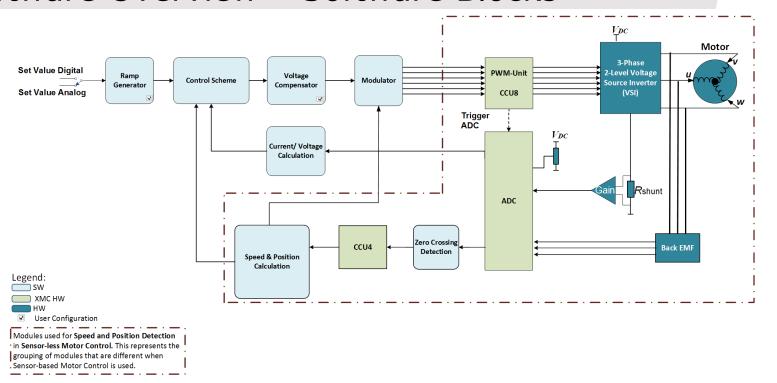
XMC13 Sensorless BLDC Scalar Control Software **Getting Started**

XMCTM Microcontrollers Oct 2016

Agenda

- 1 Overview of BLDC Scalar Control SW
- 2 Software Overview
- 3 Hardware Overview
- 4 Tools Overview
- 5 Getting Started
- 6 General Information

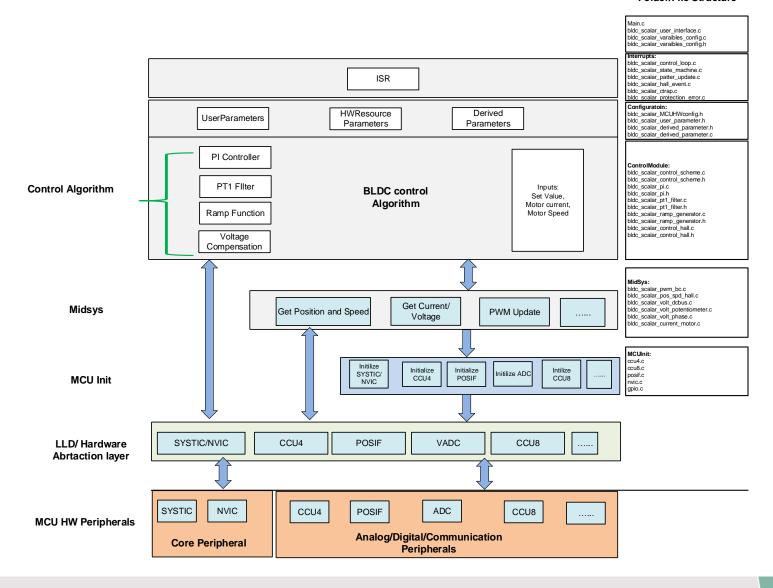


Overview - BLDC Scalar Control SW

- This document provides information about usage of Sensorless BLDC scalar control example software on Infineon's XMC1300 series microcontrollers platform
- Sensorless BLDC scalar control example software is offered as "simple main project in DAVE™ IDE"
- Sensorless BLDC scalar control example project consists of sensorless 3-Phase BLDC Motor control algorithm software, targeted end applications are fans, pumps, power tools and e-bike segment
- This example project will provide high level of configurability and modularity to address different segments
- This project can be easily configured as per requirements with the help of configuration files

Software Overview - Software Blocks

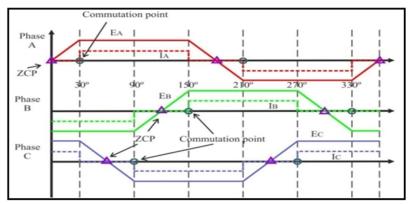
Software Blocks	Supported Options
Control Scheme	Open loop voltage control, speed control, current control and speed inner current control
PWM Modulation (Modulator)	High side modulation, low side modulation, high side with synchronous rectification
Current/Voltage Measurement	Direct DC link and average current measurement, DC link Voltage & Potentiometer (Analog Input)


Software Overview – Key Features

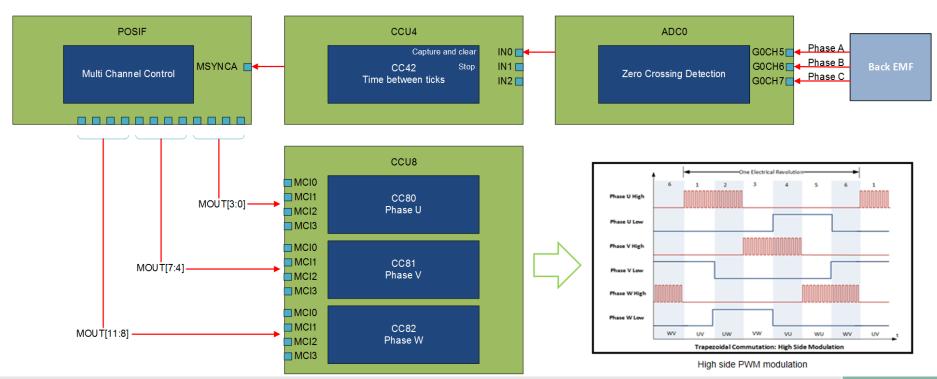
Supported Features	Description	
Bi-directional control	Reverse the motor direction when change direction variable is set	
On fly start-up	Catch spinning motor at start-up without stop	
Back-emf zero crossing detection	Back-emf zero crossing detection using ADC boundary checking	
Motor Start-up from standstill	Support inductive position detection or alignment for smooth start	
Accurate measurement of speed (across wide range)	Use floating pre-scalar	
Demagnetization blanking	Remove spike in direct DC link current measurement	
DC bus voltage clamping	Prevent over-voltage during fast braking	
Protection	Stall Detection Over-current Short circuit Under/Over voltage C-trap with MCU hardware features	

