

XC2000/XE166 Family
16-bi t Microcontro l lers

AP16164
Flash Progamming v ia CAN BSL (Bootstrap Loader)

Microcontrol lers

Appl icat ion Note
V1.0, 2009-10

Edition 2009-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2009 Infineon Technologies AG
All Rights Reserved.

LEGAL DISCLAIMER
THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION
OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY
ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY
DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT
LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY
THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

Application Note 3 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Device1
Revision History: V1.0 2009-10
Previous Version(s):
Page Subjects (major changes since last revision)
– This is the first release …

We Listen to Your Comments
Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to
continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:
ipdoc@infineon.com

mailto:mcdocu.comments@infineon.com

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Table of Contents

Application Note 4 V1.0, 2009-10

Table of Contents

1 Introduction and Requirements . 5
1.1 Hardware Requirements . 5

2 CAN BSL (Bootstrap Loader) in the XC2000/XE166 . 6
2.1 Entering the CAN BSL . 7
2.2 Loading the User Code . 8
2.3 Exiting CAN BSL . 8

3 General System Description . 9
3.1 Master Board . 11
3.1.1 Transmitter Program (Project File: CAN_BSLMaster) . 12
3.1.2 Receiver Program (Project File: CAN_Loader) . 13
3.1.3 Application Software (Project File: MainApplication_XE16x) . 13
3.2 Slave Board . 14

4 XC2000/XE166 Internal Flash Programming . 15
4.1 The Internal Flash Memory . 15
4.2 Flash Driver . 16

5 Communication Protocol . 17
5.1 Process Commands . 17
5.1.1 Sector Erasing Operation . 17
5.1.2 Flash Page Programming Operation . 17
5.1.3 Application Reset for the Standard Start . 18
5.1.4 Application Reset for the CAN BSL Mode . 18
5.1.5 Download an Application Example Code . 18

6 Using this Application Note . 19

7 Running this Application Note without HiTOP5 . 21

8 Appendix . 23
8.1 Hardware Bugs . 23
8.2 Hex Code . 24
8.3 XC2000/XE166 Easy Board V1.1 . 24
8.4 XC2000/XE166 Easy Board V2.0 and V3.0 . 25
8.5 Script File: AppNote16164_CAN_BSL.scm . 25

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Introduction and Requirements
1 Introduction and Requirements
The Infineon XC2000/XE166 Family of devices (Table 1) include a built-in CAN Bootstrap Loader (CAN BSL).
Using the CAN BSL, it is possible to load code or data into the internal PSRAM of the device via the MultiCAN
interface. What is not available however, is a built-in mechanism for internal flash programming.
This application note will demonstrate how to program the internal flash of XC2000/XE166 devices via the CAN
BSL.

The example described makes use of the Tasking compiler tool. However to debug and download readable Hex
files, it is possible to directly use the Hitex tool (HiTOP53) included in the Infineon UConnect-CAN XE164 kit.

1.1 Hardware Requirements
The following hardware is required for the example described in this application note:
• Two XC2000/XE16x boards

– If a compiler and debug tool are already installed, the application software can run in any two Infineon Easy
Kit boards equipped with a target device listed in Table 1. The Infineon UConnect-CAN XE164 comes with
a free compiler and debug tool development suite (a size limited evaluation version). In the example
described in this document, the UConnect-CAN XE164 is the ’host’ board, while the XE167FM EasyKit with
active CAN BSL, acts as the ’slave’ board.

• Terminal program; MTTTY for example.
– This is used to give commands to the host and to display actual states and error messages.

• CAN bus cable
• CAN Analyzer tool (optional)

Table 1 XC2000/XE166XE166 Derivative with CAN BSL
Derivative Package
XC228x, XC228xM PG-LQFP-144
XC226x, XC226xM, XC226xN PG-LQFP-100
XC238x, XC238xA PG-LQFP-144
XC236x, XC236xA, XC236xB PG-LQFP-100
XC233xA, XC233xB PG-LQFP-64
XC2786X, XC2785X PG-LQFP-144
XC2766X, XC2765X, XC2764X PG-LQFP-100
XE167, XE167M PG-LQFP-144
XE164, XE164M, XE164N PG-LQFP-100
XE162M, XE162N PG-LQFP-64
XE169H, XC229xH PG-LQFP-176 (coming soon)
XE167H, XC228xH PG-LQFP-144 (coming soon)
Application Note 5 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431f848401011f8eb434271178
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431f848401011f8eb434271178

