
Appl icat ion Note, V 1.1, January 2009

Microcontrol lers

XC16x
CAN Bootstrap Loader

AP16092

XC16x

Revision History: 2009-01 V 1.1
Previous Version:
V1.0, 2006-03
Page Subjects (major changes since last revision)
5 update for XC164CM

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
mcdocu.comments@infineon.com

CAN Bootstrap Loader for XC16x

Table of Contents Page

Application Note 3 V 1.1, 2009-01

1 Overview . 4

2 CAN Bootstrap Loader . 4
2.1 Introduction . 4
2.2 Entering the CAN Bootstrap Loader . 5
2.3 Initialization Phase . 6
2.4 Acknowledge Phase . 7
2.5 Data Transmission Phase . 8
2.6 Exiting CAN Bootstrap Mode . 8
2.7 Choosing the Baudrate for the Bootstrap Loader . 8

3 Downloading User Code with CAN Bootstrap Loader 14
3.1 Hardware used in this Application Note . 14
3.2 General Description of the System . 14
3.3 Testing this Application Note . 16

4 Appendix: Source Code . 18

CAN Bootstrap Loader for XC16x

Overview
1 Overview
In the Infineon XC166 Family, a built-in CAN bootstrap loader (CAN BSL) is implemented
(see Table 1). With the CAN bootstrap loader it is possible to load code/data into the
internal PSRAM of the XC16x via the TwinCAN interface.
This application note consists of two parts. It begins with detailed information about the
CAN BSL implementation (as extension to the User’s Manual). Then an example is
attached and shows a download process of a simple user code from an external host to
the XC16x with the CAN BSL.

Table 1 XC16x Derivative with TwinCAN Module

2 CAN Bootstrap Loader

2.1 Introduction
The built-in CAN bootstrap loader of the XC166 Family provides a mechanism to load
program code/data via the TwinCAN module into the PSRAM, and start executing the
loaded code from address E0’0000H (address of the first transmitted byte).
The bootstrap loader is an integrated mechanism that can be selected via a port
configuration during a system start after a HW reset.
The bootstrap loader will configure the TwinCAN module to the baudrate of the host.
Once communication has been established, the bootstrap loader receives a host defined
variable number of messages for downloading the code/data. The received code/data is
sequentially written to the PSRAM.
After the download has been completed, the BSL begins executing the program code
that has been loaded and the bootstrap loader is terminated.
During the data transmission phase between the XC16x and an external host, each data
frame always transmits eight code/data bytes. The complete load sequence is based on
the following three CAN standard frames:
• Initialization frame - sent by the external host to the XC16x.
• Acknowledge frame - sent by the XC16x to the external host.

Derivative Package
XC161CJ/CS P-TQFP-144-19
XC164CS P-TQFP-100-16
XC164D P-TQFP-100-16
XC167CI P-TQFP-144-19
XC164CM PG-TQFP-64-8
Application Note 4 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
• Data frame(s) - sent by the external host to the XC16x.
The initialization frame is used in the XC16x for baudrate detection. After a successful
baudrate detection is reported to the external host by the acknowledge frame, data is
transmitted by data frames. Table 2 shows the parameters and settings of the three CAN
standard frames used for CAN BSL.

Note: In XC164CM device (64 pins package) the CAN bit-timing register will not be
reconfigured with byte 0-1 of the initialization frame

2.2 Entering the CAN Bootstrap Loader
The XC164CM enters CAN BSL mode triggered by external configuration during a
hardware reset:

Table 2 Structure of CAN Bootstrap Loader Frames
Frame Type Parameter Description
Initialization
Frame

Identifier 0x555H 11-bit standard data frame
DLC = 8 or 6 length code, 8 or 6 bytes transmitted within CAN frame
Data byte 0 bit timing register BTR low byte for XC16x
Data byte 1 bit timing register BTR high byte for XC16x
Data byte 2 acknowledge message identifier ACK_ID, low byte
Data byte 3 acknowledge message identifier ACK_ID, high byte
Data byte 4 data message count MSG_CNT, low byte (max. 255)
Data byte 5 data message count MSG_CNT, high byte = 00H