Software Overview - Files Structure

Folder/File Structure


Software Overview - XMC Peripheral usage

No	Resource	Resource usage	Purpose
1	CCU40 _CC40	Always	Commutation timer (Pre-scalar value calculated in zero crossing event)
2	CCU40 _CC41	Fast Sync is disabled	Multi-channel Pattern synchronization
3	CCU40 _CC42	Always	Used for motor speed capture
4	POSIF0	Always	MCM configuration
5	CCU80_CC8x	Always	PWM Generation – Phase U
6	CCU80_CC8y	Always	PWM Generation – Phase V
7	CCU80_CC8z	Always	PWM Generation – Phase W
8	VADC Group A Queue A	Any ADC measurement is enabled	DC link direct/ Average current , DC link voltage, user defined and potentiometer measurement
9	NVIC	Always	Used for ISRs
10	SYSTICK	Always	Used for state machine
Note Ly v 7 A Recourse number based on configuration			


Note: x,y,z, A – Resource number based on configuration

Software Overview - Peripheral Interconnection

BLDC Commutation in Sensorless mode

Software Overview - Interrupt Service Routines

Folder: Interrupts

File name: bldc_scalar_state_machine.c

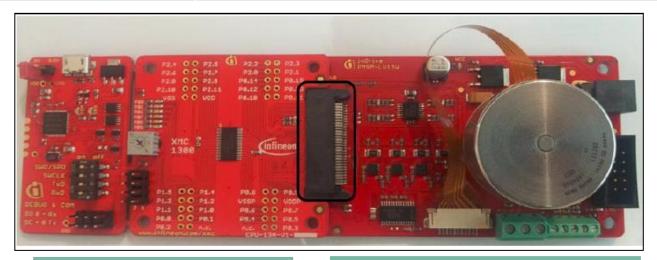
Peripheral	Interrupt Subroutines (ISR)	NVIC node	Interval	Priority	BLDC_SCALAR_SL_XMC13_uCProbe [Active - Debug
VADC	Channel event (current + voltage outside boundary)	15	Asynchronous	0	
CCU8	One match event (phase U)	25	1/ PWM frequency	2	
CCU8	CTRAP (phase U)	26	Asynchronous	0	
SYSTIMER	Systick Scheduler	-1	1 mSec (configurable)	3	 ▶ delto_scalar_user_interface.c ▶ delto_scalar_user_interface.h ▶ delto_scalar_variables_config.c
VADC	Zero-crossing	16	Variable (motor speed dependent)	1	 → ☑ main.c □ BLDC_SCALAR_SL_XMC13_uCProbe.wspx □ BLDC_SCALAR_SL_XMC13_UserGuide.chm □ linker_script.ld

Software Overview – Example Configuration

Example Name	BLDC_SCALAR_SL_XMC13_uCProbe	
Kit Description	Drive 3-phase Maxon's BLDC motor using XMC1000 motor control application kit	
Part Number	KIT_XMC1X_AK_MOTOR_001	
Schemes	Default Configuration in Example Software	
Control Scheme	BLDC_SCALAR_SPEED_CTRL	
PWM Modulation	BLDC_SCALAR_PWM_HIGHSIDE	
PWM frequency (Hz)	20000	
Speed (rpm)	2000	
Ramp up/down rate	500	
Protection	Over-current protection with direct DC link current measurement	

Performance Matrix

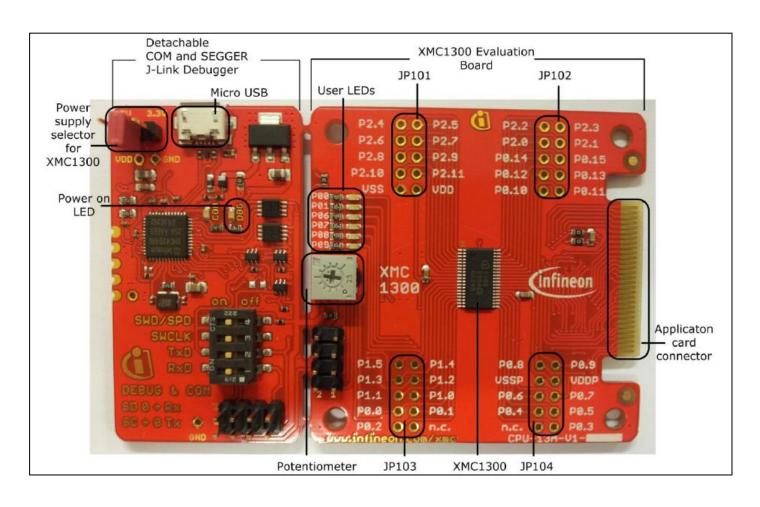
	Execution Time (us)	Code size (kbytes)
Control loop ISR	9.2	
Motor state machine	5.8	
BEMF zero cross ISR	14.2	13.976


Default configuration: Execution Time and Code Size

Hardware Overview – Application Kit Package

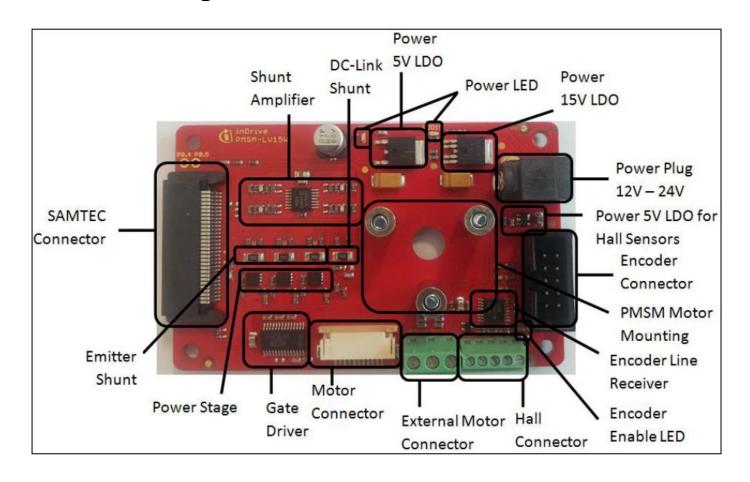
Infineon's XMC1000 Motor Control Application Kit