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

CAN BSL (Bootstrap Loader) in the XC2000/XE166
2 CAN BSL (Bootstrap Loader) in the XC2000/XE166
A built-in CAN Bootstrap Loader (BSL) is implemented in the Infineon XC2000/XE166 family of devices.
CAN BSL provides a mechanism to load program code or data via the MultiCAN module into the PSRAM of a
device, and to start executing the loaded code from address E0 0000H (address of the first transmitted byte).
The CAN BSL is an integrated mechanism that can be selected via port configuration during a system start after
a Power-on Reset, or through write configuration registers and trigger then a software reset. For more details,
please see Chapter 2.1.
The CAN BSL uses a CAN node 0 interface and configures the MultiCAN module to the baud rate of the host
device.
Once communication has been established, the BSL receives a defined number of messages (the number defined
in the host) for downloading the code or data. The received code or data is sequentially written to the PSRAM.
Once the download has finished, the program code that has been loaded is executed and the BSL is terminated.
The complete load sequence is based on the following three CAN standard frames:
• Initialization Frame

– sent by the external host to XC2000/XE166
• Acknowledge Frame

– sent by the XC2000/XE166 to the external host
• Data Frames

– sent by the external host to the XC2000/XE166
The initialization frame is used in the XC2000/XE166 device for baud rate detection.
After successful baud rate detection, the XC2000/XE166 reports to the external host via the acknowledge frame.
Data frames can then be transmitted from the host to the XC2000/XE166 device. Data frames are always
transmitted in 8 bytes.

Table 2 CAN Bootstrap Loader Frames
Frame Type Parameter Description

Initialization Frame Identifier 11-bit, don’t care
DLC=8
Data byte 0-1 0x5555

Data byte 2-3 acknowledge message identifier ACK_ID
(use bits [13:0], bit 13=IDE)

Data byte 4-5 Data Message Count MSG_CNT
Must be <= 1FE0H for 64KBytes SPRAM, see Chapter 2.2
For example; MSG_CNT=0x200 for 0000H-0FFFH (4KBytes)

Data byte 6-7 Data Message Identifier MSG_ID
Acknowledge
Frame

Identifier ACK_ID as received bytes [3:2] of the Initialization Frame
DLC=4
Data byte 0-1 BTR register value in XC2000

Data byte 0-1 Data bytes [3.2] of the Initialization Frame
Data Frame Identifier Data Message Identifier MSG_ID as sent by data bytes [7:6] of the

Initialization Frame
DLC=8
Data byte 0-7 Data Bytes, assigned to increasing destination (PSRAM) addresses
Application Note 6 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

CAN BSL (Bootstrap Loader) in the XC2000/XE166
2.1 Entering the CAN BSL
The XC2000/XE166 enters CAN BSL mode, when the CAN BSL mode is selected within the startup configuration
upon a reset signal. Bit field HWCFG=xxx101b in register STSTAT indicates the CAN BSL mode.
Bit field HWCFG is updated either by:
• Hardware: with a pull-up/down resistor when the configuration pins P10.2-0 has the value 101b at Power-On,

or after an Internal Application Reset.
• Software: when 000xx101b is written into bit field SWRSTCON.SWCFG and an Application Reset is triggered

with SWRSTCON.SWBOOT=1 (Software Boot configuration selection).
Note: To directly generate a software reset request trigger, either use the instruction SRST, or set bit

SWRSTCON.SWRSTREQ = 1.

Notes
1. Because of a hardware bug (see Chapter 8.1 ’RESET_X.002’) the bit field HWCFG in the register STSTAT is

unable to indicate the actual start-up mode selected in early XC2000/XE166 devices. This bug is fixed in the
M-, N-, 5-, H- series of devices (see Table 1).

2. The type of software reset should be configured first (RSTCON0.SW = 1xb)
3. The type of instruction (SRST) is defined via bit field RSTCON0.CPU.
4. 01b is reserved. It can not be configured for RSTCON0.CPU or RSTCON0.SW.
5. For example code, please see Chapter 8.2.

The CAN BSL initializes the MultiCAN as follows:
• CAN node 0 of the MultiCAN module is used.
• Message Object 0 (MO0) is configured as Receive Object to receive the initialization and data frame.
• Message Object 1 (MO1) is configured as Transmit Object to transmit the acknowledge frame.
• CAN input/output pins: P2.6=RxDC0 and P2.5=TxDC0. RXSEL=0x0003.
• In CAN BSL the system clock is provided by OSC_HP circuitry (supplied by a external oscillator or an external

clock source). fSYS:=fOSC is selected by SYSCON0.CLKSEL=01b.

During the initialization phase:
• The Bit Timing Mode is used for baud rate detection and analysis of the bit timing.
• The Analyzer Mode is used to monitor the CAN frame without active participation.
• All Acceptance Mask bits of the receive object MO0 are OFF.

After the initialization phase:
• The Analyzer Mode is switched off. The bit timing mode for CAN node 0 does not change.
• BTR is set with the calculated value and SJW=01b.
• All Acceptance Mask bits of the receive object MO0 are ON: CAN_MOAMR0=01FFF,FFFFH.
Application Note 7 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

CAN BSL (Bootstrap Loader) in the XC2000/XE166
2.2 Loading the User Code
The sequence for loading the user code is as follows:
• The code is downloaded starting at address 0E0,0000H. Consecutive data bytes are stored at incrementing

addresses.
• After receipt of the last CAN data frame, the Bootstrap Loader sequence is finished and executes a jump to

address 0E0,0000H.
• XC2000/XE166 has 64K PSRAM (0E0,0000H - 0E0,FFFFH), but the last 255 bytes are dedicated to the on-

chip firmware; i.e. If code or data is downloaded to that area it will be overwritten afterwards by the on-chip
firmware. Therefore the maximum CAN message count (MSG_CNT) in the initialization frame is 8192-32.

