# 1200V HighSpeed 3 IGBT <br> A new IGBT family optimized for high-switching speed 

## Table of contents

1 Short Description .....  3
1.1 H3 1200V Product Family .....  3
2 Technology Overview .....  4
3 Static and Dynamic Behavior .....  6
3.1 Static Behavior .....  6
3.2 Dynamic Behavior .....  7
3.2.1 Turn-off ..... 7
3.2.2 Turn-on ..... 10
4 Power Losses Simulation with IPOSIM ${ }^{\text {TM }}$ ..... 12
5 Case Study: operation at high switching frequency ..... 13

Edition 2013-02-02
Published by
Infineon Technologies Austria AG
9500 Villach, Austria
© Infineon Technologies Austria AG 2013.
All Rights Reserved.
Attention please!

THE INFORMATION GIVEN IN THIS APPLICATION NOTE IS GIVEN AS A HINT FOR THE IMPLEMENTATION OF THE INFINEON TECHNOLOGIES COMPONENT ONLY AND SHALL NOT BE REGARDED AS ANY DESCRIPTION OR WARRANTY OF A CERTAIN FUNCTIONALITY, CONDITION OR QUALITY OF THE INFINEON TECHNOLOGIES COMPONENT. THE RECIPIENT OF THIS APPLICATION NOTE MUST VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE REAL APPLICATION. INFINEON TECHNOLOGIES HEREBY DISCLAIMS ANY AND ALL WARRANTIES AND LIABILITIES OF ANY KIND (INCLUDING WITHOUT LIMITATION WARRANTIES OF NON-INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO ANY AND ALL INFORMATION GIVEN IN THIS APPLICATION NOTE.

## Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

## Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

AN-IGBT-02-2010-EN-020
Revision History: 13-09-01, V1.1
Previous Version: V1.0 (02/2010)
Subjects: 1200V HighSpeed 3 IGBT, A new IGBT family optimized for high-switching speed
Authors: Davide Chiola, IFAT IGBT AE
Holger Hüsken, IFAT IGBT AE

We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: Davide.Chiola@infineon.com

## 1 Short Description

The "HighSpeed $3^{\text {d }}$ generation (H3)" Product Family is an evolution of the "T2" 1200V, based on IGBT4 technology.

### 1.1 H3 1200V Product Family

| Part number | Type | Package Type | $\mathrm{V}_{\text {(BR)CES }}$ | $\mathrm{I}_{\mathrm{c}} @ 25^{\circ} \mathrm{C}$ | Ic @ $1^{100}{ }^{\circ} \mathrm{C}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CE}(\text { on })} @ \\ 175^{\circ} \mathrm{C} \\ \text { Typical } \end{gathered}$ |  | $t_{\text {scw }}$ | $\mathrm{V}_{\mathrm{GEH}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | [V] | [A] | [A] | [V] | [mJ] | [usec] | [V] |
| IGW15N120H3 IKW15N120H3 | Single chip Duo-pak | $\begin{aligned} & \hline \text { TO247 } \\ & \text { TO247 } \end{aligned}$ | 1200 | 30 | 15 | 2.70 | 2.5 | 10 | 5.8 |
| IGW25N120H3 IKW25N120H3 | Single chip Duo-pak | $\begin{aligned} & \text { TO247 } \\ & \text { TO247 } \end{aligned}$ | 1200 | 50 | 25 | 2.70 | 4.3 | 10 | 5.8 |
| IGW40N120H3 IKW40N120H3 | Single chip Duo-pak | $\begin{aligned} & \text { TO247 } \\ & \text { TO247 } \end{aligned}$ | 1200 | 80 | 40 | 2.70 | 7.0 | 10 | 5.8 |

Table 1.1: HS 1200V Product Family

The product family is optimized for the following range of applications:

- UPS
- Welding
- Solar inverters

Main features are:

- Reduced switching losses for switching Frequencies above 30kHz
- Smooth switching behavior
- Optimized diode for target applications


## 2 Technology Overview

At the beginning of the year 2000 Infineon has introduced the IGBT3 TRENCHSTOP ${ }^{\text {TM }}$ technology concept, bringing together the benefits of Trench Gate and Field Stop structures (Figure 1). An almost ideal carrier distributions inside the Chip is achieved, that allows at the same time low $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ and short tail currents at turn-off.

