

Sense & Control

Appl icat ion Note
PMAfob Software Example
Revision 1.2, 2010-10-11

PMA71xx / PMA51xx
SmartLEWISTM MCU

RF Transmitter FSK/ASK 315/434/868/915 MHz
Embedded 8051 Microcontroller with 10 bit ADC
Embedded 125 kHz ASK LF Receiver

Edition 2010-10-11
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.

Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.

Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.

http://www.infineon.com

PMA71xx / PMA51xx

Table of Contents

 Application Note 3 Revision 1.2, 2010-10-11
PMAfob Software Example

Table of Contents . 3

List of Figures . 5

1 Introduction . 6

2 File structure . 6
2.1 Header files . 7
2.1.1 Reg_PMA71xx_PMA51xx.h . 7
2.1.2 PMA71xx_PMA51xx_Library.h . 7
2.1.3 defines.h . 7
2.1.4 RF_Functions.h . 8
2.1.5 Misc_Functions.h . 8
2.2 Source files . 8
2.2.1 STARTUP_PMA71xx_PMA51xx.A51 . 8
2.2.2 InitEEPROM.A51 . 8
2.2.3 main.c . 8
2.2.4 Misc_Functions.c . 9
2.2.4.1 Check_SampleArray() . 9
2.2.4.2 Calc_RCode() . 9
2.2.4.3 ProcessButtonPress() . 9
2.2.4.4 XTEA_encipher() . 9
2.2.5 RF_Functions.c . 9
2.2.5.1 RFInit() . 9
2.2.5.2 RFTransmit() . 9
2.2.5.3 TransmitCmdFrame_AES() . 10
2.2.5.4 TransmitCmdFrame_XTEA() . 10
2.3 Function Library file (PMA71xx_PMA51xx_Library.lib) . 10

