

Application Note v1.4

www.infineon.com 2019-10-07

AP32277

ASC Bootstrap Loader for XMC1000

XMC1000

About this document

Scope and purpose

This Application Note describes how to use the ASC BSL to download the program into flash for XMC1000
microcontroller family. The example codes are provided with Application Note to demonstrate how to perform
Flash erases, programming, Flash readback on the XMC1000 device. The applicable products are XMC1000

Microcontrollers family. The example codes are tested on XMC1100/XMC1200/XMC1300/XMC1400 Boot Kit.

Intended audience

This application note is intended to developer for flash programming of XMC1000 family and customers who

want to use ASC BSL to download the program in flash.

ASC Bootstrap Loader for XMC1000

XMC1000

Introduction

Application Note 2 v1.4

 2019-10-07

Table of Contents

About this document ... 1

Table of Contents .. 2

1 Introduction .. 3
1.1 Tool-chains .. 3
1.1.1 Example Flash program ... 3

2 Principle of ASC Bootstrap Loading .. 4

2.1 ASC Bootstrap Loader mode ... 4
2.2 ASC Loader .. 5
2.2.1 Stage 1: Baud rate detection and mode selection .. 6

2.2.2 Stage 2: Download sequence .. 9

3 ASC Programmer .. 11
3.1 ASC Bootstrap Loading ... 11
3.2 Flash Loader .. 13

3.3 DAVE4 Project Settings .. 13

3.3.1 Modification of DAVETH startup.s File ... Error! Bookmark not defined.
3.4 Flash Memory Organization .. 14

3.5 Communication Protocol .. 16
3.5.1 Mode 0: Program Flash Page ... 17

3.5.2 Mode 1: Execute ‘Change BMI’ routine .. 18
3.5.3 Mode 3: Erase Flash Sector .. 18
3.5.4 Mode 4: Read Flash Data (4 bytes) ... 18

3.5.5 Response Code to the HOST .. 19
3.6 HOST PC Program Example .. 19

3.7 Using the Demonstrator .. 22
3.7.1 Hardware Setup ... 22

3.7.2 Demonstrator File Structure .. 23
3.7.3 Run the Demonstrator ... 23

3.8 Reference Documents ... 27

Revision History .. 28

ASC Bootstrap Loader for XMC1000

XMC1000

Introduction

Application Note 3 v1.4

 2019-10-07

1 Introduction

The XMC1000 microcontroller family has a built-in Bootstrap Loading (BSL) mechanism that can be used for
Flash programming. This mechanism is described in detail in the BootROM chapter of the XMC1000 User
manual. However the XMC1000 family of products does not provide any hard coded Bootstrap Loader

routines in the BootROM to carry out Flash programming, for example Flash writing, reading, erasing and

verification. Therefore a Flash loader program providing Flash routines must be implemented by the user.

The XMC1000 family supports both Asynchronous Serial Interface (ASC) BSL and both Synchronous Serial
Interface (SSC) BSL. In this application note we will demonstrate Bootstrap Loading using the ASC interface.

The target device is connected to a PC via the ASC interface. The Flash loader system demonstrated in this

application note consists of two parts:

 Flash Loader Program

− The Flash loader program is sent to the target device using the built-in Bootstrap Loading mechanism.
Once the program is sent and executed, the Flash loader program establishes a communication
protocol to receive commands from the HOST program that is running on the PC, and controls the

Flash programming of the target device.

 HOST PC Program

− The HOST program running on a PC uses the communication protocol defined by the Flash loader. It
sends Flash programming commands and the code bytes to be programmed. The HOST program is

application specific, so the HOST program in this application note is only an example.

1.1 Tool-chains

The Flash loader program for ASC is developed with the following tool-chain:

 DAV4 development platform v4.1.4

1.1.1 Example Flash program

An example Flash program, the project XMC1x00_Blinky is provided for test purpose. The file Blinky.hex can

be downloaded to Flash memory. The XMCLoad HOST PC program is developed with Microsoft Visual C++
2010. The example source code is found in the following folders:

 .\DAV4\XMC1x_ASCLoader\, contains the ASC BSL Loader developed using the GCC compiler.

 .\DAV4\XMC1300_Blinky, contains the Flash example program developed using the GCC compiler.

 .\XMC1x_Load\, holds the example HOST PC program that demonstrates the whole process of Flash

programming. The project files can be compiled with Microsoft Visual C++2010.

Chapter 3 describes in detail how to use the demonstrator to download your own program into Flash and
run it.

