AN 201609 PL30 027 Infineon

Firmware update via SD card
XMC4000

About this document

Scope and purpose

This application note describes how to make use of the Alternate Boot Mode (ABM) to perform a firmware
update via the SD card.

Table of contents

ADOUL this dOCUMENTee ettt et e e e e e ee e e e e e e e e e s e men e e e e e e e e s s s manaaeaaaeesssnnnnnnas 1
TaDLE Of CONEENTES ...ttt ettt e e ee e e e e e e e s s s e e e e e s e e e e s s s aneaeaaaaae s e smnmeaaaanan 1
1 INEFOAUCHION ...ttt ettt et e e e e et e e e s e e e e e s me et e e e e e e e e e e mmmneeeaeeeeeannen 2
2 IMPLlEMENTAtiON OVEIVIEW.......coiiiiiiiiiieeeseeeseeeeseeseesesseesssseesessasassasaaaes 3
2.1 REQUITEA TOOLS 1ttt ettt ettt et e et e e te e te e baessaeesaeesbesssa e baeassaessasssasssaensaessesssesssesnses 4
2.2 Alternate BOOt MOAE (ABM)......ooueiieereiceeeieeeeeetee ettt et eeaeeeesteeesareeeateeessssesssesesssesessesensseesssessnsesonsesesnsens 5
2.3 Entry to Alternate BOOt MOAE (ABM).......cveeueeeeieetieieeteeeteteeeeetesseestesesseeaesseessessesssessessaessensasssessensanses 6
2.4 Exit from Alternate BOOt MOAE (ABM)oooueiiieiiieeeieeeeeeeeeeeeee ettt e et e e s ae s e st e e snaeesnseessnneesnneas 6
3 Project for flash loader ...t 7
3.1 Creation of XMC45_FlashLOAdEr ProjeCt.....cciciicieceeiiirieieiteeeeteseeeeteeeesteseeessessesssessessasssessessssssensens 8
3.2 Convert flash loader binary file to C SOUICE file ...uuieiieiiiiiieeeeeeceeeee e 11
3.3 Details on flash loader script file RanNAliNgooueeiiiinieie e 13
4 Project for production firMWaAreottt eeeee e e e e e e ameeee e e s e e e e 14
4.1 Creation of XMC45_Production_FirmMwWare ProjeCt......cceccceeceerecieecieneeieseeeesieseeseseeesessessesssessenes 15
4.2 Details on ABM header INStallationocooiiiiieiiienieteeeteteee ettt ettt es 16
4.3 Details on production firmware script file handling.........ccveveeieeieciinieeeeeeeceee e 16
5 Project for XMC45_Update_Firmware Project.......ccuuuuiiioeorrreiiieeeeeeeeceeeeeeeeeeeeeeneeeeseeeeeenns 18
5.1 Creation of XMC45_Update_FirMWarec.cceeieeiieieieeeeieeeeeesteeeeeesteesessessaesessesssessesssessessasssessenns 18
6 Flash loader test Mode ... 20
6.1 SETUP fOr LEST MOAE.. ittt et s e e s e e e ae e be e be e baeesbessbessseensaesssesssesssesnses 21
6.2 ABM header GENEIatioN......coiiciirieieieeteteee ettt ettt et et e et et este et et e st ebesse et esbaeseestassasnsansassaensensnan 22
6.3 Y SEEIM TS T ettt st e e sttt e s st e e e st e e e st e e s e a b e e e e at e e e s ataeesenraeeeennes 22
6.4 EXIE TEST_MODE ... oottt ettt ettt e ve e e rve e e taeesbae e baeessbeaessaasesseessbaeesssaassaassseessseeasseasnnes 22
7 HOW 10 B@ST7 ..ttt ettt ceeeee e eeeen e seeenas e e eeansa e eennsssseansssnsennsssssennsssassnnsnsennnnn 23
LY I o] T 4T o1 oY NS 24
Application Note Please read the Important Notice and Warnings at the end of this document Revision 1.0

www.infineon.com 10.09.2016

o~ _.
Firmware update via SD card |nf| neon
XMC4000

Introduction

1 Introduction

As the XMC4000 microcontroller is equipped with an internal flash memory, firmware can be erased and
reprogrammed. This gives product manufacturers the opportunity to make progressive improvements to their
firmware addressing software bugs or enhancing product performance.

This project is capable of performing flash programming during software run time.The latest firmware is stored
in the SD card in the form of a binary file called “firmware.bin” which is read and programmed into the
XMC4500 flash when a button is pressed.

This provides the following benefits

e Simple - no special GUI software or stack required

e Convenient and portable as no PC or cable connection is required
e Only single flash programming is required during production

o Applicable to all XMC4000 series with SD card support

Latest
Firmware

Figurel Firmware update concept

Application Note 2 Revision 1.0
10.09.2016

Firmware update via SD card
XMC4000

Implementation overview

2 Implementation overview

(infineon

The complete implementation of this firmware update via SD card involves creating the following 3 DAVE™4

projects with different objectives.
DAVE™4 projects
1. XMC45_FlashLoader project
> Reading SD card
> Flash program the XMC™ flash
> Create the ABM header
2. XMC45_Production_Firmware project

> Install ABM header

> Include both the application and flash loader software

> Conditional jump into flash programming during run time

» Production firmware package
3. XMC45_Update_Firmware A or B project

> Latest application firmware update

XMC45 FlashLoader
@ Hex workshop
editor

XMC45_loader.c

For Production

XMC45 Production
__Firmware

. XMC45_Update_
Firmware

firmware.bin

4

¢

0x080F FFFF

256K (PS11)

FlashLoader

Px080C 0000

256K (PS10)

Application

Dx0808 0000

code

256K (PS9)

Dx0804 0000

128K (PS8)

64K (PS4)

64K (PS0)

Dx0802 0000

Px0801 0000

x0B00 0000

Figure2 Implementation overview

Application Note

Revision 1.0
10.09.2016

Firmware update via SD card
XMC4000

Implementation overview

2.1 Required tools
Hardware

e XMC4500 relax kit

e SDcard

e SD card adaptor

e USBcable

e PLSUAD2 debugger (optional)

Software installation

e PLS UDE debugger (optional)
e DAVE4 version 4.2.6

e Hex workshop - http://www.hexworkshop.com/

Preparation

infineon

Please setup the hardware connection as shown below and copy the required files to the windows desktop.