3 Program flow . 10

4 Initialization of the emulated EEPROM . 12

5 Port Sampling . 12

6 RF-Protocol . 13
6.1 Payload for AES Framing . 13
6.2 Payload for XTEA Framing . 14
6.2.1 Nibble swapping . 15

7 Flexible Software . 15
7.1 Reset configuration . 16
7.2 Software configuration and GPIO / button assignments . 16

References . 18

Table of Contents

PMA71xx / PMA51xx

 Application Note 4 Revision 1.2, 2010-10-11
PMAfob Software Example

Trademarks of Infineon Technologies AG
ABM™, BlueMoon™, CONVERGATE™, COSIC™, C166™, FALC™, GEMINAX™, GOLDMOS™, ISAC™,
OMNITUNE™, OMNIVIA™, PROSOC™, SEROCCO™, SICOFI™, SIEGET™, SMARTi™, SmartLEWIS™,
SMINT™, SOCRATES™, VINAX™, VINETIC™, VOIPRO™, X-GOLD™, XMM™, X-PMU™, XWAY™
Other Trademarks
Microsoft®, Visio®, Windows®, Windows Vista®, Visual Studio®, Win32® of Microsoft Corporation. Linux® of
Linus Torvalds. FrameMaker®, Adobe® Reader™, Adobe Audition® of Adobe Systems Incorporated. APOXI®,
COMNEON™ of Comneon GmbH & Co. OHG. PrimeCell®, RealView®, ARM®, ARM® Developer Suite™ (ADS),
Multi-ICE™, ARM1176JZ-S™, CoreSight™, Embedded Trace Macrocell™ (ETM), Thumb®, ETM9™, AMBA™,
ARM7™, ARM9™, ARM7TDMI-S™, ARM926EJ-S™ of ARM Limited. OakDSPCore®, TeakLite® DSP Core,
OCEM® of ParthusCeva Inc. IndoorGPS™, GL-20000™, GL-LN-22™ of Global Locate. mipi™ of MIPI Alliance.
CAT-iq™ of DECT Forum. MIPS™, MIPS II™, 24KEc™, MIPS32®, 24KEc™ of MIPS Technologies, Inc. Texas
Instruments®, PowerPAD™, C62x™, C55x™, VLYNQ™, Telogy Software™, TMS320C62x™, Code Composer
Studio™, SSI™ of Texas Instruments Incorporated. Bluetooth® of Bluetooth SIG, Inc. IrDA® of the Infrared Data
Association. Java™, SunOS™, Solaris™ of Sun Microsystems, Inc. Philips®, I2C-Bus® of Koninklijke Philips
Electronics N.V. Epson® of Seiko Epson Corporation. Seiko® of Kabushiki Kaisha Hattori Seiko Corporation.
Panasonic® of Matsushita Electric Industrial Co., Ltd. Murata® of Murata Manufacturing Company. Taiyo Yuden™
of Taiyo Yuden Co., Ltd. TDK® of TDK Electronics Company, Ltd. Motorola® of Motorola, Inc. National
Semiconductor®, MICROWIRE™ of National Semiconductor Corporation. IEEE® of The Institute of Electrical and
Electronics Engineers, Inc. Samsung®, OneNAND®, UtRAM® of Samsung Corporation. Toshiba® of Toshiba
Corporation. Dallas Semiconductor®, 1-Wire® of Dallas Semiconductor Corp. ISO® of the International
Organization for Standardization. IEC™ of the International Engineering Consortium. EMV™ of EMVCo, LLC.
Zetex® of Zetex Semiconductors. Microtec® of Microtec Research, Inc. Verilog® of Cadence Design Systems, Inc.
ANSI® of the American National Standards Institute, Inc. WindRiver® and VxWorks® of Wind River Systems, Inc.
Nucleus™ of Mentor Graphics Corporation. OmniVision® of OmniVision Technologies, Inc. Sharp® of Sharp
Corporation. Symbian OS® of Symbian Software Ltd. Openwave® of Openwave Systems, Inc. Maxim® of Maxim
Integrated Products, Inc. Spansion® of Spansion LLC. Micron®, CellularRAM® of Micron Technology, Inc.
RFMD® of RF Micro Devices, Inc. EPCOS® of EPCOS AG. UNIX® of The Open Group. Tektronix® of Tektronix,
Inc. Intel® of Intel Corporation. Qimonda® of Qimonda AG. 1GOneNAND® of Samsung Corporation.
HyperTerminal® of Hilgraeve, Inc. MATLAB® of The MathWorks, Inc. Red Hat® of Red Hat, Inc. Palladium® of
Cadence Design Systems, Inc. SIRIUS Satellite Radio® of SIRIUS Satellite Radio Inc. TOKO® of TOKO Inc.,
KEIL™
The information in this document is subject to change without notice.
Last Trademarks Update 2009-03-10

Revision History: 2010-10-11, Revision 1.2
Previous Revision: 1.1
Page Subjects (major changes since last revision)

6 Path of source code download changed
6, 8 Unique ID can be used as PMA unique ID or customer defined unique ID
12 Error in figure 3 corrected: 0..button pressed, 1..button released

General description as wireless remote control application, not only RKE
1,8-17 Description of configurable software by long button presses

PMA71xx / PMA51xx

List of Figures

 Application Note 5 Revision 1.2, 2010-10-11
PMAfob Software Example

Figure 1 File Structure of PMAfob Software Example . 7
Figure 2 Program flow of the PMAfob Software Example. 11
Figure 3 Timing of button press and Interval Timer . 12
Figure 4 Port sampling during emulated EEPROM write access . 13
Figure 5 RF-Frame with AES encrypted payload . 14
Figure 6 RF-Frame with XTEA encrypted payload . 14
Figure 7 Nibble swapping according to the LSB of the rolling code . 15

List of Figures

PMA71xx / PMA51xx

Introduction
1 Introduction
The PMAfob Software Example shows a possible software solution for wireless remote control applications like
Remote Keyless Entry (RKE) or Home Automation using PMA51xx or PMA71xx. The available software example
files include inline documentation and are developed to enable an easy software development start and fast time
to market. The software example files can be downloaded from http://www.infineon.com/PMA_tooling. The
installer for the source code of the PMAfob Software Example is called PMAfob_DEMO_Tx_Sources_Vx.y.msi.
The installer is included in the following download packages:

• PMAfob - Software Example
• PMAfob - RKE Demo Software
• PMAfob - Home Automation Demo Software

Furthermore more documentation of the source code done with doxygen is also included in the download package
and can be displayed with a standard browser by opening file ./PMAfobSoftwareExample/html/index.html after
running PMAfob_DEMO_Tx_Sources_Vx.y.msi installer.
The software example supports the following features:

• Five buttons (Handling of five external wake-ups)
• Button stuck detection
• Debounce buttons
• Secure communication

– AES1) or XTEA2) encryption
– Rolling code generation

• Battery voltage measurement
• Energy saving by using Power Down Mode
• Unique ID (PMA or user defined)
• Configurable software by longer button presses

– Change RF Framing
– Switch encryption ON / OFF and change baudrate

– Change unique key number (PMA or user defined)
This document describes the general file structure, the program flow, the initialization of the emulated EEPROM,
the port sampling and the RF-protocol which is used in the PMAfob Software Example. Furthermore the
configuration possibilities by longer button presses are illustrated. This document is compatible with source code
revision 1.1 (PMAfob_DEMO_Tx_Sources_V1.1.msi).

