
AURIX™ TC3xx Microcontroller Training

V1.0.0

ADC_Filtering_1

for KIT_AURIX_TC334_LK
ADC filtering

Please read the Important Notice and Warnings at the end of this document



Scope of work

Four EVADC channels are used to convert the same analog signal with 

different filters enabled.

The Enhanced Versatile Analog-to-Digital Converter (EVADC) module is 

configured to convert four channels. The data resulting from the conversions 

of three channels is automatically modified: one channel computes an 

average on 4 results, another channel applies a 3rd order Finite Impulse 

Response (FIR) filter and another channel applies a 1st order Infinite Impulse 

Response (IIR) filter. Finally, the last channel measures the same signal 

without Data Modification. The channels are continuously converted and, for 

each of them, the maximum and minimum values are stored, which are then 

sent through UART in order to be compared.

Copyright © Infineon Technologies AG 2020. All rights reserved.



Introduction

› The Enhanced Versatile Analog-to-Digital Converter module (EVADC) of the AURIX™ 

TC33x comprises 4 independent analog to digital converters (EVADC groups) with up to 16 

analog input channels each

› Each channel can convert analog inputs with a resolution of up to 12-bit

› Analog/Digital conversions can be requested by several request sources: 

– Queued request source, specific to a single group 

– Synchronization source, synchronized conversion request from another ADC master 

kernel

› A queued request source provides several buffer stages building a queue and can handle 

application-specific arbitrary conversion sequences up to the queue size

› The trigger for the conversion can be sent:

– Once (by another external module)

– On a regular time base (by an external timer)

– Permanently (by using the refill option)

Copyright © Infineon Technologies AG 2020. All rights reserved.



Introduction

› The data resulting from conversions can be automatically modified before being used by an 

application to reduce the required CPU/DMA load to process the conversion

› Three types of data modification are supported:

– Standard Data Reduction Mode

– Result Filtering Mode

– Difference Mode

› With Standard Data Reduction Mode, the EVADC accumulates up to 16 values before 

generating a result interrupt. This mode can be used on any result register of any group 

GxRES0..GxRES15, where x is the number of the group

› When Result Filtering Mode is enabled, depending on the configuration, the EVADC can 

apply either a 3rd order Finite Impulse Response (FIR) filter with selectable coefficients, or a 

1st order Infinite Impulse Response (IIR) filter with selectable coefficients to the conversion 

results. This mode can be applied on the result registers GxRES7 and GxRES15 of any 

group, where x is the number of the group

› The Difference Mode subtracts the content of the result register GxRES0 from the 

conversion results. This mode can be used on the result registers GxRES1..GxRES15 of any 

group, where x is the number of the group

Copyright © Infineon Technologies AG 2020. All rights reserved.



This code example has been developed for the 

board KIT_A2G_TC334_LITE.

In this example, the pins AN36, AN37, AN38 

and AN39 are used, connected to a voltage 

source. 

Note: The channels can be HW filtered by the 

board, depending on which capacitor/resistors 

couples are soldered. Consult the AURIX™ TC334 

lite Kit’s User Manual to check which channels are 

filtered by HW.

Note: The reference voltage (VAREF) of the EVADC 

on the board KIT_A2G_TC334_LITE is 3.3 V.

Hardware setup

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the EVADC

The configuration of the EVADC is done in the initADC() function in four different steps:

› Configuration of the EVADC module

› Configuration of the EVADC group

› Configuration of the EVADC channels

› Configuration of the data modification

Configuration of the EVADC module

The default configuration of the EVADC module, given by the iLLDs, can be used for this example.

This is done by initializing an instance of the IfxEvadc_Adc_Config structure and applying default values to 

its fields through the function IfxEvadc_Adc_initModuleConfig().

Then, the configuration can be applied to the EVADC module with the function IfxEvadc_Adc_initModule().

