User's Manual, V 1.0, August 2001

C166S V1 MultiplyAccumulate Unit

C166S V1 MAC

Microcontrollers

Edition 2001-08

Published by Infineon Technologies AG, St.-Martin-Strasse 53,
D-81541 München, Germany
© Infineon Technologies AG 2001.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

C166S V1 MultiplyAccumulate Unit

 C166S V1 MAC
C166S V1 MAC

| Revision History: \quad 2001-08 | V 1.0 | |
| :--- | :--- | :--- | :--- |
| Previous Version: $\quad--$ | | |
| Page | Subjects (major changes since last revision) | |
| | | |
| | | |
| | | |

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: ce.cmd@infineon.com
technologies

User's Manual C166S V1 MAC Unit

Table of Contents

Page
1 MAC Unit Features 3
1.1 Enhanced Addressing Capabilities 5
1.2 Multiply-Accumulate Unit 5
1.3 Program Control 5
2 MAC Unit Operation 6
2.1 Instruction Pipelining 6
2.2 Address Generation 6
2.3 CoReg Addressing Mode 9
2.4 Number Representation and Rounding 9
3 MAC Unit Components 10
3.1 16×16 Signed/Unsigned Parallel Multiplier 10
3.2 Concatenation Unit 10
3.3 Sign Extension Unit and Scaler 10
3.4 40-bit Signed Arithmetic Unit 11
3.5 40-bit Signed Accumulator Register 12
3.6 Data Limiter 12
3.7 Accumulator Shifter 13
3.8 Repeat Unit 13
4 MAC Unit Interrupt 15
5 MAC Unit Register Set 18
5.1 MAC Unit Address Registers 19
5.2 Accumulator Registers 20
5.3 MAC Unit Status Word (MSW) 21
5.4 MAC Unit Control Word (MCW) 24
5.5 MAC Unit Repeat Word (MRW) 25
6 MAC Unit Instruction Set 26
6.1 Syntax 26
6.2 List of MAC Unit Instructions 28
7 Instruction Index 123
8 Keyword Index 125
List of Tables Page
Table 1 Pointer Post-modification Combinations for IDXi and Rwn 7
Table 2 Parallel Data Move Addressing 8
Table 3 CoReg 5-bit Addressing Mode 9
Table 4 Data Limiter Output 12
Table 5 MAC Unit Instruction Set Summary. 29

User's Manual C166S V1 MAC Unit

MAC Unit Features

1 MAC Unit Features

The Multiply-Accumulate (MAC) Unit is a specialized co-processor added to the C166S CPU core to improve the performance of signal processing algorithms. It includes:

- a multiply-accumulate unit
- an address generation unit capable of feeding the MAC Unit with 2 operands per cycle
- a repeat unit to execute a series of multiply-accumulate instructions

The architecture of the MAC Unit is outlined in Figure 1.

User's Manual C166S V1 MAC Unit

MAC Unit Features

Figure 1 MAC Unit Architecture

User's Manual C166S V1 MAC Unit

MAC Unit Features
The MAC Unit includes the following features.

1.1 Enhanced Addressing Capabilities

- New addressing modes, including a double indirect addressing mode with pointer post-modification.
- Parallel Data Move allows one operand move during multiply-accumulate instructions without penalty.
- New transfer instructions CoSTORE (for fast access to the MAC Unit SFRs) and CoMOV (for fast memory to memory table transfer).

1.2 Multiply-Accumulate Unit

- Execution of all MAC Unit operations within one CPU instruction cycle
- 16×16 signed/unsigned parallel multiplier
- 40-bit signed arithmetic unit with automatic saturation mode
- 40-bit signed accumulator
- 8 -bit left/right shifter
- Scaler (one-bit left shifter)
- Data limiter
- Full instruction set with multiply and multiply-accumulate, 32-bit signed arithmetic, and compare instructions
- Three 16-bit status and control registers:
- MSW - MAC Unit Status Word
- MCW - MAC Unit Control Word
- MRW - MAC Unit Repeat Word

1.3 Program Control

- Repeat Unit to allow some MAC Unit co-processor instructions to be repeated up to 8192 times. Repeated instructions may be interrupted.
- MAC Unit interrupt (implemented as Class B hardware trap) on MAC Unit condition flags.

MAC Unit Operation

2 MAC Unit Operation

MAC Unit operation is based on the cores instruction pipeline and extended addressing modes.

2.1 Instruction Pipelining

All MAC Unit instructions use a 4-stage pipeline. During each stage the following tasks are performed:

- FETCH All new instructions are double-word instructions.
- DECODE If required, operand addresses are calculated and the resulting operands are fetched. IDX and GPR pointers are post-modified if necessary.
- EXECUTE Performs the MAC Unit operation. At the cycle end the accumulator and the MAC Unit condition flags are updated if required. Modified GPR pointers are written-back during this stage, if required.
- WRITEBACK Operand write-back in the case of parallel data move.

Note: At least one instruction not using the MAC Unit must be inserted between two instructions that read from a MAC Unit register. This is because the accumulator and the status of the MAC Unit are modified during the Execute stage.
The CoSTORE instruction has been added to allow access to the MAC Unit registers immediately after a MAC Unit operation.

2.2 Address Generation

MAC Unit instructions can use some of the standard C166 addressing modes such as GPR direct or \#data4 for immediate shift value. New addressing modes were added to supply the MAC Unit with two new operands per instruction cycle. These allow indirect addressing with address pointer post-modification.
Double indirect addressing requires two pointers. Any GPR can be used for one pointer, the other pointer is provided by one of two specific SFRs IDX0 and IDX1. Two pairs of offset registers QR0/QR1 and QX0/QX1 are associated with each pointer (GPR or IDX i_{i}. The GPR pointer allows access to the entire memory space, but accesses via $I^{\prime} X_{i}$ are limited to the internal dual-port RAM, except for the CoMOV instruction. The various combinations of pointer post-modification for each of the two new addressing modes are shown in Table 1. Symbols $\left[R \mathbf{w}_{\mathbf{n}} \otimes\right]$ and $\left[I D \mathbf{X}_{\mathbf{i}} \otimes\right]$ refer to these addressing modes.

User's Manual C166S V1 MAC Unit

MAC Unit Operation

Table 1 Pointer Post-modification Combinations for IDXi and Rw_{n}

Symbol	Mnemonic	Address Pointer Operation
$\left[I D X_{i} \otimes\right]$ stands for	[IDX ${ }_{\text {] }}$]	$\left(\mathrm{IDX} \mathrm{X}_{\mathrm{i})} \leftarrow\left(\mathrm{IDX}_{\mathrm{i}}\right)(\right.$ no-op $)$
	[IDX ${ }_{i}+$]	$\left(\mathrm{IDX}_{\mathrm{i}}\right) \leftarrow\left(\mathrm{IDX}_{\mathrm{i}}\right)+2(\mathrm{i}=0,1)$
	[IDX ${ }_{\text {i }}$]	$\left(\mathrm{IDX}_{\mathrm{i}}\right) \leftarrow\left(\mathrm{IDX}_{\mathrm{i}}\right)-2(\mathrm{i}=0,1)$
	$\left[I D X_{i}+\mathrm{QX}_{\mathrm{j}}\right]$	$\left(I D X_{i}\right) \leftarrow\left(I D X_{i}\right)+\left(Q X_{j}\right)(\mathrm{i}, \mathrm{j}=0,1)$
	$\left[I D X_{i}-Q X_{j}\right]$	$\left(I D X_{i}\right) \leftarrow\left(I D X_{i}\right)-\left(Q X_{j}\right)(\mathrm{i}, \mathrm{j}=0,1)$
$\left[R w_{n} \otimes\right]$ stands for	[$\mathrm{Rw} \mathrm{w}_{\mathrm{n}}$]	$\left(R w_{n}\right) \leftarrow\left(R w_{n}\right)(n o-o p)$
	[$\left.R w_{n}+\right]$	$\left(R w_{n}\right) \leftarrow\left(R w_{n}\right)+2(n=0-15)$
	[$R w_{n}$-]	$\left(R w_{n}\right) \leftarrow\left(R w_{n}\right)-2(k=0-15)$
	$\left[R w_{n}+Q_{j}\right]$	$\left(R w_{n}\right) \leftarrow\left(R w_{n}\right)+\left(Q R_{j}\right)(n=0-15 ; j=0,1)$
	$\left[R w_{n}-Q R_{j}\right]$	$\left(R w_{n}\right) \leftarrow\left(R w_{n}\right)-\left(Q R_{j}\right)(\mathrm{n}=0-15 ; \mathrm{j}=0,1)$

The CoMACM class of instructions is a certain set of instructions that implement a mechanism called Parallel Data Move. The CoMACM instructions exclusively use double indirect addressing mode. Parallel Data Move allows the operand pointed to by IDX X_{i} to be moved to a new location in parallel with the MAC Unit operation. The writeback address for the Parallel Data Move is calculated depending on the postmodification of IDX ${ }_{i}$.

User's Manual C166S V1 MAC Unit

MAC Unit Operation
It is obtained by the operation "reverse" to the pointer post-modification of $I D X_{i}$, as explained in Table 2.

Table 2 Parallel Data Move Addressing

Instruction	Writeback Address for Parallel Data Move
CoMACM [IDX $\left.{ }_{i}+\right]$,...	<IDX ${ }_{i}$-2>
CoMACM [IDX ${ }_{\text {i }}$],...	<IDX ${ }_{\text {i }}+2>$
CoMACM [IDX $\left.{ }_{\text {i }}+\mathrm{QX}_{\mathrm{j}}\right] \ldots .$.	$<I D X_{i}-\mathrm{QX}_{\mathrm{j}}>$
CoMACM [IDX ${ }_{i}-$ QX $\left._{\mathrm{j}}\right], \ldots$	$<1 D X_{i}+$ QX $_{j}>$

The Parallel Data Move shifts a table of operands in parallel with a computation on those operands. Its specific use is for signal processing algorithms like filter computation.
An example of Parallel Data Move using the CoMACM instruction is shown in Figure 2.

Figure 2 Example of Parallel Data Move
technologies

User's Manual C166S V1 MAC Unit

MAC Unit Operation

2.3 CoReg Addressing Mode

The MAC Unit accumulator and control registers (MAL, MAH, MSW, MCW, MRW) can be addressed by the regular instruction set as any other SFR. In addition, they can be addressed by the CoSTORE instruction. The CoSTORE instruction utilizes a specific 5bit addressing mode called CoReg which allows the immediate storage of MAC Unit registers after an operation. Addresses of MAC Unit registers in CoReg addressing mode are shown in Table 3.

Table 3 CoReg 5-bit Addressing Mode

Register	Description	5-bit Address
MSW	MAC Unit Status Word	00000
MAH	MAC Unit Accumulator High Word	00001
MAS	"limited" MAC Unit Accumulator High Word	00010
MAL	MAC Unit Accumulator Low	00100
MCW	MAC Unit Control Word	00101
MRW	MAC Unit Repeat Word	00110

MAS is a virtual register. If MAS is specified as a source operand for CoSTORE, the MAH register is read through the data limiter. MAS cannot be addressed by regular SFR/ ESFR addressing.

2.4 Number Representation and Rounding

The MAC Unit supports the two's-complement representation of binary numbers. In this format the sign bit is the MSB of the binary word. This is set to zero for positive numbers and set to one for negative numbers. Unsigned numbers are supported only by multiply/multiply-accumulate instructions which specify whether each operand is signed or unsigned.
In two's complement fractional format the N-bit operand is represented using the 1.[$\mathrm{N}-1$] format (1 signed bit, $\mathrm{N}-1$ fractional bits). This format can represent numbers between -1 and $+1-2^{[\mathrm{N}-1]}$ and is supported when the shift mode bit MP of register MCW is set.
The MAC Unit implements 'two's complement rounding', where one is added to the bit to the right of the rounding point (bit 15 of MAL) before truncation (MAL is cleared).

User's Manual C166S V1 MAC Unit

MAC Unit Components

3 MAC Unit Components

The major components of the MAC Unit are shown in Figure 1. In the following, all of these components are described in detail.

$3.1 \quad 16 \times 16$ Signed/Unsigned Parallel Multiplier

The multiplier executes 16×16-bit parallel signed/unsigned fractional and integer multiplications. The multiplier has two 16-bit input ports for the two operands and a 32bit product output port. The result is always presented in a signed fractional or integer format.