2 File structure
This chapter gives an overview over the file structure of the PMAfob Software Example and describes the
functionality implemented in the source files. Figure 1 shows how the files are linked.

1) Advanced Encryption Standard
2) eXtended Tiny Encryption Algorithm
 Application Note 6 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

File structure
Figure 1 File Structure of PMAfob Software Example

2.1 Header files
In the header files the interfaces to different modules are defined.

2.1.1 Reg_PMA71xx_PMA51xx.h
This is the register definition file for PMA71xx / PMA51xx. Here all SFRs (Special Function Registers) of PMA71xx
/ PMA51xx are defined. This file has to be added to the project if direct SFR access is needed.

2.1.2 PMA71xx_PMA51xx_Library.h
PMA71xx_PMA51xx_Library.h is the interface to the PMA71xx / PMA51xx Function Library. The prototypes of the
Function Library and some declarations for the RF-Transmission are defined here. This file has to be added to the
project together with PMA71xx_PMA51xx_Library.lib if the PMA71xx / PMA51xx Function Library is intended to
be used. All Functions of the Function Library are described in detail in [1].

2.1.3 defines.h
Defines.h includes bit definitions to increase the readability of the code. The enumeration types Encryption_Type,
Encryption_Status and eUnique_Key_Nr are also defined here. The struct ActualButtonPresses_s is used to
identify the pressed button and count the actual button press duration.

main.c

#include Misc_Functions .h
#include Reg _PMA51xx.h
#include PMA 51xx_Library.h
#include "defines .h"
...
void main(void){
…
}

Misc_Functions .c
#include "PMA51xx_Library.h"
#include "defines .h"
#include "RF_Functions .h"

Calc_RCode(..){
...
}
...

RF_Functions .c

#include "Reg_PMA51xx.h"
#include "PMA51xx_Library .h"
#include "defines .h"
#include "Misc_Functions .h"

TransmitCmdFrame(..){
…
}
...

PMA71xx_PMA51xx_Library.h
…
AES128Decrypt(..)
AES128Encrypt(..)
CalibrateIntervalTimer (..)
...

Reg_PMA71xx_PMA51xx.h
...
sfr RFC = 0xEE;
sfr RFD = 0x8E;
sfr RFENC = 0xE7;
...

Misc_Functions .h

Calc_RCode();
ProcessButtonPress (..);

PMA71xx_PMA51xx_Library.lib

defines .h

#define BIT _PP1 0x01
#define BIT _PP2 0x02
...

RF_Functions.h

TransmitCmdFrame(..);
RFInit();

InitEEPROM.A51

CSEG AT 0x5780
DB RC0
DB RC1
DB RC2
DB RC3

... 5780H

5880H

FLASH
00000001
00000000

...
00000000
00000000

STARTUP_PMA71xx_PMA51xx.A51

CSEG AT 0x4000
LJMP STARTUP 1
...

00H

FFH

RAM
00000000
00000000

...00000000
00000000
 Application Note 7 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

File structure
2.1.4 RF_Functions.h
The interface to functions TransmitCmdFrame_AES() and TransmitCmdFrame_XTEA() is defined in
RF_Functions.h.

2.1.5 Misc_Functions.h
The interface to functions Calc_RCode(), ProcessButtonPress() and XTEA_encipher() is defined in
Misc_Functions.h.

2.2 Source files
The source files include the implementation of the start up file, the EEPROM initialization file, the functions used
for button press detection, rolling code generation, RF framing and transmission.

2.2.1 STARTUP_PMA71xx_PMA51xx.A51
This file is a modified copy of the standard 8051 startup file STARTUP.A51 delivered from KEILTM. It has to be
added to the project. If not, the standard STARTUP.A51 is included by the linker. If PMA71xx / PMA51xx starts up
from reset the whole idata memory 00H - FFH is initialized to 00H. The lower idata memory 00H - 7FH can be
powered during Power Down or Thermal Shutdown Mode by setting SFR bit CFG2.4 [PDLMB] to zero. If the
PMA71xx / PMA51xx wakes up from Power Down or Thermal Shutdown State bit PDLMB is checked. If the lower
idata memory is powered during Power Down or Thermal Shutdown State only the higher idata memory block 80H
- FFH, otherwise the whole idata memory 00H - FFH, is initialized to 00H.
Finally the stack pointer is set and a ljmp to main() is executed.