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the EVADC group

The configuration of the EVADC group is done by initializing an instance of the IfxEvadc_Adc_GroupConfig

structure with default values through the function IfxEvadc_Adc_initGroupConfig() and modifying the 

following fields:

› arbiter – a structure that represents the enabled request sources, which can be one of the three queue 

sources. In this example, arbiter.requestSlotQueue0Enabled is set to TRUE, thus enabling the request 

queue 0

› queueRequest[0] – a structure that allows to configure the queue request source 0 by setting:

– triggerConfig – a parameter that specifies the trigger configuration

› master – to indicate which converter is the master

› groupId – to select which converter to configure

The configuration is applied through the function IfxEvadc_Adc_initGroup().

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the EVADC channels

The configuration of each channel is done by initializing an instance of the IfxEvadc_Adc_ChannelConfig

structure with default values through the function IfxEvadc_Adc_initChannelConfig() and modifying the 

following fields:

› channelId – to select the channel to configure

› resultRegister – to indicate the register where the A/D conversion value is stored

Then, the configuration is applied with the function IfxEvadc_Adc_initChannel() and the channel is added to 

the queue through the function IfxEvadc_Adc_addToQueue().

Finally, the result registers used for storing the conversion results can be configured to use data modification, 

in order to enable the filtering.

Configuration of the data modification

The data modification is configured in the applyFiltering() function.

To support the EVADC data modification it is needed to directly modify the Group Result Control Registers 

(GxRCRy, with x indicating the Group number and y indicating the result register where to apply the filtering).

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the data modification

To enable the Standard Data Reduction Mode on a specific result register, the Data Modification 
Mode (DMM) bit field of the associated GxRCRy register must be set to 
IfxEvadc_DataModificationMode_standardDataReduction (00B) and the Data Reduction Control 
(DRCTR) bit field of the same register can be set to one of the values presented in table 1.

When the conversion is ready, depending on the configuration of the DRCTR bit field, the result 
register contains the sum of up to 16 result values, thus it is needed to divide the content of the result 
register GxRESy by the number of the accumulated values in order to obtain an average of the 
measurements.

Note: Using Standard Data Reduction Mode, the 

final result must be read before the next data 

reduction sequence starts (before t5 or t9 in the 

example), otherwise the Valid Flag (VF) bitfield

will not be cleared. 

In order to read a correct measurement, VF must 

be 1 and Data Reduction Counter (DRC) bitfield

must be 0.

Copyright © Infineon Technologies AG 2020. All rights reserved.



Configuration of the data modification: Table 1

Implementation

DMM DRCTR Filter coefficients

00B 0000B = IfxEvadc_DataReductionControlMode_0 Data Reduction disabled

00B 0001B = IfxEvadc_DataReductionControlMode_1 Accumulate 2 result values

00B 0010B = IfxEvadc_DataReductionControlMode_2 Accumulate 3 result values

00B 0011B = IfxEvadc_DataReductionControlMode_3 Accumulate 4 result values

00B 0100B = IfxEvadc_DataReductionControlMode_4 Accumulate 5 result values

00B 0101B = IfxEvadc_DataReductionControlMode_5 Accumulate 6 result values

00B 0110B = IfxEvadc_DataReductionControlMode_6 Accumulate 7 result values

00B 0111B = IfxEvadc_DataReductionControlMode_7 Accumulate 8 result values

00B 1000B = IfxEvadc_DataReductionControlMode_8 Accumulate 9 result values

00B 1001B = IfxEvadc_DataReductionControlMode_9 Accumulate 10 result values

00B 1010B = IfxEvadc_DataReductionControlMode_10 Accumulate 11 result values

00B 1011B = IfxEvadc_DataReductionControlMode_11 Accumulate 12 result values

00B 1100B = IfxEvadc_DataReductionControlMode_12 Accumulate 13 result values

00B 1101B = IfxEvadc_DataReductionControlMode_13 Accumulate 14 result values

00B 1110B = IfxEvadc_DataReductionControlMode_14 Accumulate 15 result values

00B 1111B = IfxEvadc_DataReductionControlMode_15 Accumulate 16 result values

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the data modification

To enable the Result Filtering Mode on a specific result 

register, the Data Modification Mode (DMM) bit field of 

the associated GxRCRy register must be set to 

IfxEvadc_DataModificationMode_resultFilteringMode

(01B) and the Data Reduction Control (DRCTR) bit field of 

the same register can be set to enable either a 3rd order 

Finite Impulse Response (FIR) filter or a 1st order Infinite 

Impulse Response (IIR) filter, both with selectable 

coefficients, according to the values in table 2.