3.2 Concatenation Unit

The concatenation unit enables the MAC Unit to perform 32-bit arithmetic operations in one CPU instruction cycle. It concatenates the two 16-bit operands to a 32-bit operand before the 32-bit operation is executed in the 40-bit arithmetic unit. The second required operand is always the current accumulator content. The concatenation unit is also used to pre-load the accumulator with a 32-bit value.

3.3 Sign Extension Unit and Scaler

Prior being fed to the 40-bit signed arithmetic unit, the result of the multiplier (or of the concatenation unit) is sign extended to a 40-bit number. This sign extension replicates the sign bit (MSB) of the word 8 times. With unsigned/unsigned instructions, (e.g. CoMULu, CoMACu) 8 zero bits are extended regardless of the MSB of the word to be extended.

The one-bit scaler can shift the sign extended result one bit to the left. Depending on the type of instruction, the scaler is controlled either by the Product Shift Mode Bit MP (bit 10 in MAC Unit Control Word - MCW) or by the instruction itself. For multiply instructions (if the MP bit is set), the product is automatically shifted left by one bit to compensate for the extra sign bit gained in multiplying two signed 2's complement numbers. The scaler is also active for instructions such as CoADD2, CoSUB2, etc., where the 32-bit operand is doubled before being fed to the arithmetic unit.

User's Manual C166S V1 MAC Unit

MAC Unit Components

$3.4 \quad$ 40-bit Signed Arithmetic Unit

The 40-bit signed arithmetic unit allows intermediate overflows in a series of multiply/ accumulate operations. There are two 40 -bit input ports, A and B. The A-input port accepts data as $00^{\prime} 0000^{\prime} 0000 \mathrm{~h}, 00^{\prime} 0000^{\prime} 8000 \mathrm{~h}$ (round), or the sign extended and scaled result of the multiplier or of the concatenation unit.
The B-input port is the feedback of the accumulator output sent through the 8 -bit left/right shifter. The B-input port can also receive $00^{\prime} 0000^{\prime} 0000 \mathrm{~h}$ to allow direct transfer from the A-input port to the accumulator.

If, during accumulation, a 40-bit overflow of the accumulator occurs, the sticky overflow flag SV will be set in the MAC Unit Status Word (MSW).

The result of the addition/subtraction can be rounded or saturated on a 32-bit value automatically after every accumulation.
The rounding is performed by adding $00^{\prime} 0000^{\prime} 8000 \mathrm{~h}$ to the result and clearing the Accumulator Low Word MAL. Automatic saturation is enabled by setting the saturation bit MS in the MAC Unit Control Word (MCW).

When the accumulator is in the saturation mode and a 32-bit overflow occurs, the accumulator is loaded with either the highest positive or the lowest negative value that can be represented with a 32-bit 2's complement number, depending on the direction of the overflow. Thus the value of the accumulator upon saturation is $00^{\prime} 7 \mathrm{fff}$ 'fffh (positive) or ff' 8000 '0000h (negative). Automatic saturation sets the sticky limit flag (SL) in the MAC Unit Status Word (MSW).

Note: If automatic saturation and rounding is performed, MAL will be cleared on the saturated value and the result after saturating and rounding positive numbers will be 00'7fff 0000 h .

Note: If the accumulator contains a value that can not be represented by a 32-bit 2-s complement number (i.e. MS was previously set to 0), then saturation can only be achieved by setting MS to 1 and one MAC Unit instruction executing. If this instruction causes a 40-bit overflow (or underflow), then the value of the accumulator upon saturation is $00^{\prime} 7$ ffffffffh (or ff' 8000 '0000h).

MAC Unit Components

3.5 40-bit Signed Accumulator Register

Most co-processor operations specify the 40-bit accumulator register as a source and/or destination operand. The accumulator is comprised of three SFR registers:

- MAL (MAC Unit Accumulator Low Word),
- MAH (MAC Unit Accumulator High Word) and
- MAE (ACCU Extension).

While MAH and MAL are 16-bit wide, MAE consist of only 8-bits, which are accessed as the least significant byte of the MAC Unit Status Word MSW. MAE is the most significant byte of the accumulator.
When writing to MAH by regular SFR addressing, the value in the accumulator is automatically adjusted to a sign extended 40-bit 2's complement format. MAL acquires zero value and MAE is automatically loaded with zeros in case of a positive number (MAH has 0 in the most significant bit) and with ones in case of a negative number (MAH has 1 in the most significant bit). Note that the values represented by the 32-bit number and the extended 40-bit number are the same and the MAE register does not contain significant bits. This is true whenever the highest 9 bits of the signed 40-bit result are identical.
During accumulator operations an overflow may occur and the result may not fit into 32bits. The accumulator then exceeds the 32-bit boundary and changes the contents of MAE. Consequently there are significant (non-sign) bits in the top 8 bits of the accumulator. To indicate this extension, extension flag E , contained in the most significant byte of the MAC Unit Status Word MSW, is set to 1 .

3.6 Data Limiter

Saturation arithmetic is also provided to selectively limit overflow when reading the accumulator by means of a CoSTORE <destination>, MAS instruction. If the contents of the accumulator cannot be represented by 32 bits without overflow, the limiter is enabled and MAS is modified to a limited value. Otherwise MAS is equal to MAH, as shown in Table 4.

Table 4 Data Limiter Output

E bit	N bit	Limiter Output (MAS)
0	X	equal to MAH
1	0	$7 f f f h$
1	1	8000 h

Note: The MAS value is only readable by means of a CoSTORE <destination>, MAS instruction. If executed, the accumulator and the status register are not affected.

User's Manual C166S V1 MAC Unit

MAC Unit Components

3.7 Accumulator Shifter

The accumulator shifter is a parallel shifter with 40 -bit input and 40 -bit output. The source operand of the shifter is an accumulator and possible shifting operations are:

- no shift (unmodified)
- up to 8 -bit arithmetic left shift
- up to 8 -bit arithmetic right shift

Note that left shift operations affect flags E, SV, SL, and C of the MAC Unit Status Word MSW. Therefore, if the automatic saturation mechanism is enabled (MS-bit set to 1), the behavior is similar to that of the 40 -bit arithmetic unit.

Note: Certain precautions are required in cases of a left shift in conjunction with automatic saturation enabled (MS bit set to 1). If the MS bit is being set directly before the left shift instruction, correct saturation is not guaranteed under all circumstances since significant bits may have been shifted out before saturation is performed. To avoid this situation, switch on automatic saturation earlier so that the left shift instruction is already operating on a saturated value.

$3.8 \quad$ Repeat Unit

The MAC Unit includes a repeat unit which repeats some co-processor instructions up to 2^{13} (=8192) times. The repeat count is specified either by an immediate value (up to 31) or by the content of the repeat count (bits 12 to 0) in the MAC Unit Repeat Word (MRW). If the repeat count in MRW equals \mathbf{N}, the instruction will be executed $\mathbf{N}+\mathbf{1}$ times. At each iteration of a repeated instruction the repeat count is tested for zero. If zero, the instruction is terminated, otherwise the repeat count is decremented and the instruction is repeated. During such repeated sequences, the Repeat Flag MR (bit 15 of the MAC Unit Repeat Word (MRW)) is set until the last execution of the repeated instruction.

The syntax of repeated instructions is shown in the following examples:

```
Repeat #24 times
CoMAC[IDX0+],[R0+] ; performed 24 times
```

In this example, the instruction is repeated according to a 5 -bit immediate value. The repeat count in MRW is automatically loaded with this value minus one.

```
MOV MRW, #OOFFh ; load MRW
NOP ; instruction latency
Repeat MRW times
CoMACM [IDX1-],[R2+] ; performed 256 times
```

The instruction is repeated according to the repeat count in MRW. Note that, due to the pipeline processing, at least one instruction should be inserted between MRW write and the next repeated instruction.

User's Manual C166S V1 MAC Unit

MAC Unit Components
Repeat sequences may be interrupted. When an interrupt occurs during a repeat sequence, the sequence is stopped and the interrupt routine is executed. The repeat sequence resumes at the end of the interrupt routine. During the interrupt the repeat flag MR remains set, indicating that a repeated instruction has been interrupted and the repeat count holds the number of repetitions (minus 1) that remain to complete the sequence. If the repeat unit is used in the interrupt routine, MRW must be saved by the user and restored before the end of the interrupt routine.

Note: The MRW register must be used with caution. Except for restoring MRW after an interrupt, the MR bit should not be set by user. Otherwise correct instruction processing cannot be guaranteed.

User's Manual C166S V1 MAC Unit

MAC Unit Interrupt

$4 \quad$ MAC Unit Interrupt

The MAC Unit can generate an interrupt corresponding to the value of the status flags C (Carry), SV (Sticky Overflow), E (Extension) or SL (Sticky Limit) of the MSW register.
The MAC Unit Interrupt is globally enabled if the MIE flag in MCW is set. When enabled, the flags C, SV, E, or SL can trigger a MAC Unit Interrupt, provided that the corresponding mask flags CM, VM, EM, and LM in MCW are also set. The MIR flag in MSW is set upon the first interrupt condition. This flag must be cleared during interrupt processing. If this flag is set already, a new interrupt condition cannot trigger an interrupt.

The MAC Unit Interrupt is implemented as a Class B hardware trap (trap number A_{H}, trap priority I). The associated trap flag in the Trap Flag Register TFR is MACTRP (bit 6). Note that when a MAC Unit interrupt request occurs, this flag must be cleared by the user.

The layout of the Trap Flag Register TFR in the C166S V1.1 is as follows:

TFR Trap	lag	Regi		SFR(FFAC ${ }_{\mathbf{H}}, \mathrm{D6}_{\mathbf{H}}$)								Reset value: $\mathbf{0 0 0 0}_{\mathbf{H}}$			
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NMI	STK	STK	0	0	0	0	0	UND OPC	$\begin{aligned} & \text { MAC } \\ & \text { TRP } \end{aligned}$	0	0	$\begin{aligned} & \text { PRT } \\ & \text { FLT } \end{aligned}$	$\begin{aligned} & \text { ILL } \\ & \text { OPA } \end{aligned}$	$\begin{aligned} & \text { ILL } \\ & \text { INA } \end{aligned}$	$\begin{aligned} & \text { ILL } \\ & \text { BUS } \end{aligned}$
			r	r	r	r	r	rwh	rwh	r	r				

Field	Bits	Type	Description
ILLBUS	$[0]$	rwh	ILLegal External BUS Access 0 1 1 No illegal external bus access detected An external access has been attempted with no bus defined.
ILLINA			

Field	Bits	Type	Description
MACTRP	[6]	rwh	MAC Unit Interrupt $0 \quad$ No MAC Unit interrupt detected 1 MAC Unit interrupt detected
UNDOPC ${ }^{1)}$	[7]	rwh	UNDefined OPCode 0 1 1
STKUF ${ }^{1)}$	[13]	rwh	STacK UnderFlow flag 0 No stack underflow event detected 1 Stack underflow event detected
STKOF ${ }^{1)}$	[14]	rwh	```STacK OverFlow flag 0 No stack overflow event detected 1 Stack overflow event detected```
NMMI ${ }^{1)}$	[15]	rwh	Non-Maskable Interrupt flag 0 No non-maskable interrupt detected 1 Non-maskable interrupt detected
0	$\begin{aligned} & {[12,11,} \\ & 10,9,8, \\ & 5,4] \end{aligned}$	r	Reserved read as '0'; writing to these bit positions has no effect.

1) This bit supports bit protection

Note: The trap service routine must clear the respective trap flag. Otherwise, a new trap will be requested after exiting the service routine. Setting a trap request flag by software causes the same effects as if it had been set by hardware.

As MAC Unit status flags are updated (or written by software) during the execute stage of the pipeline, the response time of a MAC Unit Interrupt Request is 3 instruction cycles, as illustrated in Figure 3. It is the number of instruction cycles required between the time the request is sent and the time the first instruction located at the interrupt vector location enters the pipeline.

Note: The instruction pointer value stacked after a MAC Unit Interrupt does not point to the instruction that triggered the interrupt. Therefore, it is not possible to specify exactly the entry point of the interrupt. Furthermore, due to the interrupt response time, it may not be possible to determine the source of the interrupt request since the status of flags C, SV, E, or SL may have changed once the interrupt routine has started.