2.2.2 InitEEPROM.A51
The location of the rolling code start value in the FLASH is defined in this file. When the program is loaded down
to the device the rolling code is written to FLASH User Data Sector I.

2.2.3 main.c
This file includes the main() function of the PMAfob Software Example and is executed after
STARTUP_PMA71xx_PMA51xx.A51.
The following global variables are used to change the RF-Frame, the encryption, and the unique key number by
a long button press:
• My_Encryption_Type: AES or XTEA framing can be used. The RF-Frames are defined in Chapter 6.
• My_Encryption_Status: AES or XTEA (depends on My_Encryption_Type) encryption can be switched on/off.
• My_Unique_Key_Nr: 4 byte of PMA unique ID or user defined unique ID can be used. The user defined unique

ID is set with #define USER_KEY_NR in defines.h.
The xdata variables are also defined globally. In the main() function the wake-up bit DSR.1 [WUP] is checked to
decide whether the device starts up from reset or with a wake-up event from Power Down Mode.
In case of a reset, PP1-PP4 and PP6 are configured to be used as the external wake-ups. Therefore the port
direction is set to input, the internal pull-up resistors and the external wake-ups WU0-WU4 are enabled
(unmasked). PP8 is also set to input and the pull-up resistor for PP8 is enabled. PP8 is used to check if the port
sampling feature has been used (when one sector of the emulated EEPROM has been erased). Finally some
variables are initialized and the Interval Timer is set to the maximal wake-up interval of about 524 s.
In the wake-up routine the Watchdog Timer is handled. External wake-ups in combination with the Interval Timer
wake-up are used to debounce the buttons, detect button presses and button stuck.
 Application Note 8 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

File structure
2.2.4 Misc_Functions.c
The functions Check_SampleArray(), Calc_RCode(), ProcessButtonPress() and XTEA_encipher() are
implemented within this file. A description of the functionality of each function can be found below.

2.2.4.1 Check_SampleArray()
Check_SampleArray() is a basic implementation of checking the sample array which is used to monitor the ports
while the EEPROM write function in Calc_RCode() is executed. The WU ports are sampled on every 4th write
access. PP8 is used to check if the ports were sampled. If the Ports were sampled, the sample array is 1B on the
position of PP8, due to the internal pull-up resistor, otherwise it is 0B.

2.2.4.2 Calc_RCode()
The previous rolling code is loaded from the emulated EEPROM. According to the setting of the global variable
My_Encryption_Type in file main.c the new rolling code is calculated. If AES Framing has been choosen the
previous rolling code is multiplied with a constant long (32 bit) value. Then a constant int (16 bit) value is added.
If XTEA Framing has been choosen the rolling code is implemented as a simple 32 bit up-counter. Therefore the
previous rolling code is incremented by 1. The result, the actual rolling code, is stored to the emulated EEPROM.
While the EEPROM write function is executed the ports are monitored to be able to detect a button pressed in
between.

2.2.4.3 ProcessButtonPress()
When a button is pressed the button ID is stored in the battery buffered xdata. ProcessButtonPress() checks if the
ID of the pressed button is equal to the ID stored in the xdata (button has been pressed before) and increments a
counter. If this counter reaches a predefined value TransmitCmdFrame_AES() or TransmitCmdFrame_XTEA() is
called and the button ID is set to zero, so the counter is not increased by a stuck button. Within
TransmitCmdFrame_AES() or TransmitCmdFrame_XTEA() a new rolling code is calculated by Calc_RCode(). If
a button press has been detected during Calc_RCode() a new rolling code is calculated and the appropriate RF-
Frame is sent.

2.2.4.4 XTEA_encipher()
The algorithm for encrypting data with XTEA is a public domain implementation by David Wheeler and Roger
Needham. It is implemented in C and not optimized for 8051 microcontrollers up to now. 32 rounds are used for
encryption.

2.2.5 RF_Functions.c
The functions of RFInit(), RFTransmit(), TransmitCmdFrame_AES() and TransmitCmdFrame_XTEA() are
implemented in RF_Functions.c.

