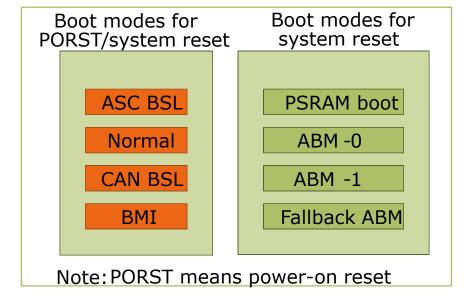
# Tooling - Boot mode options XMC4000

XMC<sup>™</sup> microcontrollers July 2016






- 1 Boot mode options overview
- 2 ACS and CAN bootstrap loader
- 3 8 boot modes
- 4 System integration
- 5 Boot mode options



- 1 Boot mode options overview
- 2 ACS and CAN bootstrap loader
- 3 8 boot modes
- 4 System integration
- 5 Boot mode options



### Boot mode options



#### **Highlights**

XMC4000 device uses TCK and TMS to select the boot mode after RESET (PORST). For system reset, it supports ASC BSL, Normal booting, CAN BSL, Boot Mode Index (BMI), PSRAM boot, two Alternative boot modes and a Fallback ABM boot mode.

#### **Key features**

#### **ASC and CAN Bootstrap Loader**

**8 Boot Modes** 

#### **Customer benefits**

- Allows to transfer user code into the internal RAM for e.g. flash programming via UART or CAN
- Allows user application code or boot code to run at user specified locations in Flash after system reset



- 1 Boot mode options overview
- 2 ACS and CAN bootstrap loader
- 3 8 boot modes
- 4 System integration
- 5 Boot mode options

# Boot mode options ASC and CAN bootstrap loader



- XMC4000 has a built-in Bootstrap Loading (BSL) mechanism that can be used for Flash programming
- After power-on reset XMC4000 will enter boot mode based on the boot pins (TCK pin and TMS pin) voltage level which will be latch to HWCON[1:0] (TMS is inverted)
- User can write to STCON.SWCON register which determines the boot mode after a system reset

| TCK | TMS | HWCON[1:0] | SWCON[3:0] | Boot mode    |
|-----|-----|------------|------------|--------------|
| 0   | 1   | 00         | 0000       | Normal       |
| 0   | 0   | 01         | 0001       | ASC BSL      |
| 1   | 1   | 10         | 0010       | BMI          |
| 1   | 0   | 11         | 0011       | CAN BSL      |
| -   | -   | -          | 0100       | PSRAM boot   |
| -   | -   | -          | 1000       | ABM-0        |
| -   | -   | -          | 1100       | ABM-1        |
| -   | -   | -          | 1110       | Fallback ABM |



- 1 Boot mode options overview
- 2 ACS and CAN bootstrap loader
- 8 boot modes
- 4 System integration
- 5 Boot mode options

# Boot mode options 8 boot modes (1/2)



#### Start-up mode

- Bootstrap loader mode (ASC\_BSL, CAN\_BSL)
- Normal boot mode
- Alternative boot mode Address0 (ABM-0)
- Alternative boot mode Address1 (ABM-1)
- Fallback ABM

#### **Use case**

- Allows easy and quick programming/ erasing of the flash by code downloaded into the PSRAM via UART or CAN interface
- Allows user application code located at the start of flash (0x0C000000) to run after power up and reset
- Allows user application code located at 1<sup>st</sup> 64 KB flash (ABM-0) or 2<sup>nd</sup> 64 KB flash (ABM-1) to run after system reset. User could put their own defined starting location if default starting location at 0x0C000000 is not desired
- Allows user to run a backup application code in ABM-1 if the original flash code in ABM-0 is corrupted

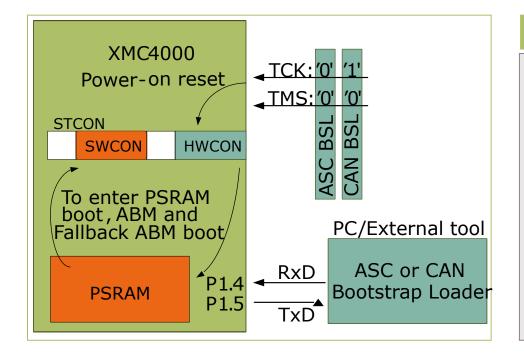
# Boot mode options 8 boot modes (2/2)



#### Start-up mode

- PSRAM boot
- Boot Mode Index (BMI)

#### Use case


- Allows application code stored at user defined PSRAM address to run, after system reset
- Allows user to write to BMI Word register to copy MAC address, IP address, USB address to Page 1 of User Configuration Block-2 (UCB2-Page1), increase fsys to <120 MHz and execute the desired boot mode after power on reset



- 1 Boot mode options overview
- 2 ACS and CAN bootstrap loader
- 3 8 boot modes
- 4 System integration
- 5 Boot mode options



### System integration



#### System integration

The ASC and CAN BSL boot mode allow user to program or update code to the flash of the xmc4000 device.