Clien_t PCv

¢

firmware.bin

SD card slot

XMC web server

USB cable

, Copy this folder to Desktop
, DAVES linker_script

, DAVES Project Files
| XMC45_FlazhLoader
, XMCA5_Production_Firmware
, XMCA5_Update_Firmware_&
, XMCA5_Update_Firmware_B

J Test firmware_bin Files
J firmware A

J firmware B

| Copy these folders to the

. XMC45_FlashLoader linker_script for PRODUCTION window desktop.
J XMUCA5_FlashLoader linker_script for TEST MODE

Figure3 Hardware connection and projects files

Application Note

Revision 1.0
10.09.2016

http://www.hexworkshop.com/

o~ _.
Firmware update via SD card |nf| neon
XMC4000
Implementation overview

2.2 Alternate Boot Mode (ABM)
As normal boot mode does not support the reading of SD cards, we shall make use of ABM for this application.

An application (eg.Flash loader) located at a user defined location on the flash is given control by the Startup
Software (SSW). The SSW, after completing its execution, evaluates the ABM header stored at a defined address
on the flash which, in turn, provides the location of the application placed at a user defined address. Two such
applications can be programmed into the flash and, thus, two ABMs are supported. An invalid header results in
the SSW aborting further execution and launching the CPU into safe mode. A PORST is required to exit the safe
mode of operation.

The ABM0 and ABM1 header is the last 32 bytes (Example 0COOFFEO« and 0CO1FFEO. for XMC4500) of the first
and second 64 KB physical sectors.

Flash Start
Y -
Mote 2
3 A Stack pointer - i
Ve ctoitabl o A4 Application Reset Vector
A+l
Application LEN
64KB phygical sector \
Magic Key (32 bits)
Start address of code (32 bits) = A | AHM
32 Bytes Application length (32 bits) = LEN Mote 1 Header
CRC-32 for application length (32 bits) | Note 1
Y hA CRC-32 code for above 4 (32 bits)
i I -

64KE physical sector

Note 1: Application length and CRC code for application range to be
set to OxFFFFFFFF for scattered applications

Note 2: Application can be placed any where on the FLASH. Of
course, the ABM header must not be overwritten

Figure4 ABM header

Note: Please note that the ABM header can be generated in an XMC45_FlashLoader project using the
TEST_MODE (see flash loader test mode). Any changes in the ABM header field (eg. start address
etc) requires regenerating the ABM header as the CRC value will be incorrect.

Application Note 5 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf| neon
XMC4000
Implementation overview

2.3 Entry to Alternate Boot Mode (ABM)

While the application code is running, the software can gain entry into Alternate Boot Mode (ABM) (entry into
flash loader software) by programming the SWCON of the startup configuration register with boot from
alternate Flash Address 1, followed by a system reset as shown below.

STCON

Startup Configuration Register (0010, Reset Value: 0000 0000, void Reset to ABM1{void)
1% 14 13 12 11 w0 9 8 7 6 &5 4 3 2 1 0 {
T — ToT T i /* Clear the reset cause field for proper reset detection of the ssw */
0] SWCon l o l HIWCON SCU_RESET->RSTCLR = 1<<SCU_RESET_RSTCLR_RSCLR_Pos;
— — B S— /* Set ABMB as boot mode in SWCON field of STCON register */
WR_REG(SCU_GENERAL->STCON,
Field Bits Type | Description SCU_GENERAL_STCON_SWCON_Msk,
SWCON [11:8] |rw | SW Configuration SCU_GENERAL_STCON_SWCON_Pos,
Bit[9:8] is copy of Bit[1:0] after PORESET S CONFIG ABMI);
00005 Normal mede, boot from Boot ROM /* request system reset */

00015 ASC BSL enabled
00105 BMI customized boot enabled PPE->AIRCR = 1 << PPB_AIRCR_SYSRESETREQ Pos |

00115 CAN BSL enabled @x5FA<<PPE_AIRCR_VECTKEY Pos | @xl << PPB_AIRCR_PRIGROUP Pos;
01005 Boot from Code SRAM }

1000, Boot from alterate Flash Address 0
I1l[!£lE Boot from altemate Flash Address 1 I

11105 Enable faliback Altlemate Boot Mode (ABM)

Note: Only reset with Power-on Resel

Figure5 Entry into Alternate Boot Mode (ABM)

2.4 Exit from Alternate Boot Mode (ABM)

After flash programing, which is executed by the flash loader software in Alternate Boot Mode (ABM), the user
can exit the Alternate Boot Mode (ABM) to run the application software by programming the bit field SWCON of
the startup configuration register with normal mode, boot from boot ROM, followed by a system reset as
shown below.