Data byte 6 don’t care
Data byte 7 don’t care

Acknowledge
Frame

Identifier ACK_ID as received by data bytes [3:2] of the
initialization frame (bits [11:0])

DLC = 4 data length code, 4 bytes transmitted within CAN frame
Data bytes
0 to 3

Identical to initialization frame

Data Frame Identifier user-defined, 11-bit standard data frame
DLC = 8 data length code, 8 bytes transmitted within CAN frame
Data bytes
0 to 7

data bytes, assigned to increasing destination (PSRAM)
addresses
Application Note 5 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
• When pins TRST, P9.5 and PH1.4 are sampled high and pins P9.4 low at the end of
a hardware reset.

The other derivatives enter CAN BSL mode triggered by external configuration during a
hardware reset:
• When pins P0.4 and P0.3 are sampled low and pins P0.5 and P0.2 high at the end of

an external reset (EA=0).
• When pin RD is sampled low and pin ALE is sampled high at the end of an internal

reset (EA=1).
In this case the built-in bootstrap loader is activated independent of the selected bus
mode.

2.3 Initialization Phase
As in the ASC boot mode, the CAN BSL as the first task has to determine the CAN
baudrate at which the external host is communicating. This task requires the external
host to send initialization frames (see Table 2) continuously to the XC16x.
The identifier of the initialization frame has the baudrate detection pattern with value
555H. Data bytes 0 and 1 contain the information for the XC16x Bit Timing Register. This
provides the host the ability to change these protocol parameters to suit the individual
user application. The user must ensure that the correct value is sent, otherwise, the
communication could be halted. The XC16x will re-initialize its TwinCAN module to these
parameters and transmit the acknowledge frame with the identifier (data bytes 2 and 3)
sent from the host. Data bytes 4 and 5 tell the XC16x the number of messages to receive.
Since bytes 4 and 5 are defined by the host, the host has the ability to decide how large
a program to load.
Note: The bootstrap loader assumes all message data is valid and stores the received

data in PSRAM sequentially. The host should send its code/data sequentially in
multiples of 8 code/data bytes.

The CAN BSL starts measuring signal pulses at the TwinCAN receiver input pin RxDCA
(capturing the time between any edge). After pulse measurements the CAN BSL will
analyze the data to determine the smallest pulses. This time period is assumed to be one
CAN bit time and is used as the measured value for the initial setting for detecting the
correct baud rate.
Once the bit time has been determined, a software algorithm starts to determine the host
baudrate. The baud rate is determined by performing an iterative loop using the
parameters in Table 5. A detailed description for the calculation of the CAN bit time and
parameter search operations is provided in Chapter 2.7. If an exact match between the
calculated timer value and the measured timer value is found, then the loop will exit with
the current parameters. However, if an exact match is not found, then a search is made
to select the closest calculated value to the measured value.
Application Note 6 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
The process of the message detection is subsequently performed. To recognize the
initialization frames the XC16x initializes the TwinCAN module into the analyzer mode.
In this operation mode, CAN frames are monitored by XC16x without an active
participation in any CAN transfer. Once the XC16x can detect the initialization frame
without errors, the XC16x will enable the TwinCAN module in its normal operation mode.
The TwinCAN module will now acknowledge this frame by generating a dominant bit in
its ACK slot. This signals the external host that communication has been established
with the XC16x. If the message cannot be detected within all possible calculated timer
value, the process will be restarted by recapturing dominant bits and repeating these
steps until a message can be found.