(IFX:1990 RONO: 1997)


Figure 2.1: IGBT technology comparison: vertical structure

The IGBT4 technology released in 2008 is an evolution of the IGBT3, to adapt the device characteristics for different switching speeds and power levels and allow a better silicon utilization. This technology base was used also for the HighSpeed 3, to further enhance the inherent fast switching capability of the technology, still keeping the low $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ typical of Infineon IGBT. The Fast IGBT Technologies roadmap is presented in Figure 2.2 for a 25A Chip rating:
F.O.M. =


Figure 2.2: IGBT Technology roadmap for Fast IGBT

## 3 Static and Dynamic Behavior

### 3.1 Static Behavior

Although optimized for fast switching, thanks to the Trench Gate, the HighSpeed 3 maintains a low $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ over a wide range of output currents, resulting in the following benefits at system level:

- Reduced losses and improved system efficiency
- Reduced number of devices in parallel for high power systems
- Reduced heatsink size

Output characteristics IKW40N120H3
Vge=15V


Figure 3.1: Output characteristics of the HighSpeed 3 IGBT

The HighSpeed 3 shows drastically reduced $\mathrm{V}_{\mathrm{CE}(\text { sat) }}$ : at rated current ( 40 A in this case) approximately 500 mV lower $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ at $25^{\circ} \mathrm{C}$ and 700 mV at $150^{\circ} \mathrm{C}$ to the best competitor. The gap is quite constant in the range between half and full nominal current at high temperature, typical operating range of the device in real application conditions, especially at high switching frequency were some current de-rating may be required.

### 3.2 Dynamic Behavior

The HighSpeed 3 is optimized for fast switching, so both turn on and turn-off are being considered.

### 3.2.1 Turn-off

In Figure 3.2 the turn-off waveform at high temperature is compared to the best competitor.

## IKW40N120H3 vs Best Competitor (Comp.1)



Figure 3.2: Turn-off Transient Waveforms

The HighSpeed 3 shows much shorter tail current. At frequencies above 20 kHz the small loss contributions from this tail current are adding-up at each switching cycle, increasing significantly the overall turn-off losses. The HighSpeed 3 shows a clear advantage in this direction. Moreover a smooth current waveform without sudden changes in dl/dt is observed.

In order to characterize the device behavior in a wide range of application conditions, the dependence of $\mathrm{E}_{\text {off }}$ losses from on $\mathrm{I}_{\mathrm{C}}$ and $\mathrm{R}_{\mathrm{g}}$ are investigated (Figure 3.3).


Figure 3.3: $E_{\text {off }}$ losses vs $R_{g}$ and Switching current $I_{c}$

In the typical operating current range between half and full nominal current, the HighSpeed 3 maintains the lowest $E_{\text {off }}$ losses over a wide range of $R_{g}$ selection. This will insure reduced power dissipation in a wide range of utilization conditions at the customer.

In Figure 3.4 an overview of the trade-off $\mathrm{V}_{\mathrm{CE}(\text { sat) }}, \mathrm{E}_{\text {off }}$ for different competitors is presented. Devices with different die size are compared. To normalize the turn-off losses, each sample device is switched at nominal current with nominal $R_{g}$. The resulting $E_{\text {off }}$ losses are scaled by the switching current ( $\mathrm{mJ} / \mathrm{A}$ ). $\mathrm{V}_{\mathrm{CE}(\mathrm{sat)}}$ is measured at rated current for each device.


Figure 3.4: Trade-off $\mathrm{V}_{\mathrm{CE}(\text { sat) })} \mathrm{E}_{\text {off }}$

The HighSpeed 3 (IGBT4 Fast) device shows a clear improvement to the previous TRENCHSTOP ${ }^{\text {m } 2 ~}$ (IGBT4) generation for operation at high switching frequencies: the turn-off losses are cut by nearly $40 \%$, at the expense of an increase of $\mathrm{V}_{\mathrm{CE} \text { (sat) }}$ by only $20 \%$. A significantly superior trade-off $\mathrm{V}_{\mathrm{CE} \text { (sat) }}-\mathrm{E}_{\text {off }}$ in comparison with the best competitor is observed.

### 3.2.2 Turn-on

In order to improve the IGBT turn-on characteristics, a fast switching diode is needed. Moreover, as will be visible in the next paragraph, in inverter operations above 20 kHz even at high $\cos \phi$ the overall diode loss adds-up to less than $15 \%$ of the total inverter losses. Therefore it makes sense to save Silicon area on the diode and reduce the total product cost.
The Emitter Controlled diode of the $4^{\text {th }}$ generation was selected as freewheeling diode for the HighSpeed 3 : in order to operate the diode at high current densities, ruggedness test were performed by switching the diode beyond the datasheet specification. In Fig 6 the 40A-rated diode of the IKW40N120H3 is switched-off at $175^{\circ} \mathrm{C}, 850 \mathrm{~V}$ bus voltage, 110 A commutation current. To increase the $\mathrm{dl} / \mathrm{dt}$, the IGBT is kept at $25^{\circ} \mathrm{C}$ and driven with 23 V gate voltage at small gate resistor (5.7Ohm) (Figure 3.5):


Figure 3.5: Diode commutation at extreme switching conditions

The diode is surviving these extreme switching conditions.

