
AURIX™ TC3xx Microcontroller Training

V1.0.0

CPU_Trap_Recognition_1

for KIT_AURIX_TC334_LK
TRAP error recognition and reaction

Please read the Important Notice and Warnings at the end of this document



Scope of work

This example shows how to identify the root cause of a trap.

The tutorial describes what types of traps are supported by the AURIX™ 

microcontroller, their root causes and how to identify them. AURIX™ 

architecture supports different types of traps. Three different traps can be 

provoked with this example and the tutorial guides the user through the 

needed steps to observe the root cause of each trap.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Introduction

› A trap occurs as a result of an event such as a Non-Maskable Interrupt 

(NMI), an instruction exception, a memory management exception or an 

illegal access. Traps are always active; they cannot be disabled by 

software

› The TriCore™ architecture specifies eight general classes for traps. Each 

trap class has its own trap handler. Within each class, specific traps are 

distinguished by a Trap Identification Number (TIN)

› Traps can be further classified as synchronous or asynchronous, and as 

hardware or software generated

› Three different combinations of trap types are supported:

– Synchronous and hardware generated

– Asynchronous and hardware generated

– Synchronous and software generated

Copyright © Infineon Technologies AG 2021. All rights reserved.



Copyright © Infineon Technologies AG 2021. All rights reserved.

Hardware setup

This code example has been developed 

for the board KIT_A2G_TC334_LITE.



Implementation

Supported traps

The following table provides an overview about all supported traps and their types:

Please refer to the TriCore™ TC1.6.2 core architecture manual and the AURIX™ TC3xx User’s 

Manual for detailed information about each trap.

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Trap types

› Synchronous traps:

– Synchronous traps are associated with the execution or attempted execution of specific 

instructions or with attempts to access a virtual address that requires the intervention of the 

memory-management system

– The trap is triggered and serviced immediately

› Asynchronous traps:

– Since asynchronous traps are associated with hardware conditions, they are similar to 

interrupts

– They are routed via the trap vector

– Some asynchronous traps are triggered indirectly from instructions, that have been previously 

executed, but the direct association with the instructions causing the trap is lost

› Hardware traps:

– Hardware traps are generated in response to exception conditions detected by the hardware

– In most, but not all cases, the exception conditions are associated with the attempted execution 

of a particular instruction

› Software traps:

– Software traps are generated as an intentional result of executing a system call or an assertion 

instruction

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Trap handling

› When a trap occurs, a trap identifier is generated by hardware. The trap identifier has two 

components that can be used to determine more information about the trap and why it was caused 

(refer to slide Supported traps):

– The Trap Class Number (TCN)

– The Trap Identification Number (TIN)

› In most cases, the debugger will stop the code execution within one of the trap handlers 

(implemented in the iLLD header IfxCpu_Trap.c)

› An instance of the structure IfxCpu_Trap is declared within each trap handler. When a trap occurs, 

the instance provides four information fields about the trap:

– tCpu: Which CPU caused the trap

– tClass: TCN, Class of the trap (refer to slide Supported traps)

– tId: TIN, Id of the trap (refer to slide Supported traps)

– tAddr: Return Address (RA) (refer to the next slide)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Return Address

› The Return Address (RA) might help to locate the specific line of code which caused the trap

› The return address, which is stored in the instance of the IfxCpu_Trap structure, is read from the 

return address register A[11]

› Depending on the trap type, the return address is different:

– For most of the synchronous traps, the return address is the 32-bit Program Counter (PC) 

of the instruction that caused the trap. (The PC holds the address of the instruction which is 

currently running when the core is halted.) 

– On a System Call (SYS) trap, triggered by the SYSCALL instruction, the return address 

points to the instruction immediately following SYSCALL

– A Free Context List Depletion (FCD) trap is generated after a context save operation that 

causes the free context list becoming “almost empty”.