FETCH DECODE EXECUTE WRITEBACK	Response Time						
	N	N+1	N+2	N+3	N+4	11	12
	N-1	N	N+1	N+2	TRAP (1)	TRAP (2)	11
	N-2	$\mathrm{N}-1$	N	$\mathrm{N}+1$	$\mathrm{N}+2$	TRAP (1)	TRAP (2)
	N-3	N-2	N-1	N	N+1	N+2	TRAP (1)
MAC Interrupt Request							

Figure 3 Pipeline Diagram for MAC Unit Interrupt Response Time

User's Manual C166S V1 MAC Unit

MAC Unit Register Set

$5 \quad$ MAC Unit Register Set

All MAC Unit registers are mapped into the SFR/ESFR memory space. Registers can be accessed using the regular instruction set and the co-processor instruction called CoSTORE. The following sections list the MAC Unit registers and their corresponding SFR/ESFR addresses.

Note: With CPU Core SFRs, any write operation with the regular instruction set to a single byte of a MAC SFR, clears the non-addressed complementary byte within the specified SFR. Non-implemented SFR bits cannot be modified and always supply a read value of '0'.

User's Manual C166S V1 MAC Unit

MAC Unit Register Set

5.1 MAC Unit Address Registers

The double indirect addressing modes require additional (E)SFRs: 2 address pointers IDX0/IDX1 and 4 offset registers QX0/QX1 and QR0/QR1.

The address pointer registers IDX0 and IDX1 are located in the SFR space.

IDX0 (FF08h/84h)	SFR	Reset Value: 0000h
IDX1 (FF0Ah/85h)	SFR	Reset Value: 0000h

Field	Bits	Type	Description
IDXi	$[15: 1]$	rw	Modifiable portion of address pointer
$\mathbf{0}$	$[0]$	r	As IDXi may only contain even values, bit 0 is fixed to zero.

The offset registers QX0, QX1, QR0, and QR1 are located in the ESFR space.

QX0 (F000h/00h)	ESFR	Reset Value: 0000h
QX1 (F002h/01h)	ESFR	Reset Value: 0000h
QR0 (F004h/02h)	ESFR	Reset Value: 0000h
QR1 (F006h/03h)	ESFR	Reset Value: 0000h

Field	Bits	Type	Description
QRi/QXi	$[15: 1]$	rw	Modifiable portion of offset registers Specifies 16-bit address offset for IDXi pointers (QXi) or GPR pointers (QRi).
$\mathbf{0}$	$[0]$	r	As MAC Unit instructions handle word operands only, bit 0 is fixed to '0'.

User's Manual C166S V1 MAC Unit

5.2 Accumulator Registers

The 40-bit accumulator consists of the registers MAL, MAH and the low byte of MSW, which is described in Chapter 5.3.

MAL and MAH are located in the non bit-addressable SFR space.
MAH (FE5Eh/2Fh) SFR Reset Value: 0000h

Field	Bits	Type	Description
MAH	$[15: 0]$	rw	MAC Unit Accumulator High Word Contains bits 31 to 16 of the 40-bit MAC Unit Accumulator.

MAL (FE5Ch/2Eh) SFR Reset Value: 0000h

Field	Bits	Type	Description
MAL	$[15: 0]$	rwh	MAC Unit Accumulator Low Word Contains bits 15 to 0 of the 40-bit MAC Unit Accumulator.

Note: MAL is automatically cleared when MAH is written by regular SFR addressing.

User's Manual C166S V1 MAC Unit

5.3 MAC Unit Status Word (MSW)

The bit-addressable register MSW reflects the current state of the MAC Unit. It is located in the SFR space and includes the 8-bit accumulator extension MAE and the 7 additional flags as shown below.

MSW (FFDEh/EFh) SFR Reset Value: 0200h

Field	Bits	Type	Description
MAE	[7:0]	rwh	ACCU Extension The eight most significant bits of the 40-bit MAC Unit accumulator.
N	[8]	rwh	Negative Result Flag 0 MAC Unit result is negative 1 MAC Unit result is positive
Z	[9]	rwh	```Zero Flag 0 MAC Unit result is not zero 1 MAC Unit result is zero```
C	[10]	rwh	Carry Flag 0 No carry/borrow produced 1 Carry/borrow produced
SV	[11]	rwh	Sticky Overflow Flag 0 No 40-bit overflow occurred 1 40-bit overflow occurred
E	[12]	rwh	```Extension Flag 0 MAE does not contain significant bits 1 MAE contains significant bits```
SL	[13]	rwh	Sticky Limit Flag 0 No automatic 32-bit saturation occurred 1 Automatic 32-bit saturation occurred
MIR	[15]	rwh	$\begin{array}{ll} \hline \text { MAC Unit Interrupt Request Flag } \\ 0 & \text { No MAC Unit interrupt is requested } \\ 1 & \text { MAC Unit interrupt is requested } \end{array}$

MAC Unit Register Set

ACCU Extension MAE

These 8 bits are part of the 40-bit accumulator register. The MAC Unit implicitly uses these bits during a MAC Unit operation. When writing to MAH by regular SFR addressing, MAE is automatically sign extended with the most significant bit of MAH and MAL is cleared.

Negative Result Flag \mathbf{N}

The N flag is set if the most significant bit of the accumulator equals ' 1 ', otherwise it is cleared. With integer operations, the N Flag can be interpreted as the sign bit of the MAC Unit Accumulator ($\mathrm{N}=1$ for negative, $\mathrm{N}=0$ for positive). Negative numbers are always represented as the 2's complementation of the corresponding positive.

Zero Flag Z

The Z flag is set if the content of the MAC Unit Accumulator is equal to zero, otherwise it is cleared.

Carry Flag C

After a MAC Unit addition, the C flag indicates that a carry from the accumulator's most significant bit (bit 7 of MAE) has been generated. After a MAC Unit subtraction, the C flag indicates a "Borrow", which represents the logical negation of a "Carry" for the addition. During a subtraction, the C flag is set, if no carry from the most significant bit of the accumulator has been generated. Subtraction is performed by the MAC Unit as a 2's complement addition and the C flag is cleared when this complement addition caused a "Carry".
For left shift operations, the C flag represents the value of the bit shifted out last. Right shift operations always clear the C flag.

Sticky Overflow Flag SV

The SV flag indicates an arithmetic overflow. The SV flag is set if, during a MAC Unit operation, the accumulator exceeds the maximum range of 40-bit signed numbers. In the case of signed arithmetic, the SV flag is set if the carry into the sign bit differs from the carry out of the sign bit. With a left shift operation, the SV flag is set if the last bit shifted out is different from the new N flag.
If the SV flag is set then the result of the MAC Unit operation is invalid. Once set, other MAC Unit operations cannot affect the status of the SV flag. Only a direct write operation can clear it.

Extension Flag E

The E flag is set if the accumulator extension MAE contains significant bits, i.e., if the highest 9 bits of the accumulator are not identical.

User's Manual C166S V1 MAC Unit

MAC Unit Register Set

Sticky Limit Flag SL

The SL flag is set if an automatic 32-bit saturation occurred. Automatic saturation is enabled by setting bit MS of the MAC Unit Control Word (MCW). The SL flag can also be set by a CoMIN or CoMAX operation. In such cases, the SL flag is set when the contents of the accumulator is greater than the operand of the CoMAX operation, or less than the operand of the CoMIN operation.
The SL flag is a sticky flag and, once set, is not affected by any other MAC Unit operation until cleared by a direct write operation.

MAC Unit Interrupt Request Flag MIR

The MIR flag indicates a MAC Unit Interrupt request. The interrupt mask bits of the MAC Unit Control Word (MCW) determine which flags of the MSW register can generate a MAC Unit Interrupt request. The MIR flag must be cleared during the interrupt routine.

Note: The MAC Unit status flags are modified (if needed) by executing the instruction. They are not affected by any instruction from the regular set and thus their values may not be consistent with the accumulator content. For example, loading the accumulator with MOV instructions will not modify the status flags.

User's Manual C166S V1 MAC Unit

MAC Unit Register Set

5.4 MAC Unit Control Word (MCW)

The bit-addressable register (MCW) controls the operation of the MAC Unit and determines the functionality of the MAC Unit Interrupt. (MCW) is located in the SFR space.

MCW (FFDCh/EEh)
 SFR
 Reset Value: 0000h

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MIE	LM	EM	VM	CM	MP	MS					-	-	-	-	-

Field	Bits	Type	Description
MS	[9]	rw	Saturation Control 0 \quad Automatic saturation disabled
MP	[10]	rw	$$
CM	[11]	rw	Carry Mask 0 C flag cannot generate interrupt request 1 C flag can generate interrupt request
VM	[12]	rw	Overflow Mask $0 \quad$ SV flag cannot generate interrupt request 1 SV flag can generate interrupt request
EM	[13]	rw	Extension Mask $0 \quad$ E flag cannot generate interrupt request 1 E flag can generate interrupt request
LM	[14]	rw	Limit Mask 0 SL flag cannot generate interrupt request 1 SL flag can generate interrupt request
MIE	[15]	rw	MAC Unit Interrupt Enable 0 MAC Unit interrupt globally disabled 1 MAC Unit interrupt globally enabled

Saturation Control Bit MS

If the MS bit is set, the accumulator is automatically saturated to 32 bits.

One-bit Scaler Control Bit MP

If the MP bit is set and both operands of a multiplication are signed, then the multiplier output is automatically shifted left by one bit. With multiply-accumulate operations the multiplier output is shifted before it is added to the accumulator.

Interrupt Mask Flags CM, VM, EM, LM

These bits are interrupt mask bits for the corresponding MAC Unit status bits. If a status flag and the corresponding mask bit are set, then the MIR flag of MSW will be set and a MAC Unit interrupt will be activated (provided that interrupts are enabled).

MAC Unit Interrupt Enable Bit MIE

The MIE bit globally enables or disables the MAC Unit interrupt. When set, the flags C, SV, E and SL from the MSW register can trigger an interrupt (provided that the corresponding mask flags CM, VM, EM, and LM of the (MCW) register are also set).

5.5 MAC Unit Repeat Word (MRW)

The MRW contains the number of repetitions an instruction is to be executed and is located in the SFR space.

MRW (FFDAh/EDh) SFR Reset Value: 0000h

Field	Bits	Type	Description
Repeat Count	$[12: 0]$	rwh	13-bit unsigned integer value Indicates the number of times minus one a repeated instruction must be executed
MR	$[15]$	rwh	Repeat Flag Set when a repeated instruction is being executed

User's Manual

MAC Unit Instruction Set

$6 \quad$ MAC Unit Instruction Set

The MAC Unit instruction set contains the following groups of instructions:

- multiply and multiply-accumulate instructions
- 32-bit arithmetic instructions
- shift instructions
- compare instructions
- transfer instructions

All MAC Unit instructions are 32-bit instructions with 4 bytes used to encode each instruction.

6.1 Syntax

Operands:

$o p X$	specifies the immediate constant value of opX
$(o p X)$	specifies the contents of opX
$(o p X n)$	specifies the contents of bit n of opX
$((\mathrm{opX}))$	specifies the contents of the contents of opX, i.e. opX is used as pointer to the actual operand

Operations:

```
(opX)\leftarrow(opY) (opY) moved into (opX)
+ added to
- subtracted from
*
c compared against
<< logically shifted left
>> logically shifted right
>>a arithmetically shifted right
(opX) || (opY) (opX) (MSW) and (opY) (LSW) concatenated
```

MAC Unit Instruction Set

Data Addressing Modes:

Rw ${ }_{\text {n }}$ or Rw_{m}	General Purpose (Word) Registers (GPRs), where " n " and "m" can be any value between 0 and 15.
[...]	indirect word memory location
Mxx	MAC Unit Register (MSW, MAH, MAL, MAS, MRW, MCW)
ACC:	MAC Unit Accumulator consisting of lowest byte of MSW, MAH and MAL.
\#datax:	Immediate constant (the number of significant bits is represented by ' x ').

Flag States:

```
- unchanged
* modified
```


Address Register Operations for double indirect addressing:

any GPR first address pointer, allows to access the entire memory space QRO/QR1 IDX0/IDX1

QX0/QX1 offset registers for second address pointer offset registers for first address pointer (GPR) second address pointer, limited to internal dual-port RAM (except for CoMOV instruction)

The symbols $\left[R w_{\mathbf{n}} \otimes\right]$ and $\left[I D X_{\mathbf{i}} \otimes\right]$ refer to the various combinations of pointer post modifications, and are listed in Table 1.