ASC Bootstrap Loader for XMC1000

XMC1000

Principle of ASC Bootstrap Loading

Application Note 4 v1.4

 2019-10-07

2 Principle of ASC Bootstrap Loading

2.1 ASC Bootstrap Loader mode

In ASC_BSL mode the user can download own monitor program into XMC1000‟s SRAM, starting at address

0x20000200. After the monitor program is received and stored, the Start-up Software will run the user’s
monitor program at SRAM address 0x20000200, which can then be used to communicate with the Host PC
for BMI installation, flash erasing, programming and verification of code/data download.

After power-up/master reset, the device will wait for an edge transition at its RXD pin after exit from the
startup software. This falling edge transition indicates the ASC_BSL handshaking has started.

The ASC_BSL can communicate with the Host PC in full duplex or half duplex mode. This depends on the
Header Byte which the Host PC sends to the XMC1000 device during the ASC_BSL handshaking (see Table 1).

Table 1 Table 1 BMI values and Port settings for ASC_BSL mode

Header Byte BMI value UART

communication

RXD Pin TXD Pin

0x12 0xFFC0 Half Duplex P0.14 P0.14

0x12 0xFFC0 Half Duplex P1.3 P1.3

0x6C 0xFFC0 Full Duplex P0.14 P0.15

0x6C 0xFFC0 Full Duplex P1.3 P1.2

0x12 0xFFD0 (time-out
= 4995ms @
MCLK = 8 MHz)

Half Duplex P0.14 P0.14

0x12 0xFFD0 (time-out
= 4995ms @
MCLK = 8 MHz)

Half Duplex P1.3 P1.3

0x6C 0xFFD0 (time-out
= 4995ms @
MCLK = 8 MHz)

Full Duplex P0.14 P0.15

0x6C 0xFFD0 (time-out
= 4995ms @
MCLK = 8 MHz)

Full Duplex P1.3 P1.2

ASC_BSL also supports a time-out option. As shown in Figure 1, if the XMC1000 device does not receive the

Start and Header Bytes from the Host within the duration defined in BMI.BLSTO, it will jump to the Flash
location whose address is stored at 0x10001004, and execute from there.

ASC Bootstrap Loader for XMC1000

XMC1000

Principle of ASC Bootstrap Loading

Application Note 5 v1.4

 2019-10-07

Figure 1 XMC1000 Pin usage for ASC Bootstrap Loader mode

2.2 ASC Loader

The XMC1000 family supports both Asynchronous Serial Interface (ASC) BSL and Synchronous Serial
Channel (SSC) BSL. In this chapter we will demonstrate Bootstrap Loading using the ASC interface only.

Using the UART protocol, the Bootstrap Loader allows the Host PC to download user code to SRAM, starting
at address 0x20000200. Once the last code byte is received and stored in SRAM, the device will run the user

code.

Flash erasing, programming and a routine to change the Boot Mode Index (BMI) for example, could be

embedded in this code. The user can communicate with the downloaded code via the UART protocol for

programming, erasing and verifying the XMC1000 Flash.

If the XMC1000 device’s BMI value is programmed to ASC Bootstrap Loader mode, then after power-up both
USIC channel 0 and 1 are configured to ASC mode, 8 data bits, 1 stop bit, no parity and ready for UART

communication. The received header byte will determine whether the UART communication is in full-duplex
or half-duplex mode.

Note: The factory delivered XMC1000 device BMI value is set to ASC Bootstrap Loader mode by default.

There are two types of ASC Bootstrap Loader mode entry sequence:

 Standard ASC Bootstrap Loader mode

 Enhanced ASC Bootstrap Loader mode

− The Enhanced ASC Bootstrap Loader mode supports a much higher baud rate than Standard mode, as
shown in Table 2.

The flow in both modes consists of 2 stages.

1. Baud rate detection and mode selection sequence.

2. Download sequence.

ASC Bootstrap Loader for XMC1000

XMC1000

Principle of ASC Bootstrap Loading

Application Note 6 v1.4

 2019-10-07

Table 2 Table 2 Supported Baud Rates

MCLK(MHz) Standard baud rates supported with
ASC Bootstrap Loader mode (kHz)

Maximum baud rate supported with Enhanced
ASC Bootstrap Loader mode (MHz)

Minimum Maximum

8 1.2 28.8 0.999

16 2.4 57.6 1.998

32 4.8 115.2 3.996

48 9.6 153.6 5.994

2.2.1 Stage 1: Baud rate detection and mode selection

The interaction between the XMC1000 ASC Bootstrap Loader and the Host is via a handshake protocol and
the request/acknowledge/data bytes defined in Table 3 and Figure 2 below.