2.3 Exiting CAN BSL
After the Bootstrap Loader has been activated, the Watchdog Timer and the Debug system are disabled.
The Debug system and Watchdog Timer are released automatically when the BSL terminates after having
received a set number of messages from the host (the number of messages is defined via a variable in the host).
The CAN BSL is also aborted after a Power On Reset, if the non-BSL port configuration has been used (see
Chapter 2.1).
Application Note 8 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

General System Description
3 General System Description
As host device, the UConnect-CAN XE164 is connected to a PC via a JTAG/UART interface. The XE164 should
be in Standard Start mode.
As slave device, the XE167FM EasyKit is connected to the host via a CAN interface. The XE167FM should be in
active CAN BSL mode.
This application note describes software for the host board. The host device takes control of the slave device via
the CAN bus, while commands are received and process status changes are reported via the JTAG/UART
interface to the PC COM port.

Figure 1 System Overview

There are three different pieces of code (three Tasking projects) for the host device associated with this application
note:
• Transmitter Program: CAN_BSLMaster

– Initializes the MultiCAN module in the host device (including the CAN transmit pins and configuring the
initialization frame) to establish the communication with the slave.

– Defines a port pin to signal the process of starting, data transmission, and termination of the download
sequence.

– Initializes the USIC module and configures U0C0 as the ASC interface to communicate with the PC COM
port.

– Code should be compiled for the location of the internal flash at address 0C1,0000H.
• Receiver Program: CAN_Loader

– Must first be downloaded to the slave device in active CAN BSL mode. After a successful download, this
code will be executed.

– It contains commands for a ‘handshake’ between the host and slave devices.
– Defines a port pin to signal the process status on the slave board.
– Code should be compiled for the location of the internal PSRAM, at address 0E0,0000H.

Uconnect XE164
Host board

(standard start
mode)

Easy Kit XE167M
Slave board

CAN BSL mode

CAN BUS

PC

Download Hex files and
report status information
via JTAG/UART

U
S

B

Transmit upgrade
application SW via
the CAN bus in
standard start mode

Receive upgrade
application SW from
CAN bus in CAN
BSL mode and
program then into the
internal flash

CAN node 0 CAN node 0

JTAG/
ASC
Application Note 9 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431f848401011f8eb434271178

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

General System Description
• Application Software: MainApplication_XE16x
– This is the upgrade software.
– In this application note we create a MultiCAN module application. CAN objects are configured in order that

the slave can receive messages from the host and also execute commands.
– Code should be compiled for the location of the internal flash, at address 0C0,0000H.

Figure 2 Memory Map

Uconnect XE164 XE167M Easy Kit

0xE0,0000
‚CAN_Loader’

0xC1,0000
‚CAN_BSLMaster’

0xC0,0000

New Application code to
be downloaded

‚MainApplication_XE16x’
0xC0,0000

Old Application code to
be upgraded

0xE0,0000
Application Note 10 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

General System Description
3.1 Master Board
One method of connecting a PC to a microcontroller is to use the PC COM port to download a generated hex file
into the microcontroller. In this case the microcontroller must be in active ASC BSL mode. Infineon provides
freeware tools, such as Memtool and Minimon, to support on-chip flash programming.
Another method is to use the JTAG interface. In this application example, UConnect-CAN XE164 is used as a
’USB-to-CAN bridge’ to download and program the XC2000/XE166 internal flash from the PC.
The UConnect-CAN XE164 is a low cost USB stick providing full evaluation capability for the new XE164
microcontroller. For detailed information about the XE164 UConnect stick, please refer to www.infineon.com.

Figure 3 UConnect_CAN XE164

At one end of the UConnect-CAN XE164 is the USB connector. Inside there is an FT2232 chip with two USB
channels. One channel is for the JTAG interface supporting the OCDS feature, while the other channel acts as the
virtual COM port. This serial channel is connected to pins P7.3 and P7.4 of the XE164 USIC module (Tx and Rx
of the U0C0 ASC interface).
To start the serial interface either Windows HyperTerminal software, or freeware like MTTTY, can be used.
The HiTOP53-UConnect-XE164 can be used for debugging.
Tools can be directly installed from the UConnect-CAN XE164 kit’s CD.
On the other side of the UConnect stick is the Target Connector (Figure 3). XE164 port pin P2.6 (CAN0_Rx) and
P2.5 (CAN0_Tx) are connected to CAN transceiver.
To start this application SW pin CANL and pin CANH on host board UConnect-CAN XE164 and slave board
XE167FM EasyKit (see Figure 5) must be connected together.