2.4 Acknowledge Phase
In the acknowledge phase, the bootstrap loader will reconfigure the BTR register with the
value in the initialization frame (bytes 0 and 1) and initialize the TwinCAN module.
Afterwards, the bootstrap loader transmits an acknowledge frame back to the external
host indicating that it is now ready to receive data frames with the baudrate defined by
the external host. The acknowledge frame uses the message identifier ACK_ID that has
been received with the initialization frame. The data bytes of the acknowledge frame are
copies of the data bytes of the recognized initialization frame.
The CAN BSL initializes the TwinCAN in the following way:
• CAN node A of the TwinCAN module is used.
• Message object 0 is configured as receive object to receive the initialization frame and

data frame.
• Message object 1 is configured as transmit object to transmit the acknowledge frame.
• XC164CM uses CAN node A input/output pins: P9.2=RxDCA and P9.3=TxDCA; the

other derivatives use CAN node A input/output pins: P4.5=RxDCA, P4.6=TxDCA.
Table 3 lists all registers used in the CAN BSL (when the XC16x has entered BSL mode,
this configuration is automatically set):

Table 3 The CAN Bootstrap loader used Registers
Register/Bitfield Reset Value Comments
Watchdog Timer Disabled
ADDRSEL7 2000h
FCONCS7 0027h
TCONCS7 0000h
GPT12E_T6CON 0800h
GPT12E_T6 xxxxh
ABTRL xxxxh
DPP0 0380h
Application Note 7 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
Other than after a normal reset the watchdog timer is disabled here, so the bootstrap
loading sequence is not time limited.

2.5 Data Transmission Phase
In the data transmission phase, data frames are sent by the external host and received
by the XC16x. The data frame uses the 11-bit identifiers. Eight data bytes are transmitted
with each data frame. The first data byte is stored in PSRAM at E0’0000H. Consecutive
data bytes are stored at incrementing addresses.
Both communication partners evaluate the data message count MSG_CNT until the
requested number of CAN data frames has been transmitted. After the reception of the
last CAN data frame, the bootstrap loader sequence is finished and executes a jump to
address E0’0000H.

2.6 Exiting CAN Bootstrap Mode
After the bootstrap loader has been activated, the watchdog timer and the debug system
are disabled. The debug system is released automatically when the BSL terminates after
having received a host defined variable number of messages from the host.
The CAN BSL is also aborted after a hardware reset with the non-BSL port configuration
Note: Most probably the initially loaded routine will load additional code/data, some

application is likely to require a second receive loop. This second loop may directly
use the pre-initialized TwinCAN module to receive data and store it to user-defined
locations. Since the watchdog timer is disabled only in the BSL, in this case it is
recommended that the first instruction downloaded into the PSRAM is a DISWDT
instruction to prevent a undesired watchdog timer reset.

P4.6 ‘1’ XC164CM: P9.3=‘1’
DP4.6 ‘1’ XC164CM: DP9.3=‘1’
ALTSEL0P4.6 ‘1’ XC164CM: ALTSEL0P9.3=‘1’
ACR.INT ‘0’
All registers for
message object 0

xxxxh Defined as transmit message object

All registers for
message object 1

xxxxh Defined as receive message object

Table 3 The CAN Bootstrap loader used Registers
Register/Bitfield Reset Value Comments
Application Note 8 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
2.7 Choosing the Baudrate for the Bootstrap Loader
According to ISO standard, a CAN bit time is subdivided into the three non-overlapping
segments SYNC, TSEG1 and TSEG2, with the corresponding time durations tSYNC,
tTSEG1 and tTSEG2. Each of these segments consists of multiples of a time quantum tq
(see Figure 1). A minimum of 3 × tq for tTSEG1, 2 × tq for tTSEG2 and 8 × tq for one CAN
bit time calculated as the sum of tSYNC, tTSEG1 and tTSEG2 is requested by the ISO
standard.

Figure 1 Principle of deriving the bit period as implemented in XC16x

A feature of the CAN protocol is that the bit rate, the sample point, and number of
samples taken in a bit period (re-synchronization jump width) are user programmable.
The control register BTR is used for setting up these bit timing parameters. Obviously,
only integer values can be used for the programming of these parameters. Table 4 lists
all bit definition of register BTR in the TwinCAN module.