Table 3 Table 3 Handshake protocol data definition

Name Byte
Length

Value Description

BSL_ASC_F 1 0x6C Header requesting full duplex ASC mode with the current baud rate.

BSL_ASC_H 1 0x12 Header requesting half duplex ASC mode with the current baud
rate.

BSL_ENC_F 1 0x93 Header requesting full duplex ASC mode with a request to switch
the baud rate.

BSL_ENC_H 1 0xED Header requesting half duplex ASC mode with a request to switch
the baud rate.

BSL_STEP 2 0xXXX 10-bit value (LSB aligned) to be programmed into selected USIC
channel’s FDR.STEP bit field. Most significant 6 bits should contain
all 0.

BSL_BR_OK 1 0XF0 Final baud rate is established in enhanced ASC Bootstrap Loader
mode.

BSL_ID 1 0x5D Start and header bytes are received, baud rate is established.

BSL_ENC_ID 1 0xA2 Start and header bytes are received in enhanced ASC Bootstrap
Loader mode, initial baud rate is established.

BSL_PDIV 2 0xXXX 10-bit value (LSB aligned) containing the selected USIC channel’s
BRG.PDIV bit field value. Most significant 6 bits should contain all 0.

BSL_BR_OK 1 0xF0 Final baud rate is established in enhanced ASC Bootstrap Loader
mode.

BSL_OK 1 0x01 Data received is OK.

BSL_NOK 1 0x02 Failure encountered during data reception.

ASC Bootstrap Loader for XMC1000

XMC1000

Principle of ASC Bootstrap Loading

Application Note 7 v1.4

 2019-10-07

Figure 2 Handshake protocol for XMC1000 AA step device

For XMC1000 AB step device, there is only a small change in the Handshake protocol in enhanced ASC BSL
mode as shown in Figure 3. The AA step device will reply BSL_BR_OK byte in final/new baudrate rate while
AB step device will reply BSL_BR_OK byte in initial baudrate rate.

ASC Bootstrap Loader for XMC1000

XMC1000

Principle of ASC Bootstrap Loading

Application Note 8 v1.4

 2019-10-07

Figure 3 Handshake protocol for XMC1000 AB step device

Standard mode

In the standard ASC Bootstrap Loader mode, the XMC1000 device is able to calculate the baud rate based on

the zero byte received from the Host. Whether to operate in full duplex or half duplex mode is determined by

whether the header byte BSL_ASC_H or BSL_ASC_F is received from the Host.

Enhanced mode

When the Enhanced ASC Bootstrap Loader mode is selected, the XMC1000 device has to communicate in

enhanced ASC Bootstrap Loader mode full duplex or half-duplex when it receives the BSL_ENC_F/H header
byte. The XMC1000 device will transmit the 10-bit PDIV value to the Host.

The Host can calculate the MCLK that the XMC1000 device is running based on the formula:

 MCLK = Initial Baud Rate x (PDIV + 1) x 8

Example:

Initial Baud Rate = 19200 bps, PDIV = 0x00 0x33 = 0x0033 = 51.

 MCLK = 19200 x 52 x 8 = 7.987200MHz ~ 8MHz

 Select a new baud rate based on the MCLK calculated with reference to Supported Baud Rates Table.

 Calculate the scaling factor; i.e. ratio of the new baud rate to the initial baud rate. Some examples are

given in Scaling Factor Examples Table 4. The scaling factor is rounded to the nearest integer in order to
meet a frequency deviation of +/- 3%.

ASC Bootstrap Loader for XMC1000

XMC1000

Principle of ASC Bootstrap Loading

Application Note 9 v1.4

 2019-10-07

Table 4 Table 4 Scaling Factor Examples

Initial standard baud rate (kHz) Targeted higher baud rate (kHz) Scaling factor rounded to the
nearest integer

9.6 1500 156

19.2 1500 78

57.6 1500 26

115.2 1500 13

−

 Calculate the 10-bit value to be written into the STEP bit field of the USIC0_CHy_FDR register through

the formula: STEP (in fractional divided mode) = (1024 x Scaling Factor) / (PDIV + 1)

Example:

Initial Baud Rate = 19200 bps, target baud rate = 256000 bps, PDIV = 51.