USB Connector

Debug LED (red)

P2.7 LED (blue)
P2.8 LED (blue)

Power LED (green)

Target Connector

15 13 11 9 7 5 3 1

16 14 12 10 8 6 4 2

CANH P0.4 P0.5 P0.3 P0.2 P5.9 P15.0 GND

CANL P0.7 P0.6 P0.0 P0.1 P5.8 P5.0 +5V
Pin/Signal on the target
connector
Application Note 11 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431f848401011f8eb434271178
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
ftp://ftp.extra.infineon.com/MC_Skits_SW/UC-UConnect_XE164/
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043156fd5730115ebcf135817b6
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043156fd5730115ebcf135817b6
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

General System Description
3.1.1 Transmitter Program (Project File: CAN_BSLMaster)
The Transmitter program is the main program for the host board. It controls the interface between the development
environment (the PC) and the CAN bus.
The UConnect-CAN XE164 board has an 8MHz quartz crystal for the input oscillator circuit. At startup, through a
function call, the system frequency is changed to 40MHz via the internal PLL configuration and Pin 2.8 is defined
for system clock output.
The Transmitter program uses the communication peripherals of the microcontroller:
• The USIC0 channel 0 is configured as UART (19200Baud) to communicate serially to the HyperTerminal on

the PC.
• The MultiCAN module CAN node 0 (Rx=P2.6, Tx=P2.5) is configured with 200Kbaud to communicate to the

slave.
• Message Object 0 is defined as Receive object.
• Message Object 1 is defined as Transmit object.
In the CAN initialization routine the Initialization Frame is configured as per the description in Table 2. No interrupt
is defined in the CAN or USIC module (polling system).
After initialization, the download from host to slave begins.

Figure 4 Data Communication on the CAN Bus

After a successfully download sequence, which can be seen with reporting on the terminal program communicated
via the PC COM port, several commands can be selected to control the handshake between the host device and
the slave (see Chapter 5 for details).

PC

Slave BoardMaster Board

CAN Int. Frame

CAN Ack. Frame

‚CAN_Loader’

CAN_BSL_EXECUTION

COMMUNICATION
Via CAN

‚CAN_Loader’

Command
‚a’,‚e’,’c’,‚r’

Status/
Error

(UART)

‚MainApplication_
XE16x’

MAIN_EXECUTION

COMMUNICATION
Via CAN

CSP=0xC1
‚RUN’

(JTAG)

CAN BSL PROCESS

Command
’c’,‚r’

Status/
Error

(UART)

‚CAN_BSLMaster’
Application Note 12 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
ftp://ftp.extra.infineon.com/MC_Skits_SW/UC-UConnect_XE164/

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

General System Description
3.1.2 Receiver Program (Project File: CAN_Loader)
The Receiver program is a piece of code for the slave device. It’s role is to program the application program
(received via the CAN bus) into the internal flash. The Receiver program must be downloaded into SPRAM in CAN
BSL mode.
The built-in CAN BSL only provides a mechanism to load code via the CAN bus into the PSRAM. To program the
internal flash of XC2000/XE166 devices, the flash driver (software code of flash command sequences, such as
’erase’ and ’program’ for example), must be implemented and included in the CAN_Loader project file and be
downloaded to the device.
The Receiver program is composed of two main parts:
• Flash Driver

– all the flash programming routines used to program the flash memory.
• Communication Sequence

– between the host and the slave, including signal handling (the commands of the CAN message object) for
the handshake.

Port 10 is defined as GPIO output, to signal a successful download to the slave board.
Once in CAN BSL mode on the slave board (i.e. after a Power-on Reset), the ’CAN_Loader.hex’ code can be
downloaded to the slave PSRAM by executing the master Transmitter program ’CAN_BSLMaster.hex’, controlled
by the debug tool HiTOP53-UConnect-XE164.
4Kbytes are currently defined for the Receiver program ’CAN_Loader.hex’ in this application (0E0,0000H -
0E0,0FFFH).
Blinking LEDs on the slave board indicate that the CAN BSL mode has been terminated and that the code
downloaded to PSRAM is executing. The software then checks the receive information of the CAN frame in cycle
polling (the MultiCAN module and system clock are not reconfigured and the Tx/Rx message object and the baud
rate parameter are not changed), while the software waits for a CAN message command from the host.

3.1.3 Application Software (Project File: MainApplication_XE16x)
An application program is required to upgrade the internal flash of the device. This application note includes a
simple application program (MainAplication_XE16x), which provides the functionality to support communication
with a host board via the CAN interface.
The example code is intended to be straightforward. Pin P10.2 is defined as GPIO output pin and starting the
application program lights up its LED. The code also sets up the MultiCAN peripheral so that it can receive CAN
messages.
In the current version only two commands are implemented:
• A command to generate an Application Reset for Internal Standard Start (start address 0C0,0000H).
• A command to generate an Application Reset for the CAN BSL mode.
Application Note 13 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

General System Description
3.2 Slave Board
Any Infineon Easy Kit equipped with a target device listed in Table 1, can be used as a slave board.
The following figure shows the layout overview of the XE167FM EasyKit. For further details, please refer to the
Board User’s Manual.