STCON
Startup Configuration Register {0010) Reset Value: 0000 0000, \{wid Reset_to_NormalMode(void)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 /* Clear the reset cause field for proper reset detection of the ssw */
t T T T T T T T T T T SCU_RESET->RSTCLR = 1<<5CU_RESET_RSTCLR_RSCLR Pos;
/* Set ABM@ as boot de in SWCON field of STCON register */
° 0 HwcoN T gl o STEA feie
+ 1 L o 1 1 1 L 1 T SCU_GENERAL_STCON_SWCON_Msk,
SCU_GENERAL_STCON_SWCON_Pos,
Field Bits |Type | Description Equeft’*f?f:gfj:::f”
11- " - PPB->AIRCR = 1 << PPB_AIRCR_SYSRESETREQ_Pos |

SWCON [| IB] w SHQC:B?T;I(?;I;:%?%M'] 0_| after PORESET @x5FA<<PPB_AIRCR_VECTKEY_Pos | @x1 << PPB_AIRCR_PRIGROUP_Pos;
[00005 Normal mode. boot from Boot ROM |
00015 ASC BSL enabled
00105 BMI customized boot enabled
00115 CAN BSL enabled
0100 Boot from Code SRAM
1000g Boot from alternate Flash Address 0
1100g Boot from alternate Flash Address 1
11105 Enable fallback Alternate Boot Mode (ABM)
Mote: Only reset with Power-on Reset

Figure 6 Exit from Alternate Boot Mode (ABM)

Application Note 6 Revision 1.0

10.09.2016

o~ _.
Firmware update via SD card |nf| neon
XMC4000

Project for flash loader

3 Project for flash loader

To begin, we shall create a project for the flash loader that will be located at address location 0x080C0000. The
main objectives of this project are to read the SD Card and to program the XMC4000 flash, followed by
RESETing to normal mode.

The file “main.c” provides LED2 to indicate flash update completion or an error and the “button 2” is used as a
reset to normal operation mode (running the application software).

The file “flash_loader.c” is used to read the SD Card for the binary file (firmware.bin) and interface with the
flash write low level driver (flash.c).

The flash loader is also equipped with the capability to make the ABM header in the TEST_MODE setting.

Read SD Card

\ No
Success?

Yes

Flash Program

\ No
Success?

Yes

LED2 ON
(Error)

LED2 Blinking

4

No Button 2
Press?

Yes

A\'4
RESET to Normal
mode

Figure7 XMC45_FlashLoader flow chart

Application Note 7 Revision 1.0
10.09.2016

Firmware update via SD card
XMC4000

infineon

Project for flash loader

3.1

Creation of XMC45_FlashLoader project

Follow the procedures below to create project XMC45_FlashLoader

1. First create a XMC4500 DAVE™ CE project call “XMC45_FlashLoader”.

2. From the “Add New App” window, add the “FATFS” app into the project as shown below.

3. Atthe “App dependency” window, click on the FATFS app.

-
% Add New APP

=] e |

[] Show hidden categories | Search filter

wm DAC_SWEEP [4.0.16]
4 (= File System

wm FATFS[4.0.10]
4 [Flash

wm E_EEPROM_XMC4 [4.0.6]

.

Double-Click on the APP to add it to the active project.
Show latest versions only
Hide beta versions

@ APP Info Add

Close

e = = —

um APP Dependency 23 g HW Signal Connectivity & Conscle

FATFS
FATFS_0

-~ !
SDMMC_BLOCK
SDMMC_BLOCK_0D

| S,

RTC SYSTIMER

RTC_0 SYSTIMER_O
/ l \
U R
NV Y B 4

‘ CLOCK_XMC4 ‘ ‘

CPU_CTRL_XMC4
CLOCK_XMC4_0

CPU_CTRL_XMC4_0

Figure 8

Add FATFS apps into XMC45_FlashLoader project

4. Configure the FATFS drive configuration using SDMMC (SD mode)

5. Finally, click on the code generation icon = .

FATFS 0 2

General Settings |Advanced Settings|

Volume Configurations

#Volumes (Logical Drives): 1 -

Drive Configurations

Drive Nr.: Block Driver Type: Block Driver Instance Name:
#0 SDMMC(SD Mode) -

Standard C Library Configuration
[] Enable support for Standard C Library API

————— —
i DAVE CE - DAVE™ - G\ Workspace_XMC4000WXMCAK_ABM _SDCARD v1

File Edit Source Refactor MNavigate Search Project DAVE Window Help

| A8 fm@#o#fi‘f»'fo"'f

D

Generate Code

RTOS Cenfiguration
[Fluse RTOS
Figure9 FATFS configuration and code generation

Application Note

Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf| neon
XMC4000
Project for flash loader

6. Copy all the files from folder “..\DAVE4 Project Files\XMC45_FlashLoader” into project
XMC45_FlashLoader (Overwriting files main.c and linker_script.id).

DAVE4 Project Files » XMC45_FlashLoader

4 (=5 XMCA5_FlashLoader [Active - Debug |

. > q;-? Binaries
DAVE4 workspace library » @ Includes
XMC45_FlashLoader > (= Dave
MName > & D.ebus
> (= Libraries
= flash.c =
] flash.h > (= Startup

» [flash_loader.c

flash_loader.
| flash_loader.c » [n] flash_loader.h

|| flash_loader.h

. [flash.c
= GPIo.c Files copy . [H flash.h
=] linker_script.ld » . [§ GPIo.c
| main.c > [main.c
|| XMC45_INIT.h » [B) XMC45_INIT.h

> [B XMC4510.h
> [B XMC45_IRQ.h

=] linker_script.d

| XMC4510.h
| XMC45_IRQ.h

Figure 10 Copy source files into project folder

7. The copied linker_script.id file has been modified to map the flash loader software to flash memory
location 0x080C0000. (see: flash loader script file handling).

8. To generate a binary file “XMC45_FlashLoader.bin” from this project, right click on the
“XMC45_FlashLoader” project and select “Properties”.

9. Select C/C++ Build >> Settings >> ARM-GCC-Create Flash image

10. Replace “S{OUTPUT_PREFIX}${OUTPUT} “ with “XMC45_FlashLoader.bin” in the command line as
shown below and click on Apply button.

& Properties for XMC45_FlashLoader =) =
type filter text Settings G
+ Resource
Builders
4 C/Ce Build Configuration: [Debug [Active]

~ | [Manage Configurations.