2.2.5.1 RFInit()
First of all a variable of the struct RF_Config, see PMA71xx_PMA51xx_Library.h, is defined and initialized. Then
the Library function InitRF() is called to set the appropriate values to all SFRs needed for the RF-Transmission. A
detailed description of each element of the struct RF_Config can be found in [1].

2.2.5.2 RFTransmit()
This function is used to generate the RF-Framing which is required by the TDA523x receiver. The RF-Frame is
described in detail in Chapter 6.
 Application Note 9 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

Program flow
2.2.5.3 TransmitCmdFrame_AES()
The payload of the RF-Frame is generated within this function. The structure of this payload can be found in
Chapter 6.1. A part of the payload is the rolling code and the battery voltage, which is measured using the Library
Function MeasureSupplyVoltage(). The whole 128 bit payload can be encrypted with AES and embedded into the
RF-Frame.

2.2.5.4 TransmitCmdFrame_XTEA()
The payload of the RF-Frame is generated within this function. The structure of this payload can be found in
Chapter 6.2. A part of the payload is the rolling code and the battery voltage, which is measured using the Library
Function MeasureSupplyVoltage(). According to the LSB of the rolling code the nibbles of some bytes of the
payload are swapped if the RF-Frame is encrypted which is shown in Chapter 6.2.1. 64 bit of the 88 bit payload
can be encrypted with XTEA and embedded into the RF-Frame.

2.3 Function Library file (PMA71xx_PMA51xx_Library.lib)
This is the Function Library where all functions, defined in PMA71xx_PMA51xx_Library.h, are implemented. All
functions of the Function Library are described in detail in [1].

3 Program flow
Figure 2 on Page 11 shows the program flow of the PMAfob Software Example.
The device starts program execution within the startup file. After RAM initialization the wake-up flag in SFR DSR.1
[WUP] is checked to decide whether the device starts up from a reset or because of a wake-up event.
If PMA71xx / PMA51xx starts up from reset PP1-PP4 and PP6 (WU0-WU4) are configured as external wake-up
pins. Therefore the port direction must be set to input and the internal pull-up resistors must be activated (assumed
that a pressed button generates a LOW on the pin). Also PP8 is set to input and its internal pull-up resistor is
activated. This is used for analysing the port sampling array. Finally, the Interval Timer is set to the longest
possible wake-up interval of about 524 s and the PMA71xx / PMA51xx is set into Power Down Mode to save
energy and waits for a wake-up event.
If PMA71xx / PMA51xx starts up from Power Down Mode with a wake-up event, the wake-up source is checked.
Seven wake-up sources are handled by the PMAfob Software Example. These are the Watchdog Timer, the
external wake-ups WU0-WU4 and the Interval Timer. The Watchdog Timer wake-up has the highest priority. If a
Watchdog Timer wake-up occurs, a software reset is triggered to ensure that all SFRs have a predefined state.
If no Watchdog Timer wake-up preceded, the external wake-ups are checked. When an external wake-up has
been detected, the appropriate wake-up source is disabled (masked), a wake-up ID is stored in the xdata and the
Interval Timer is set to 50 ms.
In the Interval Timer wake-up routine the pins PP1-PP4 and PP6 are checked to detect whether a button is still
pressed. If the external wake-up ID previously stored in the xdata is equal to the currently pressed button a counter
is increased. If this counter reaches a predefined value, the button is recognized to be pressed. Then a new rolling
code is calculated, the battery voltage is measured, the appropriate command is inserted into the RF-Frame, the
RF-Frame is encrypted with AES or XTEA, if encryption is switched on, and transmitted. When the new rolling
code is written to the EEPROM the ports are sampled for any action. If a button press was detected during writing
to the EEPROM, a new rolling code is calculated and the appropriate RF-Frame is sent. For every button which is
detected to be unpressed in the Interval Timer wake-up routine the corresponding wake-up is (re-)enabled. If no
button is pressed the Interval Timer is set to the longest possible wake-up interval of about 524 s. A Key Stuck is
detected by the Interval Timer wake-up routine when a button is pressed for at least 1h and no other button is
pressed in between. Some configurations of the software can be changed by a long button press (see Chapter 7).
Therefore the Interval Timer is used to check if a button is pressed for a longer time then set by #define
SWITCH_DUR (defines.h).
 Application Note 10 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