 STEP = 1024 x (256000/19200)/52 = 262.5 ~ 263 = 0x0107 = 0x01 0x07

 The host send the 10-bit STEP value to the XMC1000 device

 Wait until the BSL_BR_OK is received from the XMC1000 device using the new baud rate.

 Echo the BSL_BR_OK back to the device using the new baud rate.

2.2.2 Stage 2: Download sequence

After the baud rate has been detected/configured and channel/mode (full/half duplex) selected, the ASC

Bootstrap Loader waits for the 4 bytes describing the length of the application from the Host as shown in
Figure 4. The least significant byte is received first. This download sequence is the same for both standard

and Enhanced ASC Bootstrap Loader mode.

Figure 4 ASC Bootstrap Loader mode Application downloading sequence

If the application length is found to be ok, a BSL_OK byte is sent to the Host and then the Host sends the
byte stream belonging to the application.

ASC Bootstrap Loader for XMC1000

XMC1000

Principle of ASC Bootstrap Loading

Application Note 10 v1.4

 2019-10-07

After the byte stream has been received, the XMC1000 microcontroller terminates the protocol by sending a
final OK byte and then cedes control to the downloaded application. If the application length is found to be

in error (i.e. application length is greater than the device SRAM size), a BSL_NOK byte is transmitted back to
the Host and the XMC1000 microcontroller resumes waiting for the length of the application transmission.

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 11 v1.4

 2019-10-07

3 ASC Programmer

In this chapter we will demonstrate the implementation of ASC Bootstrap Loader Programmer via standard
ASC Bootstrap Loader mode.

3.1 ASC Bootstrap Loading

The communication between PC and the target device is established via the ASC interface.Figure 5. below
shows a hardware setup for this application. On the target device side, the channel 1 of USIC0 (U0C1) is used

as ASC. Ports P1.3 and P1.2 are used as RxD and TxD, respectively.

 receive pin RxD at pin P1.3 (USIC0_CH1.DX0A)

 transmit pin TxD at pin P1.2 (USIC0_CH1.DOUT0)

Figure 5 Connection between PC and target system for XMC1000 Bootstrap Loading

To run this program, the first step is to make the target device enter ASC BSL mode.

The boot mode of XMC1000 device depends on its BMI value which is preprogrammed when it is just out of

factory. The BMI value is 0xFFC0 which is ASC Bootstrap Load Mode, so ASC Bootstrap Loader mode is
entered upon a device reset.

The bootstrap loader procedure is shown below in Figure 6.

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 12 v1.4

 2019-10-07

Figure 6 ASC Bootstrap loader procedure for Flash programming

The HOST starts by transmitting a zero byte to help the device detect the baud rate. The XMC1000 device

supports baud rates of up to 28800 bit/sec at MCLK = 8MHz. The ASC interface will be initialized for 8 data

bits and 1 stop bit. Next, the HOST will send a header indicating whether to communicate in basic ASC BSL
full duplex/half duplex mode or enhanced ASC BSL full duplex/half duplex mode. Using enhanced ASC BSL
mode can achieve a 0.999MHz baud rate at MCLK of 8MHz. In this device guide, we are using Basic ASC BSL

mode.

After the baud rate is detected by the device, the bootstrap loader transmits an BSL_ID byte 5DH back to the
host. It then waits 4 bytes, describing the length of the Flash loading program from the HOST. The least

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 13 v1.4

 2019-10-07

significant byte is received first. If the application length is found to be acceptable by the BSL, a BSL_OK
(0x01H) byte is sent to the HOST, and the HOST sends the byte stream of the Flash loader. Once the byte

stream is received, the BSL terminates the protocol by sending a final BSL_OK byte and then transfers
control to the Flash loader program.

If there is an error in the application length (i.e. the application length is greater than device SRAM size), a

BSL_NOK byte (0x02H) is transmitted back to the HOST and the BSL resumes its wait for the correct length
of bytes.

The file XMC1x_ASCLoader.hex contains the Flash loading program. After XMC1x_ASCLoader is downloaded

to SRAM and executed, it will first establish the communication between PC and the target device and then

carry out Flash operations.