Build Variables
Environment

Logging 8 Tool Settings | # Build Steps | /" Build Artifact | [} Binary Parsers | @ Eror Parsers
Memory Settings
Microcontroller Info (2 Debugging Command: "${ARM_GCC_HOME}/bin/arm-none-eabi-objcopy”
s -
- ® ARMAGCC € Compler Alloptions: -0 binary "XMC45_FlashLoader.cif" R
Tool Chain Editor (% Preprocessor
» C/C++ General (5 Directories
Project References (& Optimization il
Run/Debug Settings (5 Warnings
Task Tags (2 Miscellancous
. Validation 4 B ARM-GCC Assembler Expert settings:
5
(& Preprocessor Command g1 101AND) SIFLAGS} S{OUTPUT_FLAGIKMCAS_FlashLoader.bin SINPUTS]
(2 Directories line pattern:

(2 Warnings
(2 Miscellaneous
4 5 ARM-GCC C Linker
(5 General
(2 Libraries
(8 Miscellaneous
(& Output
(& Section
(8 Miscellaneous
4 B ARM-GCC Creste Listing
(5 General
4 18 ARM-GCC Print Size
(% General

Figure 11 Set bin file name as XMC45_Loader.bin

Application Note 9 Revision 1.0

10.09.2016

infineon

Firmware update via SD card

XMC4000
Project for flash loader

11. Select “Output” and for output file format select binary.

12. Click on “Apply” and “OK” button to close.

Build Variables
Environment
Logging
Memory Settings
Microcontroller Info
Tool Chain Editor
b C/C++ General
Project References
Run/Debug Settings
Task Tags
> Validation

& Properties for XMC45_FlashLoader Bl

type filter text Settings = - -
> Resource
Builders

4 CfC++ Build Configuration: [Debug [Active] '][ManagECunfiguraUun;..

& Tool Settings | & Build Steps |

Build Artifact | [y Binary Parsers | @ Error Parsers

(& Debugging

4 1 ARM-GCC C Compiler
(5 Preprocessor
(22 Directories
(% Optimization
& Warnings
(& Miscellaneous

4 I8 ARM-GCC Assembler

p—
Output file format (-0} | [binary |

(5 Preprocessor
(2 Directories
(B Warnings
(% Miscellancous
4 5 ARM-GCC C Linker
(2 General
(& Libraries
(2 Miscellaneous
4 1 ARM-GCC Create Flash Image
(22 Section
(2 Miscellaneous
4 1 ARM-GCC Create Listing
(% General
4 % ARM-GCC Print Size
(% General

Figure 12 Set output as binary

13. Click on the compile button P to compile the software

14. Ensure that XMC45_FlashLoader.bin file is generated in the Debug folder.

a = Debug

> (2= Dave

» [= Libraries

> (2= Startup
flash_loader.o - [arm/1g]
flash.o - [arm/le]
GPIO.o - [arm/le]
main.o - [arm/le]
ﬂt& KMC45_FlashLoader.elf - [arm/le]
flash_loader.d
flash_loader.o.lst
flash.d
flash.o.lst
GPIO.d
GPIO.o.Ist
main.d

=| main.o.lst

Figure 13 Generated bin file

10 Revision 1.0

Application Note
10.09.2016

Firmware update via SD card
XMC4000
Project for flash loader

infineon

3.2 Convert flash loader binary file to C source file

In order to merge the flash loader software into the production firmware as a single project, we need to
transform the binary file to a C source file. This process can be performed with the “Hex workshop” software.

1. Activate the “Hex workshop” software

2. Click File>>Open

3. Browse to project debug folder “../XMC45_FlashLoader/Debug”
4. Select binary file “XMC45_FLashLoader.bin”

3 XMC45_Loader.bin

4 firmware.bin

5 loader_0:080C0000.bin
6 loader_0:080C0000.c
7 Firmware.bin

8 Firmware.bin

Exit

4 Libraries
5 DAVES workspace
&) Document XMC1000
Gl Document XMC4000
gﬂ Documents
JW Music
@l My Admin
[Pictures

E Videos

1% Computer

% SystemDisk (C:)

¥ toochang (\SINSDN38.ap.infinea

5o swdepot (Viswdepot) (5:)

€ Netwnrd

| flash_loader.d
|| flash_loader.o
|| flash_loader.o.lst
|| GPIO.d

|| GPIO.0

|| GPIQ.o.lst

| main.d

| main.o

| main.o.lst

| makefile

|| objects.mk

|| objects.rsp

|| sources.mk

|| subdir.mk

H « »
5. Click “Open” to complete the process
-
ex Wol {f) Open u
Mew Ctrl+M |
& Open... Ctrl+0 Organize = Mew folder ==« [@
Import.. 1 ‘ i Favorites Name Type
| start File f
Page Setup... Bl Desktop artup I I i e. o il
. & Downloads || flashd 1 : D File
]_.XMC45_F|ashLoa.der.b|n i:__‘ Recent Places || flash.o O File
2 XMC45_Loader.bin (] flash.ost N

D File
O File
LSTFi
D File
O File
LSTFi
D File
O File
LSTFi
File

MICFil
RSP Fi
MEFil
MEKFil

[|| XMC45_FlashLoader.bin

27/1/2016 4:56 PM BINFi

4] T

] k

File name: XMC45_FlashLoader.bin

~ [AllFiles () -

I

Cancel]

o 1 |

Figure 14 Open binary file

6. To export the binary file to a C source file click on “File” >> “Export”.

7. Choose”Desktop” as a temporary saving location.

8. Provide a name for the C source file as “XMC45_FlashLoader.c”.

9. Click “Save” to complete the process.

Application Note

11

Revision 1.0
10.09.2016

Firmware update via SD card

XMC4000

infineon

Project for flash loader

(%) Hex Workshop - [CA\ Warkspace XMCA00t

7 Firmware.bin

& Firmware.bin

F - - B
Export As =5
Edit Disk Options Tools Plu @ o
E New Ctrl+M Savein:| Ml Desktop - @ o5l FEE g
e Egpen... Ctrl+Q
; T == = Librari Too Chang Min Travis (IFAP
jiind g ci=s o ‘ S"_F?”ESF e) DC PMM IMC CES)
- = save Ctrl+5 Recent Places | ysEm e System Folder
o Save As...) 3
= - [| Computer ‘h | Network
< Insert File... L L | Systemn Folder | Systern Folder
2 Gove S Desktop '
= - e TwinCAT XML B XMC45_Loader.c
E Import... ===] ‘ Shortcut notepad++ |
=l e
Libraries
Page Setup... Il
Pr? nt Preview » E}*' |
% Print... Ctrl+P Computer fl
1 XMC45_FlashLoader.bin =
2 XMC45_Loader.bin iuw
3 XMC45_Loader.bin Network |
4 firmware.bin File name: [<MC45 Fashloader.c - [Save]
5 loader_0x080C0000.bin Save as type: [C Source {".c;”.cpp) v] [Cancel]
6 loader_0x080C0000.c