Table 4 Bit Timing Register

Field Description Bits Range
BPR baudrate prescaler 0...6 0...63
SJW re-synchronization jump width 7,8 0...3

Tseg2
(user definable)Tseg1 (user definable)

System
clock

CAN module
clock

t

tsys

tq

1 Bit Time

CAN
bit period

Sample Point Transmit Point

Tsync
(fixed)

Baudrate Prescaler (BRP)
(user definable)
Application Note 9 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
TSEG1 time segment before sample point 8...11 0...15
TSEG2 time segment after sample point 12...14 0...7
DIV8X division of module clock by 8 15 0 (the baudrate prescaler is

directly driven by fCAN in BSL)

Field Description Bits Range
Application Note 10 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
From the ISO standard and the TwinCAN specification, the following assumptions about
the bit timing parameters can be made:

Like the bit rate, the sample point is an important parameter. For example, choosing a
later sample point in the bit period results in more tolerance with respect to propagation
delay and therefore greater bus length. Conversely, choosing a sample point closer to
the midpoint of the bit period will allow a greater oscillator tolerance for each node in the
system. Obviously, a large allowable oscillator tolerance and a long bus length are
conflicting goals, which can only be accomplished through optimization of the bit timing
parameters. A good general rule is to set the sample point to about 80% of the bit timing.
From requirements described above Table 5 summarizes all possible bit timing
parameters.

Table 5 Time Quanta Parameters for 80% sample point
Item Ntq NTseg1 NTseg2 Sample Point
1 20 (19 ... 16) 15 (14 ... 11) 4 80.0% (...)
2 15 (14 ... 11) 11 (10 ... 7) 3 80.0% (...)
3 10 (11 ... 8) 7 (6, 5) 2 80.0% (...)

8 Ntq 25≤ ≤

3 NTseg1 16≤ ≤

2 NTseg2 8≤ ≤

1 NTsjw 4 NTsjw NTseg2≤,≤ ≤
Application Note 11 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
The XC16x uses timer GPT12E_T6 to measure the dominate bit on the CAN bus (polling
the CAN receive pin to determine the amount of time that is required for the dominate bit
to be transmitted). The dependency between the system clock and one CAN bit time is
calculated with the following equations:

When choosing a baudrate, the host must determine what CAN baudrate is possible for
the XC16x to detect. The major consideration in this determination is the operating
frequency of the XC16x. In general, it is recommended to select the slowest possible
baudrate for the initialization frame with a sample point (SP) of about 80%. The value for
SJW is recommended to be three. Once communication has been established, the
baudrate can be changed to a higher rate.
The baudrate used for the CAN BSL must fulfill the following prerequisites:
• The baudrate is within the specified operation range for TwinCAN module.
• The external host is able to use this baudrate and the XC16x is capable to detect it.
• The computed deviation error is below the GPT12E_T6 quantization error limit.

Where:

BRP Baudrate prescaler value
T6 Timer T6 value
Ntq Number of time quanta per bit period
tCANbit One CAN bit time
NTseg1 Number of time quanta before the sample point
NTseg2 Number of time quanta after the sample point
Sync Synchronization segment (always equal to 1)
fSYS CPU operating frequency

T6 tCANbit
fsys
2

---------•=

BRP 2 T• 6
Ntq

---------------- 
  1–=

CalTimerValue BPR 1+() Ntq•=

Ntq Sync Tseg1 Tseg2+ +=
Application Note 12 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
Table 6 lists the system clock frequency for some typical baudrates from practical
measurements.

The TwinCAN module can use the clock configuration fCAN=2×fsys by setting bit CPSYS
in register SYSCON1. But in the CAN BSL the initial clock generation mode is defined
by the reset value of register SYSCON1 (CPSYS=0) and PLLCON.
Note: The XC164CM has a 1:1 direct drive clock mode in the bootstrap loader; the other

derivatives have 2:1 prescaler clock mode in Single Chip Mode (EA=1) or have the
clock configuration depends on the values latched from PORT0 in Bus Mode
(EA=0).