3.2 Flash Loader

The Flash Loader implements the Flash routines and establishes the communication between PC and the
target device. The main part of XMC1x_ASCLoader (main.c) implements Flash routines providing the

following features:

 Erase Flash sectors

 Erased, Program and verify the programmed Flash pages

 Change the Boot Mode Index (BMI) value of the XMC1000 device

3.3 DAVE4 Project Settings

The Flash loader DAVETM project is available in the .\DAVE4\XMC1x_ASCLoader folder. The project can be

imported into the DAVETM IDE with the following steps:

 Open the DAVETH IDE

 Import the Infineon DAVETH project

 Select root directory as .\DAVE4\XMC1x_ASCLoader

 Finish the import

Note: The Flash Loader program must be located in the SRAM starting at 0x20000200, because the Flash
Loader program can only run from SRAM. Therefore the default linker script file generated from DAVE4
cannot be used in the Flash loader project, because the default linker script file locates the codes in Flash

starting at 0x10001000. The linker script file that locates the codes into SRAM is provided in the
XMC1x_ASCLoader.ld folder. To change the linker script file go to project properties:

 Go to Settings->ARM-GCC C Linker->General->Script file (-T)

 Open “Browse…” to import the file XMC1x_ASCLoader.ld into the field

The Linker Script Language file XMC1x_ASCLoader.ld, defines the ROM memory for codes in SRAM starting
from address 0x20000000.

The stack, heap and global variables are located in SRAM starting from address 0x20000000. The sector and
page address must be specified to erase and program the Flash. An invalid address (an address that is not
within the Flash boundaries) results in an address error. The XMC1000 memory organization is described in

the Flash Memory Organization chapter.

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 14 v1.4

 2019-10-07

Flash user codes can be executed starting from the Flash base address 0x10001000.

The Flash Loader defines a communication protocol to receive commands from the PC. Based on the
command received, the corresponding Flash routine is executed. The communication structure is described

in the Communication Protocol chapter.

3.4 Flash Memory Organization

The embedded Flash module in the XMC1000 family includes 200 KB (maximum) of Flash memory for code

or constant data.

Flash memory is characterized by its sector architecture and page structure. Sectors are Flash memory

partitions of different sizes. The offset address of each sector is relative to the base address of its bank which
is given in Table 5. Derived devices (see the XMC1000 Data Sheet) can have less Flash memory. The FLASH
bank shrinks by cutting-off higher numbered physical sectors.

Table 5 Table 5 Flash Memory Map

Range Description Size Start Address

Program Flash 200 Kbytes 0x10001000

 Flash erasure is sector-wise.

 Sectors are subdivided into pages.

 Flash memory programming is page-wise.

 A Flash page contains 256 bytes.

 The Table 6 lists the logical sector structure in the XMC1000 family of products.