Repeated Instruction Syntax:

Repeatable instructions, CoXXX, when repeated are expressed as follows:

```
repeat #data5 times CoxXX...
or
repeat MRW times CoXXX...
```

If MRW is invoked, the instruction is repeated (MRW[12:0]) + 1 times. Therefore, the maximum number an instruction can be repeated is $2^{13}=8192$.
The integer value \#data5 specifies the number of times an instruction is repeated. Hence \#data5 must be less than 32, and CoXXX can only be repeated up to 31 times.

Shift Value:

The shifter allows left/right shift operations up to 8 -bit. A shift value larger than 8 invokes an 8 bit shift.

MAC Unit Instruction Set

Instruction Encoding:

X
qqq
rrrr:r
wwww:w
ssss: 4-bit immediate shift value

6.2 List of MAC Unit Instructions

The MAC Unit instruction set is summarized in Table 5. Individual instructions are described in detail alphabetically.
technologies

User's Manual C166S V1 MAC Unit

Table 5 MAC Unit Instruction Set Summary.

Mnemonic	Addressing Modes	Rep	Mnemonic	Addressing Modes	Rep
CoMUL	$\begin{aligned} & \mathrm{Rw}_{\mathrm{n}}, \mathrm{Rw}_{\mathrm{m}} \\ & {[\mathrm{IDXi} \otimes],\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]} \\ & \mathrm{Rw}_{\mathrm{n}},\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right] \end{aligned}$	No	CoMACM	$[I D X i \otimes],\left[\mathrm{Rw}_{\mathrm{m}}{ }^{\otimes}\right]$	Yes
CoMULu			CoMACMu		
CoMULus			CoMACMus		
CoMULsu			CoMACMsu		
CoMUL-			CoMACM-		
CoMULu-			CoMACMu-		
CoMULus-			CoMACMus-		
CoMULsu-			CoMACMsu-		
CoMUL+rnd			CoMACM+rnd		
CoMULu+rnd			CoMACMu+rnd		
CoMULus+rnd			CoMACMus+rnd		
CoMULsu+rnd			CoMACMsu+rnd		
CoMAC	$\mathrm{Rw}_{\mathrm{n}}, \mathrm{Rw}_{\mathrm{m}}$	No	CoMACMR		
CoMACu	$\begin{aligned} & {[\text { [IDXi } \otimes],\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]} \\ & \mathrm{Rw}_{\mathrm{n}},\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right] \end{aligned}$	Yes	CoMACMRu		
CoMACus			CoMACMRus		
CoMACsu			CoMACMRsu		
CoMAC-			CoMACMR+rnd		
CoMACu-			CoMACMRu+rnd		
CoMACus-			CoMACMRus+rnd		
CoMACsu-			CoMACMRsu+rnd		
CoMAC+rnd			CoADD	$R w_{n}, R w_{m}$	No
CoMACu+rnd			CoADD2	$\begin{aligned} & {[I D X i \otimes],\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]} \\ & \mathrm{Rw}_{\mathrm{n}},\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right] \end{aligned}$	Yes
CoMACus+rnd			CoSUB		
CoMACsu+rnd			CoSUB2		
CoMACR			CoSUBR		
CoMACRu			CoSUB2R		
CoMACRus			CoMAX		
CoMACRsu			CoMIN		
CoMACR+rnd			CoLOAD	$\begin{aligned} & \hline \mathrm{Rw}_{\mathrm{n}}, \mathrm{Rw}_{\mathrm{m}} \\ & {[I \mathrm{Xi} \otimes],\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]} \\ & \mathrm{Rw}_{\mathrm{n}},\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right] \end{aligned}$	No
CoMACRu+rnd			CoLOAD-		
CoMACRus+rnd			CoLOAD2		
CoMACRsu+rnd			CoLOAD2-		
CoNOP	$\begin{aligned} & {\left[\mathrm{Rw}_{\mathrm{n}} \otimes\right]} \\ & {[I \mathrm{Xi} \otimes]} \\ & {[\mathrm{IDXi} \otimes],\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]} \end{aligned}$	Yes	CoCMP		
			CoSHL	\#data4	No
			CoSHR	$R w_{m}$$\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]$	Yes
CoNEG		No	CoASHR		
CoNEG+rnd			CoASHR+rnd		
CoRND			CoABS	$\begin{aligned} & \hline \mathrm{Rw}_{\mathrm{n}}, \mathrm{Rw}_{\mathrm{m}} \\ & {[I \mathrm{XX} \dot{\otimes}],\left[\mathrm{Rw} \mathrm{w}_{\mathrm{m}} \otimes\right]} \\ & \mathrm{Rw},\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right] \end{aligned}$	No
CoSTORE	Rwn ${ }_{\text {, CoReg }}$	No			
	[$R w_{n} \otimes$], CoReg	Yes			
CoMOV	[IDXi \otimes], [$\mathrm{Rw}_{\mathrm{m}}{ }^{\otimes}$]	Yes			

User's Manual

MAC Unit Instruction Set

CoABS

Absolute Value
CoABS
Group
Arithmetic Instructions

Syntax

Source Operand(s) \quad ACC $\rightarrow 40$-bit signed value
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow \mathrm{Abs}(\mathrm{ACC})
$$

Description

Computes the absolute value of the 40 -bit ACC contents.

MAC Flags

Sat. yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if the ACC contents was 8000000000 H . Not affected otherwise.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
N Set if the most significant bit of the result is set. Cleared otherwise.
Note: SV flag behavior has been changed to guarantee arithmetic correctness.

Encoding

Mnemonic

CoABS

Format
A3 00 1A 00

Repeat
no

User's Manual

MAC Unit Instruction Set

CoABS

Absolute Value
CoABS
Group Arithmetic Instructions

Syntax
 CoABS op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow \operatorname{Abs}((\mathrm{op} 2) \|(\mathrm{op} 1))
$$

Description

Computes the absolute value of a 40 -bit source operand and loads the result in the 40 -bit ACC register. The 40-bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW).

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoABS	$R w_{n}, R w_{m}$
CoABS	$R w_{n},\left[R w_{m} \otimes\right]$
CoABS	$\left[I D X^{\otimes} \otimes\right],\left[R w_{m} \otimes\right]$

Format
Repeat
A3 nm CA 00
no
83 nm CA 0:0qqq
no
93 Xm CA 0:0qqq

User's Manual

MAC Unit Instruction Set

CoADD

Group

Syntax CoADD op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})
\end{aligned}
$$

Description

Adds a 40-bit operand to the 40 -bit ACC register contents and stores the result in the ACC register. The 40 -bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). This instruction is repeatable with indirect addressing modes and allows up to two parallel memory reads.

MAC Flags

SL	E	Sv	C	z	N	Sat.
*	*	*	*	*	*	yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoADD	$R w_{n}, R w_{m}$
CoADD	$R w_{n},\left[R w_{m} \otimes\right]$
CoADD	$[I D X X],\left[R w_{m} \otimes\right]$

Format
A3 nm 0200
83 nm 02 rrrr:rqqq
93 Xm 02 rrrr:rqqq

Repeat
no
yes
yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoADD2

Group

Syntax

Source Operand(s)
Arithmetic Instructions

CoADD2 op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow 2 *((\mathrm{op} 2) \|(\mathrm{op} 1)) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})
\end{aligned}
$$

Description

Adds a 40-bit operand to the 40-bit ACC register contents and stores the result in the ACC register. The 40-bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). The 40-bit operand is then multiplied by two before being added to ACC register. This instruction is repeatable with indirect addressing modes and allows up to two parallel memory reads.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoADD2	$R w_{n}, R w_{m}$
CoADD2	$R w_{n},\left[R w_{m} \otimes\right]$
CoADD2	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
Repeat
A3 nm 4200 no
83 nm 42 rrrr:rqqq
yes
93 Xm 42 rrrr:rqqq
yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoASHR Accumulator Arithmetic Shift Right with Round
 CoASHR
 Group Shift Instructions

Syntax CoASHR op1, rnd

Source Operand(s) op1 \rightarrow shift counter
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { (count) } \leftarrow(\text { op1) } \\
& \text { (C) } \leftarrow 0 \\
& \text { DO WHILE (count) } \neq 0 \\
& \quad \quad \text { (ACC[n] }) \leftarrow(\text { ACC }[\mathrm{n}+1])[\mathrm{n}=0-38] \\
& \quad \text { (count) } \leftarrow(\text { count })-1 \\
& \text { END WHIE } \\
& \text { (ACC) } \leftarrow(\text { ACC })+00008000 \mathrm{~h} \\
& (\text { (MAL }) \leftarrow 0
\end{aligned}
$$

Description

Arithmetically shifts the ACC register right by the number of bits as specified by operand op1. Then the obtained result is 2's complement rounded before being stored in the 40 -bit ACC register. To preserve the sign of the ACC register, the most significant bits of the result are filled with sign 0 if the original most significant bit was a 0 or with sign 1 if the original most significant bit was 1 . Only shift values from 0 to 8 (inclusive) are allowed. op1 can be either a 4-bit unsigned immediate data or the 4 least significant bits (considered as unsigned data) of a directly or indirectly addressed operand.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated when rounding. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoASHR \#data4, rnd
CoASHR
CoASHR
$\left[R w_{m} \otimes\right]$, rnd

Format
A3 00 B2 0sss:s000
Repeat

A3 nn BA rrrr:r000
no

83 mm BA rrrr:rqqq
yes
yes

User's Manual

MAC Unit Instruction Set

CoASHR

Group

Syntax

Source Operand(s)

CoASHR op1

op1 \rightarrow shift counter
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { (count) } \leftarrow \text { (op1) } \\
& \text { (C) } \leftarrow 0 \\
& \text { DO WHILE (count) } \neq 0 \\
& \quad(\text { ACC }[n]) \leftarrow(\text { ACC }[n+1])[n=0-38] \\
& \quad \text { (count) } \leftarrow(\text { count })-1
\end{aligned}
$$

Description

Arithmetically shifts the ACC register right by the number of bits as specified by operand op1. To preserve the sign of the ACC register, the most significant bits of the result are filled with sign 0 if the original most significant bit was a 0 or with sign 1 if the original most significant bit was 1 . Only shift values from 0 to 8 (inclusive) are allowed. op1 can be either a 4-bit unsigned immediate data or the 4 least significant bits (considered as unsigned data) of a directly or indirectly addressed operand. The MS bit of the MCW register does not affect the result.

MAC Flags

SL Not affected.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic		Format	Repeat
CoASHR	\#data4	A3 00 A2 0sss:s000	no
CoASHR	$R w_{n}$	A3 nn AA rrrr:r000	yes
CoASHR	$\left[R w_{m}{ }^{\otimes}\right]$	83 mm AA rrrr:rqq9	yes

MAC Unit Instruction Set

CoCMP

Compare
CoCMP
Group Compare Instructions

Syntax CoCMP op1, op2

Source Operand(s) op1,op2 \rightarrow WORD
Destination Operand(s) none
Operation

$$
\begin{aligned}
& \operatorname{tmp} \leftarrow(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \Leftrightarrow(\mathrm{tmp})
\end{aligned}
$$

Description

Subtracts a 40 -bit signed operand from the 40 -bit ACC contents and updates the N, Z and C flags of the MSW register leaving the ACC register unchanged. The 40 -bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). The MS bit of the MCW register does not affect the result. This instruction allows up to two parallel memory reads.

MAC Flags

SL Not affected.
E Not affected.
SV Not affected.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoCMP	$R w_{n}, R w_{m}$	A3 nm C2 00	no
CoCMP	$R w_{n},\left[R w_{m} \otimes\right]$	$83 \mathrm{~nm} \mathrm{C20:0q9q}$	no
CoCMP	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m \mathrm{C} 20: 0 q 9 q$	no

User's Manual

MAC Unit Instruction Set

CoLOAD

Load Accumulator
CoLOAD
Group Arithmetic Instructions

Syntax CoLOAD op1, op2

Source Operand(s) op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\operatorname{tmp}) \leftarrow(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow 0+(\mathrm{tmp})
\end{aligned}
$$

Description

Loads the 40 -bit ACC register with a 40 -bit source operand. The 40 -bit source operand is the sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). This instruction allows up to two parallel memory reads.