Table 6 System Clock Frequencies for CAN Baudrate Ranges
Baudrate fsys
1000 kbit/s fsys ≥ 32 MHz
500 kbit/s fsys ≥ 16 MHz
250 kbit/s fsys ≥ 8 MHz
100 kbit/s fsys ≥ 4 MHz
Application Note 13 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

CAN Bootstrap Loader
Figure 2 Flow Diagram of the CAN Bootstrap Loader

Initialization of
CAN bootsrtap loader

TwinCAN Module in XC16x External Host Controller

Sample and measure
dominate bus periods

Enough samples and
check the smallest value ?

No

Calcucate the baud rate and
initialize TwinCAN in analyzer mode

with the detected bit timing

Reconfigure TwinCAN
Send the acknow. frame to the host

Waiting for reception of the next CAN
message

Restore received data bytes in PSRAM

Last message received ?

Terminate CAN loader and
execute the loaded code start at

E0,0000h

Prepare CAN communication
defining parameters for initialization

frame

Sending the init. frame and
checking ACK slot

Successful transmission ?

The acknow. frame received ?

Transmitting CAN message with 8 data
bytes

Last message transmitted ?

End of data transfers

Ack. Phase

Data Phase

Init. Phase

Disable analyzer mode and
dominant bit in the ACK slot is

generated

Error free Init. frame received ?

Next possible bit timing ? No

Yes

Yes
Application Note 14 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

Downloading User Code with CAN Bootstrap Loader
3 Downloading User Code with CAN Bootstrap Loader
This chapter shows how to load user software from an external host to the XC16x and
run it. For a simple realization two XC16x boards are used here. The external host is
marked as ‘host board’.

3.1 Hardware used in this Application Note
• Two Infineon XC16x boards (equipped with external RAM and used as ‘host board’,

e.g. ‘XC16x board’). As a ‘slave board’ with the active CAN BSL, ‘XC16x board’,
‘XC164CS series Easy kit board’ and ‘XC164CM series Easy kit board’ can be used.
For detailed information about the XC16x board, please refer to www.infineon.com.

• A serial cable to connect the PC and ‘host board’.
• Terminal program, e.g. ‘MiniMon’ tool, for downloading hex files into the internal flash

or the external memory, and starting the code execution.
• CAN bus cable, ‘CAN Analyzer’ tool (optional).

3.2 General Description of the System

Figure 3 System Overview

XC16x

CAN BUS

PC

ASC0

SPRAM Ext. RAM

Flash

XC16x
(CAN BSL)

SPRAM Ext. RAM
(optional)

Flash

TwinCAN TwinCAN

Host Board
(ext. ASC BSL mode)

Slave Board
(CAN BSL mode)

Program user hex file in the internal flash
and the ext. RAM using ASC BSL
Application Note 15 V 1.1, 2009-01

http://www.infineon.com/cgi-bin/ifx/portal/ep/channelView.do?channelId=-64413&channelPage=%2Fep%2Fchannel%2FleafNote.jsp&pageTypeId=17099

CAN Bootstrap Loader for XC16x

Downloading User Code with CAN Bootstrap Loader
Simple user code for pin toggle (p9_4_toggle.hex or p1L_0_toggle.hex) with address
starting C0’0000H is included in this application note. It should be downloaded into the
on-chip flash on the host board first. (For the flash programming the freeware tool
‘MiniMon’ can be used and downloaded from www.infineon.com.
The application program is a software routine for the host board. It contains the CAN
module initialization code (including TwinCAN transmit pins and configuring of the
initialization frame), data transmit process and a signal for starting and terminating the
download sequence. It is located in external memory. Its role is to transfer the user code
from the internal flash on the host board into the slave board via CAN bus.

Figure 4 Memory Map

The source file (host_XC16xboard.c) includes many valid values for the bit timing
register with a wide CAN baudrate ranges (50K...1000K baudrate) to be set in the
initialization frame. You can simply modify this file to fit your needs. The compiled hex
file has a fixed bit timing for 500K baudrate. It can be used in the host board with the
external ASC BSL in prescaler mode (fOSC=16 MHz) directly, when the slave board is in
the CAN BSL with fSYS=16 MHz.