Table 6 Table 6 Sector Structure of Flash

Sector Address Range Size

1 0x10001000 – 0x10001FFF 4 KB

2 0x10002000 – 0x10002FFF 4 KB

3 0x10003000 – 0x10003FFF 4 KB

4 0x10004000 – 0x10004FFF 4 KB

5 0x10005000 – 0x10005FFF 4 KB

6 0x10006000 – 0x10006FFF 4 KB

7 0x10007000 – 0x10007FFF 4 KB

8 0x10008000 – 0x10008FFF 4 KB

9 0x10009000 – 0x10009FFF 4 KB

10 0x1000A000 – 0x1000AFFF 4 KB

11 0x1000B000 – 0x1000BFFF 4 KB

12 0x1000C000 – 0x1000CFFF 4 KB

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 15 v1.4

 2019-10-07

Sector Address Range Size

13 0x1000D000 – 0x1000DFFF 4 KB

14 0x1000E000 – 0x1000EFFF 4 KB

15 0x1000F000 – 0x1000FFFF 4 KB

16 0x10010000 – 0x10010FFF 4 KB

17 0x10011000 – 0x10011FFF 4 KB

18 0x10012000 – 0x10012FFF 4 KB

19 0x10013000 – 0x10013FFF 4 KB

20 0x10014000 – 0x10014FFF 4 KB

21 0x10015000 – 0x10015FFF 4 KB

22 0x10016000 – 0x10016FFF 4 KB

23 0x10017000 – 0x10017FFF 4 KB

24 0x10018000 – 0x10018FFF 4 KB

25 0x10019000 – 0x10019FFF 4 KB

26 0x1001A000 – 0x1001AFFF 4 KB

27 0x1001B000 – 0x1001BFFF 4 KB

28 0x1001C000 – 0x1001CFFF 4 KB

29 0x1001D000 – 0x1001DFFF 4 KB

30 0x1001E000 – 0x1001EFFF 4 KB

31 0x1001F000 – 0x1001FFFF 4 KB

32 0x10020000 – 0x10020FFF 4 KB

33 0x10021000 – 0x10021FFF 4 KB

34 0x10022000 – 0x10022FFF 4 KB

35 0x10023000 – 0x10023FFF 4 KB

36 0x10024000 – 0x10024FFF 4 KB

37 0x10025000 – 0x10025FFF 4 KB

38 0x10026000 – 0x10026FFF 4 KB

39 0x10027000 – 0x10027FFF 4 KB

40 0x10028000 – 0x10028FFF 4 KB

41 0x10029000 – 0x10029FFF 4 KB

42 0x1002A000 – 0x1002AFFF 4 KB

43 0x1002B000 – 0x1002BFFF 4 KB

44 0x1002C000 – 0x1002CFFF 4 KB

45 0x1002D000 – 0x1002DFFF 4 KB

46 0x1002E000 – 0x1002EFFF 4 KB

47 0x1002F000 – 0x1002FFFF 4 KB

48 0x10030000 – 0x10031FFF 4 KB

49 0x10032000 – 0x10032FFF 4 KB

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 16 v1.4

 2019-10-07

3.5 Communication Protocol

The Flash loader program “XMC1x_ASCLoader” establishes a communication structure to receive
commands from the HOST PC.

The HOST sends commands via transfer blocks. Three types of blocks are defined:

Header Block

Byte 0 Byte1 Bytes 2 … 14 Byte 15

Block
Type
(0x00)

Mode Mode-specific content Checksum

The header block has a length of 16 bytes.

Data Block

Byte 0 Byte1 Bytes 2 … 257 Bytes 258 … 262 Byte 263

Block
Type

(0x01)

Verification
option

256 data bytes Not used Checksum

The data block has a length of 264 bytes.

EOT Block

Byte 0 Bytes 1 … 14 Byte 15

Block

Type
(0x02)

Not used Checksum

The EOT block has a length of 16 bytes.

The action required by the HOST is indicated in the Mode byte of the header block.

The Flash loader program waits to receive a valid header block and performs the corresponding action. The
correct reception of a block is judged by its checksum, which is calculated as the XOR sum of all block bytes
excluding the block type byte and the checksum byte itself.

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 17 v1.4

 2019-10-07

In ASC BSL mode, all block bytes are sent at once via the UART interface. The different modes specify the
Flash routines that will be executed by the XMC1x_ASCLoader. The modes and their corresponding

communication protocol are described in the following sections of this chapter.

3.5.1 Mode 0: Program Flash Page

Header Block

Byte 0 Byte1 Bytes 2 … 5 Byte 6 … 14 Byte 15

Block

Type
(0x00)

Mode

(0x00)

Page Address Not Used Checksum

 Page Address (32bit)

− Address of the Flash page to be programmed. The address must be 256-byte-aligned and in a valid
range (see chapter 3), otherwise an address error will occur. Byte 2 indicates the highest byte, and
byte 5 indicates the lowest byte.

−

After reception of the header block, the device sends either 0x55 as acknowledgement or an error code for
an invalid block. The loader enters a loop waiting to receive the subsequent data blocks in the format shown
below.

The loop is terminated by sending an EOT block to the target device.

Data Block

Byte 0 Byte1 Bytes 2 … 257 Bytes 258 … 262 Byte 263

Block

Type
(0x01)

Verification

option

256 data bytes Not used Checksum

 Verification Option

− Set this byte to 0x01 to request a verification of the programmed page bytes.

− If set to 0x00, no verification is performed.

 Code bytes

− Page content.

− After each received data block, the device either sends 0x55 to the PC as acknowledgement, or it
sends an error code.

EOT Block

Byte 0 Bytes 1 … 14 Byte 15

Block

Type
Not used Checksum

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 18 v1.4

 2019-10-07

(0x02)

After each received EOT block, the device sends either 0x55 to the PC as acknowledgement, or it sends an
error code.

3.5.2 Mode 1: Execute ‘Change BMI’ routine

Header Block

Byte 0 Byte1 Bytes 2 … 5 Byte 6 … 14 Byte 15

Block
Type

(0x00)

Mode

(0x00)

Page Address Not Used Checksum

The command causes a jump to the Change BMI routine located at address 0x00000108. The device will do a

system reset and boot up according to the BMI value programmed.

3.5.3 Mode 3: Erase Flash Sector

Header Block

Byte 0 Byte1 Bytes 2 … 5 Byte 6 … 14 Bytes 10 … 14 Byte 15

Block
Type

(0x00)

Mode

(0x03)

Sector Address Sector Size Not Used Checksum

 Sector Address (32bit)

− Address of the Flash sector to be erased. The address must be a valid sector address, otherwise an

address error will occur.