Item	Description
XMC1300 CPU Card	MCU board with XMC1300 and detachable SEGGER J-Link debug interface
PMSM Low Voltage 15W Motor Card	12 - 24V Up to 3A On board 3-phase motor (24V, 15W) with hall sensors
Accessories	Power Supply Adaptor (24V, 1A) Micro USB connector (1x)


XMC1300 CPU Card

PMSM Low Voltage 15W Motor Card

Hardware Overview - XMC1300 CPU Card


XMC1300 CPU Card

Hardware Overview - Motor Card

PMSM Low Voltage 15W Motor Card

Hardware Overview - Kit Order information

No.	Kit Name	Kit Description	Order Number
1	KIT_XMC1x_AK_Motor_001	XMC1000 Motor Control Application Kit	KIT_XMC1x_AK_Motor_001

Tools Overview

- DAVE™ (V4.2.6 onwards)
 - Download DAVE™ installer package from

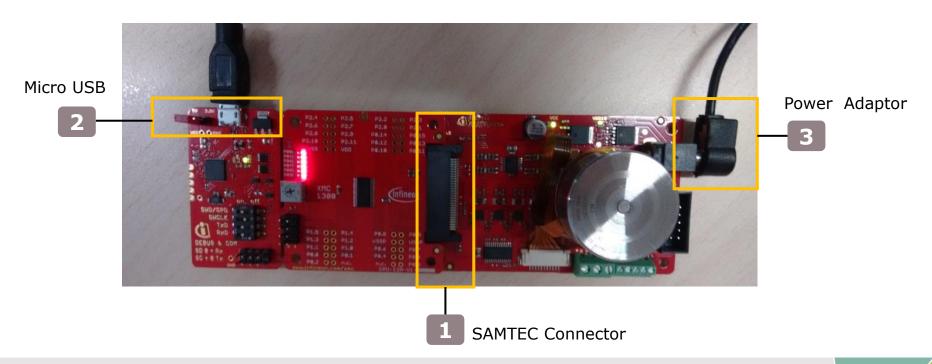
http://www.infineon.com/dave

Download and unzip the installer package

Free Eclipse based integrated development environment (IDE) including GNU C-compiler, debugger, comprehensive code repository, hardware resource management, and code generation plug-in.

A complete download package is provided, including IDE, XMC™ Lib, DAVE™ APPs, EXAMPLES, and DAVE™ SDK.

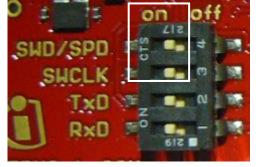
DAVE™ Release Note


- μC/Probe™ XMC™ (v4.0.16.54 onwards) for Infineon industrial microcontrollers powered by Micrium®
 - Download from μC/Probe™ XMC™ from DAVE home page

https://infineoncommunity.com/uC-Probe-XMC-software-download ID712

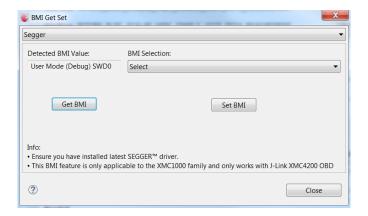
Getting Started – Connecting the Board

- Connect XMC1300 CPU Card to PMSM Low Voltage 15W Motor Card using SAMTEC connector interface
- Connect XMC1300 CPU Card to PC via Micro USB cable
- Connect power adaptor to PMSM Low Voltage 15W Motor Card



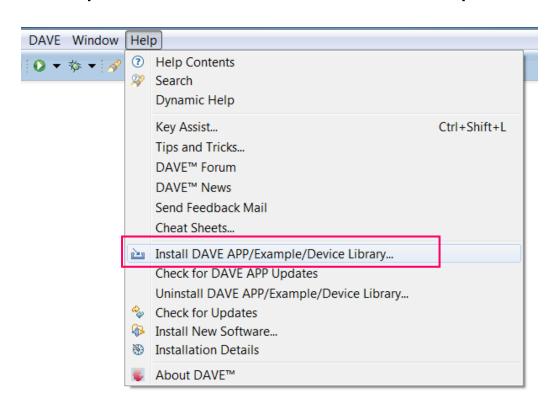
Getting Started – Setting up the Board

Check the SWD/SPD and SWCLK on the dip switch are set to "ON"


position

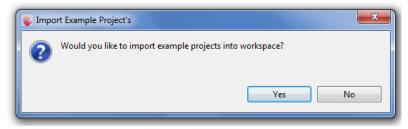
2. Open DAVE™ 🜌 SWD0 mode

, select "*BMI Set Get"* less to check BMI is set to



Getting Started – Download Project from DAVE [1/2]

- 1. Open DAVE™ 🚪
- 1 DAVE-4.2.6
- 2. Install example project from DAVE:
 - Help → Install DAVE APP/Example/Device Library...