MAC Flags

SL	E	SV	C	Z	N
-	0	-	0	${ }^{*}$	${ }^{*}$

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoLOAD	$R w_{n}, R w_{m}$
CoLOAD	$R w_{n},\left[R w_{m} \otimes\right]$
CoLOAD	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format	Repeat
A3 nm 22 00	no
$83 n m 220: 0999$	no
$93 \mathrm{Xm} \mathrm{220:09q9}$	no

CoLOAD-

Load Accumulator
Arithmetic Instructions
Group

Syntax CoLOAD- op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\operatorname{tmp}) \leftarrow(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow 0-(\mathrm{tmp})
\end{aligned}
$$

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). The 40-bit source operand is 2's complemented, before being stored in the ACC register. This instruction allows up to two parallel memory reads.

MAC Flags

SL	E	SV	C		Z
${ }^{*}$	${ }^{*}$	-	${ }^{*}$	${ }^{*}$	${ }^{*}$

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoLOAD-	$R w_{n}, R w_{m}$	A3 nm 2A 00	no
CoLOAD-	$R w_{n},\left[R w_{m} \otimes\right]$	$83 \mathrm{~nm} 2 \mathrm{~A} 0: 09 q 9$	no
CoLOAD-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m 2 A 0: 0 q 9 q$	no

CoLOAD2

Group

Syntax

Source Operand(s)
CoLOAD2 op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow 2^{*}((\mathrm{op} 2) \|(\mathrm{op} 1)) \\
& (\mathrm{ACC}) \leftarrow 0+(\mathrm{tmp})
\end{aligned}
$$

Description

Loads the 40 -bit ACC register with a 40 -bit source operand. The 40-bit source operand is a sign-extended results of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). The 40-bit operand is also multiplied by two, before being stored in the ACC register. This instruction allows up to two parallel memory reads.

MAC Flags

SL	E	SV	c	z	N	Sat.
*	*	-	0	*	*	yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoLOAD2	$R w_{n}, R w_{m}$	A3 nm 6200	no
CoLOAD2	$R w_{n},\left[R w_{m} \otimes\right]$	$83 \mathrm{~nm} 620: 0 q 9 q$	no
CoLOAD2	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m 620: 0 q 9 q$	no

CoLOAD2-

Group

Syntax CoLOAD2- op1, op2

Source Operand(s) op1, op2 \rightarrow WORD

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow 2^{*}((\mathrm{op} 2) \|(\mathrm{op} 1)) \\
& (\mathrm{ACC}) \leftarrow 0-(\mathrm{tmp})
\end{aligned}
$$

Description

Loads the 40-bit ACC register with a 40-bit source operand. The 40-bit source operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). The 40-bit operand is also multiplied by two and negated, before being stored in the ACC register. This instruction allows up to two parallel memory reads.

MAC Flags

SL	E	SV	c	z	N	Sat.
*	*	-	*	*	*	yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoLOAD2-	$R w_{n}, R w_{m}$
CoLOAD2-	$R w_{n},\left[R w_{m} \otimes\right]$
CoLOAD2-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 6A 00
83 nm 6A 0:0qqq
93 Xm 6A 0:0qqq

Repeat
no
no
no

CoMAC

Group

Syntax

Source Operand(s)
Multiply-Accumulate with Round
Multiply/Multiply-Accumulate Instructions

CoMAC op1, op2, rnd

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation
IF (MP = 1) THEN
$(t m p) \leftarrow(($ op1 $) *(o p 2)) \ll 1$
$(A C C) \leftarrow(A C C)+(t m p)+0000008000 \mathrm{~h}$
ELSE
$(A C C) \leftarrow(A C C)+(t m p)+0000008000 h$
END IF
$(M A L) \leftarrow 0$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, then it is added to the 40 -bit ACC register contents. Finally, the obtained result is 2's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared. This instruction allows up to two parallel memory reads.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic
CoMAC
CoMAC
CoMAC
$R w_{n}, R w_{m}$, rnd
$R w_{n},\left[R w_{m}{ }^{\otimes}\right]$, rnd
$[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format
Repeat
A3 nm D1 00
no
83 nm D1 rrrr:rqqq
yes
93 Xm D1 rrrr:rqqq
yes

MAC Unit Instruction Set

CoMAC

Group

Syntax

Source Operand(s)
Multiply/Multiply-Accumulate Instructions
Multiply-Accumulate
CoMAC

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\left.\begin{array}{ll}
\text { IF }(\text { MP }=1) \text { THEN } \\
& (\text { tmp }) \leftarrow\left((\text { op1 })^{*}(\mathrm{op} 2)\right) \ll 1 \\
& (\text { ACC }) \leftarrow(\text { ACC })+(\mathrm{tmp})
\end{array}\right) .
$$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32-bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, then it is added to the 40 -bit ACC register contents before being stored in the 40 -bit ACC register. This instruction allows up to two parallel memory reads.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic	
CoMAC	$R w_{n}, R w_{m}$
CoMAC	$R w_{n},\left[R w_{m} \otimes\right]$
CoMAC	$[I D X i \otimes],\left[R w_{m}{ }^{\otimes}\right]$

Format
A3 nm D0 00
Repeat

83 nm D0 rrrr:rqqa
no

93 Xm D0 rrrr:rqqq
yes
©3 Xm DO rrrr:rqqq yes

MAC Unit Instruction Set

CoMAC-

Group

Syntax

Source Operand(s) CoMAC- op1, op2
Multiply/Multiply-Accumulate Instructions

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { IF (MP = 1) THEN } \\
& (t m p) \leftarrow((0 p 1) *(o p 2)) \ll 1 \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp}) \\
& \text { ELSE } \\
& \text { END IF }
\end{aligned}
$$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, then it is subtracted from the 40 -bit ACC register contents before being stored in the 40 -bit ACC register. This instruction allows up to two parallel memory reads.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic	
CoMAC-	$R w, R w_{m}$
CoMAC-	$R w_{n},\left[R w_{m} \otimes\right]$
CoMAC-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm E0 00
Repeat

83 nm E0 rrrr:rqqq
no

93 Xm E0 rrrr:rqqq
yes
X3 EO rrrr.rqq9 yes

MAC Unit Instruction Set

CoMACM

Group

Syntax

Source Operand(s)
Multiply-Accumulate \& Move \& Round
CoMACM
Multiply/Multiply-Accumulate Instructions

CoMACM op1, op2, rnd

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation
IF (MP = 1) THEN
$($ tmp $\left.) \leftarrow(((\mathrm{op} 1)))^{*}((\mathrm{op} 2))\right) \ll 1$
$(A C C) \leftarrow(A C C)+(t m p)+0000008000 \mathrm{~h}$
ELSE

$$
(\mathrm{tmp}) \leftarrow((\mathrm{op} 1))^{*}((\mathrm{op} 2))
$$

$$
(\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})+000000 \text { 8000h }
$$

END IF
$(\mathrm{MAL}) \leftarrow 0$
$(($ IDXi $(-\otimes))) \leftarrow(($ IDXi) $)$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32-bit product is first sign-extended, then, if the MP flag is set, it is one-bit left shifted, and next, it is added to the 40 -bit ACC register contents. Finally, the obtained result is 2 's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic
CoMACM $\quad[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format
Repeat
93 Xm D9 rrrr:rqqq
yes

MAC Unit Instruction Set

CoMACM

Group
Multiply-Accumulate \& Move
CoMACM

Syntax

Source Operand(s)
Multiply/Multiply-Accumulate Instructions CoMACM op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { IF (MP = 1) THEN } \\
& (\text { tmp }) \leftarrow(((\mathrm{op} 1)) \text { * ((op2))) } \ll 1 \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp}) \\
& \text { ELSE } \\
& (t m p) \leftarrow((o p 1)) *((o p 2)) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp}) \\
& \text { END IF } \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi) })
\end{aligned}
$$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, and next it is added to the 40-bit ACC register contents before being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic

CoMACM $\quad[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
Repeat
93 Xm D8 rrrr:rqqq
yes

CoMACM-

Group

Syntax CoMACM- op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { IF (MP = 1) THEN } \\
& (\text { tmp }) \leftarrow(((\mathrm{op} 1)) *((\mathrm{op} 2))) \ll 1 \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp}) \\
& \text { ELSE } \\
& (t m p) \leftarrow((o p 1))^{*}((o p 2)) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp}) \\
& \text { END IF } \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi) })
\end{aligned}
$$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, and next it is subtracted from the 40-bit ACC register contents before being stored in the 40 -bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic

CoMACM- $\quad[I D X i \otimes],\left[R w_{m} \otimes\right]$
Format
Repeat
93 Xm E8 rrrr:rqqq
yes

CoMACMR

Multiply-Accumulate \& Move \& Round
CoMACMR
Group
Multiply/Multiply-Accumulate Instructions

Syntax CoMACMR op1, op2, rnd

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation
IF (MP = 1) THEN
$\left.(\operatorname{tmp}) \leftarrow(((\mathrm{op} 1)))^{*}((\mathrm{op} 2))\right) \ll 1$
$(A C C) \leftarrow(\operatorname{tmp})-(A C C)+0000008000 \mathrm{~h}$
ELSE

$$
(\mathrm{tmp}) \leftarrow((\mathrm{op} 1))^{*}((\mathrm{op} 2))
$$

$$
(A C C) \leftarrow(t m p)-(A C C)+0000008000 \mathrm{~h}
$$

END IF
$(\mathrm{MAL}) \leftarrow 0$
$(($ IDXi $(-\otimes))) \leftarrow(($ IDXi) $)$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32-bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, and next the 40 -bit ACC register contents is subtracted from the result. Finally, the obtained result is 2's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic
CoMACMR
$[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format
93 Xm F9 rrrr:rqqq
Repeat
yes

CoMACMR

Group

Syntax

Source Operand(s)
CoMACMR op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { IF (MP = 1) THEN } \\
& (\mathrm{tmp}) \leftarrow\left(((\mathrm{op} 1)){ }^{*}((\mathrm{op} 2))\right) \ll 1 \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC}) \\
& \text { ELSE } \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC}) \\
& \text { END IF } \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi) })
\end{aligned}
$$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, and next the 40 -bit ACC register contents is subtracted from the result before being stored in the 40 -bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic

CoMACMR $\quad[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
Repeat
93 Xm F8 rrrr:rqqq
yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoMACMRsu Multiply-Accumulate \& Move \& Round CoMACMRsu

Group

Syntax CoMACMRsu op1, op2, rnd

Source Operand(s) op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 } 1)) *((\text { op2 })) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0 \\
& ((\mathrm{IDXi}(-\otimes))) \leftarrow((\mathrm{IDXi}))
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40 -bit ACC register. Finally, the obtained result is 2's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Format
93 Xm 79 rrrr:rqqq

Repeat
yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoMACMRsu

Multiply-Accumulate \& Move
CoMACMRsu
Group

Syntax

Source Operand(s) CoMACMRsu op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 })) *((\text { op2 })) \\
& (\text { (ICC }) \leftarrow(\text { tmp })-(\text { (ACC }) \\
& ((\text { DXi }(-\otimes))) \leftarrow((\text { DXi) })
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40 -bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMACMRsu [IDXi $\otimes],\left[R w_{m} \otimes\right]$

Format
93 Xm 78 rrrr:rqqq

Repeat yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoMACMRu Multiply-Accumulate \& Move \& Round CoMACMRu
 Group

Syntax CoMACMRu op1, op2, rnd

Source Operand(s) op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 } 1))^{\star}((\text { (op2 })) \\
& (\text { ACC }) \leftarrow(\operatorname{tmp})-(\text { ACC })+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0 \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi }))
\end{aligned}
$$

Description

Multiplies the two unsigned 16 -bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended, then the 40 -bit ACC register contents is subtracted from the result. Finally, the obtained result is 2's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic
CoMACMRu [IDXi $\otimes],\left[R w_{m} \otimes\right]$, rnd

Format
93 Xm 39 rrrr:rqqq

Repeat yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

ComACMRu

Group

Syntax CoMACMRu op1, op2

Source Operand(s)
Multiply-Accumulate \& Move
CoMACMRu
Multiply/Multiply-Accumulate Instructions

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (mp }) \leftarrow((\mathrm{op} 1))^{*}((\mathrm{op} 2)) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC}) \\
& ((\mathrm{IDXi}(-\otimes))) \leftarrow((\mathrm{IDXi}))
\end{aligned}
$$