− Byte 2 indicates the highest address byte.

− Byte 5 indicates the lowest address byte.

 Sector Size (32bit)

− Size of the Flash sector to be erased. The size must be a valid sector size.

− Byte 6 indicates the highest address byte.

− Byte 9 indicates the lowest address byte.

− The device sends either 0x55 to the PC as acknowledgement, or it sends an error code.

3.5.4 Mode 4: Read Flash Data (4 bytes)

Header Block

Byte 0 Byte1 Bytes 2 … 5 Byte 6 … 14 Bytes 10 … 14 Byte 15

Block

Type

Mode Sector Address Not Used Not Used Checksum

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 19 v1.4

 2019-10-07

(0x00) (0x04)

 Sector Address (32bit)

− Address of the Flash sector to be erased. The address must be a valid sector address, otherwise an

address error will occur.

− Byte 2 indicates the highest address byte.

− Byte 5 indicates the lowest address byte.

− The device sends either 0x55 to the PC as acknowledgement, or it sends an error code.

3.5.5 Response Code to the HOST

The Flash loader program will let the HOST know whether a block has been successfully received and
whether the requested Flash routine has been successfully executed by sending out a response code listed
in Table 7.

Table 7 Table 7 Response Codes

Response Code Description

0x55 Acknowledgement, no error

0xFF Invalid block type

0xFE Invalid mode

0xFD Checksum error

0xFC Invalid address

0xFB Error during Flash erasing

0xFA Error during Flash programming

0xF9 Verification error

0xF8 Protection error

3.6 HOST PC Program Example

The XMC1000_Bootloader HOST program developed in C++ uses the communication structure described in
Chapter -> Communication Protocol.

The file XMC1x_load_API.cpp contains the API for direct communication with the XMC1x_ASCLoader. The
API includes the functions listed in Table 8:

Table 8 Table 8 API Functions

API Function Description

Init_uart Initialize PC COM interface

Init_ASC_BSL Initialize ASC BSL

Send_loader Send the ASC Loader

bl_send_header Send header block via ASC interface

bl_send_data Send data block via ASC interface

bl_send_EOT Send EOT block via ASC interface

bl_erase_flash Erase Flash sectors

bl_download_flash Download code to Flash

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 20 v1.4

 2019-10-07

API Function Description

Make_flash_image Create a Flash image from HEX file

The main program (XMC1x_Load.cpp) initializes ASC and sends XMC1x_ASCLoader to the target device.

The user must specify the HEX file to be downloaded. An example HEX file (XMC1400_Blinky.hex) is provided.
The user code is first downloaded to Flash and the user can then execute the downloaded code if user
changes the BMI value to User Mode (Debug) SWD0.

 The Flash erase procedure is implemented in the function bl_erase_flash() shown in Figure 7.

 The Flash programming procedure is implemented in bl_download_flash() shown in Figure 8.

Figure 7 Flash erase procedure implemented in bl_erase_flash()

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 21 v1.4

 2019-10-07

Figure 8 Flash programming procedure implemented in bl_download_flash()

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 22 v1.4

 2019-10-07

3.7 Using the Demonstrator

The example programs have been tested on Infineon XMC1100/1200/1300/1400 boot kits. The user can use

the example program to download user codes (hex file format) into Flash. Here we give a description how to
do that.

3.7.1 Hardware Setup

The XMC1x00 boot kits are configured to User Mode (Debug) SWD_0, hence, we need BMI set tool to change
the BMI value to ASC Bootstrap Load Mode. First, connect the XMC1x00 boot kit to the PC host via a USB
cable. Then, open the BMI set tool. After selecting “ASC Bootstrap Load Mode (ASC_BSL), no debug” click

“Set BMI”.

Figure 9 Using BMI Set tool to change the BMI value of the XMC1x00 device

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 23 v1.4

 2019-10-07

3.7.2 Demonstrator File Structure

Figure 10 shows the file structure in the example programs.