The responsible for the FCD trap can be a hardware interrupt or a trap handler. The 

operation responsible for the context save normally is completed before the FCD trap is 

executed. Because of this, the return address of the FCD trap is the first instruction of the 

trap/interrupt/called routine or the instruction following a Save Lower Context (SVLCX) or 

Begin Interrupt Service Routine (BISR) instruction

– For an asynchronous trap, the return address is the address of the instruction that would 

have been executed next, if the asynchronous trap had not been triggered

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Additional debug information

› The bit field ERROR_ADDRESS of the Data Error Address Register (DEADD) contains the trap 

address information for the data memory. The content of the DEADD register is valid if the Data 

Synchronous Trap Register (DSTR) or the Data Asynchronous Trap Register (DATR) register 

are non-zero (depending on the trap type). The bit fields in the DSTR and the DATR registers can 

provide additional information about the trap (refer to the AURIX™ TC3xx User’s Manual)

– These information are valid in case traps such as:

– Data Address Alignment (ALN)

– Data Access Synchronous Error (DSE)

– Data Access Asynchronous Error (DAE)

– Invalid Local Memory Address (MEM)

– Memory Protection Write (MPW)

– Memory Protection Read (MPR)

– Memory Protection Peripheral Access (MPP)

– Memory Protection Null Address (MPN)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Additional debug information

› The Program Memory Interface Synchronous Trap Register (PSTR) contains synchronous trap 

information for the program memory system. The register is updated with trap information for 

Program Fetch Synchronous Error traps (PSE)

› The Program (or Data) Integrity Error Address Register (PIEAR / DIEAR) and the Program (or 

Data) Integrity Error Trap Register (PIETR / DIETR) can be interrogated to determine the source 

of the Program (or Data) Memory Integrity Error (PIE / DIE) more precisely

Copyright © Infineon Technologies AG 2021. All rights reserved.



Implementation

Trap provocation

› Three different combinations of trap types can be provoked in this example:
– Synchronous Hardware trap
– Asynchronous Hardware trap
– Synchronous Software trap

› The trap provocation is implemented in the function run_trap_provocation() and can be started by setting 
one of the three g_provokeXYTrap (X = Synchronous / Asynchronous; Y = Hardware / Software)
variables

› The implemented code for the first two traps is based on the MTU_MBIST_1 and SMU_IR_Alarm_1 
examples. For further information on the code, please refer to the specific tutorials

› The third trap is provoked by using two instructions: __mtcr() (Move To Core Register) and trapv
(assembly code). For further information on these instructions, please refer to the TriCore™ TC1.6.2 core 
architecture manual - Instruction set manual

Note: __mtcr() is an intrinsic function of the Tasking compiler, which moves contents of a data register to the 
addressed Core Special Function Register (CSFR). __mtcr() performs a Move to Core Register (MTCR) 
TriCore™ instruction and is followed by an ISYNC instruction.

› For a better understanding of the trap behavior, the required code instructions used to avoid the cause of 
each trap, are implemented and can be activated by setting the AVOID_PROVOCATION macro to true

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

After code compilation and flashing the device, perform the following steps:

› Add the three variables “g_provokeSynchronousHardwareTrap”, 

“g_provokeAsynchronousHardwareTrap” and “g_provokeSynchronousSoftwareTrap” in the 

Expressions window of the debugger

› Add the three registers DEADD, DATR and DSTR in the Expressions window of the debugger

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

1.1 Synchronous hardware trap

› Provoke the synchronous hardware trap by setting the value of 

“g_provokeSynchronousHardwareTrap” in the “Expressions” window to “1”

› Press the “Resume” button to start the program

› Observe the following information:

– The debugger stopped in the IfxCpu_Trap_busError() function (IfxCpu_Trap.c)

– The “Variables” window of the debugger displays the “trapWatch” structure and the value of its 

parameters

– The trap is provoked by CPU0, it is a trap of class 4, the trap id is 2 and the Return Address 

(RA) is 0x8000003a (214748370610)

– It is a Data Access Synchronous Error (Trap table, class 4 and tin 2)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

1.2 Synchronous hardware trap 

› Observe the following information:

– The call stack in the “Debug” window displays the function which was called before the trap 

occurred (in this case the function run_trap_provocation(), the address displayed behind this 

function equals the Return Address (RA))

– By clicking on this function, the debugger jumps to the specific code line in the 