% —

Exit

Figure 15 Export binary file as C source file to desktop

10. Close the HEX Workshop software after exporting.

11. Preview the generated “XMC45_FlashLoader.c” that can be found on the desktop. This file will be
reused in the XMC45_Production_Firmware project.

(5 XMC45_Rashloaderc |

1 J/ Generated by BreakPoint Software's Hex Workshop v6.8.0.5419

2 Iz nttp://www.hexworkshop.com

&l I http://www.bpsoft.com

4 fr

5 // Source File: C:_Workspace_}{MC'}OOO\XMCf}K_ABH_SDCARD_*:S\XMC&S_FlashLoader\Debug\){MC45_Fla5hLoader.bin

& fr Time: 12/8/2016 11:09 &AM

T Jf Orig. Offset: 0 / Ox00000000

8 Iz Length: 30864 / 0x00007830 (bytes)

g unsigned char rawData[30264] =

10 {

11 g8, 0x00, Ox10, Ox01, 0Ox02, OxOC,

12 2, 0=0C, 0Ox08, O=xBl, 0Ox02, O=0C,

13 0, Ox0 00, 0Ox00, 0x00, Ox00,

14 Dz, , 0x00, 0x00, Ox00,

15 0z, , O0xBl, Ox02, O=x0C,

16 2, , OxB1l, 0x02, Ox0C,

Figure 16 Preview of XMC45_FlashLoader.c

12. The next step is to create the project XMC45_Production_Firmware.

(see creation of XMC45_Production_Firmware)

Application Note

12

Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf| neon
XMC4000
Project for flash loader

3.3 Details on flash loader script file handling

As the flash loader needs to be mapped to flash memory location 0x080C0000, we need to ensure that the
origin of the flash is as below

e FLASH_1 cached ORIGIN : 0x080C0000
e FLASH_1 uncached ORIGIN : 0x0C0C0000
Note: A copy of the script file for these purposes can be found in the folder “..\DAVE4

linker_script\XMC45_FlashLoader linker_script for PRODUCTION”. This file can be copied and
used to overwrite the existing linker script file.

[linker_script.dd &2

43 * - Product splitting
- Copyright notice update

2@815-11-24:

- Compatibility with GCC 4.9 2815q2
48
49 2816-83-88:

- Fix size of BS5 and DATA sections to be multiple of 4

- Add assertion to check that region DSRAM_1_system does not overflowed no_init section

58
51
52

@endcond

53

54

EIE I N

55 */

56

57 OUTPUT_FORMAT("elf32-littlearm")
58 OUTPUT_ARCH{arm)

59 ENTRY (Reset_Handler)

[e)
[=15)

&1 MEMORY
62 {

63 FLASH_1_cached(RX) :[ORIGIN = @x@88C6800, 1ENGTH = Ox108060
64 FLASH_1_uncached(RX)| : ORIGIN = 8x8C8CBABE) LENGTH = 8x180868
65 PSRAM_1(!RX) : ORIGIN = @x19808888, LENGTH = 0x18000

66 DSRAM_1_system(!RX) : ORIGIN = ©x20800080, LENGTH = 0x10800
67 DSRAM_2_comm(!RX) : ORIGIN = 8x3880860@, LENGTH - 8x8008

aa
Ba

Figure 17 Edit script file for flash loader

However for debugging purposes we can map the flash loader to the beginning of the flash (0x08000000) as
some debuggers are not capable of debugging at location 0x080C0000.

(see flash loader TEST MODE)

Application Note 13 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf|ne0n
XMC4000
Project for production firmware

4 Project for production firmware

The production firmware is a baseline firmware which provides a convenient single software package that
includes both the flash loader and the user application software.

This has the benefit of removing the extra process of flash programming the Flash loader software followed by
the application software.

While the application software is running, it needs a triggering mechanism to invoke the firmware update. For
this example we will make use of Button 1. So, when Button 1 is pressed the application software will enter
firmware update mode and eventually reset to Alternate Boot Mode. Hence, after the RESET, the application
software will execute the XMC45_FlashLoader.

Application software Flash Loader

3 Flash
Loader
Read No 3
No Application SD?

—_—

code

l Yes

Flash write

’

Standby

Success NOa
?
‘l, Yes
Yes 3 Application v
d
£oce Flash LED2 LED2 ON

Confirm

l Error

Button
27

|

Reset to
Normal

Figure 18 Production firmware flow chart

Application Note 14 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf|neon
XMC4000
Project for production firmware

4.1 Creation of XMC45_Production_Firmware project
Follow the procedures below to create the project XMC45_Production_Firmware
1. Create a DAVE™ CE XMC4500 project called “XMC45_Production_Firmware”.

2. Copy all the source files from the folder..\DAVE4 Project Files\XMC45_Production_Firmware into the
project “XMC45_Production_Firmware” (Overwriting files main.c and linker_script.id).