User can select the execution of the code located in flash or PSRAM by writing the desired boot mode to SWCON first, followed by a system reset.

#### **Target applications**

- Motor control
- Intelligent lighting
- Power conversion
- General purpose

| XMC4500 | XMC4400 | XMC4200 |
|---------|---------|---------|
|         | •       |         |

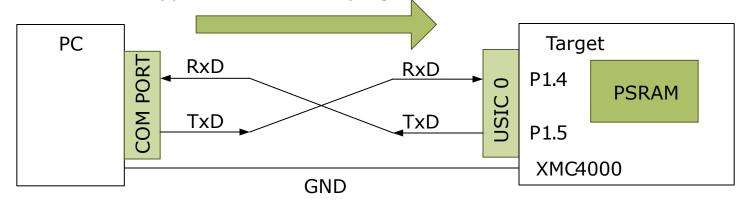


- 1 Boot mode options overview
- 2 ACS and CAN bootstrap loader
- 3 8 boot modes
- 4 System integration
- 5 Boot mode options

### Boot mode options Normal boot mode



- User application at Flash location 0x0C000000 starts to run after startup software (SSW) execution completed from reset
- To enter normal boot mode:
  - Download application code to Flash
  - Set boot pins TMS=1 and TCK=0
  - Initiate a RESET (PORST)
  - Or
  - A currently running application in the device write to STCON.SWCON
  - Clear reset status
  - Issue a system reset


# Boot mode options ASC BSL boot mode



- Use for programming user application code to flash over UART interface
- To enter ASC BSL Boot mode:
  - 1. Set TMS=0 and TCK=1
  - Initiate a PORST
  - 3. PC start the ASC\_BSL protocol

- Or a running application:
  - Write to STCON.SWCON
  - 2. Clear reset status
  - 3. Issue a system reset

Sending flash loader program to PSRAM This loader code will receive the user application code and program to the Flash



# Boot mode options Boot Mode Index (BMI) boot mode

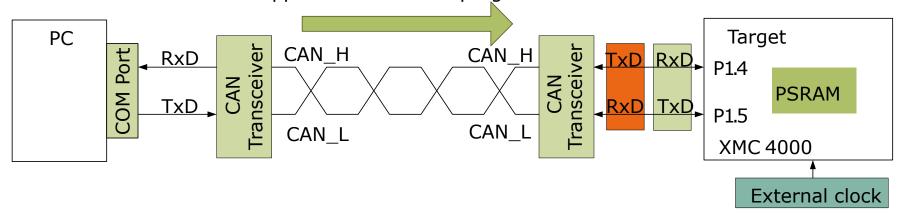


- This mode enables storing of MAC Address, IP Address, USB serial number into DSRAM1, increases fsys and boot mode desired upon next reset. This is done by setting BMI Word @ 0x0C000900 or UCB2-Page1. After reset SSW set the V bit of BMI Word to '1' if checksum is correct.
- To enter BMI boot mode:
  - 1. User program the SWCON bit of BMI word to the desire boot mode
  - 2. Set TMS=1 and TCK=1
  - 3. Initiate a PORST

Or

- 1. A currently running application in the device write to STCON.SWCON
- Clear reset status
- 3. Issue a system reset

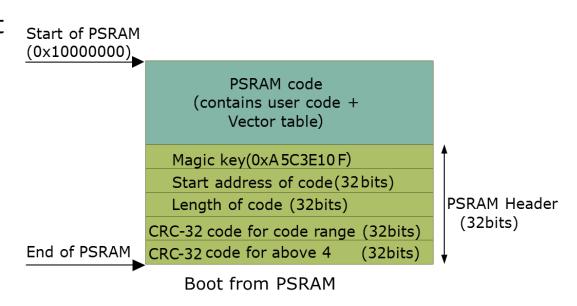
# Boot mode options CAN BSL boot mode




- Use for programming user application code to flash over CAN interface. If SSW detect initialization frame on P1.5 first, it will configure P1.4 for TxD functionality and vice versa.
- To enter CAN BSL Boot mode:
  - Set TMS=0 and TCK=0
  - Initiate a PORST
  - 3. PC start the CAN BSL protocol