Figure 5 XE167FM Layout Overview

Notes
1. CAN BSL can not be directly used on XC2000/XE166XE166 Easy Board (v1.1), because P2.5 and P2.6 are

not connected to the CAN SUB-9 connector (see Chapter 8.3).
2. CAN BSL can not be directly started on XC2000/XE166 Easy Board (V1, V2 and V3), because the quartz

crystal NX8045GB needs a longer rise time (ca. 1ms) than the wait-time in the built-in RoomCode (see
Chapter 8.1).

The CAN BSL requires a ‘point-to-point’ connection with the host; i.e. the XC2000/XE166 must be the only CAN
node connected to the network.
A system clock with at least 4MHz is required for the CAN Bootstrap Loader operation.
The XC2000/XE167 has a 1:1 direct drive clock in the CAN BSL mode.
The following baud rates have been tested:
• With ceramic resonator (8MHz): 100Kbaud, 200Kbaud, 500Kbaud, 1Mbaud
• With internal oscillator (nominal value 10MHz): 100kbaud, 200kbaud, 400kbaud (500kbaud fails),

– for example; CAN BSL mode is started by execution of the software workaround directly from the internal
flash (see Chapter 8.2).

S102

ON

OFF

CANH

CANL

CAN BSL mode

ON

OFF

ASC BSL mode

8MHz
Quarz

UART/
JTAG
Application Note 14 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431f848401011f8eb434271178

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

XC2000/XE166 Internal Flash Programming
4 XC2000/XE166 Internal Flash Programming
This chapter is divided into two sections:
• The Internal Flash Memory
• Flash Driver

4.1 The Internal Flash Memory
The XC2000/XE166 M-series devices (see Table 1) have up to 832Kbytes of on-chip flash memory.
The on-chip flash memory consists of up to four independent flash units (maximum 256Kbtes/unit). All flash units
can be used for both code and data storage.
Each unit is built up from 4-KByte physical sectors. Each sector can be separately erased and programmed (in
blocks of 128 bytes).
The flash memory supports read and write protection, where protection is implemented by logical sector.
Each memory unit consists up to 12 logical sectors (4K, 12K, 16K, 32K, 60K, 64K).
The ‘erase’ operation can be used on a page (128 bytes) or a physical sector (32*128 bytes). The ’program’
operation is applied pnly per page (128 bytes).
Read protection always globally covers the whole flash memory range (i.e. all four flash units). The bit field
IMB_FSR_PROT.RPRO indicates the status.
Write protection can be globally enabled when Read protection is applied, or it can be specified for each logical
sector (4x12) in each flash memory area. Registers IMB_PROCON0...3 (bit S12U…S0U) indicate the status.

Figure 6 Logical Sectors in XC2000M/XE167FM (256K Area)
Application Note 15 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

XC2000/XE166 Internal Flash Programming
Note: The XC2000/XE167 devices all have different flash sizes and different allocations of logical sectors. For
more details about flash memory size, location, protection and operating modes, please refer to the
appropriate User’s Manual or Data Sheet.

4.2 Flash Driver
To perform a ’program’ operation on the flash memory, it is necessary to write some command sequences. The
following table gives the possible operations and their command definitions as used in this application note:

Notes
1. PA=Page Address; WD=Write Data; SA=Sector Address
2. All of the command sequences given above, except for Load Page Word, set the BUSY flag for the duration

of their operation. Software must check the BUSY bit after the command instructions.
The main part of SW CAN_Loader implements flash routines which provide the flash functionality listed in the
table above (Table 3). However the user can still add other features as desired, such as the ’enable read
protection’ operation, or ’disable read protection’ for example.

Table 3 Command Sequence Definitions (Programming and Erasing)
Cycle 1 2 3 Flag BUSY

Erase Page MOV xxAAH, xx80H MOV xx54H, xxAAH MOV PA, xx03H Yes
Enter Page MOV xxAAH, xx50H MOV PA, xxAAH Yes
Load Page Word MOV xxF2H, WD -
Program Page MOV xxAAH, xxA0H MOV xx5AH, xxAAH Yes
Erase Sector MOV xxAAH, xx80H MOV xx54H, xxAAH MOV SA, xx33H Yes
Application Note 16 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Communication Protocol
5 Communication Protocol
After downloading the CAN_Loader code to the XC2000/XE166 device PSRAM, the CAN Bootstrap Loader
terminates and the XC2000/XE166 device will start executing the code in PSRAM (0E0,0000H).
The acknowledge CAN_BSL_EXECUTION (see Figure 4) from XC2000/XE166 to the host, signals
communication is established. The XC2000/XE166 then waits for commands from the PC. These command are
forwarded using the CAN messages (process commands) of the host device.

