit (ubyte ubObjNr)

/=== e
// @Description This function triggers the CAN controller to send the

// selected message.

// If the selected message object is a TRANSMIT OBJECT then

// this function triggers the sending of a data frame. If

// however the selected message object is a RECEIVE OBJECT

// this function triggers the sending of a remote frame.
UM NSO R
// @Parameters ubObjNr :

// Number of the message object (0-127)
//**
void CAN vTransmit (ubyte ubObjNr)

CAN_HWOBJ [ubObjNr] .MO_CTRL.MOCTRLn.uwRegister
CAN_HWOBJ[ubOijr].MO_CTRH.MOCTRHn.uwRegister
} // End of function CAN vTransmit

0x0000;
0x0100; // set TXRQ

Application Note 14 V1.0, 2007-09

/

Abbreviations

;?;?;//
t

ListCommand ()

~~
O~~~
N~~~
N~~~
0~~~
AN
|~~~
2N~
c ~~
RN
o~~~
e~~~
Q ~~
(U
B~~~
|~~~
0N~~~
D~~~

set list command (append object into the list)

//
[17177777177777777777777
id SetListCommand (ubyte PANAR2, ubyte PANAR1, ubyte PANCMD)

NN N NI N N
O NN NN

while ((CAN_PANCTRL & CAN PANCTR BUSY)); // wait as long as the CAN is busy

CAN PANCTRH = (PANAR2 << 8) | PANAR1 ;
CAN_ PANCTRL = PANCMD;

}

Application Note 15 V1.0, 2007-09

AP29005

o~ _.
@lneon CAN-Gateway Functionality
/

Related Documents

7 Abbreviations

CAN

Controller Area Network, a message object oriented serial communication protocol
Current Object Pointer; links to the actual target object within a FIFO/Gateway

CUR structure.
Data Copy; the data field of the gateway source object (after storing the received
DATC frame in the source) is copied to the gateway destination.
Data Length Code Copy; data length code of the gateway source object (after storing
DLCC the received frame in the source) is copied to the gateway destination.
ECU Electronic Control Unit
Gateway Data Frame Send; a transmit request is set in the gateway destination object
GDFS after the transfer of a data frame from the gateway source to the gateway destination.
Identifier Copy; the identifier of the gateway source object (after storing the received
IDC frame in the source) is copied to the gateway destination.
MMC Message Mode Control; controls the functionality of the message object.
MO CAN Message object
8 Related Documents

User’s Manual, V1.0, June 2007, Vol 1, System Unit
User’s Manual, V1.0, June 2007, Vol 2, Peripheral Unit

Application Note

16 V1.0, 2007-09