Getting Started – Download Project from DAVE [2/2]

- 3. In the opened dialog "Dave Site":
 - In Option "Work With:", select "DAVE Project Library Manager"
 - In "Libraries", select the project "BLDC_SCALAR_SL_XMC13_uCProbe"

4. Select "Yes" to import the example project in workspace

Getting Started – Configure the Project [1/6]

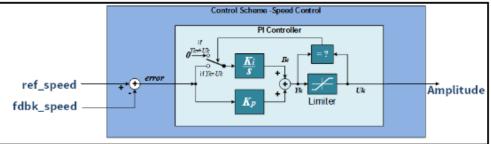
Folder: Configuration

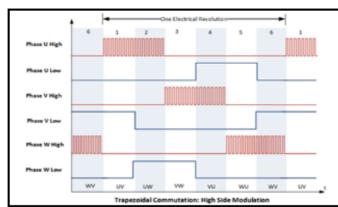
File name: bldc_scalar_user_config.h

1. Select the Motor Control Kit and BLDC motor

```
* Motor and power board selection
117 /* Board and motor selection */
1189 /**
119 * Motor control kit
    * Options - KIT XMC1X AK MOTOR 001, KIT XMC750WATT MC AK V1, KIT CUSTOM
122 #define
             MOTORØ BLDC SCALAR BOARD
                                                               (KIT XMC1X AK MOTOR 001)
1239 /**
124 * BLDC motor
    * Options - MOTOR EC MAXON 267121, MOTOR CUSTOM
    */
127 #define
             MOTORØ BLDC SCALAR MOTOR
                                                               (MOTOR EC MAXON 267121)
129 /* Motor Parameters */
130 #if (MOTORØ BLDC SCALAR MOTOR == MOTOR EC MAXON 267121)
131 #define MOTORO_BLDC_SCALAR_MOTOR_NO_LOAD_SPEED
                                                                           /*!< No load speed of the motor in RPM */
                                                                (4530U)
132 #define MOTORO_BLDC_SCALAR_MOTOR_POLE_PAIRS
                                                                (4U)
                                                                           /*!< Pole pairs */
133
134 #elif (MOTORO BLDC SCALAR MOTOR == MOTOR CUSTOM)
             MOTORØ BLDC SCALAR MOTOR NO LOAD SPEED
                                                                           /*!< No load speed of the motor in RPM */
                                                              (6200U)
             MOTORØ BLDC SCALAR MOTOR POLE PAIRS
                                                                           /*!< Pole pairs */
136 #define
                                                              (4U)
    #endif
```

Getting Started – Configure the Project [2/6]




Folder: Configuration

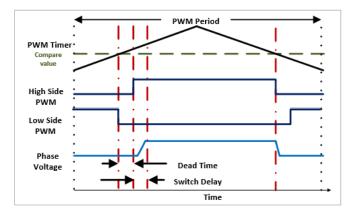
File name: bldc scalar user config.h

Select the Control Scheme and PWM Modulation Scheme

```
* Control scheme configurations
                          Control & PWM Modulation Scheme
1439 /**
     * Control scheme selection:
     * Options - BLDC_SCALAR_VOLTAGE_CTRL, BLDC_SCALAR_SPEED_CTRL, BLDC_SCALAR_CURRENT_CTRL, BLDC_SCALAR_SPEEDCURRENT_CTRL
147 #define
             MOTORO BLDC SCALAR CTRL SCHEME
                                                    (BLDC SCALAR SPEED CTRL)
     * PWM modulation scheme selection:
    * Options - BLDC_SCALAR_PWM_HIGHSIDE, BLDC_SCALAR_PWM_LOWSIDE, BLDC_SCALAR_PWM_HIGHSIDE_SYNCHRECTI
152 #define
            MOTORØ BLDC SCALAR MODULATION
                                                    (BLDC SCALAR PWM HIGHSIDE)
155 /* CPU clock (mclk) is configured to 32MHz and CCU peripheral clock(pclk) to 64 MHz (double clock) */
156 /** PWM switching frequency. Range: 1000 to 100000 Hz*/
157 #define MOTOR0 BLDC SCALAR PWM FREQ
                                                          (20000.0F)
158 /** Scheduler interrupt period. Range: 1000 to 10000 us*/
159 #define MOTORO BLDC SCALAR SYSTICK PERIOD
                                                          (1000.0F)
                                                                                  Phase U High
                              Control Scheme - Speed Control
                                                                                  Phase U Les
                                    PI Controller
                                                                                  Phase V High
```


High side PWM modulation

Getting Started – Configure the Project [3/6]



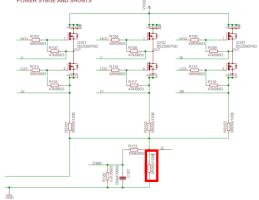
Configure the Power Board

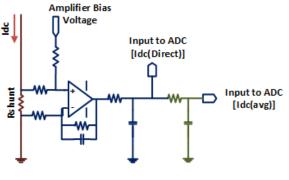
Folder: Configuration

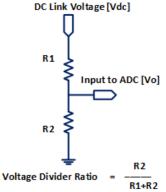
File name: bldc_scalar_user_config.h

```
294 #if (MOTORO BLDC SCALAR BOARD == KIT XMC1X AK MOTOR 001)
295 /* Power Inverter parameters */
             MOTORØ BLDC_SCALAR_NOMINAL_DC_LINK_VOLT
296 #define
                                                           (24.0F)
                                                                      /*!< DC link voltage */
297 #define
             MOTORO BLDC SCALAR RISING DEAD TIME
                                                           (0.75F)
                                                                      /*!< Dead time for rising edge in uSec*/
                                                                      /*!< Dead time for falling edge in uSec*/
298 #define
             MOTORO BLDC SCALAR FALLING DEAD TIME
                                                           (0.75F)
299 #define
             MOTORØ BLDC SCALAR SWITCH DELAY
                                                           (0.75F)
                                                                      /*!< Switch delay in uSec*/
300
301 #define
             MOTORØ BLDC SCALAR HS SWITCH ACTIVE LEVEL
                                                            (BLDC SCALAR ACTIVE HIGH)
                                                                                          /*!< Active level of the high side switch. Option
302 #define
             MOTORO_BLDC_SCALAR_LS_SWITCH_ACTIVE_LEVEL
                                                            (BLDC SCALAR ACTIVE HIGH)
                                                                                          /*!< Active level of the low side switch. Options
303 #define
             MOTORO BLDC SCALAR INVERTER ENABLE CONF
                                                            (BLDC SCALAR INV ACTIVE HIGH)
                                                                                          /*!< Active level of inverter enable. Options: BI
304
   /* ADC Measurement parameters */
                                                                          /*!< Reference voltage of VADC conversion */</pre>
306 #define
             MOTORØ BLDC SCALAR VADC REF VOLTAGE
                                                            (5.0F)
307 #define
             MOTORO BLDC SCALAR CURRENT AMPLIFIER OFFSET
                                                            (2.5F)
                                                                        /*!< Amplifier offset voltage */
308 #define
             MOTORØ BLDC SCALAR CURRENT RSHUNT
                                                                        /*!< Current amplifier shunt resistor value in mOhms */
                                                            (50.0F)
309 #define
             MOTORØ BLDC SCALAR CURRENT AMPLIFIER GAIN
                                                            (16.4F)
                                                                         /*!< Current amplifier gain */
310 #define
             MOTORØ BLDC SCALAR VOLTAGE DIVIDER RATIO
                                                            (9.79F)
                                                                        /*!< Voltage divider ratio in % for DC link voltage measurement */
             MOTORØ BLDC SCALAR BEMF DIVIDER RATIO
                                                            (9.79F)
                                                                        /*!< Voltage divider ratio in % for phase voltage measurement */
311 #define
      end of #if (MOTOR0 BLDC SCALAR BOARD == KIT XMC1X AK MOTOR 001) */
```


