TDA4863

DN-PFC-TDA4863-1
TDA4863 Driving MOSFET with large Capacitances

Author: Wolfgang Frank

http://www.infineon.com/pfc

Power Management & Supply

Revision History: 2003-03 V1.0

Previous Version:

Page	Subjects (major changes since last revision)	

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com.

CoolMOS[™], CoolSET[™] are a trademarks of Infineon Technologies AG.

Edition 2003-03

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 2003.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life-support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

DN-PFC-TDA4863-1

1 Large Capacitances

In adapters MOSFET with a lower on-state resistances $R_{DS(on)}$ are often used in order to reduce power losses. But such transistors have typically large capacitances C_{iss} , C_{oss} , and C_{rss} according to **Figure 1**. Especially in power factor correction (PFC) preconverters this issue is even more dramatically, because there are points of operation, at which the drain-source-voltage is very low or even zero. At those points, the parasitic drain-gate-capacitance $C_{rss}(V_{DS})$ ("Miller-capacitance") increases highly nonlinearly. This can be easily seen in the datasheets of the MOSFET, as it is shown in figure 24 of [2].

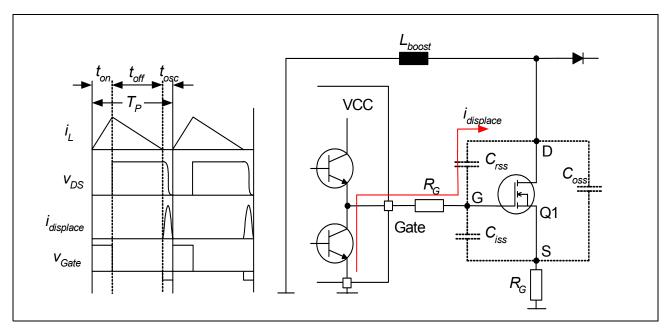


Figure 1 Equivalent Circuit of a MOSFET with parasitic Capacitors

In discontinuous conduction mode (DCM) the drain-source-voltage swings down to zero by system, if the input voltage is lower than 50% of the output voltage even without the MOSFET being switched on. This means that the drain potential also goes down to zero which will cause a capacitive current flowing into the gate pin of the MOSFET and through the capacitor $C_{\rm rss}$.

The larger the capacitance C_{rss} the larger is the amplitude of the capacitive current. This may reverse bias the lower gate drive transistor and may lead to substrate currents in the control IC of the MOSFET and may cause malfunction. Substrate current can be

Design Note 6 V1.0, 2003-03

Large Capacitances

detected easily by measuring the voltage at the gate drive pin. Substrate currents cause a voltage of about -0,7 V.

This effect is well known. Usually schottky diodes are used directly at the gate drive pin to ground according to **Figure 2** in order to clamp the gate drive voltage of -0,3 V minimum.

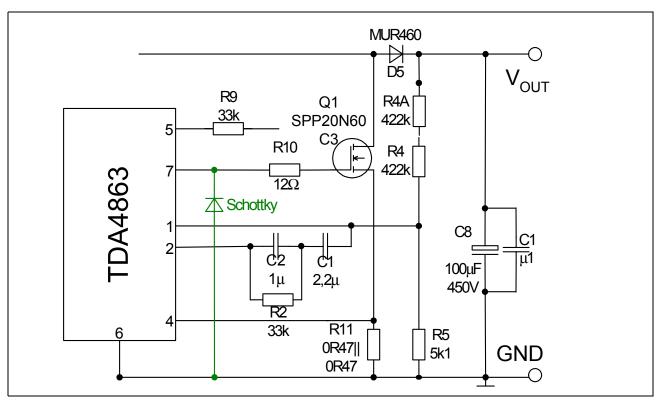


Figure 2 Gate Drive Design of TDA4863 with Schottky Clamp Diode

The rating of the schottky diode depends on the peak value and the rms value of the clamp current. But typically small signal schottky diodes with a forward current capability of approximately 100 mA are already sufficient.

Design Note 7 V1.0, 2003-03

Ssecondary side value

UVLO..undervoltage lockout value

Shshunt value

Z.....zener value

TDA4863 Driving MOSFET with large Capacitances

Summary of Used Nomenclature

2 Summary of Used Nomenclature

Physics:

General identifiers:	Special identifiers:		
Across area b, Bmagnetic inductance c, Ccapacitance d, Dduty cycle ffrequency i, Icurrent l, Linductance Nnumber of turns p, Ppower t, Ttime, time-intervals	$V_{(BR)CES}$ col vol V_{F} for	luctance factor lector-emitter breakdown tage of IGBT ward voltage of diodes ximum reverse voltage of diodes	
v, Vvoltage Wenergy	J	constant values and time intervals	
hefficiency K_1, K_2 ferrite core constants	Small letters.	time variant values	
Components:			
Ccapacitor Ddiode ICintegrated circuit Linductor Rresistor TRtransformer			
Indices:			
ACalternating current value DCdirect current value BEbasis-emitter value CScurrent sense value OPTOoptocoupler value Pprimary side value Pkpeak value R reflected from secondary to primary side	fmin value at minimum pulse frequency irunning variable ininput value maxmaximum value minminimum value offturn-off value onturn-on value		

Design Note 8 V1.0, 2003-03

ppulsed

ripripple value

1, 2, 3on-going designator

References

3 References

- [1] Infineon Technologies AG: TDA4863 Power factor controller; Preliminary Data sheet; Infineon Technologies AG; Munich; Germany; 02 / 02.
- [2] Infineon Technologies AG: SPP20N60C3 CoolMOS Power Transistor; Data sheet; Infineon Technologies AG; Munich; Germany; 10 / 02.

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

www.infineon.com