1. MSG: DATA7...DATA4

…...

1. MSG: DATA3...DATA0
E0'0000H

E0'0004H

ubData[1-0]

E0'0008H

ubData[3-2]

ubData[7-6] ubData[5-4]

ubData[1-0]ubData[3-2]

ubData[7-6] ubData[5-4]
E0'000CH

E0'0010H

MSGDRLn0MSGDRHn0

MSGDRHn4 MSGDRLn4
E0'07F4H

E0'07F8H

E0'07F0H

E0'07FCH

E0'0800H

…...

C0'07FCH

C0'0800H

…….

Application SW routine
host_xc16xboard.hex

00'0000

Host Board Slave Board
(CAN BSL)

C0'0000H

C0'0004H

C0'0008H

C0'000CH

C0'0010H

ubData[1-0]ubData[3-2]

ubData[7-6] ubData[5-4]
C0'07F4H

C0'07F8H

C0'07F0H

MSGDRn0=ubData[3-0]
MSGDRn4=ubData[7-4]

ubData[7-6]

ubData[3-2]

ubData[5-4]

ubData[1-0]

1. data frame

255. data frame
Application Note 16 V 1.1, 2009-01

http://www.infineon.com/cgi-bin/ifx/portal/ep/channelView.do?channelId=-75076&channelPage=%2Fep%2Fchannel%2FinformationPage.jsp&pageTypeId=17099

CAN Bootstrap Loader for XC16x

Downloading User Code with CAN Bootstrap Loader
3.3 Testing this Application Note
All hardware below should be configured first:
• Set the slave board in the active CAN BSL mode.
• Set the host board in the active ASC BSL with EA=0 (use the external RAM on the

host board).
• Connect the CAN nodes (node A of the TwinCAN module) between two boards.
• Connect the ASC0 interface on the host board to your PC and start the terminal

program ‘MiniMon’.
Note: The DIP switch S401#1 on the two boards must be in ON position to active CAn

node 0 transceiver.

Figure 5 Boards Connection

After starting the ‘MiniMon’ you can program the user code (p9_4_toggle.hex) into the
internal flash and load the application code (host_XC16xboard.hex) in the external
memory. When the slave board enters the CAN BSL mode after a HW reset, the software
routine in the host board can be started with tool instruction ’_jmp 00’ directly.

Host Board
(ASC BSL with /EA=0)

Slave Board
(CAN BSL)
Application Note 17 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

Downloading User Code with CAN Bootstrap Loader
After a successful download sequence, pin 9.4 on the host board will be ON and the CAN
BSL is terminated and the downloaded code (located at E0’0000H) is now executing. The
pin 9.4 (or pin1L.0) on the slave board blinks.
Note: You can also use other tools (e.g. CANalyzer) with CAN interface to download a

hex file in XC16x with the CAN BSL directly.

Note: On the XC164CS/XC164CM Easy kit board port 9 is not available.

In XC16x device, only 2K PRAM (E0’0000H-E0’07FFH) is available and a max. MSG
number of 255 (MSG_CNT= 0..0xFF) is allowed by CAN BSL. The received message
will be restored from E0’0000H to E0’07F7H.
The code restored in PSRAM may be the final application code. It may also contain a
code sequence to change the system configuration and enable the bus interface to store
the received data into external memory. For example, the flash driver may be loaded and
used for the on-chip flash programming via CAN BSL. For details please refer to the
application note “XC166 Flash-on-the-Fly”.
Application Note 18 V 1.1, 2009-01

http://www.infineon.com/upload/Document/cmc_upload/documents/097/556/AP1604811_flash_on_the_fly.pdf
http://www.infineon.com/upload/Document/cmc_upload/documents/097/556/AP1604811_flash_on_the_fly.pdf

CAN Bootstrap Loader for XC16x

Downloading User Code with CAN Bootstrap Loader

Figure 6 Date Communication on the CAN Bus

Host Board
(SW flowchart)

Slave Board
(CAN BSL)

the inti. frame:
ID= 0x555,
Data register 0 low = BTL,
Data register 0 high = ACK_ID=0x1554,
Data register 1 low = MSG_CNT = 0xFF

the ack. frame:
ID= ACK_ID = 0x554
Data register 0 low = BTL,
Data register 0 high = ACK_ID=0x1554

Data frame:
ID= xxx, with 8 bytes
max CAN messages = 255

Entering TwinCAN BSLInit output P9.4 =high

prepare CAN
Communication with
sending init. frame

(M1: Tx MSG ID=0x555
M0: Rx accept. disable)

Init. phase

Data phase

CAN BSL is transfer to
normal mode.

