
AURIX™ TC3xx Microcontroller Training

V1.0.2

DMA_Mem_to_Mem_1

for KIT_AURIX_TC397_TFT
DMA transfer between memories

Please read the Important Notice and Warnings at the end of this document

Scope of work

The DMA is used to transfer ten words (32-bit) of data from one

memory location to another without any CPU load.

The transfer of data is triggered by SW. The source is the Data Scratch Pad

SRAM of CPU0 (DSPR0) and the destination is the Distributed Local

Memory Unit (DLMU RAM). At the end of the transactions, the data is

verified by comparing the source and destination buffers. The success of the

data transfer is signaled through the LED connected to pin 0 of port 13.

Otherwise, the LED connected to pin 1 of port 13 is used.

The same cycle is repeated each second.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

› The Direct Memory Access (DMA) unit is a module which can execute

data transfers from a source memory to a destination memory without any

CPU load.

› The DMA controller mainly supports:

– Two move engines for the parallel execution of DMA requests

– Individually programmable DMA channels (up to 128)

– DMA Channel 127 has the highest priority

– DMA requests can be triggered by Hardware or Software

– Any peripheral that can trigger an interrupt can initiate a DMA

transfer

Copyright © Infineon Technologies AG 2021. All rights reserved.

Introduction

DMA Move, Transfer, Transaction:

› A DMA Move is a Bus read and write operation

– Supported data widths for DMA read & write moves: 8, 16, 32, 64, 128 or 256-

bit

› A DMA Transfer consists of a configurable number of DMA moves

– It can be composed of 1, 2, 3, 4, 5, 8, 9 or 16 DMA moves

› A DMA Transaction consists of several (at least one) DMA Transfers

– It is possible to trigger the full DMA transaction or each DMA transfer of the

transaction in order

Note:

› A DMA Transfer is an un-interruptable DMA operation

› Long DMA Transfers can block pending DMA Channels with higher priority

M1 M2 Mn M1 M2 Mn M1 M2 MnDMA Moves

DMA Transaction

DMA Transfer 1 DMA Transfer 2 DMA Transfer N

Copyright © Infineon Technologies AG 2021. All rights reserved.

Hardware setup

This code example has been

developed for the board

KIT_A2G_TC397_5V_TFT.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Specify data storage for Source and Destination buffers

The __at Tasking compiler attribute is used to declare data buffers in specific memory

locations:

› Source data buffer in DSPR0:

uint32 g_dataForDmaTransfer[DATA_ARRAY_LENGTH] __at(0x70000000);

› Destination data buffer in LMURAM (non cached memory)

uint32 g_dmaLmuDestination[DATA_ARRAY_LENGTH] __at(0xB0000000);

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

All used iLLD functions for initializing and controlling DMA transfers are provided by the

IfxDma_Dma.h header file

DMA configuration

Before the first DMA data transfer can be requested and executed, the DMA module has

to be initialized. The following steps are done inside initDMA():

1. Load default module configuration into DMA configuration structure:

IfxDma_Dma_initModuleConfig(&g_DMA.dmaConfig, &MODULE_DMA)

2. Apply default configuration on DMA hardware module:

IfxDma_Dma_initModule(&g_DMA.dmaHandle, &g_DMA.dmaConfig)

3. Load the DMA default channel configuration:

IfxDma_Dma_initChannelConfig(&g_DMA.dmaChNCfg, &g_DMA.dmaHandle)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

DMA configuration (Cont.)

4. Modify the channel configuration to fit the use case:

 DMA channel ID: 0

 DMA move data width: 32-bit

 DMA Transfer count: 10

 DMA Transaction request mode: Complete the transaction on each request

5. Apply configuration to DMA hardware channel in DMARAM

IfxDma_Dma_initChannel(&g_DMA.dmaChannel, &g_DMA.dmaChNCfg)

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

LEDs Configuration and Control

To provide status signals, two LEDs of the Application Kit board are used:

Failure signal, LED driven by port 13 pin 1:

#define LED_DMA_FAILURE &MODULE_P13,1

Success signal, LED driven by port 13 pin 0:

#define LED_DMA_SUCCESS &MODULE_P13,0

1. Set each used Port Pin as push-pull output with the IfxPort_setPinMode() iLLD

function

2. The LEDs are low active:

 Switch On LED: IfxPort_setPinLow()

 Switch Off LED : IfxPort_setPinHigh()

Note: Two wrapper functions are implemented (turnLEDOn() & turnLEDOff()) to switch

On/Off LEDs, e.g. turnLEDOn(LED_DMA_SUCCESS).

All port functions used to initialize and switch LEDs‘ state are provided in the iLLD header

file IfxPort.h.

Copyright © Infineon Technologies AG 2021. All rights reserved.

Implementation

Request and verify a DMA data transfer

The following steps are done inside runDMA(), based on the previous described DMA

configuration:

1. Set the DMA source and destination buffers beginning addresses:

– Source buffer: g_DMA.pSourceAddressForDmaTransfer

– Destination buffer: g_DMA.pDestinationAddressForDmaTransfer

2. Trigger a DMA Software request:

– IfxDma_Dma_startChannelTransaction()

3. Poll for the DMA Channel end transfer flag to be set:

– IfxDma_Dma_getAndClearChannelInterrupt()

4. Verify each copied data byte (this is not an iLLD provided function):

– verifyDMACopiedData()

5. Set status LED according to the result.

Note: runDMA() is called inside the infinite loop of the main function and executed every

one second (the STM timer is used to ensure the one second delay).

Copyright © Infineon Technologies AG 2021. All rights reserved.

Run and Test

LED signal interpretation after code compilation and device flashing:

› If a data mismatch is detected after the

last DMA Transaction only FAILURE LED

(2) will be ON.

› Otherwise only SUCCESS LED (1) will be

ON.

› The user can watch the evolution of

successfulDmaTransaction and

failedDmaTransaction parameters of the

global variable g_DMA:

– g_DMA.successfulDmaTransaction

increments in case of a successeful

DMA transaction

– g_DMA.failedDmaTransaction

increments in case of a failing DMA

transaction

1

2

Copyright © Infineon Technologies AG 2021. All rights reserved.

References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum

Revision history

Revision Description of change

V1.0.2 Updated description: fixed used memory (DLMU RAM instead of LMU RAM)

V1.0.1 Update of version to be in line with the code example’s version

V1.0.0 Initial version

Copyright © Infineon Technologies AG 2021. All rights reserved.

IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-12
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
DMA_Mem_to_Mem_1_KIT_TC397_TFT

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