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended, then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

Format
93 Xm 38 rrrr:rqqq

Repeat yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoMACMRus Multiply-Accumulate \& Move \& Round CoMACMRus

 Group Multiply/Multiply-Accumulate Instructions
Syntax CoMACMRus op1, op2, rnd

Source Operand(s) op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\mathrm{op} 1)))^{*}((\mathrm{op} 2)) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0 \\
& ((\mathrm{IDXi}(-\otimes))) \leftarrow((\mathrm{IDXi}))
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then the 40 -bit ACC register contents is subtracted from the result. Finally, the obtained result is 2's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.
Encoding

Mnemonic
CoMACMRus [IDXi \otimes], [Rw ${ }_{\mathrm{m}} \otimes$], rnd

Format
93 Xm B9 rrrr:rqqq

Repeat yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoMACMRus

Multiply-Accumulate \& Move
CoMACMRus
Group
Multiply/Multiply-Accumulate Instructions

Syntax CoMACMRus op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 })) *((\text { op2 })) \\
& (\text { (ICC }) \leftarrow(\text { tmp })-(\text { (ACC }) \\
& ((\text { DXi }(-\otimes))) \leftarrow((\text { DXi) })
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40 -bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMACMRus [IDXi $\otimes],\left[R w_{m} \otimes\right]$

Format
93 Xm B8 rrrr:rqqq
Repeat yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoMACMsu Multiply-Accumulate \& Move \& Round CoMACMsu

 Group Multiply/Multiply-Accumulate Instructions
Syntax CoMACMsu op1, op2, rnd

Source Operand(s) op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 } 1)) *((\text { op2 })) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0 \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi }))
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then it is added to the 40 -bit ACC register contents. Finally, the obtained result is 2 's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic
CoMACMsu
[IDXi $\otimes],\left[R w_{m} \otimes\right]$, rnd

Format
93 Xm 59 rrrr:rqqq

Repeat yes

MAC Unit Instruction Set

CoMACMsu

Group

Syntax

Source Operand(s) CoMACMsu op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 1)) * }((\mathrm{op} 2)) \\
& (\text { ACC }) \leftarrow(\mathrm{ACC})+(\mathrm{tmp}) \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { DXXi) })
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then it is added to the 40 -bit ACC register contents before being stored in the 40 -bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoMACMsu [IDXi $\otimes],\left[R w_{m} \otimes\right]$

Format
93 Xm 58 rrrr:rqqq

Repeat yes

User's Manual

MAC Unit Instruction Set

CoMACMsu-

Group

Syntax CoMACMsu- op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow((\mathrm{op} 1)) \text { * ((op2)) } \\
& (\text { ACC }) \leftarrow(\text { ACC })-(\text { (tmp }) \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi }))
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then it is subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E \quad Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

Format
Repeat
CoMACMsu- $\quad[I D X i \otimes],\left[R w_{m} \otimes\right]$

$$
[I D X i \otimes],\left[R w_{m} \otimes\right]
$$

yes

CoMACMu

Group

Syntax CoMACMu op1, op2, rnd

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 } 1)) *((\text { op2 })) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0 \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi }))
\end{aligned}
$$

Description

Multiplies the two unsigned 16 -bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended, then it is added to the 40 -bit ACC register contents. Finally, the obtained result is 2's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.
Encoding
Mnemonic
CoMACMu
[IDXi $\otimes],\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]$, rnd

Format
93 Xm 19 rrrr:rqqq

Repeat yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoMACMu

Group

Syntax

Source Operand(s)
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow\left((\text { op1 1)) })^{*}((\mathrm{op} 2))\right. \\
& (\text { ACC }) \leftarrow(\mathrm{ACC})+(\mathrm{mmp}) \\
& ((\text { (DXi }(-\otimes))) \leftarrow((\text { (DXi) })
\end{aligned}
$$

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended, then it is added to the 40 -bit ACC register contents before being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoMACMu

$$
[\mathrm{IDXi} \otimes],\left[\mathrm{Rw}_{\mathrm{m}} \otimes\right]
$$

Format
93 Xm 18 rrrr:rqqq

Repeat yes

CoMACMu-

Group

Syntax

Source Operand(s) CoMACMu- op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow((\mathrm{op} 1)) *((\mathrm{op} 2)) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{(tmp}) \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { DXi) }))
\end{aligned}
$$

Description

Multiplies the two unsigned 16 -bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended, then it is subtracted from the 40 -bit ACC register contents before being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMACMu- [IDXi $\otimes],\left[\mathrm{Rw}_{\mathrm{m}}{ }^{\otimes}\right]$

Format
93 Xm 28 rrrr:rqqq

Repeat yes

CoMACMus Multiply-Accumulate \& Move \& Round CoMACMus

 Group Multiply/Multiply-Accumulate Instructions
Syntax CoMACMus op1, op2, rnd

Source Operand(s) op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 } 1)) *((\text { op2 })) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0 \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { IDXi }))
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then it is added to the 40 -bit ACC register contents. Finally, the obtained result is 2 's complement rounded before being stored in the 40 -bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.
Encoding

Mnemonic
ComACMus
$[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format
93 Xm 99 rrrr:rqqq

Repeat yes

MAC Unit Instruction Set

CoMACMus

Multiply-Accumulate \& Move
CoMACMus
Group Multiply/Multiply-Accumulate Instructions

Syntax CoMACMus op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow((\mathrm{op} 1)))^{*}((\mathrm{op} 2)) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp}) \\
& ((\text { IDXi }(-\otimes))) \leftarrow((\text { DXXi) })
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then it is added to the 40 -bit ACC register contents before being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMACMus [IDXi $\otimes],\left[\mathrm{Rw}_{\mathrm{m}}{ }^{\otimes}\right]$

Format
93 Xm 98 rrrr:rqqq

Repeat yes

User's Manual

CoMACMus-

Group

Syntax

Source Operand(s)

Multiply-Accumulate \& Move
CoMACMus-

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { (tmp }) \leftarrow((\text { op1 } 1))^{*}((\text { op2 })) \\
& (\text { (ICC }) \leftarrow(A C C)-(\text { (tmp }) \\
& ((\text { DXi }(-\otimes))) \leftarrow(((D X i))
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended, then it is subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC register. In parallel to the arithmetic operation and to the two parallel reads, the data pointed to by IDXi overwrites another data located in memory (DPRAM). The address of the overwritten data depends on the operation executed on IDXi.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoMACMus- [IDXi $\otimes],\left[\mathrm{Rw}_{\mathrm{m}}{ }^{\otimes}\right]$

Format
93 Xm A8 rrrr:rqqq

Repeat yes

CoMACR

Group

Syntax

Source Operand(s)
CoMACR op1, op2, rnd

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation
IF (MP = 1) THEN
$($ tmp $) \leftarrow(($ op1) * $(o p 2)) \ll 1$
$(A C C) \leftarrow(t m p)-(A C C)+0000008000 \mathrm{~h}$
ELSE

$$
(t m p) \leftarrow(o p 1)^{*}(o p 2)
$$

$$
(A C C) \leftarrow(t m p)-(A C C)+0000008000 \mathrm{~h}
$$

END IF
$(M A L) \leftarrow 0$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then, if the MP flag is set, it is one-bit left shifted, then the 40 -bit ACC register contents is subtracted from the result. Finally, the obtained result is 2's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic

CoMACR $\quad R w_{n}, R w_{m}$, rnd
CoMACR
CoMACR
$R w_{n},\left[R w_{m} \otimes\right]$, rnd
$[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format	Repeat
A3 nm F1 00	no
$83 n m$ F1 rrrr:rqqq	yes
93 Xm F1 rrrr:rqqq	yes

MAC Unit Instruction Set

CoMACR

Group

Syntax CoMACR op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation
IF (MP = 1) THEN
$(t m p) \leftarrow((o p 1) *(o p 2)) \ll 1$
$(\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})$
ELSE
$(\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2)$
$(\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})$
END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted, then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40 -bit ACC register.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic	
CoMACR	$R w_{n}, R w_{m}$
CoMACR	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACR	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm F0 00
Repeat

83 nm F0 rrrr:rqqq
no

93 Xm F0 rrrr:rqqq
yes
yes

User's Manual

CoMACRsu Mixed Multiply-Accumulate \& Round
 Group
 Multiply/Multiply-Accumulate Instructions

CoMACRsu

Syntax CoMACRsu op1, op2, rnd

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\operatorname{tmp}) \leftarrow(\mathrm{op} 1) *(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then the 40-bit ACC register contents is subtracted from the result. Finally, the obtained result is 2's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E \quad Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoMACRsu
$R w_{n}, R w_{m}$, rnd
CoMACRsu $R w_{n},\left[R w_{m} \otimes\right]$, rnd
CoMACRsu [IDXi \otimes], [Rw $\mathrm{m}_{\mathrm{m}} \otimes$], rnd

Format
A3 nm 7100
83 nm 71 rrrr:rqqq
93 Xm 71 rrrr:rqq9

Repeat
no yes yes

MAC Unit Instruction Set

CoMACRsu

Mixed Multiply-Accumulate
CoMACRsu
Group
Multiply/Multiply-Accumulate Instructions

Syntax

Source Operand(s)

CoMACRsu op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40-bit ACC register.

MAC Flags

N	SL	E	SV	C	Z	N
${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACRsu	$R w_{n}, R w_{m}$
CoMACRsu	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACRsu	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format	Repeat
A3 nm 70 00	no
$83 n m 70$ rrrr:rqqq	yes
$93 n m 70$ rrrr:rqqq	yes

CoMACRu

Group

Syntax CoMACRu op1, op2, rnd

Source Operand(s)
Unsigned Multiply-Accumulate \& Round
CoMACRu
Multiply/Multiply-Accumulate Instructions

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended and then the 40 -bit ACC register contents is subtracted from the result. Finally, the obtained result is 2's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
ComACRu $R w_{n}, R w_{m}$, rnd
CoMACRu $R w_{n},\left[R w_{m} \otimes\right]$, $r n d$
CoMACRu [IDXi $\otimes],\left[R w_{m} \otimes\right]$, rnd

Format
Repeat
A3 nm 3100 no
83 nm 31 rrrr:rqqq
yes
93 Xm 31 rrrr:rqqq yes

CoMACRu

Group

Syntax

Source Operand(s)
Unsigned Multiply-Accumulate
CoMACRu
Multiply/Multiply-Accumulate Instructions

CoMACRu op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})
\end{aligned}
$$

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended and then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40-bit ACC register.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACRu	$R w_{n}, R w_{m}$
CoMACRu	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACRu	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 3000
83 nm 30 rrrr rqqq
93 Xm 30 rrrr:rqqq

Repeat
no
yes
yes

User's Manual

CoMACRus Mixed Multiply-Accumulate \& Round
 CoMACRus

Group
Multiply/Multiply-Accumulate Instructions

Syntax CoMACRus op1, op2, rnd

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\operatorname{tmp}) \leftarrow(\mathrm{op} 1) *(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then the 40-bit ACC register contents is subtracted from the result. Finally, the obtained result is 2's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E \quad Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoMACRus $R w_{n}, R w_{m}$, rnd
CoMACRus $\quad R w_{n},\left[R w_{m} \otimes\right]$, rnd
CoMACRus [IDXi \otimes], [Rw $\mathrm{m}_{\mathrm{m}} \otimes$], rnd

Format
A3 nm B1 00
83 nm B1 rrrr:rqqq
93 Xm B1 rrrr:rqqq

Repeat
no yes yes

MAC Unit Instruction Set

CoMACRus

Mixed Multiply-Accumulate
CoMACRus
Group
Multiply/Multiply-Accumulate Instructions

Syntax

Source Operand(s)

CoMACRus op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then the 40 -bit ACC register contents is subtracted from the result before being stored in the 40-bit ACC register.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACRus	$R w_{n}, R w_{m}$
CoMACRus	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACRus	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format	Repeat
A3 nm B0 00	no
$83 n m$ B0 rrrr:rqqq	yes
$93 \times m$ B0 rrrr:rqqq	yes

CoMACsu

Group

Syntax

Source Operand(s)
Mixed Multiply-Accumulate \& Round
CoMACsu
Multiply/Multiply-Accumulate Instructions

CoMACsu op1, op2, rnd

op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { tmp }) \leftarrow(\text { op1 })^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then added to the 40 -bit ACC register contents. Finally, the obtained result is 2's complement rounded before being stored in the 40-bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
ComACsu
CoMACsu
CoMACsu [IDXi $\otimes],\left[R w_{m} \otimes\right]$, rnd

Format

Repeat
A3 nm 5100 no
83 nm 51 rrrr:rqqq
yes
93 Xm 51 rrrr:rqqq
yes

ComACsu
Group

Syntax

Source Operand(s)

Mixed Multiply-Accumulate
Multiply/Multiply-Accumulate Instructions

CoMACsu op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then added to the 40 -bit ACC register contents before being stored in the 40 -bit ACC register.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACsu	$R w_{n}, R w_{m}$
CoMACsu	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACsu	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 5000
83 nm 50 rrrr rqqq
93 Xm 50 rrrr:rqqq

Repeat
no
yes
yes

CoMACsu-

Group

Syntax

Source Operand(s)
Mixed Multiply-Accumulate
CoMACsu-

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp})
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC register.