Loaded code is
executing

output P9.4=low after
correct transmission

MO1: ID reconfiguration

prepare send data , set
TxRQ up to max MSG

number.

Communication ready Ack. phase
Application Note 19 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

Appendix: Source Code
4 Appendix: Source Code
//**
// @Function void main(void)
//--
// @Description If the data trasmission is correct, P9_4 = 0 and an yellow
// LED on the host board is then ON
//--
// @Date 12.01.2006
//**
void main(void)
{
 uword j, i=0;
 //--------------------------- init. phase ----------------------------------
 // - Port 9 is avalable in XC16x 100/144 pins device.
 // - TwinCAN Initialization on the host XC16x board
 // - Transmit the init. frame from MSG1, until it is acknowledged by the host
 P9_P4=1;
 DP9_P4=1;
 CAN_vInit();
 CAN_HWOBJ[1].uwMSGCTR = 0xe7ff;

 //--------------------------- ack. phase ----------------------------------
 // - Message object 0 is defined as receive object.
 // - Wait until the acknowledge frame is arrived(from TwinCAN_BSL(slave board))

 while(!((CAN_HWOBJ[0].uwMSGCTR & 0x0300) == 0x0200));

 //--------------------------- data phase ----------------------------------
 // - Use message object 1 to transmit the user code/data
 // - Transmit the data from address C0,0000-C0,07FF (2K SPRAM)
 // - After a correct transition the LED is ON

 CAN_HWOBJ[1].uwMSGCTR = 0xfb7f;
 CAN_HWOBJ[1].ulCANAR = 0x15540000;
 CAN_HWOBJ[1].ulCANAMR = 0xFFFFFFFF;
 CAN_HWOBJ[1].uwMSGCFG = 0x0088;
 CAN_HWOBJ[1].uwMSGCTR = 0xf7bf;

 for (j=1;j<((FLASH_2K)/4);j+=2)
 {
 while (!((CAN_HWOBJ[1].uwMSGCTR & 0x3000) == 0x1000));

 CAN_HWOBJ[1].uwMSGCTR = 0xfbff;
 CAN_HWOBJ[1].CMSGDRLn4.stData.ulDataLow = FlashData[j-1];
 CAN_HWOBJ[1].CMSGDRLn4.stData.ulDataHigh = FlashData[j];
 CAN_HWOBJ[1].uwMSGCTR = 0xf6bf;

 CAN_HWOBJ[1].uwMSGCTR = 0xe7ff;
 }
 P9_P4=0;
 while (1); // for debug using
} // End of function main

//**
// @Function void CAN_vInit(void)
//--
// @Description This is the initialization function of the CAN function
Application Note 20 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

Appendix: Source Code
// library. It is assumed that the SFRs used by this library
// are in its reset state.
// MO0 is defined as Rx object, MO1 is defined as Tx object
//--
// @Date 12.01.2006
//**
void CAN_vInit(void)
{
 // ---
 // Configuration of CAN Node A:
 // ---
 CAN_ACR = 0x0041;
 CAN_AGINP = 0x0000;
 CAN_AECNTH = 0x0060;
 ALTSEL0P4 |= 0x0040;
 DP4 = (DP4 & ~(uword)0x0040) | 0x0040;
 CAN_AFCRL = 0x0000;
 CAN_AFCRH = 0x0000;
 CAN_PISEL = 0x0000;