Figure 10 File structure of example programs

 This application note is contained in folder .\App

 The folders .\DAVE4 is the project generated using DAVE4’s GNU compiler

 XMC1x_ASCLoader project contains the ASC Bootrstrap Loader program

 The XMC1300_Blinky project is the example project for LED blinking

 .\XMC1x_Load contains the Microsoft Visual C++ 2010 project for the Host PC

 The XMC1x_ASCLoader.hex and LED Blinky example XMC1300_Blinky.hex files are saved in

.\XMC1_Load\Debug\XMC1300 and .\XMC1_Load\XMC1_Load\XMC1300, separately

3.7.3 Run the Demonstrator

Before starting the demonstrator, the hex file that needs to be downloaded into Flash and copied into the
folders .\ XMC1x_Load \Debug\XMC1300 and .\ XMC1x_Load \ XMC1x_Load \XMC1300 shown in Figure 11:

Copy hex files here

Figure 11 Location of object hex files to be flashed

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 24 v1.4

 2019-10-07

There are two ways to start the demonstrator.

1. Double click the file XMCLoad.exe under .\ XMC1x_Load \Debug:

Figure 12 Direct start of demonstrator Example figure

2. Double click the file XMCLoad.sln file in the folder .\XMC1x_Load to open the Microsoft Visual C++ project.

The project in this Device Guide is developed using Microsoft Visual C++ 2010.

Figure 13 Start using Microsoft Visual project

In Microsoft Visual project workbench the project can be started from the “F5” key.

On starting the demonstrator the following window is displayed:

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 25 v1.4

 2019-10-07

Figure 14 Start Window from Visual Project

Follow the instructions in the window to finish the Flash programming.

Note: The hex file name that will be programmed into Flash must be given completely with the file

extension; e.g. XMC1300_Blinky.hex. Otherwise, the program does not know the file name. The Flash loader
program accepts only hex file format. Furthermore, the XMC1x_ASCLoader.hex is less than 4096 bytes, so the
4 bytes Application Length should be given with 4096.

After the hex file is programmed into Flash, user can program the BMI value to be User Mode (Debug) SWD_0,
so that the program downloaded will be executed as shown in Figure 15.

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 26 v1.4

 2019-10-07

Figure 15 Window GUI illustrates the reading of Flash data and changing of BMI to SWD_0 User Mode

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 27 v1.4

 2019-10-07

3.8 Reference Documents

Table 9 Table 9 References

Document Description Location

XMC1x00 User’s Manual User’s Manual for XMC1x00

device

http://www.infineon.com/xmc1000

Bootloader ASC Tooling Guide for XMC4000 http://www.infineon.com/xmc4000

http://www.infineon.com/xmc1000
http://www.infineon.com/xmc4000

ASC Bootstrap Loader for XMC1000

XMC1000

ASC Programmer

Application Note 28 v1.4

 2019-10-07

Revision History

Current Version is 1.4, 2019-10

Page or Reference Description of change

V1.0, 2013-10

 Initial Version

V1.2, 2015-05

 1. Change the format

2. Adding workaround for Segger VCOM issue in example codes

3. Change DAVE3 example projects to DAVE4

4. Adding read flash command

V1.3, 2015-11

 1. Add support for XMC1400

2. Remove the chapter of BMI description

V1.4, 2019-10

 1. Update project files to latest version of DAVE

2. Update host code files to latest VS

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBlade™, EasyPIM™,
EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, Infineon™, ISOFACE™, IsoPACK™,
i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.

Trademarks updated August 2015

Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

ifx1owners.

Edition 2019-10-07

AP32277

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2019 Infineon Technologies AG.

All Rights Reserved.

Do you have a question about this

document?

Email: erratum@infineon.com

Document reference

IMPORTANT NOTICE
The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

	About this document
	Table of Contents
	1 Introduction
	1.1 Tool-chains
	1.1.1 Example Flash program

	2 Principle of ASC Bootstrap Loading
	2.1 ASC Bootstrap Loader mode
	2.2 ASC Loader
	2.2.1 Stage 1: Baud rate detection and mode selection
	2.2.2 Stage 2: Download sequence

	3 ASC Programmer
	3.1 ASC Bootstrap Loading
	3.2 Flash Loader
	3.3 DAVE4 Project Settings
	3.4 Flash Memory Organization
	3.5 Communication Protocol
	3.5.1 Mode 0: Program Flash Page
	3.5.2 Mode 1: Execute ‘Change BMI’ routine
	3.5.3 Mode 3: Erase Flash Sector
	3.5.4 Mode 4: Read Flash Data (4 bytes)
	3.5.5 Response Code to the HOST

	3.6 HOST PC Program Example
	3.7 Using the Demonstrator
	3.7.1 Hardware Setup
	3.7.2 Demonstrator File Structure
	3.7.3 Run the Demonstrator

	3.8 Reference Documents

	Revision History