When a FIR filter is enabled, depending on the selected 

coefficients, a gain of 3 or 4 (the DC gain of a FIR filter is 

equal to the sum of its coefficients) is applied to the ADC 

result, producing a 14-bit value.

Therefore, in order to obtain the filtered measurement, it 

is needed to divide the content of the result register by 

the sum of the selected coefficients.

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the data modification

The selectable coefficients for an IIR filter lead to a 

gain of 4 to the ADC result, producing a 14-bit value. 

Consequently, in order to obtain the filtered 

measurement, the content of the result register needs 

to be divided by 4.

All the measurement’s divisions are carried out in the 

Cpu0_main.c file, after reading the conversion result 

from the result register.

The FIR and IIR filters need to be initialized, 

otherwise the first values are incorrect (see the 

figures for the two filters). 

Note: In this example, a delay before starting to read the conversion results is needed. This ensures that 

incorrect values are not read due to the filters not being yet at full speed.

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

DMM DRCTR Filter coefficients

01B 0000B = IfxEvadc_DataReductionControlMode_0 FIR filter: a=2, b=1, c=0

01B 0001B = IfxEvadc_DataReductionControlMode_1 FIR filter: a=1, b=2, c=0

01B 0010B = IfxEvadc_DataReductionControlMode_2 FIR filter: a=2, b=0, c=1

01B 0011B = IfxEvadc_DataReductionControlMode_3 FIR filter: a=1, b=1, c=1

01B 0100B = IfxEvadc_DataReductionControlMode_4 FIR filter: a=1, b=0, c=2

01B 0101B = IfxEvadc_DataReductionControlMode_5 FIR filter: a=3, b=1, c=0

01B 0110B = IfxEvadc_DataReductionControlMode_6 FIR filter: a=2, b=2, c=0

01B 0111B = IfxEvadc_DataReductionControlMode_7 FIR filter: a=1, b=3, c=0

01B 1000B = IfxEvadc_DataReductionControlMode_8 FIR filter: a=3, b=0, c=1

01B 1001B = IfxEvadc_DataReductionControlMode_9 FIR filter: a=2, b=1, c=1

01B 1010B = IfxEvadc_DataReductionControlMode_10 FIR filter: a=1, b=2, c=1

01B 1011B = IfxEvadc_DataReductionControlMode_11 FIR filter: a=2, b=0, c=2

01B 1100B = IfxEvadc_DataReductionControlMode_12 FIR filter: a=1, b=1, c=2

01B 1101B = IfxEvadc_DataReductionControlMode_13 FIR filter: a=1, b=0, c=3

01B 1110B = IfxEvadc_DataReductionControlMode_14 IIR filter: a=2, b=2

01B 1111B = IfxEvadc_DataReductionControlMode_15 IIR filter: a=3, b=4

Available coefficients for FIR and IIR filters: Table 2

Copyright © Infineon Technologies AG 2020. All rights reserved.



Configuration of the data modification

In this example, the converted channels are configured as it follows:

The channel AN36 has no data modification enabled in order to use it as a comparison.

Implementation

Channel Data Modification Mode enabled

AN39 Standard Data Reduction Mode 

AN38 Result Filtering Mode: IIR filter

AN37 Result Filtering Mode: FIR filter

AN36 No Data Modification Mode enabled

Table 3

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the EVADC

When the EVADC module, its group and channels are configured together with the Data Modification 

registers, the scan sequence is started with the function IfxEvadc_Adc_startQueue().

Read the EVADC measurements

Finally, to read a conversion, the function readADCValue() is used, which calls the 

IfxEvadc_Adc_getResult() function from iLLDs until a new measurement is returned (a new measurement is 

considered correct only when both the Valid Flag and the Data Reduction Counter bitfield are set to 1 and 

respectively 0, the latter is needed because the Standard Data Reduction Mode is enabled on the AN39 pin).

All the functions used to get a conversion and configuring the EVADC module, its group and channels can be 

found in the iLLD header IfxEvadc_Adc.h.

Copyright © Infineon Technologies AG 2020. All rights reserved.