5.1 Process Commands

5.1.1 Sector Erasing Operation
The Sector Erasing Operation process command.

• ASCII for the terminal program: for example, ’e012’, erase physical sector 12
• Sector number (8 bits): number of the flash sector to be erased.
• Command code: CMD=0x03
The XC2000/XE166 device sends either 0x00 or 0x01 to the host, to indicate either acknowledge or error.

5.1.2 Flash Page Programming Operation
The Flash Page Programming Operation process command.

• ASCII for the terminal program: only used internally in the process command ’download an application
example code’ (see Chapter 5.1.5).

• Page address (24 bits): address of the flash page to be programmed.
• Command code: CMD=0x01
After receipt of this process command, including its 24bit page address, the XC2000/XE166 device initializes the
flash address and enters a loop state, waiting to receive 128 bytes of data from the host (8 CAN data frames within
8 bytes). This page will then be programmed after a successful erase operation.

The XC2000/XE166 device sends either 0x00 or 0x01 to the host as either acknowledgement or to indicate an
error.

Table 4 Process Command: Sector Erasing Operation
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

Sector
number

CMD
(0x03)

Table 5 Process Command: Flash Page Programming Operation
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

Page Address CMD
(0x01)

Table 6 Data Frame Format
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
data data data data data data data data
Application Note 17 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Communication Protocol
5.1.3 Application Reset for the Standard Start
The Application Reset for the Standard Start process command.

• ASCII for the terminal program: ’r’
• Command code: CMD=0x20
This command allows the user to directly start the downloaded software stored at 0C0,0000H.
The acknowledge MAIN_EXECUTION (see Figure 4) from the XC2000/XE166 device to the host, signals that
communication is established.

5.1.4 Application Reset for the CAN BSL Mode
The Application Reset for the CAN BSL Mode process command.

• ASCII for the terminal program: ’c’
• Command code: CMD=0x21
This command allows the user to start the CAN Bootstrap Loader again, using an application reset.
The acknowledge CAN_BSL_EXECUTION (see Figure 4) from the XC2000/XE166 device to the host, signals
that communication is established.

5.1.5 Download an Application Example Code
The Download an Application Example Code process command.

• ASCII for the terminal program: ’a’
• Command code: CMD=0x51
This command allows the user to download application example code from the host flash (0C0,0000H to
0C0,3FFFH, 4KBytes), to the internal flash of the XC2000/XE166 device.
Code will be received and programmed ‘page-by-page’ using the command sequence ’flash page programming
operation command’ (see Chapter 5.1.2).

Table 7 Process Command: Application Reset for the Standard Start
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

CMD
(0x20)

Table 8 Process Command: Application Reset for the CAN BSL Mode
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

CMD
(0x21)

Table 9 Process Command: Download an Application Example Code
byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0

CMD
(0x51)
Application Note 18 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Using this Application Note
6 Using this Application Note
To use this application note will require one UConnect-CAN XE164 to act as host and one XE167FM EasyKit to
act as slave. All hardware should be connected as shown in Figure 1.
• Insert the USB connector of the UConnect stick to the PC USB port.
• Connect the target connector CAN pins of the UConnect stick with the CAN pins on the Easy board (Figure 3

and Figure 5).
The two boards have to been configured first:
• Set the slave board to active CAN BSL mode:

– DIP switch S102 in Figure 5 P10.0-P10.1-P10.2-P10.3-/TRST)=OFF-ON-OFF-xx-ON(1-0-1-x-1)
– Make a Power-on Reset

Notes
1. Because of a hardware bug (BSL_CAN_X.001 - see Chapter 8.1), the CAN BSL can not be directly started

on the XE167FM EasyKit. The quartz crystal NX8045GB on the board needs to be changed with an 8MHz
ceramic resonator, OR -

2. Alternatively, if Memtool is available on the PC and your board can be started in the ASC BSL mode, the board
does not have to be changed. Instead Memtool can be used to program the instructions of SW workaround
into the flash of the slave board first. Then start it in the Standard Start Mode via a Power-on Reset. This is the
software workaround for the hardware bug BSL_CAN_X.001. A hex file is provided in Chapter 8.2.