An additional ruggedness test was performed by turning-on the 40A HighSpeed 3 IGBT at high currents by increasing $\mathrm{V}_{\mathrm{ge}}$ at low $\mathrm{R}_{\mathrm{g}}$, high Bus voltage of 850 V and high temperature. The diode max power stress is measured (Figure 3.6):


Figure 3.6: Diode power dissipation at IGBT Turn-on (IKW40N120H3): $\mathrm{V}_{\mathrm{CE}}=850 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}$ (diode) $=175^{\circ} \mathrm{C}$

The diode stress has a maximum at approx 2*nominal current: even $\mathrm{V}_{\mathrm{ge}}=23 \mathrm{~V}$, resulting in more than 3 times nominal switching current, the diode destruction point is not reached, demonstrating the extreme ruggedness of the technology and validating the possibility to operate the diode at high current densities.

## 4 Power Losses Simulation with IPOSIM ${ }^{\text {TM }}$

The loss contribution of Diode and IGBT in a typical target application was simulated using the Infineon internal simulation software IPOSIM ${ }^{\top}$. The simulation is performed for a 3-phase inverter configuration under the assumption of sinusoidal output currents at inductive load (hard switching).

The TRENCHSTOP ${ }^{\text {m } 2, ~ H i g h S p e e d ~} 3$ and best competitor are compared for the 40A current-class. Load current is 40 A , bus voltage 600 V , switching frequency 20 kHz and the phase angle between voltage and current is varied between 0.85 and 1 , to evaluate the effect on the diode when some reactive power is present. For the target applications like UPS and Solar $\cos \phi$ is very close to 1 .


Figure 4.1: $\operatorname{IPOSIM}{ }^{\text {TM }}$ simulation results

The results can be summarized as follows:

- the IGBT losses are the main contribution to the overall inverter losses
- at 20 kHz the switching losses are playing for $\sim 60 \%$ of the overall IGBT losses, confirming that the device has to be optimized for fast switching, but still the role of $\mathrm{V}_{\mathrm{CE}(\text { sat })}$ is not negligible
- In comparison with the previous generation TRENCHSTOP ${ }^{\text {tm }}$ 2, the HighSpeed 3 shows 30\% reduction in switching losses and only $16 \%$ increase in conduction losses
- The HighSpeed 3 shows approx $10 \%$ lower losses than the best competitor, setting benchmark performance


## 5 Case Study: Operation at high switching frequency

The operation of the HighSpeed 3 at high switching frequency is evaluated in comparison with the best competitor device in the following conditions:

Bus Voltage $=800 \mathrm{~V}$
Load Current $=40 \mathrm{~A}$
Square Wave with Duty Cycle = 50\%
$\mathrm{T}_{\mathrm{j}(\max )=}(\mathrm{IKW} 40 \mathrm{~N} 120 \mathrm{H} 3)=175^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{j}(\max )=}($ Best competitor $)=150^{\circ} \mathrm{C}$

The total losses are compared at $\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$ (Figure 5.1):


Figure 5.1: Total losses of IKW40N120H3 (TO-247) and Best Competitor (TO-264)
At $40 \mathrm{~A}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$, the IFX device provides $15 \%$ lower losses.

Above 10 kHz , the losses are dominated by switching losses (Figure 5.2).


Figure 5.2: breakdown of switching vs. conduction losses

The max allowable load current is calculated, assuming $T_{C}=100^{\circ} \mathrm{C}$ and $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{j}(\max )}$ (Figure 5.3):


Figure 5.3: Max load current vs switching frequency

Despite the smaller package (TO-247 vs TO-264, 35\% lower footprint), thanks to the higher $\mathrm{T}_{\mathrm{j}(\mathrm{max})}$ and lower losses, for a fixed $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$ the IKW40N120H3 device can run up to $50 \%$ higher Load Current than the best competitor device.

At $f_{s w}=70 \mathrm{kHz}$, the IKW can handle 25A peak load current as long as $T_{C}$ is maintained below $80^{\circ} \mathrm{C}$

Higher load currents can be achieved by reducing the DC Link voltage below 800V. For example at $\mathrm{V}_{\mathrm{dc}}=600 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}(\max )}=64^{\circ} \mathrm{C}$ with $\mathrm{I}_{\mathrm{C}}=35 \mathrm{~A}$ (Fig12)


Figure 5.4: Max load current at $\mathrm{f}_{\mathrm{sw}}=70 \mathrm{kHz}$ and dependence on bus Voltage $\mathrm{V}_{\mathrm{dc}}$