DAVE4 project

DAVE4 Project Files » XMC45_Preduction_Firmware

4 (=5 XMC45_Production_Firmware [Active - Debug]

; iff Binaries
. » [Includes
DAVE4 workspace library . G Dave
XMC45_Production_Firmware . = Debug
MName “ » [Libraries
. = PLS
GPIO.c . . (= Startup
= Copy files to DAVE4
= linker_script.ld by . [GPIO.c

main.c project ’ > | Elamain.c
s XMC45_INIT.h

KMCA5_INIT.h
— - » AMC45_10.h

L XMC45.10.h » 6] XMC45_IRQA
| XMCA5_IRQ.h |2 linker_script.ld

Figure 19 Copy source file to XMC45_Production_Firmware project

3. Copy the previously generated file “XMC45_FlashLoader.c” from the desktop into the project folder.

a (=% XMC45_Production_Firmware [Active - Debug]
» ;;—P‘ Binaries
» [ai Includes
» (= Dave
» = Debug
» [= Libraries
» = PLS
» [= Startup
» g GPIO.c
+ [main.c
>| [£] XMC45_FlashLoader.c
3 KMCA5_INIT.h
3 KMCA5_ 10k
. KMCA5_IRCLA

| linker_script.ld

=l

Figure 20 Copy XMC45_FlashLoader.c to XMC45_Production_Firmware project

4. Open and edit the file “XMC45_FlashLoader.c” with the highlighted code.

const unsigned char __attribute__((section(".abm_rawData"))) rawData[30864] =

5. Save the project by clicking on the save button

6. The ABM header has been hard coded into the file main.c. (see ABM header Installation)

7. The scriptfile has been modified to map the Flash Loader software and ABM header to the required
flash memory address. (see production firmware script file handling)

8. Click the compile button P to compile the software

Application Note 15 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf|neon
XMC4000
Project for production firmware

9. After compilation, click the debug button %5 to download the software.
10. Exit the debugger mode as flash programming is not recommended in debugger mode.

11. Here you should see both LED1 and LED2 turn ON. (Without flashing)

12. At this point you should be ready to test this project. (see how to test?)

4.2 Details on ABM header Installation

The ABM header is required to be installed in the projects XMC45_Production_Firmware and
XMC45_Update_Firmware_A/B.

However, should there be any changes to the ABM header parameters (eg. Start address etc) it is necessary to
recalculate the HeaderCRC32. This can be done in the XMC45_FlashLoader projectin TEST_MODE (see ABM
header generation). The ABM header needs to be installed at location 0x0801FFEO using the script file (see
figure 21).

* To make a ABM header
* - Go to Project XMC45_FlashlLoader and enable Test_Mode
* - ABM1 Header is located at @x@8@1FFE@

3
5
16 * htt
18 static const ABM Header_t _ attribute_ ((section(".flash_abm"))) // Update_ABM: Check the script file
19 ABML_Header = {
28 .MagicKey = MAGIC_KEY,
21 .StartAddress = Gx838Ce000, // Update_ABM: Take care of the startup address
22 .Length = @BxFFFFFFFF,
23 .ApplicationCRC32 = @BxFFFFFFFF,
24 .HeaderCRC32 = Bx2883751C // Update_ABM: Take care of the CRC value
25}
Figure21 ABM header
4.3 Details on production firmware script file handling

The script file of the project XMC45_Production_Firmware needs to be modified as shown below, to map the
ABM header and the XMC45_FlashLoader to the follow flash location.

= ABM header mapping location 0x0801FFEQ

= XMC45_FlashLoader mapping location 0x080C0000

187 /* Exception handling, exidx needs a dedicated section */
.ARM.extab :

11@ *(.ARM.extab* .gnu.linkonce.armextab.*)
111 } » FLASH_ 1 cached AT > FLASH 1_uncached

113 _ exidx_start = .;

114 CARM.exidx :

115

116 *(.ARM.exidx* .gnu.linkonce.armexidx.*)
117 } » FLASH_1_cached AT > FLASH_1 uncached
118 _ exidx_end = .;

119

i

121|/* Update_ABM: Take care of the ABM1 address (B8xB881FFE@) */
122[/* http://mcuoneclipse.com/2812/11/@1/defining-variables-at-absolute-addresses-with-gce/ */

123 .abm ABSOLUTE(@x@3@1FFE@): AT(@x@8@lFFE@ | @x84002028)
124

125 KEEP(*(.Tlash_abm)) For ABM header

1286 } » FLASH_ 1 cached

127

128|/* Update_ABM: Take care of the loader startup address */
129 .abm_rawData (@x@236C2008):

138 {

- KEEP(*(.abm_r'awl)ata))\ For XMC45_FlashLoader
132 T » FLASH_1_cached

133

Figure 22 Edited linker script file

Application Note 16 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf| neon
XMC4000

Project for production firmware

Note: A copy of the script file for these purposes can be found i then folder “..\DAVE4 linker_script|\
XMC45_Production_Firmware”. This file can be copied and used to overwrite the existing linker
script file.

Application Note 17 Revision 1.0

10.09.2016

o~ _.
Firmware update via SD card |nf|neon
XMC4000
Project for XMC45_Update_Firmware project

5 Project for XMC45_Update_Firmware project

The objective of this project is to create a software project for firmware updating purposes which will
eventually generate a firmware.bin file that can be copied into the SD Card for flash programming.

5.1 Creation of XMC45_Update_Firmware
Follow the procedures below to create project XMC45_Update_Firmware_A
1. Create a DAVE™ CE XMC4500 project called “XMC45_Update_Firmware_A”.

2. Copy all of the files from folder..\DAVE4 Project Files\ XMC45_Update_Firmware_A into the
“XMC45_Updata_Firmware_A” project.

Note: To prevent the application software from overwriting the ABM header, the ABM header is included
again in the XMC45_Update_Firmware project.

3. Next, to generate a binary file “firmware.bin” from this project, right click on the
“XMC45_Update_Firmware_A” project and select “Properties”.