Getting Started – Configure the Project [4/6]




4. Configure the Power Board


Folder: Configuration

File name: bldc_scalar_user_config.h

```
294 #if (MOTORO_BLDC_SCALAR_BOARD == KIT_XMC1X_AK_MOTOR_001)
295 /* Power Inverter parameters */
             MOTORØ BLDC SCALAR_NOMINAL_DC_LINK_VOLT
                                                                        /*!< DC link voltage */
296 #define
                                                            (24.0F)
                                                                        /*!< Dead time for rising edge in uSec*/
297 #define
             MOTORØ BLDC SCALAR RISING DEAD TIME
                                                             (0.75F)
             MOTORØ BLDC SCALAR FALLING DEAD TIME
                                                                        /*!< Dead time for falling edge in uSec*/
   #define
                                                            (0.75F)
             MOTORØ BLDC SCALAR SWITCH DELAY
                                                                        /*!< Switch delay in uSec*/
299 #define
                                                            (0.75F)
300
                                                                                            /*!< Active level of the high side switch. Option
301 #define
             MOTORØ BLDC SCALAR HS SWITCH ACTIVE LEVEL
                                                             (BLDC SCALAR ACTIVE HIGH)
302 #define
             MOTORØ BLDC SCALAR LS SWITCH ACTIVE LEVEL
                                                             (BLDC SCALAR ACTIVE HIGH)
                                                                                            /*!< Active level of the low side switch. Options
                                                                                            /*!< Active level of inverter enable. Options: BI
303 #define
             MOTORO_BLDC_SCALAR_INVERTER_ENABLE_CONF
                                                             (BLDC_SCALAR_INV_ACTIVE_HIGH)
304
   /* ADC Measurement parameters */
             MOTORO_BLDC_SCALAR_VADC_REF_VOLTAGE
                                                                            /*!< Reference voltage of VADC conversion */
306 #define
                                                             (5.0F)
307 #define
             MOTORØ BLDC SCALAR CURRENT AMPLIFIER OFFSET
                                                             (2.5F)
                                                                          /*!< Amplifier offset voltage */</pre>
                                                                           /*!< Current amplifier shunt resistor value in mOhms */
308 #define
             MOTORØ BLDC SCALAR CURRENT RSHUNT
                                                             (50.0F)
                                                                            /*!< Current amplifier gain */</pre>
309 #define
             MOTORO BLDC SCALAR CURRENT AMPLIFIER GAIN
                                                             (16.4F)
             MOTORØ BLDC SCALAR VOLTAGE DIVIDER RATIO
                                                             (9.79F)
                                                                          /*!< Voltage divider ratio in % for DC link voltage measurement *
310 #define
                                                                          /*!< Voltage divider ratio in % for phase voltage measurement
             MOTORØ BLDC SCALAR BEMF DIVIDER RATIO
                                                             (9.79F)
312 /* end of #if (MOTOR0 BLDC SCALAR BOARD == KIT XMC1X AK MOTOR 001) */
   POWER STAGE AND SHUNTS
                                                                                                    DC Link Voltage [Vdc]
                                                        Amplifier Bias
                                                          Voltage
                                                                    Input to ADC
                                                                     [Idc(Direct)]
```

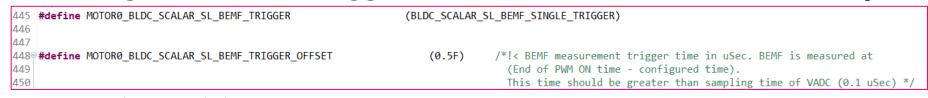

Getting Started – Configure the Project [5/6]

5. Configure the startup method

Folder: Configuration
File name: bldc scalar user config.h

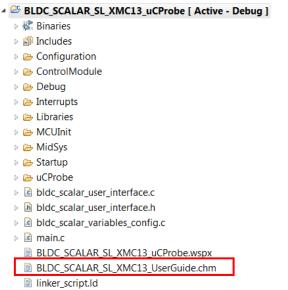
Configure the Inductive Sensing configuration (refer to DAVE help file -> BLDC_SCALAR_SL_XMC13.chm)