Implementation

Configuration of the UART

In this example, the UART connection is used to make the debugging more convenient and easier to 

understand. The configured EVADC channels are continuously read, but the maximum and minimum values, 

together with the computed Vpp are printed using UART communication only when the user requests them.

The initUART() function initializes the UART communication.

The iLLD function IfxAsclin_Asc_initModuleConfig() fills the configuration structure ascConf with default 

values. Then, the parameters used to configure the module are set, depending on the needed connection: 

baudrate, Tx and Rx buffers, Tx and Rx pin configuration etc.

Finally, IfxAsclin_Asc_initModule() initializes the module with the user configuration and 

IfxAsclin_Asc_stdIfDPipeInit() initializes the standard interface to use the ASCLIN module.

The functions isDataAvailable() and receiveData() are used to interface with the ASCLIN module to check if 

new data is available through the function IfxAsclin_Asc_getReadCount() and, respectively, to receive data 

over the UART communication through the function IfxAsclin_Asc_read().

The function IfxStdIf_DPipe_print() is used to print the stored processed values.

The functions used to interface and initialize the ASCLIN module can be found in the iLLD header 

IfxAsclin_Asc.h, while the latter can be found in the iLLD header IfxStdIf_DPipe.h.

Copyright © Infineon Technologies AG 2020. All rights reserved.



Run and Test

› For this training, a serial monitor is required for visualizing the values. The monitor can be 

opened inside the AURIX™ Development Studio using the following icon:

› The serial monitor must be configured with 

the following parameters to enable the 

communication between the board and the 

PC: 

– Speed (baud): 115200

– Data bits: 8

– Stop bit: 1

Copyright © Infineon Technologies AG 2020. All rights reserved.



After code compilation and flashing the device, perform the following steps:

› Connect the channels AN39, AN38, AN37 and AN36 to any DC signal between 0 and 
3.3V

› Open the serial monitor and start the serial communication, linked with the appropriate 
COMx port (this can be checked in the Device Manager)

› After a few seconds, send the character “1” to print the maximum and minimum values 
read by the channels, together with the computed Vpp

The maximum and minimum values are expressed as a 12-bits integer value, in 
decimal format (0 - 4095 range), while the Vpp is expressed in Volts

It can be noticed that for this signal, the filter applying an average is the most effective 
one to reduce the Vpp range.

Run and Test

Copyright © Infineon Technologies AG 2020. All rights reserved.



References

› More code examples can be found on the GIT repository:

› https://github.com/Infineon/AURIX_code_examples

› For additional trainings, visit our webpage:

› https://www.infineon.com/aurix-expert-training

› AURIX™ Development Studio is available online:

› https://www.infineon.com/aurixdevelopmentstudio

› Use the „Import...“ function to get access to more code examples.

› For questions and support, use the AURIX™ Forum:

› https://www.infineonforums.com/forums/13-Aurix-Forum

Copyright © Infineon Technologies AG 2020. All rights reserved.

https://github.com/Infineon/AURIX_code_examples
https://www.infineon.com/aurix-expert-training
https://www.infineon.com/aurixdevelopmentstudio
https://www.infineonforums.com/forums/13-Aurix-Forum


IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .

With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.

In addition, any information given in this
document is subject to customer’s compliance
with its obligations stated in this document and
any applicable legal requirements, norms and
standards concerning customer’s products and
any use of the product of Infineon Technologies in
customer’s applications.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical
departments to evaluate the suitability of the
product for the intended application and the
completeness of the product information given in
this document with respect to such application.

For further information on the product,
technology, delivery terms and conditions and
prices please contact your nearest Infineon
Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may
contain dangerous substances. For information
on the types in question please contact your
nearest Infineon Technologies office.

Except as otherwise explicitly approved by
Infineon Technologies in a written document
signed by authorized representatives of Infineon
Technologies, Infineon Technologies’ products
may not be used in any applications where a
failure of the product or any consequences of the
use thereof can reasonably be expected to result
in personal injury.

Edition 2021-12
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com

Document reference
ADC_Filtering_1_KIT_TC334_LK

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

http://www.infineon.com/
mailto:erratum@infineon.com?subject=Document%20question