MAC Flags

SL	E	sV	C	z	N	Sat.
*	*	*	*	*	*	yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACsu-	$R w_{n}, R w_{m}$
CoMACsu-	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACsu-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format	Repeat
A3 nm 60 00	no
$83 n m 60$ rrrr:rqqq	yes
$93 \times m 60$ rrrr:rqq9	yes

MAC Unit Instruction Set

CoMACu

Group

Syntax

Source Operand(s) Unsigned Multiply-Accumulate \& Round

CoMACu
Multiply/Multiply-Accumulate Instructions

CoMACu op1, op2, rnd

op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { tmp }) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two unsigned 16 -bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended and then added to the 40 -bit ACC register contents. Finally, the obtained result is 2's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoMACu
CoMACu
CoMACu
$R w_{n}, R w_{m}$, rnd
$R w_{n},\left[R w_{m} \otimes\right]$, rnd
$[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format
Repeat
A3 nm 1100 no
83 nm 11 rrrr:rqqq
yes
93 Xm 11 rrrr:rqqq

CoMACu

Group

Syntax

Source Operand(s) CoMACu op1, op2
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})
\end{aligned}
$$

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended and then added to the 40-bit ACC register contents before being stored in the 40 -bit ACC register.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACu	$R w_{n}, R w_{m}$
CoMACu	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACu	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 1000
83 nm 10 rrrr:rqqq
93 Xm 10 rrrr:rqqq

Repeat
no yes
yes

CoMACu-

Group

Syntax

Source Operand(s) CoMACu- op1, op2
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp})
\end{aligned}
$$

Description

Multiplies the two unsigned 16-bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended and then subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC register.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACu-	$R w_{n}, R w_{m}$
CoMACu-	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACu-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 2000
$83 \mathrm{~nm} 20 \mathrm{rrrr}: \mathrm{rqqq}$
93 Xm 20 rrrr:rqqq

Repeat
no
yes
yes

CoMACus

Group Mixed Multiply-Accumulate with Round CoMACus

Syntax

Source Operand(s)

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\text { tmp }) \leftarrow(\text { op1 })^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then added to the 40 -bit ACC register contents. Finally, the obtained result is 2 's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMACus
CoMACus
CoMACus [IDXi $\otimes],\left[R w_{m} \otimes\right]$, rnd

Format

A3 nm 9100
83 nm 91 rrrr:rqqq
93 Xm 91 rrrr:rqqq

Repeat no yes yes

ComACus

Group

Syntax

Source Operand(s)

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+(\mathrm{tmp})
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then added to the 40 -bit ACC register contents before being stored in the 40 -bit ACC register.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACus	$R w_{n}, R w_{m}$
CoMACus	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACus	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 9000
83 nm 90 rrrr:rqqq
93 Xm 90 rrrr:rqqq

Repeat
no
yes
yes

CoMACus-

Group

Syntax

Source Operand(s) CoMACus- op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp})
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then subtracted from the 40-bit ACC register contents before being stored in the 40-bit ACC register.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoMACus-	$R w_{n}, R w_{m}$
CoMACus-	$R w_{n},\left[R w_{m} \otimes\right]$
CoMACus-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm A0 00
83 nm A0 rrrr:rqqq
93 Xm A0 rrrr:rqqq

Repeat
no
yes
yes

MAC Unit Instruction Set

CoMAX

Maximum
CoMAX
Group Compare Instructions

Syntax

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 2) \|(\mathrm{op1}) \\
& (\mathrm{ACC}) \leftarrow \max ((\mathrm{ACC}),(\mathrm{tmp}))
\end{aligned}
$$

Description

Compares a signed 40 -bit operand against the 40 -bit ACC register contents. The 40 -bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). If the contents of the 40-bit ACC register is smaller than the 40 -bit operand, then the ACC register is loaded with it. Otherwise the ACC register remains unchanged. The MS bit of the MCW register does not affect the result.

MAC Flags

SL Set if the contents of ACC is changed. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoMAX	$R w_{n}, R w_{m}$	A3 nm 3A 00	no
CoMAX	$R w_{n},\left[R w_{m} \otimes\right]$	$83 n m 3 A$ rrrr:rqqq	yes
CoMAX	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m 3 A$ rrrr:rqqq	yes

CoMIN

Minimum
Group
Compare Instructions

Syntax CoMIN op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow \min ((\mathrm{ACC}),(\mathrm{tmp}))
\end{aligned}
$$

Description

Compares a signed 40 -bit operand against the 40 -bit ACC register contents. The 40 -bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). If the contents of the ACC register is greater than the 40 -bit operand, then the ACC register is loaded with it. Otherwise the ACC register remains unchanged. The MS bit of the MCW register does not affect the result.

MAC Flags

SL Set if the contents of ACC is changed. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoMIN	$R w_{n}, R w_{m}$	A3 nm 7A 00	no
CoMIN	$R w_{n},\left[R w_{m} \otimes\right]$	$83 n m 7 A$ rrrr:rqqq	yes
CoMIN	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	93 Xm 7A rrrr:rqqq	yes

CoMOV

Group

Syntax

Source Operand(s)
op2 \rightarrow WORD
Destination Operand(s) op1 \rightarrow WORD
Operation

$$
(\mathrm{op} 1) \leftarrow(\mathrm{op} 2)
$$

Description

Moves the contents of the memory location specified by the source operand op2 to the memory location specified by the destination operand op1. Note that, unlike for the other instructions, IDXi can address the entire memory. This instruction does not affect the MAC Flags but modify the CPU Flags as any other MOV instruction.

Note: CoMOV is the only MAC Unit instruction which affects the CPU flags. MAC Flags are not affected.

CPU Flags

E Set if the value of op2 represents the lowest possible negative number. Cleared otherwise. Used to signal the end of a table.
Z Set if the value of the source operand op2 equals zero. Cleared otherwise.
V Not affected.
C Not affected.
N Set if the most significant bit of the source operand op2 is set. Cleared otherwise.

Encoding

Mnemonic		Format
CoMOV	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	D3 Xm 00 rrrr:rqq9

CoMUL

Group

Syntax

Source Operand(s) CoMUL op1, op2, rnd

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation
IF (MP = 1) THEN
$($ ACC $) \leftarrow(($ op1 $) *(o p 2)) \ll 1+0000008000 h$
ELSE

$$
(\mathrm{ACC}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2)+0000008000 \mathrm{~h}
$$

END IF
$(\mathrm{MAL}) \leftarrow 0$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32 -bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted. Finally, the obtained result is 2's complement rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Not affected when MP or MS are cleared, otherwise, only set in case of 8000h by 8000 h multiplication.
E Set when MP is set and MS is cleared and in case of 8000 h by 8000 h multiplication. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMUL
CoMUL
CoMUL
$R w_{n}, R w_{m}$, rnd
$R w_{n},\left[R w_{m} \otimes\right]$, rnd
$[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format
Repeat
A3 nm C1 00
no
83 nm C1 0:0qqq no
93 Xm C1 0:0qqq
no

CoMUL

Group

Syntax

Source Operand(s)
Multiply/Multiply-Accumulate Instructions
Signed Multiply
CoMUL

CoMUL op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation
IF (MP = 1) THEN
$(\mathrm{ACC}) \leftarrow\left((\mathrm{op} 1)^{*}(\mathrm{op} 2)\right) \ll 1$
ELSE

$$
(\mathrm{ACC}) \leftarrow(\mathrm{op} 1) *(\mathrm{op} 2)
$$

END IF

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32-bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted before being stored in the 40-bit ACC register.

MAC Flags

SL Not affected when MP or MS are cleared, otherwise, only set in case of 8000h by 8000 h multiplication.
E Set when MP is set and MS is cleared and in case of 8000 h by 8000 h multiplication. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMUL
CoMUL
CoMUL

Format
A3 nm C0 00
83 nm CO 0:0qqq
93 Xm CO 0:0qqq

Repeat
no
no
no

CoMUL-

Group

Syntax

Source Operand(s)
CoMUL- op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { IF }(\text { MP }=1) \text { THEN } \\
& \text { ELSE } \\
& \text { (ACC }) \leftarrow-\left((\mathrm{op} 1)^{*}(\mathrm{op} 2)\right) \ll 1 \\
& \text { END IF }
\end{aligned}
$$

Description

Multiplies the two signed 16-bit source operands op1 and op2. The obtained signed 32-bit product is first sign-extended, then if the MP flag is set, it is one-bit left shifted and finally it is negated before being stored in the 40 -bit ACC register.

MAC Flags

SL	E	SV	C	Z	N
-	0	-	0	${ }^{*}$	${ }^{*}$

Sat.
no

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoMUL-	$R w_{n}, R w_{m}$	A3 nm C8 00	no
CoMUL-	$R w_{n},\left[R w_{m} \otimes\right]$	$83 \mathrm{~nm} \mathrm{C80:0q9q}$	no
CoMUL-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m \mathrm{C8} 0: 0 q 9 q$	no

CoMULsu

Group

Syntax

Source Operand(s)

Multiply/Multiply-Accumulate Instructions
CoMULsu op1, op2, rnd

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{ACC}) \leftarrow(\mathrm{op} 1) *(\mathrm{op} 2)+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMULsu
CoMULsu
CoMULsu

Format
A3 nm 4100 Repeat

83 nm 41 0:0qqq
93 Xm 41 0:0qqq
no
no no

MAC Unit Instruction Set

CoMULsu

Group

Syntax

Source Operand(s)

Mixed Multiply
CoMULsu
Multiply/Multiply-Accumulate Instructions
CoMULsu op1, op2
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow(\mathrm{op} 1) *(\mathrm{op} 2)
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended before being stored in the 40-bit ACC register.

MAC Flags

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoMULsu	$R w_{n}, R w_{m}$	A3 nm 4000	no
CoMULsu	$R w_{n},\left[R w_{m} \otimes\right]$	$83 \mathrm{~nm} 400: 0 q 9 q$	no
CoMULsu	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m 400: 0 q 9 q$	no

CoMULsu-

Group

Syntax

Source Operand(s)

Mixed Multiply
CoMULsu-
Multiply/Multiply-Accumulate Instructions

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow-((\mathrm{op} 1) *(\mathrm{op} 2))
$$

Description

Multiplies the two signed and unsigned 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then negated before being stored in the 40-bit ACC register.

MAC Flags

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoMULsu-	$R w_{n}, R w_{m}$	A3 nm 4800	no
CoMULsu-	$R w_{n},\left[R w_{m} \otimes\right]$	$83 \mathrm{~nm} 480: 0 q 9 q$	no
CoMULsu-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m 480: 0 q 9 q$	no

CoMULu

Group

Syntax

Source Operand(s) CoMULu op1, op2, rnd
Multiply/Multiply-Accumulate Instructions
Unsigned Multiply with Round
CoMULu

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{ACC}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2)+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two unsigned 16 -bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended and then rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
N Always cleared.
Note: The behavior of E and SL flag have been changed to guarantee correct arithmetic. If two large 16-bit unsigned numbers are multiplied, then the result cannot be represented in a 32-bit signed format. In this case, either the ACC extension must be used (automatic saturation disabled, $M S=0$), or the result must be saturated to a 32 -bit signed value (automatic saturation enabled, $M S=1$).