Program flow
Figure 2 Program flow of the PMAfob Software Example

Figure 3 on Page 12 shows the timing of a button press and how the Interval Timer wake-up interval is varied.
While no button is pressed the Interval Timer wakes up the PMA71xx / PMA51xx with the longest possible interval
of about 524 s to save energy. If a button is pressed an external wake-up is detected and the Interval Timer is set
to 50 ms. The Interval Timer wake-up service routine checks if the button is still pressed every 50 ms and sets the
device into Power Down Mode between each measurement. This method is used to debounce the buttons.
If a button is pressed for at least 150 ms (three button checks in the Interval Timer wake-up service routine resulted
in a pressed button) a Button Press is identified and an RF-Transmission is started. The debounce time of 150 ms
can be easily changed by modifying the value of BUTTON_PRESS_DUR defined in file defines.h and / or
changing the Interval Timer settings. As long as the button is pressed the Interval Timer wakes up every 50 ms to
check the button. This is done for at most 1 h.

Enable external
wake-ups

Reset or
Wake-up

PowerDown()

Set Interval
Timer to ~524 s

Pin
configuration

Disable wake-up
Store wake-up

ID in xdata

Watchdog timer
wake-up

External wake-up
WU0-WU4Reset PMA51xx

Set Interval
Timer to 50 ms

NO

YES NO

YES

Interval Timer
wake-up

YES

Wake-up Reset

NO

RAM initialization
in startup file

Init varibles

Any button
pressed

Increase button
press counter

YES

Min. button press
duration reached

Calculate new
rolling code

Init RF-Tx and
transmit

encrypted RF-
Frame

Set Interval
Timer to ~524 s

NO

Enable wake-up
for every

unpressed
button

YES

NO

Max. button press
duration reached

Key stuck
detected

Set Interval
Timer to 500 ms

PowerDown()

NO

YES

Initialization of the
emulated EEPROM

during program download

Config switch
button press duration

reached

Change
software

configuration

YES

NO
 Application Note 11 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

Initialization of the emulated EEPROM
For button presses which are longer then 3 sec, the software configuration is changed according to the pressed
button (see Chapter 7). The configuration switch time can be easily changed by modifing the value of
SWITCH_DUR defined in file defines.h and / or changing the Interval Timer settings.
If a button is pressed for about 1 h, and no other button is pressed in between, the button is detected to be stuck
and the Interval Timer is set to 500 ms to save energy. If the button is released, and no other button is pressed,
the Interval Timer is set to about 524 s again.

Figure 3 Timing of button press and Interval Timer

4 Initialization of the emulated EEPROM
The PMAfob Software Example stores the rolling code in the emulated EEPROM. This is done to be able to keep
the rolling code while the PMA71xx / PMA51xx is set into Power Down Mode. But how should the emulated
EEPROM be initialized ?
There are different methods to initialize the PMA71xx / PMA51xx emulated EEPROM:
• With PMA71xx / PMA51xx Function Library function EEPROM_Init()
• During program download
One approach would be to initialize the emulated EEPROM in the reset rountine by calling the Library function
EEPROM_Init(). For a remote control application where a rolling code is used to increase the security level, this
method has the major drawback that after a battery replacement a synchronisation between the remote control
and the receiver is necessary. The problem is that the rolling code of the remote control is reset, while the rolling
code of the receiver remains.
The solution for the problem is to initialize the emulated EEPROM, including the rolling code start value, during
program download. If the battery is replaced, the rolling code of the PMAfob remains and no synchronisation is
necessary.
Note: Precausion to initialize the emulated EEPROM, including the rolling code start value, during program

download

1. Add InitEEPROM.A51 to the Keil project
2. Ensure that User Data Sector I and II are erased before program download

5 Port Sampling
After a button press is detected a new rolling code is calculated and stored into the emulated EEPROM. With every
4th write access to the emulated EEPROM a User Data Sector has to be erased which takes about 102 ms. To
be able to detect button presses during this time, it is possible to sample the wake-up ports. The PMAfob Software
Example shows how the port sampling feature can be handled. Figure 4 illustrates how the port sampling array
looks like and how this array is manipulated. The Library function Wr_EELong(..) is called within Calc_RCode(..).
If a User Data Sector is erased during Wr_EELong(..) the wake-up ports are sampled every 5 ms and inserted into
the sampling array as shown in Figure 4.
The function Check_SampleArray(..) analyses the sampling array and declares whether a button was pressed or
not. If a button press is detected, the appropriate RF-Frame is sent.