CPU_Trap_Recognition.c file and to the corresponding assembly line in the “Disassembly”

window. The address of the assembly line equals the Return Address (RA)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

1.3 Synchronous hardware trap 

› Observe the following additional information:

– The LBE bit field in the DSTR register is set (Load Bus Error - Data load from bus causing 

error, refer to AURIX™ TC3xx User’s Manual)

– The DEADD register displays the address 0xf0063960, which is the address of the modified 

register that caused the trap

– By running a file search (Search -> File) for the address, the search finds the specific RDBFL0

register which equals the modified MBIST DMA register

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

2.1 Asynchronous hardware trap 

› Restart the program by pressing the “Restart” button in the debugger

› Provoke the asynchronous hardware trap by setting the value of 

“g_provokeAsynchronousHardwareTrap” in the “Expressions” window to “1”

› Press the “Resume” button to start the program

› Observe the following information:

– The debugger stopped in the IfxCpu_Trap_busError() function (IfxCpu_Trap.c)

– The “Variables” window of the debugger displays the “trapWatch” structure and the values of 

its parameters

– The trap is provoked by CPU0, it is a trap of class 4, the trap id is 3 and the Return Address 

(RA) is 0x8000004e (214748372610)

– It is a Data Access Asynchronous Error (Trap table, class 4 and tin 3)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

2.2 Asynchronous hardware trap 

› Observe the following information:

– The call stack in the “Debug” window displays the function which was called before the trap 

occurred (in this case the function run_trap_provocation(), the address displayed behind this 

function equals the Return Address (RA))

– By clicking on this function, the debugger jumps to the specific code line in the 

CPU_Trap_Recognition.c file and to the corresponding assembly line in the “Disassembly”

window. The address of the assembly line equals the return address

– Because it is an asynchronous trap, the specific code line is not pointing to the line which is 

causing the trap. It is the code line of the instruction that would have been executed next, if the 

asynchronous trap had not been triggered

– Since there is no other instruction within the function run_trap_provocation(), it is impossible 

to find the line of code by using the Return Address (RA) in this example

Copyright © Infineon Technologies AG 2021. All rights reserved.



2.3 Asynchronous hardware trap 

› Due to the fact that the Return Address (RA) cannot be used, the following information might help 

to locate the cause of the trap:

– The SBE bit field in the DATR register is set (Store Bus Error - Data store to bus causing error, 

refer to AURIX™ TC3xx User’s Manual)

– The DEADD register displays the address 0xf003682c, which is the address of the modified 

register that caused the trap

– By running a file search (Search -> File) for the address, the search finds the specific 

SMU_AGC register which equals the modified register. The name of the modified register helps 

to find the code line which is causing the trap (By using another search for “AGC”)

Run and Test

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

3.1 Synchronous software trap 

› Restart the program by pressing the “Restart” button in the debugger

› Provoke the synchronous software trap by setting the value of 

“g_provokeSynchronousSoftwareTrap” in the “Expressions” window to “1”

› Press the “Resume” button to start the program

› Observe the following information:

– The debugger stopped in the IfxCpu_Trap_assertion() function (IfxCpu_Trap.c)

– The “Variables” window of the debugger displays the “trapWatch” structure and the value of its 

parameters

– The trap is provoked by CPU0, it is a trap of class 5, the trap id is 1 and the Return Address 

(RA) is 0x8000008a (214748378610)

– It is an Arithmetic Overflow Error (Trap table, class 5 and tin 1)

Copyright © Infineon Technologies AG 2021. All rights reserved.



Run and Test

3.2 Synchronous software trap

› Observe the following information:

– The call stack in the “Debug” window displays the function which was called before the trap 

occurred (in this case the function run_trap_provocation(), the address displayed behind this 

function equals the Return Address (RA))

– By clicking on this function, the debugger jumps to the specific code line in the 

CPU_Trap_Recognition.c file and to the corresponding assembly line in the “Disassembly”

window. The address of the assembly line equals the Return Address (RA)

Copyright © Infineon Technologies AG 2021. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2021. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-12
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
CPU_Trap_Recognition_1
_KIT_TC334_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