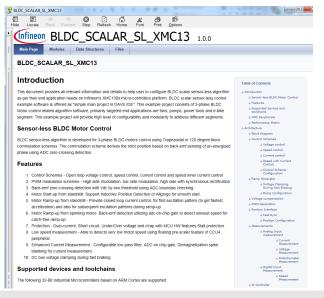
```
STARTUP CONFIGURATIONS
    #define MOTORO BLDC SCALAR SL STARTUP MIN AMPLITUDE
                                                                                  /*!< in %. Minimum Duty cycle to be applied for sensorless startup.
                                                                  (10.0F)
399
                                                                                     Duty cycle is then controlled by current control loop.
400
                                                                                     Range: 0.1 to 10 */
                                                                                /*!< First kick time in mSec. Phase pattern corresponding to identified po
401⊕#define MOTOR0 BLDC SCALAR SL FIRST KICK TIME
                                                                  (4.0F)
402
                                                                                     is energized for this time.
403
                                                                                     Min Range: 1/MOTORO_BLDC_SCALAR_PWM_FREQ */
404
4059 #define MOTOR0 BLDC SCALAR SL TR PHASE ENERGIZATION TIME
                                                                  (0.8F)
                                                                                 /*!< in mSec. Phases are energized in sequence for this time
406
                                                                                     during transition state from first kick to closed loop.
407
                                                                                     Min Range: 1/MOTORO BLDC SCALAR PWM FREQ */
408@#define MOTOR0_BLDC_SCALAR_SL_TR_CURRENT_DECAY_TIME
                                                                  (0.8F)
                                                                                 /*!< in mSec. Wait time for current to decay.
409
                                                                                     Min Range: 1/MOTOR0 BLDC SCALAR PWM FREQ */
410
411@#define MOTOR0_BLDC_SCALAR_SL_MIN_BEMF_VOLTAGE
                                                                  (2.0F)
                                                                               /*!< in % with respect to MOTORØ BLDC SCALAR NOMINAL DC LINK VOLT
412
                                                                                    if measured BEMF voltage is less than this voltage during startup, pos
                                                                               /*!< in % with respect to MOTORO BLDC SCALAR NOMINAL DC LINK VOLT
413⊖#define MOTOR0 BLDC SCALAR SL TRANSITION BEMF VOLTAGE
                                                                  (10.0F)
414
                                                                                    Motor switches to closed loop when measured BEMF voltage is greater th
```


Getting Started – Configure the Project [6/6]



7. Configure the ADC Trigger


Folder: Configuration


File name: bldc scalar user config.h

8. Get more detail information from the BLDC_SCALAR_SL_XMC13_UserGuide.chm

Getting Started – Code added to support uCProbe [1/3]

Initialize the uCProbe before starting motor

File name: main.c

Folder: -

```
889 int main(void)
90
      /* Initialization */
      Motor0_BLDC_SCALAR_Init();
91
92
93
     Motor@ BLDC SCALAR Flash Var Init();
94
95
96 #if (MOTORO BLDC SCALAR CTRL UCPROBE ENABLE == 1)
      Motor@ BLDC SCALAR uCProbe Init();
98 #endif
99
      /* Start the motor */
100
      Motor0_BLDC_SCALAR_MotorStart();
101
102
103
      /* Placeholder for user application code. The while loop below can be replaced with user application code. */
104
      while (1U)
105
106
107
108
109
110 }
```

Getting Started – Code added to support uCProbe [2/3]

2. Added uCProbe scheduler in motor state machine

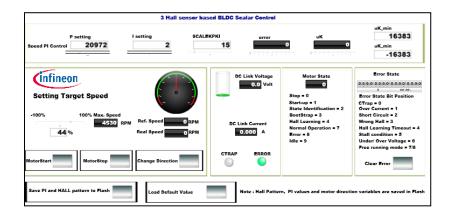
```
Folder: Interrupts
File name:
bldc scalar sl state machine.c
```

- Motor control state machine is called on each Systick Interrupt
- uCProbe Scheduler is called on each scheduler tick

```
140 void SysTick_Handler(void)
141 {
      /* Call motor control state machine */
      Motor@ BLDC SCALAR MSM();
144 }
145
1469 /**
148 */
1499 /**
150 * @}
151 */
152
153@ RAM_ATTRIBUTE void Motor0_BLDC_SCALAR_MSM(void)
155
      switch (Motor0 BLDC SCALAR.msm state)
156
157
        case BLDC SCALAR MSM NORMAL OPERATION:
158
          Motor0_BLDC_SCALAR_MSM_NORMAL_OPERATION_Func();
159
          break;
160
161
        case BLDC SCALAR MSM IDLE:
162
          Motor@ BLDC SCALAR MSM IDLE Func();
163
          break;
164
165
        case BLDC_SCALAR_MSM_MOTOR_STATE_IDENTIFICATION:
166
          Motor@ BLDC SCALAR MSM MOTOR STATE IDENTIFICATION Func();
167
          break:
```

```
187
        case BLDC SCALAR MSM START:
188
          Motor@ BLDC SCALAR MSM START Func();
189
          break;
190
191
        case BLDC_SCALAR_MSM_STOP:
          Motor@ BLDC SCALAR MotorStop();
192
193
          break:
194
195
        default:
196
          break;
197
198
199
200
      if (Motor0 BLDC SCALAR.error status != 0U)
201
202
        Motor@ BLDC SCALAR.msm state = BLDC SCALAR MSM ERROR;
203
204 #if (MOTORO BLDC SCALAR CTRL UCPROBE ENABLE == 1)
205 Motor@ BLDC SCALAR uCProbe Scheduler();
206 #endif
207 }
208
```

Getting Started – Code added to support uCProbe [3/3]