4. Select C/C++ Build >> Settings >> ARM-GCC-Create Flash Image

5. Replace “${OUTPUT_PREFIX}${OUTPUT} “ with “firmware.bin” in the command line as shown below
and click the Apply button

& Properties for XMC45_Firmware_A = T

type filter text Settings =1 > w
- Resource
Builders

4 C/C++ Build Configuration: [Dabug [Active] '] IManage Configurations...

Build Variables
Environment

Logging & Tool Settings | # Build Steps | ' Build Artifact | [ith Binary Parsers [@ Error Parsers
Memory Settings
Microcontroller Info @ Debugging Command: "${ARM_GCC_HOME}/ bin/arm-none-eabi-objcopy”
s - .
_ 4 1 ARM-GCC C Compller Alloptions: -0 ihex "XMCA5_Firmware_A.elf’ -
Toel Chain Editor (2 Preprocessor
- CfC++ General (22 Directories
Project References (2 Optimization il
Run/Debug Settings % Warnings
Task Tags @ Miscellaneous
- Validation 4 % ARM-GCC Assembler Expert settings:
(& Preprocessor Cemmand - ¢/c onAND} S(FLAGS) ${OUTPUT_FLAG]firmware.binS{INPUTS}
(% Directories line pattern: - _

@ Warnings
@ Miscellaneous
a4 53 ARM-GCC C Linker
@ General
22 Libraries
@ Miscellaneous
4 % ARM-GCC Create Flash Image |
@ Qutput
(% Section
@ Miscellaneous
a4 % ARM-GCC Create Listing

(% General
a B3 ARM-GCC Print Size
2 General
[REstore Defaults] [‘ Apply |]
(?;‘ [oK] [Cancel]
Figure 23 Setting to generate “firmware.bin”
Application Note 18 Revision 1.0

10.09.2016

Firmware update via SD card

XMC4000

infineon

Project for XMC45_Update_Firmware project

6. Then, select Output and for output file format, select binary.

7. Click on Apply and then OK

W Properties for XMC45_Firmware_A

type filter text

> Resource
Builders
4 C/C++ Build
Build Variables
Environment
Legging
Memaory Settings
Microcontroller Info
Tool Chain Editor
> C/C++ General
Project References
Run/Debug Settings
Task Tags
> Validation

Settings

Configuration: [Debug [Active]

'] [Manage Configurations...

) Tool Settings |.ﬁ- Build Steps

Build Artifact | Binary Parsers | @ Error Parsers

@ Debugging
a B ARM-GCC C Compiler
Preprocessor
@ Directories
Optimization
@ Warnings
Miscellaneous
a 3 ARM-GCC Assembler
[Preprocessor
@ Directories
Warnings
@ Miscellanecus
B3 ARM-GCC C Linker
@ General
(# Libraries
@ Miscellanecus
3 ARM-GCC Create Flash Image
Section
(% Miscellaneous
3 ARM-GCC Create Listing
General
5 ARM-GCC Print Size
General

[

[

1Y

1Y

Output file format (-0) " binary |

IRestoreDefauIt;H | Apply |]
[I

@

[ok | |J[canca |

—

Figure 24 Setting to generate “firmware.bin”

8. Click on the compile button P to compile the software

9. Ensure that the firmware.bin file is generated.

Application Note

19

Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf|ne0n
XMC4000
Flash loader test mode

6 Flash loader test mode

The Flash loader test mode allows the user to generate a preview of the Alternate Boot Mode(ABM) header and
also to perform general system testing.

As some debuggers do not allow the Flash loader software to be executed in flash memory location
0x080C0000, the script file has to be changed to map the Flash loader software to flash memory location
0x08000000 (default flash starting address).

Difference in linker_script files
There are 2 linker script files provided for the Flash loader for PRODUCTION and TEST MODE purposes.

The PRODUCTION linker script file is used to map the flash loader software to flash location 0x080C0000 (see
details on Flash loader script file handling) and the TEST MODE linker script file is bascially the default linker
script file generated by DAVE™.

For convenience, to switch between TEST MODE and PRODUCTION mode, both the linker script files are
replicated in the following folders.

e .\DAVE4 linker_script\XMC45_FlashLoader linker_script for PRODUCTION
e .\DAVE4 linker_script\XMC45_FlashLoader linker_script for TEST MODE

Hence, by replacing the linker script file of the XMC45_FlashLoader project with the one from the folder above,
we can use the Flash loader software for Production or TEST MODE.

PRODUCTION linker script file TEST MODE linker script file

OUTPUT_FORMAT("elf32-littlearm”) OUTPUT_FORMAT("elf32-littlearm™)

OUTPUT_ARCH(arm) OUTPUT_ARCH(arm)

ENTRY({Reset_Handler) ENTRY(Reset_Handler)

MEMORY MEMORY

{ {
FLASH 1_cached(RX) : ORIGIN = @x@38C2808, LENGTH = 8x102008 L] FLASH_1_cached(RX) : ORIGIN - @x830620000, LENGTH = @x100000
FLASH 1 uncached(RX) : ORIGIN = @x@CeCeesa, LENGTH = ex18e006 FLASH 1 uncached(RX) : ORIGIN = @x@Ceseee8, LENGTH = @x160008
PSRAM 1(!RX) : ORIGIN = @x1@eeee0@, LENGTH = oxleeed PSRAM_1(!RX) : ORIGIN = @x10080008, LENGTH = 8x10000
DSRAM 1_system(!RX) : ORIGIN = @x20800008, LENGTH = @xleeee DSRAM_1_system(!RX) : ORIGIN = @x20000000, LENGTH = @xle000
DSRAM 2 _comm(!RX) : ORIGIN = @x30000008, LENGTH = @xieed DSRAM_2_comm(!RX) : ORIGIN = @x30800000, LENGTH = @x3eee

} }

Figure 25 Differences between linker script file of Production and TEST MODE.

Note: Please note that the linker script file might be different depending on the DAVE™4 version.
Therefore, it is important to know what needs to be modified for the linker script file.