Or a running application:

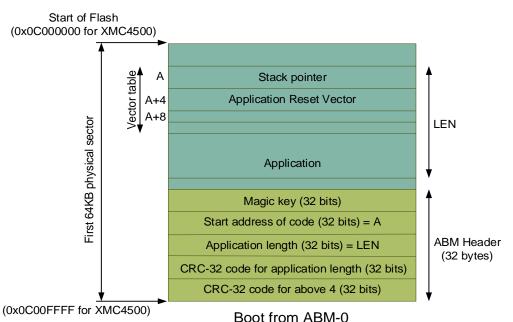
- 1. Write to STCON.SWCON
- 2. Clear reset status
- 3. Issue a system reset


Sending flash loader program to PSRAM This loader code will receive the user application code and program to the Flash



# Boot mode options PSRAM boot mode

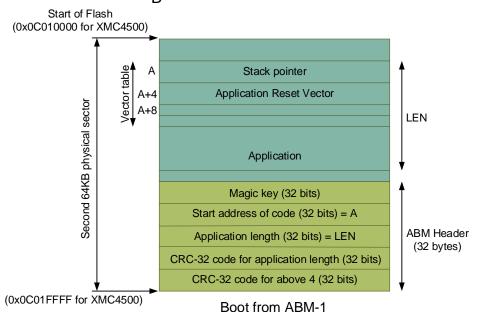



- Allow an application code reside in PSRAM to run after system reset
- To enter PSRAM Boot mode:
  - 1. This mode requires user code to download to PSRAM first
  - 2. Program the PSRAM header
  - 3. Programmed SWCON[3:0] bit field to 0100<sub>B</sub>
  - 4. Clear reset status
  - 5. Initiate system reset



# Boot mode options Alternative boot mode – address 0 (ABM-0)




- Allow a user application located at a user defined flash address (in 1st 64 KB flash sector) to run after system reset
- To enter ABM-0 Boot mode
  - 1. Program the user application to the desired flash location
  - 2. Program the ABM header
  - Program SWCON[3:0] bit field to 1000<sub>B</sub>
  - 4. Clear reset status
  - 5. Initiate system reset



# Boot mode options Alternative boot mode – address 1 (ABM-1)



- Allow a user application located at a user defined flash address (in 2<sup>nd</sup> 64 KB flash sector) to run after system reset
- To enter ABM-1 Boot mode
  - 1. Program the user application to the desired flash location
  - 2. Program the ABM header
  - 3. Program SWCON[3:0] bit field to  $1100_{
    m B}$
  - 4. Clear reset status
  - 5. Initiate system reset



### Boot mode options Fallback ABM boot mode



- Allow a backup application code to run if the first application code failed to run
- SSW will run user application pointed by ABM Address-0 header if passed the verification. If failed, then SSW will audit ABM Address-1 header. If passed, SSW will run user application pointer by ABM Address-1 header. If failed, execution is aborted and enter diagnostics monitor mode.
- To enter Fallback ABM Boot mode:
  - 1. Program application code to 1st 64 KB sector
  - 2. Program the ABM-0 header
  - 3. Program a backup application code to 2<sup>nd</sup> 64 KB sector
  - 4. Program the ABM-1 header
  - 5. Program SWCON[3:0] bit field programmed to 1110<sub>B</sub>
  - 6. Clear reset status
  - 7. Initiate system reset



### Support material

# Collaterals and Brochures





- Product Briefs
- Selection Guides
- Application Brochures
- Presentations
- Press Releases, Ads

> www.infineon.com/XMC

#### Technical Material





- Application Notes
- Technical Articles
- Simulation Models
- Datasheets, MCDS Files
- PCB Design Data

- www.infineon.com/XMC
- Kits and Boards
- DAVETM
- Software and Tool Ecosystem

#### **Videos**



- Technical Videos
- Product InformationVideos

- Infineon Media Center
- XMC Mediathek

#### Contact



- Forums
- > Product Support

- Infineon Forums
- <u>Technical Assistance Center (TAC)</u>



#### Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.



Part of your life. Part of tomorrow.