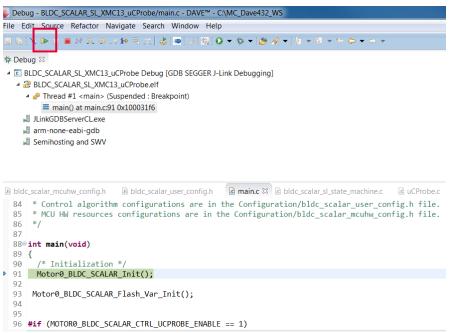


3. Added uCProbe scheduler in motor state machine

```
Folder: uCProbe
File name: ucProbe.c
```

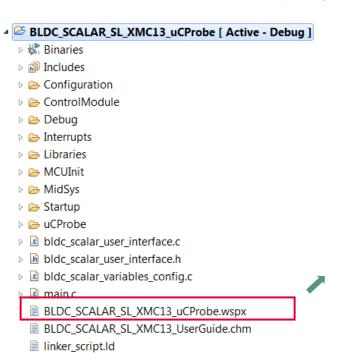
```
73 #if ((MOTORO BLDC SCALAR CTRL UCPROBE ENABLE==1))
74 /*UCproBE scheduler function to handle ucprobe comments from UI */
75 void Motor@ BLDC SCALAR uCProbe Scheduler(void)
76 {
77
     switch(Motor0 BLDC SCALAR ucprobe.control word)
78
       case 1: /* Start the motor */
79
80
         Motor@ BLDC SCALAR ucprobe.control word=0;
         Motor0_BLDC_SCALAR_MotorStart():
81
82
         break;
83
       case 2: /*Stop the motor*/
84
85
         Motor@ BLDC SCALAR ucprobe.control word=0;
         Motor@ BLDC SCALAR MotorStop();
86
87
         break:
88
89
       case 3: /*Clear Error state*/
90
         Motor@ BLDC SCALAR ucprobe.control word=0;
91
         Motor0 BLDC SCALAR ClearErrorState();
92
         break;
93
       case 4: /*Clear flash and load defualt value into flash*/
94
         Motor@ BLDC SCALAR ucprobe.control word=0;
95
         Motor@ BLDC SCALAR ucprobe.user config[@] =0;
96
         Motor@ BLDC SCALAR Write Default value();
97
98
         Motor@ BLDC SCALAR uCProbe Write Flash();
         break;
```

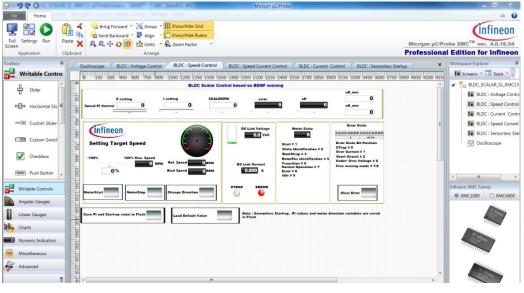
uCProbe scheduler routine support control code to control the motor


Getting Started – Compile and Verify the project

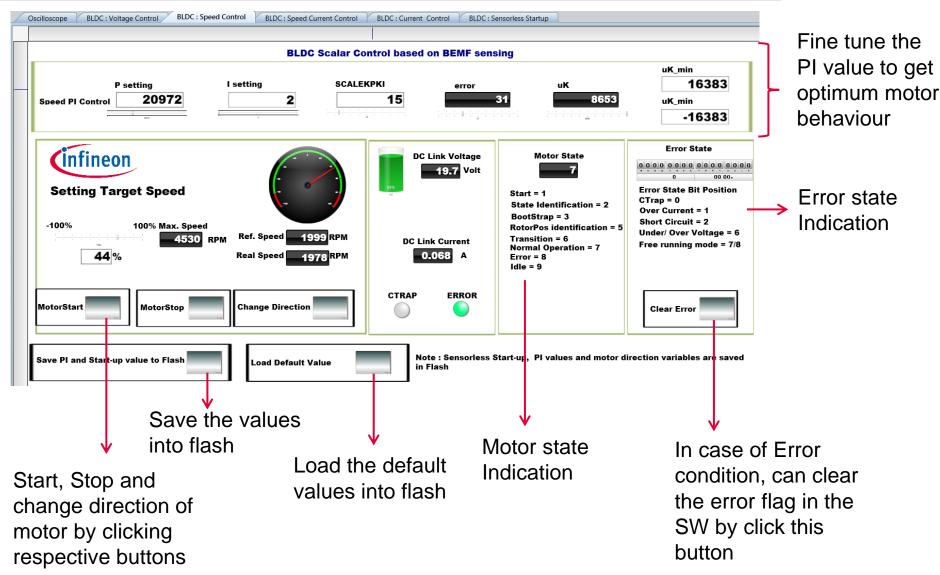
- Click "Build Active Project"
- >
- 2. Click "Debug Configuration" to download the code

Click "Resume" to start the application

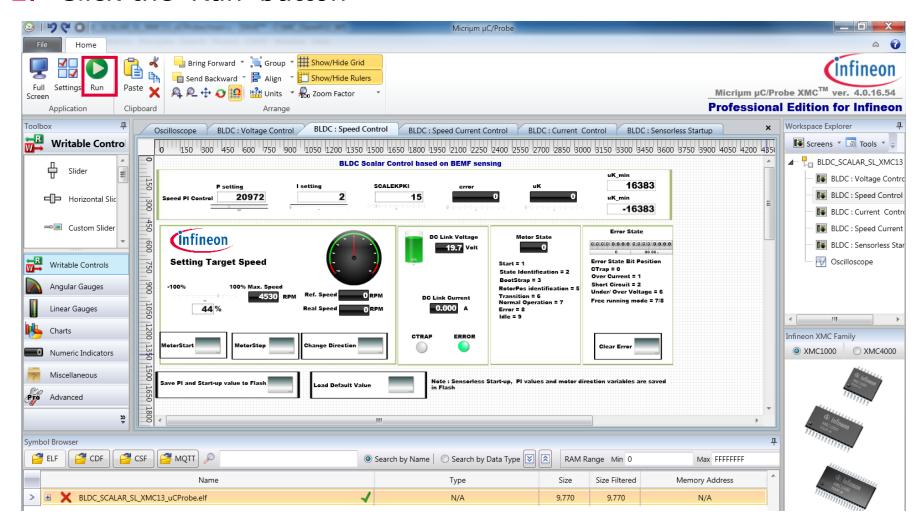

Observation:


Motor should ramp to 2000RPM with ramp rate of 500RPM/s

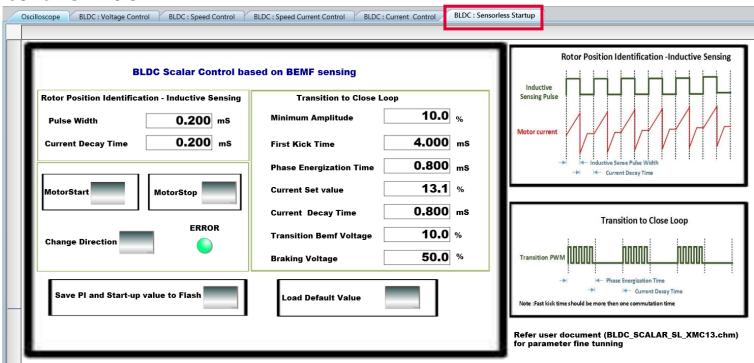
Getting Started – Interface with µC/Probe [1/6]


- Update of the motor and monitoring motor parameters can be executed using µC/Probe™ XMC™
- In "BLDC_SCALAR_SL_XMC13" example project , open μC/Probe™ XMC™ project file

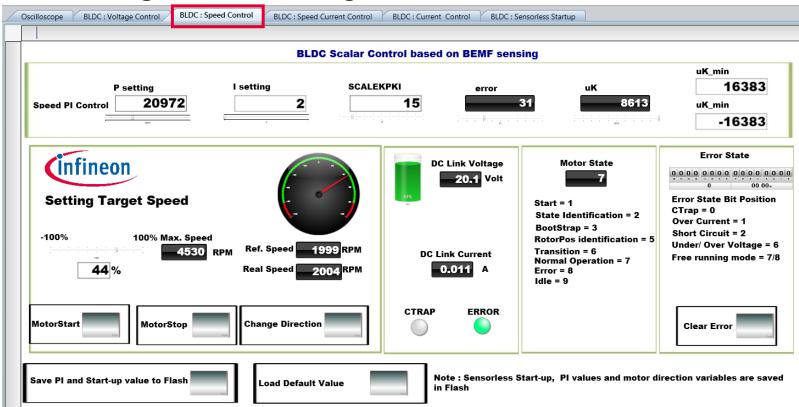
Getting Started Interface with µC/Probe [2/6]



Getting Started – Interface with µC/Probe [3/6]


2. Click the 'Run' button

Getting Started – Interface with µC/Probe [4/6]


- 3. Go to Tab: Sensorless Startup. This is to find the rotor position when the rotor is in a standstill position
- 4. Set the pulse width and current decay time to 0.2ms
- Once rotor position is determined, it will transit to closed loop control
- Select "Save to Flash" to save the inductive sensing parameter into the Flash.

Getting Started – Interface with µC/Probe [5/6]

- In the tab "BLDC: Speed Control", select the various widgets to control the motor
 - Start/ Stop control
 - PI tuning and monitoring

Possible to save PI values, startup values into Flash

Getting Started – Interface with µC/Probe [6/6]

8. Click on the "Oscilloscope" tab for monitoring motor control parameters -> e.g. speed of rotation in rpm

General Information (1/2)

Where to buy kits:

Development Board	S	Order Number
XMC1300 Boot Kit	### GO PH	KIT XMC13 BOOT 001
PMSM Low Voltage 15W Card		KIT XMC1x AK Motor 001

General Information (2/2)

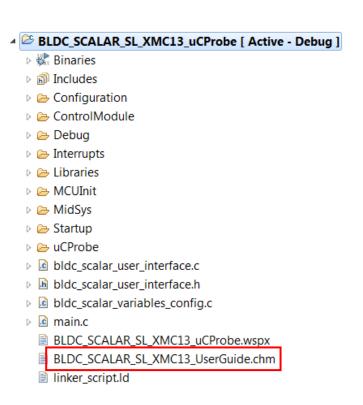
For latest updates, please refer to:

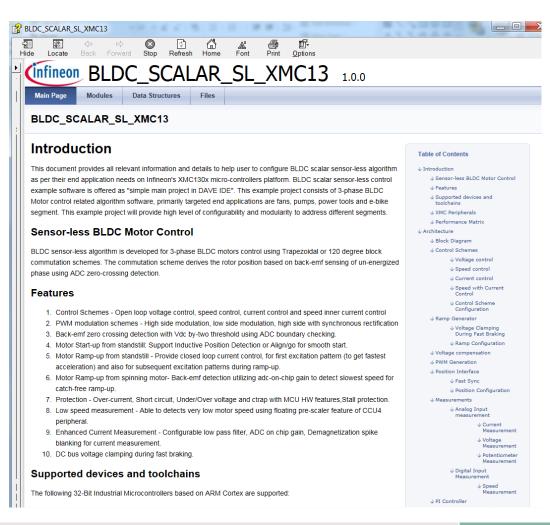
http://www.infineon.com/xmc1000

› DAVE™ development platform:

http://www.infineon.com/DAVE

For support:


http://www.infineonforums.com/forums/8-XMC-Forum



References: Help Content

Example SW user guide as chm format is part of this example

SW

Glossary Abbreviations

ADC Analog Digital Converter

DAVE™ Digital Application Virtual Engineer (Free development IDE for XMC™)

PWM Pulse Width Modulation

SW Software

Disclaimer

The information given in this training materials is given as a hint for the implementation of the Infineon Technologies component only and shall not be regarded as any description or warranty of a certain functionality, condition or quality of the Infineon Technologies component.

Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this training material.

Part of your life. Part of tomorrow.