After all of the steps above have been successfully completed, the tools can be started:
• The HyperTerminal program (19200Baud)
• Hitex debug tool HiTOP53-UConnect-XE164
The three pieces of code (two located in the flash and one located in the PSRAM) should first be programmed in
the XE164 of the UConnect kit.
Because the HiTOP5 places its own flash driver in the PSRAM at address 0E0,0000H, the PSRAM code
CAN_Loader must be downloaded in the final stages to avoid being overwritten by the HiTOP5 software (see
Figure 7).
Application Note 19 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431f848401011f8eb434271178
http://www.infineon.com/cms/en/product/channel.html?channel=db3a3043183a955501183c3446e1006f
http://www.infineon.com/cms/en/product/channel.html?channel=db3a30431f848401011f8eb434271178

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Using this Application Note
Figure 7 HiTOP Setup

Because the Transmitter Program CAN_BSLMaster is located at address 0C1,0000H it is necessary to set the PC
pointer to the C1H segment and then click the ‘run’ button in HiTOP5.
After execution of the CAN_BSLMaster Transmitter Program, the CAN_Loader starts to be loaded to the slave
board via the CAN bus. On the slave board the received data is stored in PSRAM, starting at address 0E0,0000H.
After receipt of the last CAN message object, the CAN BSL terminates and the code loaded to PSRAM is started.
Application Note 20 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Running this Application Note without HiTOP5
At this point the communication between host and slave is established. ASCII can be keyed in; for example, ’a’
can be keyed in via the HyperTerminal to give the command to download the code MainApplication_XE16x and
program it in the internal flash of the slave board.

Figure 8 Terminal Report

To start the MainApplication_XE16x code after flash programming on the slave, enter the key ‘r’. The LED of Pin
10.2 will blink to indicate that the code in flash is running.
Note: The implemented ASCII key codes are shown in Figure 4.

7 Running this Application Note without HiTOP5
Alternatively, you can use two XE16x easy kits and Infineon freeware Minimon to run SW provided by this
application note. Minimon is a monitor program that is started via ASC bootstrap loader. The main application of
Minimon are hex editing, downloading and starting of user application SW, flash programing and SFR register
view for example.
Minimon also supports script files which are nothing more then text files with a list of shell/script commands.
These commands are executed sequentially. Here we will use script file ’AppNote16164_CAN_BSL.scm’
(Chapter 8.5) to start this application SW.
Two XE167FM EasyKit should be connected according Figure 1.
• Connect CAN pins (CANH and CANL) of host board with the CAN pins (CANH and CANL) of slave board

(Figure 5).
• Need a USB cable and connect it with UART interface of host easy board and PC.
Application Note 21 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd
http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Running this Application Note without HiTOP5
The two boards have to been configured first:
• Set the slave board to active CAN BSL mode:

– DIP switch S102 in Figure 5 P10.0-P10.1-P10.2-P10.3-/TRST)=OFF-ON-OFF-xx-ON(1-0-1-x-1)
– Make a Power-on Reset

• Set the host board to active ASC BSL mode:
– DIP switch S102 in Figure 5 P10.0-P10.1-P10.2-P10.3-/TRST)=ON-OFF-OFF-xx-ON(0-1-1-x-1)
– Make a Power-on Reset

After all of the steps above have been successfully completed, the tool Minimon can be started.
• Select ’XC2000’ in the controller type under menu ’Target/Configuration’.
• Select the activated virtual COM port and configure ’19200baud’ under menu ’Settings/Communication’.
• Select ASCII text mode under menu ’Settings/Terminal Settings’.
• Assign the script file ’AppNote16164_CAN_BSL.scm’ see Chapter 8.5.
Then you click the ‘script’ button to start it.

Figure 9 Minimon

select ‚XC2000' in the controller type under menu toolbar ‚Target/Configuration’

- select the activated virtual COM port and ‚19200baud’ under menu toolbar ‚Settings/
Communication Settings’
- select ASCII under menu toolbar ‚Settings/Terminal Settings’

assign script file ‚AppNote16164_CAN_BSL.scm’

Command line

script file
Application Note 22 V1.0, 2009-10

http://www.infineon.com/cms/en/product/channel.html?channel=ff80808112ab681d0112ab6b4d6a07bd

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Appendix
8 Appendix
This Appendix is divided into the following sections:
• Hardware Bugs
• Hex Code for the software workaround of bug ’BSL_CAN_X.001’
• XC2000/XE166 Easy Board V1.1
• XC2000/XE166 Easy Board V2.0 and V3.0

8.1 Hardware Bugs
There are two hardware bugs that the user needs to be aware of: BSL_CAN_X.001 and RESET_X.002.

BSL_CAN_X.001: Quartz Crystal Settling Time after PORST too Long for CAN Bootstrap Loader
The startup configuration of the CAN bootstrap loader when called immediately after PORST limits the settling time
of the external oscillation to 0.5 ms. For typical quartz crystal this settling time is too short. The CAN bootstrap
loader generates a time-out and goes into Startup Error State.
Workaround:
• For low performance CAN application a ceramic resonator with settling time less then 0.5 ms can be used.
• An alternative is the Internal Start from on-chip flash memory as startup mode after PORST. Then switch the
system clock to external source and trigger a software reset with CAN bootstrap loader mode selected. Now
the device starts with a CAN bootstrap loader without limitation of the oscillator settling time.