External wake-up

50 ms

RF-Tx

~ 524 s

Interval Timer wake-up

~ 1h 500 ms

Stuck
button

~ 524 s

Button released,
no button pressed

0
11 .. Button released

0 .. Button pressed

~ 3 s

Change configuration
 Application Note 12 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

RF-Protocol
Figure 4 Port sampling during emulated EEPROM write access

6 RF-Protocol
The PMAfob Software Example is designed to be compatible with TDA523x receivers. Therefore a special RF-
Protocol has to be used.
The following settings are used for RF-Transmission (set in RFInit(), see RF_Functions.c):
• Encoding: Manchester
• Modulation: FSK
• Baudrate: 9600 bps if encryption is switched on, 4800 bps if encryption is switched off
• Frequency: 434 MHz

The RF-Frame starts with a RUNIN sequence of 8 manchester coded data bits (16 chips) which are used by the
TDA523x receiver for internal filter setting and frequency adjustment. Then the 16 chips long TSI (Telegram Start
Identifier) follows, which is used to synchronize the frame and detect the exact start of a data frame (payload). To
detect the EOM (End of Message) a manchester violation (two 1B chips) is sent.
The payload depends on the setting of the global variable My_Encryption_Type defined in file main.c.

6.1 Payload for AES Framing
The AES Framing payload consists of 128 bits and includes the rolling code, a unique key number, a command
code, the battery voltage and the total button presses. The whole RF-Frame including the (AES encrypted)
payload is shown in Figure 5 on Page 14.

Calc_RCode(..){

PP9
WU7

PP8
WU6

PP7
WU5

PP6
WU4

PP4
WU3

PP3
WU2

PP2
WU1

PP1
WU0

01234567

0

01234567

...

01234567

20

Wr_EELong(..){

~ 5 ms ~ 5 ms

}

}

Check_SampleArray(..)

Command to
transmit
 Application Note 13 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

RF-Protocol
Figure 5 RF-Frame with AES encrypted payload

6.2 Payload for XTEA Framing
64 bits of the 88 bit payload can be encrypted with XTEA. The payload includes the unique key number, the
command code, the status information (battery voltage), the rolling code and a CRC checksum. Figure 6 on
Page 14 shows the whole RF-Frame including the payload and describes which part of the payload can be
encrypted with XTEA.

Figure 6 RF-Frame with XTEA encrypted payload

Bits

Chips 0 1

0

RUNIN TSI

1 10 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

1 0

1

Payload

RC

4 bytes 4 bytes 1 byte 2 bytes 4 bytes 1 byte

UKN CC BV TBP N.U.

EOM

AES encryption

RUNIN .. Run in sequence (synchronisation)

TSI .. Telegram Start Identifier

RC .. Rolling Code

UKN .. Unique Key Number

CC .. Command Code

BV .. Battery Voltage

TBP .. Total Button Presses

N.U. .. Not Used

EOM .. End of Message

0 1

0

0 1

0

0 1

0

0 1

0

Bits

Chips 0 1

0

RUNIN TSI

1 10 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

0 1

0

1 0

1

Payload

UKN

32 bits 8 bits 8 bits 32 bits 8 bits

CC SI RC CRC

EOM

XTEA encryption

RUNIN .. Run in sequence (synchronisation)

TSI .. Telegram Start Identifier

RC .. Rolling Code

UKN .. Unique Key Number

CC .. Command Code

SI .. Status Information (e.g. Battery voltage)

CRC .. checksum over UKN, CC, SI, RC

EOM .. End of Message

16 8 8 32

0 1

0

0 1

0

0 1

0

0 1

0

 Application Note 14 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

Flexible Software
6.2.1 Nibble swapping
To increase security the nibbles of the lower 2 bytes of the unique key number, the command code and the status
information byte are swapped according to the LSB of the rolling code if encryption is switched on. If the LSB is
1B the nibbles are swapped. The nibble swapping is shown in Figure 7 on Page 15.

Figure 7 Nibble swapping according to the LSB of the rolling code

7 Flexible Software
The software of the PMAfob Software Example can be configured by long button presses without reflashing the
device. Therefore one of the GPIOs PP1-PP4 or PP6 has to be connected to GND. 5 buttons (GPIOs) are used
to change the RF-Framing, to switch on / off the encryption, to change the datarate and to use 4 byte of the PMA
unique ID or the user defined unique ID.
The #define SWITCH_DUR (defines.h) is used to set the duration of a button press for configuring the software.
The default value of the switch time is about 3 s. The different configurations and the assignments to the PMAfob
used in the PMAfob Home Automation and PMAfob RKE Demo are shown in this chapter.