 // ---
 // Configuration of Message Object 0:
 // standard 11-bit identifier, RX, CAN node A, acceptance mask dissabled
 // ---
 CAN_MSGCFGL0 = 0x0080;
 CAN_MSGCFGH0 = 0x0000;
 CAN_MSGCTRL0 = 0x5595;

 // ---
 // Configuration of Message Object 1:
 // standard 11-bit identifier =0x555, TX, 8 valid data bytes, CAN node A
 // acceptance mask 0x7FF
 // CAN_MSGDRL10= Bit Timing for TwinCAN_BSL in SlaveCAN
 // CAN_MSGDRH10= ID of the ack. frame that CAN_BSL sends back to the host
 // CAN_MSGDRL14= the number of messages to receive
 // ---
 CAN_MSGCFGL1 = 0x0088;
 CAN_MSGCFGH1 = 0x0000;
 CAN_MSGAMRL1 = 0xFFFF;
 CAN_MSGAMRH1 = 0xFFFF;
 CAN_MSGARL1 = 0x0000;
 CAN_MSGARH1 = 0x1554;

 // one MSG = 2 Long = 4 Word = 8 Bytes
 // the user is limited to sending a Max MSG = 255 (MSG Number 1 to 0xFF)
 // 2K SPRAM in XC16x (start address E0,0000- E0,07F7)
 CAN_MSGDRL14 = (FLASH_2K)/8-1;
 CAN_MSGDRH14 = 0x0000;

 CAN_MSGFGCRL1 = 0x0000;
 CAN_MSGFGCRH1 = 0x0001;
 CAN_MSGCTRL1 = 0x5595;
 CAN_MSGCTRH1 = 0x0000;

 // BTR and DataBytes[3-0]Configuration------------------------------------
 // CAN_ABTRL, CAN_ABTRH: bit timing register
 // CAN_MSGDRL10: DataBytes[1-0] => BTR for XC16x CAN_BSL
 // CAN_MSGDRH10: DataBytes[3-2] => MSG ID for the CAN_BSL
Application Note 21 V 1.1, 2009-01

CAN Bootstrap Loader for XC16x

Appendix: Source Code
 // ---

......

//##
// 500 KBaud: CAN_BSL fcan > 16 MHz
//##
// host XC16x board = 8 Mhz; TwinCAN-BSL = 16 Mhz
#if XC16X==ON
 CAN_ABTRL = 0x2bc0;
 CAN_ABTRH = 0x0000;
 CAN_MSGDRL10 = 0x2bc1; // SP=81,25%, TSG2=2, TSG1=11, BRP=1, SWJ=3
 CAN_MSGDRH10 = 0x1554;
#endif

......

//##
// 200 KBaud
//##
// host XC16x board = 8 Mhz; TwinCAN-BSL = 8 Mhz
#if XC164CM==ON
 CAN_ABTRL = 0x3EC1;
 CAN_ABTRH = 0x0000;
 CAN_MSGDRL10 = 0x3EC1; // SP=80%, TSG2=3, TSG1=14, BRP=1, SWJ=3
 CAN_MSGDRH10 = 0x1554;
#endif

......

 // ---
 // Start the CAN Nodes:
 // ---
 CAN_PISEL = 0x0000; // load port input select register
 CAN_ACR &= ~(uword)0x0041; // reset INIT and CCE
} // End of function CAN_vInit
Application Note 22 V 1.1, 2009-01

h t t p : / / w w w . i n f i n e o n . c o m

Published by Infineon Technologies AG

	1 Overview
	2 CAN Bootstrap Loader
	2.1 Introduction
	2.2 Entering the CAN Bootstrap Loader
	2.3 Initialization Phase
	2.4 Acknowledge Phase
	2.5 Data Transmission Phase
	2.6 Exiting CAN Bootstrap Mode
	2.7 Choosing the Baudrate for the Bootstrap Loader

	3 Downloading User Code with CAN Bootstrap Loader
	3.1 Hardware used in this Application Note
	3.2 General Description of the System
	3.3 Testing this Application Note

	4 Appendix: Source Code