Notes
Normally there are two types of external clock circuits used in board design. The effort for the determination of a
ceramic resonator oscillator is much more extensive than a quartz crystal oscillator. The following gives the typical
start-up time for a ceramic resonator and a quartz crystal:
• The rise time of ceramic resonator: 0.01...0.5 msec
• The rise time of quartz crystal: 1...10 msec
The oscillator rise time (start-up time) is defined from 50% to 90% maximum voltage of the stable oscillation. For
example, Murata 8MHz CSTCE8M00G55A rise time < 0.25 msec.
Before using the built-in CAN BSL, ensure to check the oscillator’s rise time in the associated Data Sheet.

RESET_X.002: Startup Mode Selection is not Valid in SCU_STSTAT.HWCFG
Reading from SCU_STSTAT.HWCFG-bits field returns all zeros instead of the information which startup mode has
been entered after the last reset.
Workaround
Read the initial value from VECSEG register to evaluate where from the user code is started:
• VECSEG[7:0]=00H -start from an off-chip memory, external startup mode
• VECSEG[7:0]=C0H -start from on-chip flash, internal startup mode
• VECSEG[7:0]=E0H -start from on-chip PSRAM, bootstrap loader mode (UART, CAN or SSC)

Notes:
This is does not affect in M-, N-, 5-, H-series devices (see Table 1).
Application Note 23 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Appendix
8.2 Hex Code
Software Instructions:

SCU_SWRSTCON = 0x0D00; //SWCFG =0000,1101b (CAN BSL start)
SCU_RSTCON0 = 0xC000; //.SW=application reset
SCU_SWRSTCON|=0x0003; //generate reset

ASM and Hex file (see attached file ’CAN_BSL_SW.hex’):
MOV R8,#0D00h ; E6F8000D
MOV 0F0AEh,R8 ; F6F8AEF0
MOV R9,#0F0AEh ; E6F9AEF0
MOV R8,#0C000h ; E6F800C0
MOV 0F0B8h,R8 ; F6F8B8F0
MOV R6,[R9] ; A869
OR R6,#03h ; 7863
MOV [R9],R6 ; B869

Note: All SCU registers are protected by the register security mechanism after the EINIT instruction has been
executed.

8.3 XC2000/XE166 Easy Board V1.1
The XC2000/XE166 Easy Board, V1.1.

Figure 10 XC2000/XE166 Easy Board V1.1
Application Note 24 V1.0, 2009-10

AP16164
Flash Progamming via CAN BSL (Bootstrap Loader)

Appendix
8.4 XC2000/XE166 Easy Board V2.0 and V3.0
The XC2000/XE166 Easy Board, V2.0 and V3.0.

Figure 11 XC2000/XE166 Easy Board V2.0 and V3.0

8.5 Script File: AppNote16164_CAN_BSL.scm
see attathed file ’App16164_CAN_BSL.scm’
; Minimon Script file for testing AppNote16164_CAN_BSL SW
_connect ; connect terminal program

_MOVEMONITOR e07000 ; remove monitor PG

_load C:\AppNote16164\CAN_BSLMaster\CAN_BSLMaster.hex ; load AppSW
_iprogram ; flash programming

_load C:\AppNote16164\MainApplication_XE16x\MainApplication_XE16x.hex ; load AppSW
_iprogram ; flash programming

_load C:\AppNote16164\CAN_Loader\CAN_Loader.hex ; load AppSW
_download ; download in PSRAM

_MOV VECSEG, 00C1 ; rewrite register

_jmp C10000 ; jump to C1,0000

Note: Before starting the script file, ensure to check the SW in your directory
Application Note 25 V1.0, 2009-10

Published by Infineon Technologies AG

w w w . i n f i n e o n . c o m

http://www.infineon.com

	1 Introduction and Requirements
	1.1 Hardware Requirements

	2 CAN BSL (Bootstrap Loader) in the XC2000/XE166
	2.1 Entering the CAN BSL
	2.2 Loading the User Code
	2.3 Exiting CAN BSL

	3 General System Description
	3.1 Master Board
	3.1.1 Transmitter Program (Project File: CAN_BSLMaster)
	3.1.2 Receiver Program (Project File: CAN_Loader)
	3.1.3 Application Software (Project File: MainApplication_XE16x)

	3.2 Slave Board

	4 XC2000/XE166 Internal Flash Programming
	4.1 The Internal Flash Memory
	4.2 Flash Driver

	5 Communication Protocol
	5.1 Process Commands
	5.1.1 Sector Erasing Operation
	5.1.2 Flash Page Programming Operation
	5.1.3 Application Reset for the Standard Start
	5.1.4 Application Reset for the CAN BSL Mode
	5.1.5 Download an Application Example Code

	6 Using this Application Note
	7 Running this Application Note without HiTOP5
	8 Appendix
	8.1 Hardware Bugs
	8.2 Hex Code
	8.3 XC2000/XE166 Easy Board V1.1
	8.4 XC2000/XE166 Easy Board V2.0 and V3.0
	8.5 Script File: AppNote16164_CAN_BSL.scm