RUNIN TSI Payload

UKN

32 bits 8 bits

CC SI RC CRC
EOM

XTEA encryption

15:831:24 23:16
15:12 11:8

7:0
7:4 3:0

UN LN UN LN

7:0
7:4 3:0
UN LN

7:0
7:4 3:0
UN LN

RUNIN TSI Payload

UKN

32 bits 8 bits

CC SI RC CRC EOM

XTEA encryption

15:831:24 23:16 7:0 7:0 7:0

RC[0] == 0 (even: don’t swap nibbles)

RC[0] == 1 (odd: swap nibbles)

11:8
LN

15:12
UN

7:4
UN

3:0
LN

7:4
UN

3:0
LN

7:4
UN

3:0
LN

RUNIN .. Run in sequence (synchronisation)

TSI .. Telegram Start Identifier

RC .. Rolling Code

UKN .. Unique Key Number

CC .. Command Code

SI .. Status Information (e.g. Battery voltage)

CRC .. checksum over UKN, CC, SI, RC

EOM .. End of Message

LN .. Lower Nibble

UN .. Upper Nibble

swap swap swap swap
 Application Note 15 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

Flexible Software
7.1 Reset configuration
After reset, e.g. battery replacement, the software configuration is as following:
• Framing: AES
• Encryption: ON
• Unique ID: User defined unique ID (defines.h: #define USER_KEY_NR)
• Baudrate: 9600 bps

7.2 Software configuration and GPIO / button assignments
Table 1 shows the implemented software configurations and the GPIO / button assignments to this configurations.

Table 1 Software configuration and GPIO / button assignments
PMAfob Button GPIO Software configuration

PP1 Switch encryption on / off:
AES or XTEA encryption, depends on the selected framing, is
switched off or on. The following configurations are changed if
encryption is turned on / off:
• Encryption ON

– Baudrate: 9600 bps
– XTEA Framing: XTEA encryption is used, nibble swapping

is turned on
– AES Framing: AES encryption is used

• Encryption OFF
– Baudrate: 4800 bps
– XTEA Framing: XTEA encryption is not used, nibble

swapping is turned off
– AES Framing: AES encryption is not used

PP2 Choose AES Framining:
The AES Framing as described in Chapter 6.1 is used.
 Application Note 16 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

Flexible Software
PP4 Choose XTEA Framing:
The XTEA Framing as described in Chapter 6.2 is used.

PP3 Choose user defined unique id:
The user defined unique id (defines.h: #define USER_KEY_NR)
is used as unique key number.

PP6 Choose PMA unique id:
4 bytes of the PMA unique id are used as unique key number.

Table 1 Software configuration and GPIO / button assignments
PMAfob Button GPIO Software configuration
 Application Note 17 Revision 1.2, 2010-10-11
PMAfob Software Example

PMA71xx / PMA51xx

References

 Application Note 18 Revision 1.2, 2010-10-11
PMAfob Software Example

References
[1] PMA51xx Function Library Guide

Published by Infineon Technologies AG

w w w . i n f i n e o n . c o m

http://www.infineon.com

	Table of Contents
	List of Figures
	1 Introduction
	2 File structure
	2.1 Header files
	2.1.1 Reg_PMA71xx_PMA51xx.h
	2.1.2 PMA71xx_PMA51xx_Library.h
	2.1.3 defines.h
	2.1.4 RF_Functions.h
	2.1.5 Misc_Functions.h

	2.2 Source files
	2.2.1 STARTUP_PMA71xx_PMA51xx.A51
	2.2.2 InitEEPROM.A51
	2.2.3 main.c
	2.2.4 Misc_Functions.c
	2.2.4.1 Check_SampleArray()
	2.2.4.2 Calc_RCode()
	2.2.4.3 ProcessButtonPress()
	2.2.4.4 XTEA_encipher()

	2.2.5 RF_Functions.c
	2.2.5.1 RFInit()
	2.2.5.2 RFTransmit()
	2.2.5.3 TransmitCmdFrame_AES()
	2.2.5.4 TransmitCmdFrame_XTEA()

	2.3 Function Library file (PMA71xx_PMA51xx_Library.lib)

	3 Program flow
	4 Initialization of the emulated EEPROM
	5 Port Sampling
	6 RF-Protocol
	6.1 Payload for AES Framing
	6.2 Payload for XTEA Framing
	6.2.1 Nibble swapping

	7 Flexible Software
	7.1 Reset configuration
	7.2 Software configuration and GPIO / button assignments

	References