Application Note 20 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf|neon
XMC4000
Flash loader test mode

6.1 Setup for test mode
The test mode can be enabled by the following procedure.

1. Copy the linker script file from the folder “DAVE4 linker_script\XMC45_FlashLoader linker_script for
TEST MODE”.

2. Replace the linker script file in the project folder “XMC45_FlashLoader” with the copied script file; this
is to map the Flash loader software to flash memory location 0x08000000 for testing purposes.

:DCARD_v1 | KMCA5_FlashLoader |» XMC45_FlashLoader linker_script for TEST MODE
Share with + MNew folder
- >
Mame Mame
| settings =] linker_script.ld
, Dave
. Debug
. Libraries
. PLS Copy and Replace tes
| Startup linker script file

| «cproject

L | .project

= flash.c

| flash.h

| flash_loader.c
| flash_loader.h
|| GPIQ.c

= linker_script.ld

| main.c

. solverlog

|| KMC45_INIT.h
|| XMC45_10.h
| XMC45_IRQLh

Figure 26 Copy and replace test linker script

3. Enable test mode by “#define TEST_MODE 1”in file “XMC45_INIT.h".
4. Copy any firmware.bin file(s) to the SD card

5. Insert the SD card into the SD slot of the XMC4500 relaxkit

6. Compile and Run the software

7. Monitor the variable PSRAM_Header for ABM header generation.

(see ABM header generation)

8. Monitor the variable SYS_TEST for system testing status.

(see system test)

Application Note 21 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf|ne0n
XMC4000
Flash loader test mode

6.2 ABM header generation

Ensure that the function “ABM_Make_ABM_header()” had been executed, then monitor the generated values
of the variable structure “PSRAM_HEADER”.

Perform a screen shot of this ABM header, as these values will be reused and hard coded into both the
“XMC45_Production_Firmware” and “XMC45_Firmware_A/B” projects.

(x)= Variables ©g Breakpoints & Expressions % 1§} Registers =, Peripherals =), Medules = O
EE| e XK 7
Expressicn Type Yalue
a4 w» PSRAM Header ABM_Header t* 021 000ffe0
()= Magickey uint32_t (xa5c3el0f (Hex)
()= StartAddress uint32_t 0800000 (Hesx)
(=)= Length uint32_t QafFEFFEFT (Hexx)
(=)= ApplicationCRC32 uint32_t QafFEFFEFT (Hexx)
()= HeaderCR(C32 uint32_t 02008751 c (Hex)
op Add new expression

Figure 27 ABM header generation in TEST_MODE

6.3 System test

The system testing provides general testing of the software flow sequence and also reading the SD card for a
binary file “firmware.bin”.

Note:Please note that flash write is disabled during TEST_MODE

ix)= Variables 9g Breakpoints €% Expressions % i} Registers 2 Peripherals = Modules
B & % %|
Expression Type Value
4 (= 55 TEST SYS _TEST_T fod
()= STEP1_READ_SDCARD TEST_T SUCCESSFUL
()= TOTAL_FIRMWARE_SIZE uint32_t 2580
)= STEP2_ERASE_FLASH_ACTIVE TEST_T SUCCESSFUL
()= ERASE_SECTOR uint32_t 201326592
()= STEPZ_WRITE_FLASH_ACTIVE TEST_T SUCCESSFUL
()= TOTAL_WRITE_SIZE uint32_t 2580
()= STEP4_FLASH_UPDATE TEST_T SUCCESSFUL
()= STEP5_RESET_TO_MORMAL TEST_T FAIL
op Add new expression

Figure 28 System self test in TEST_MODE

6.4 Exit TEST_MODE

After completion of the ABM header generation and system testing, the user can exit the TEST_MODE by
following this procedure.

1. Copy the linker script file from the folder “DAVE4 linker_script\XMC45_FlashLoader linker_script
for PRODUCTION”.

2. Disable test mode by commenting “// #define TEST_MODE 1” in file “XMC45_INIT.h".
3. Compile the project.

Application Note 22 Revision 1.0
10.09.2016

o~ _.
Firmware update via SD card |nf|ne0n
XMC4000
How to test?

7 How to test?

This chapter describes how to perform a firmware update via SD card after completing the both Flash loader
and production firmware projects.

Follow the procedure below to perform a firmware update via SD card.

1. Copy “firmware.bin” from the folder..\Test firmware_bin Files\firmware A\B to the SD card and
insert the SD card into SD slot of the XMC4500 relaxkit.

(See Creation of XMC45_Update_Firmware)

2. Pressthe RESET button.

3. Press Buttonl to enter flash update mode.

4

4. Press Buttonl again to begin flash update (or Button2 to exit flash update)

<y

Observe: LED1 will start flashing.

Observe: LED2 will turn on which indicates Flash programming is in progress
Observe: LED2 will then start flashing which indicates that flash programming has been successful.

5. Press Button2 to execute the latest firmware

Note:If LED2 is always ON, this indicates an error such as no SD card or flash programming has not been
successful. In this case, press the RESET button to recover.

c
€
€
=
2

) =

L 5
®
o
g

BUTTONL BUTTON2
Sl o e el U

Figure 29 Firmware update via SD card

[1] A Reference. See the code examples at www.infineon.com

Application Note 23 Revision 1.0
10.09.2016

http://www.infineon.com/

Firmware update via SD card
XMC4000

Revision history

Revision history

Major changes since the last revision

(infineon

Page or reference | Description of change

Application Note

24

Revision 1.0
10.09.2016

Trademarks of Infineon Technologies AG

UHVIC™, uIPM™, uPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, ISoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowlIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 10.09.2016
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Email: erratum@infineon.com

Document reference
AN_201609_PL30_027

IMPORTANT NOTICE

The information contained in this application note
is given as a hint for the implementation of the
product only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby
disclaims any and all warranties and liabilities of
any kind (including without limitation warranties of
non-infringement of intellectual property rights of
any third party) with respect to any and all
information given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal

injury.

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/