Encoding

Mnemonic

CoMULu
CoMULu
CoMULu
$R w_{n}, R w_{m}$, rnd
$R w_{n},\left[R w_{m}{ }^{\otimes}\right]$, rnd
$[I D X i \otimes],\left[R w_{m} \otimes\right]$, rnd

Format
Repeat
A3 nm 0100
no
83 nm 01 0:0qqq no
93 Xm 01 0:0qqq

CoMULu

Group

Syntax

Source Operand(s)
Multiply/Multiply-Accumulate Instructions
Unsigned Multiply
CoMULu

Group

CoMULu op1, op2

op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2)
$$

Description

Multiplies the two unsigned 16 -bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended before being stored in the 40 -bit ACC register.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Always cleared.
Note: The behavior of E and SL flag have been changed to guarantee correct arithmetic. If two large 16-bit unsigned numbers are multiplied, then the result cannot be represented in a 32-bit signed format. In this case, either the ACC extension must be used (automatic saturation disabled, $M S=0$), or the result must be saturated to a 32-bit signed value (automatic saturation enabled, $M S=1$).

Encoding

Mnemonic	
CoMULu	$R w_{n}, R w_{m}$
CoMULu	$R w_{n},\left[R w_{m} \otimes\right]$
CoMULu	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

CoMULu-

Group

Syntax

Source Operand(s)
Multiply/Multiply-Accumulate Instructions
Unsigned Multiply

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow-\left((\mathrm{op} 1)^{*}(\mathrm{op} 2)\right)
$$

Description

Multiplies the two unsigned 16 -bit source operands op1 and op2. The obtained unsigned 32 -bit product is first zero-extended and then negated before being stored in the 40-bit ACC register.

MAC Flags

Sat.
yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.
Note: The behavior of E and SL flag have been changed to guarantee correct arithmetic. If two large 16-bit unsigned numbers are multiplied, then the result cannot be represented in a 32-bit signed format. In this case, either the ACC extension must be used (automatic saturation disabled, $M S=0$), or the result must be saturated to a 32-bit signed value (automatic saturation enabled, $M S=1$).

Encoding

Mnemonic	
CoMULu-	$R w_{n}, R w_{m}$
CoMULu-	$R w_{n},\left[R w_{m} \otimes\right]$
CoMULu-	$[I D X X],\left[R w_{m} \otimes\right]$

Format
A3 nm 0800
83 nm 08 0:0qqq
93 Xm 08 0:0qqq

Repeat no no no

MAC Unit Instruction Set

CoMULus

Group

Syntax

Source Operand(s)
Mixed Multiply with Round
CoMULus
Multiply/Multiply-Accumulate Instructions
CoMULus op1, op2, rnd

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{ACC}) \leftarrow(\mathrm{op} 1)^{*}(\mathrm{op} 2)+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoMULus
CoMULus
CoMULus

Format
A3 nm 8100
$83 \mathrm{~nm} 810: 0 \mathrm{qqq}$
93 Xm 81 0:0qqq

Repeat
no
no
no

CoMULus

Group

Syntax

Source Operand(s) CoMULus op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow(\mathrm{op} 1) *(\mathrm{op} 2)
$$

Description

Multiplies the two unsigned and signed 16-bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended before being stored in the 40-bit ACC register.

MAC Flags

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoMULus
$R w_{n}, R w_{m}$
CoMULus $\quad R w_{n},\left[R w_{m} \otimes\right]$
CoMULus
$[I D X i \otimes],\left[\mathrm{Rw}_{\mathrm{m}}{ }^{\otimes}\right]$

Format
A3 nm 8000
83 nm 80000 qqq
93 Xm 80 0:0qqq

Repeat
no
no
no

CoMULus-

Group

Syntax

Source Operand(s)
Multiply/Multiply-Accumulate Instructions
Mixed Multiply
CoMULus-

CoMULus- op1, op2

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(\mathrm{ACC}) \leftarrow-\left((\mathrm{op} 1)^{*}(\mathrm{op} 2)\right)
$$

Description

Multiplies the two unsigned and signed 16 -bit source operands op1 and op2, respectively. The obtained signed 32 -bit product is first sign-extended and then negated before being stored in the 40-bit ACC register.

MAC Flags

SL Not affected.
E Always cleared.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic		Format	Repeat
CoMULus-	$R w_{n}, R w_{m}$	A3 nm 8800	no
CoMULus-	$R w_{n},\left[R w_{m} \otimes\right]$	$83 \mathrm{~nm} 880: 0 q 9 q$	no
CoMULus-	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	$93 \times m 880: 0 q 9 q$	no

CoNEG

Group

Syntax
 CoNEG

Source Operand(s) \quad ACC $\rightarrow 40$-bit signed value
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
(A C C) \leftarrow 0-(A C C)
$$

Description

The ACC register contents is subtracted from zero before being stored in the 40 -bit ACC register.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic

CoNEG

Format
A3 003200

Repeat
no

CoNEG

Group

Syntax
 CoNEG rnd

Source Operand(s) ACC $\rightarrow 40$-bit signed value
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{ACC}) \leftarrow 0-(\mathrm{ACC})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

The ACC register contents is subtracted from zero and the result is rounded before being stored in the 40 -bit ACC register. The MAL register is cleared.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	Format	Repeat
CoNEG	rnd	A3 007200

MAC Unit Instruction Set

CoNOP

Group

Syntax

Source Operand(s)

CoNOP

CoNOP
Arithmetic Instructions

Destination Operand(s) none
Operation
No Operation

Description

Modifies the address pointers.

MAC Flags

SL Not affected.
E Not affected.
SV Not affected.
C Not affected.
Z Not affected.
N Not affected.

Encoding

Mnemonic		Format	Repeat
CoNOP	$[I D X i \otimes],\left[R w_{m} \otimes\right]$	93 Xm 5A rrrr:rqqq	yes
CoNOP	$[I D X i \otimes]$	$93 \times 05 A$ rrrr:r000	yes
CoNOP	$\left[R w_{m} \otimes\right]$	$930 m 5 A$ rrrr:rqqq	yes

CoRND

Group
 \section*{\section*{Syntax
 \section*{\section*{Syntax

 CoRND}

 CoRND}

Source Operand(s)

ACC $\rightarrow 40$-bit signed value
Destination Operand(s) ACC $\rightarrow 40$-bit signed value signed value
Operation

$$
\begin{aligned}
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})+0000008000 \mathrm{~h} \\
& (\mathrm{MAL}) \leftarrow 0
\end{aligned}
$$

Description

Rounds the ACC register contents by adding 0000 8000h to it and stores the result in the ACC register. The MAL register is cleared.
Note: CoRND is a shortname for CoASHR \#O, rnd

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic overflow occurred. Not affected otherwise.
C Set if a carry is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	Format	Repeat
CoRND	A3 00 B2 00	no

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoSHL

Accumulator Logical Shift Left
CoSHL
Group Shift Instructions

Syntax
 CoSHL op1

Source Operand(s) op1 \rightarrow shift counter
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { (count) } \leftarrow \text { (op1) } \\
& \text { (C) }<-(\text { ACC[39]) } \\
& \text { DO WHILE }((\text { count }) \neq 0) \\
& \quad \text { (C) } \leftarrow(\text { ACC[39]) } \\
& \quad \text { (ACC[n] }) \leftarrow(\text { ACC }[\mathrm{n}-1])[\mathrm{n}=39 \ldots . .1] \\
& \quad \text { (ACC[0] }) \leftarrow 0 \\
& \text { (count }) \leftarrow(\text { count })-1 \\
& \text { END WHILE }
\end{aligned}
$$

Description

Shifts the 40-bit ACC register contents left by the number of times specified by operand op1. The least significant bits of the result are filled with zeros accordingly. Only shift values from 0 to 8 (inclusive) are allowed. op1 can be either a 4 -bit unsigned immediate data or the 4 least significant bits (considered as unsigned data) of a directly or indirectly addressed operand.
When the MS bit of the MCW register is set and when a 32-bit overflow or underflow occurs, the obtained result becomes $00^{\prime} 7 \mathrm{fff}$ 'ffif or ff' 8000 '000h, respectively.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if the bit shifted out last is different from the new N flag.
C Carry flag is set according to the last most significant bit shifted out of ACC or according to the sign of ACC.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic		Format	Repeat
CoSHL	\#data4	A3 00 82 0sss:s000	no
CoSHL	$R w_{n}$	A3 nn 8A rrrr:r000	yes
CoSHL	$\left[R w_{m} \otimes\right]$	$83 \mathrm{~mm} \mathrm{8A}$ rrr:rqqq	yes

CoSHR

Accumulator Logical Shift Right
CoSHR
Group Shift Instructions

Syntax
 CoSHR op1

Source Operand(s) op1 \rightarrow shift counter
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& \text { (count) } \leftarrow \text { (op1) } \\
& \text { (C) } \leftarrow 0 \\
& \text { DO WHILE (count) } \neq 0 \\
& ((A C C[n]) \leftarrow(A C C[n+1])[n=0-38] \\
& (\text { ACC [39] }) \leftarrow 0 \\
& \text { (count) } \leftarrow \text { (count) }-1
\end{aligned}
$$

END WHILE

Description

Shifts the 40 -bit ACC register contents right the number of times as specified by the operand op1. The most significant bits of the result are filled with zeros accordingly. Only shift values from 0 to 8 (inclusive) are allowed. op1 can be either a 4-bit unsigned immediate data or the 4 least significant bits (considered as unsigned data) of a directly or indirectly addressed operand. The MS bit of the MCW register does not affect the result.

MAC Flags

SL Not affected.
E Set if the MAE is used. Cleared otherwise.
SV Not affected.
C Always cleared.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

MAC Unit Instruction Set

Encoding

Mnemonic		Format	Repeat
CoSHR	\#data4	A3 00 92 0sss:s000	no
CoSHR	$R w_{n}$	A3 nn 9A rrrr:r000	yes
CoSHR	$\left[R w_{m}{ }^{\otimes}\right]$	$83 \mathrm{~mm} 9 A$ rrr:rqqq	yes

MAC Unit Instruction Set

CoSTORE

Group

Syntax

Source Operand(s)
CoSTORE op1, op2
op2 \rightarrow WORD
Destination Operand(s) op1 \rightarrow WORD
Operation

$$
(o p 1) \leftarrow(o p 2)
$$

Description

Moves the contents of a MAC-Unit register specified by the source operand op2 to the location specified by the destination operand op1.

MAC Flags

SL Not affected.
E Not affected.
SV Not affected.
C Not affected.
Z Not affected.
N Not affected.
Note: Due to pipeline side effects, CoSTORE cannot be directly followed by a MOV instruction that also uses a MAC Unit register (MSW, MAH, MAL, MAS, MRW or MCW) as source operand. In such cases a NOP must be inserted between the CoSTORE and MOV instruction.

Encoding

Mnemonic
CoSTORE $\quad R w_{n}$, CoReg
CoStore

Store a MAC Unit Register
Data Movement Instructions

CoSTORE

User's Manual

MAC Unit Instruction Set

CoSUB

Subtract
CoSUB
Group Arithmetic Instructions

Syntax CoSUB op1, op2

Source Operand(s) op1,op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp})
\end{aligned}
$$

Description

Subtracts a 40-bit operand from the 40-bit ACC contents and stores the result in the ACC register. The 40-bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW).

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoSUB	$R w_{n}, R w_{m}$
CoSUB	$R w_{n},\left[R w_{m} \otimes\right]$
CoSUB	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 0A 00
83 nm 0 A rrr:rqqq
93 Xm 0A rrrr:rqqq

Repeat
no
yes
yes

User's Manual C166S V1 MAC Unit

MAC Unit Instruction Set

CoSUB2

Subtract
CoSUB2
Group
Arithmetic Instructions

Syntax

CoSUB2 op1, op2
Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow 2^{*}(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{ACC})-(\mathrm{tmp})
\end{aligned}
$$

Description

Subtracts a 40-bit operand from the 40 -bit ACC contents and stores the result in the ACC register. The 40-bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). The 40-bit operand is then multiplied by two before being subtracted from the ACC register.

MAC Flags

SL	E	Sv	C	z	N	Sat.
*	*	*	*	*	*	yes

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoSUB2	$R w_{n}, R w_{m}$
CoSUB2	$R w_{n},\left[R w_{m} \otimes\right]$
CoSUB2	$[I D X i],\left[R w_{m} \otimes\right]$

Format
A3 nm 4A 00
83 nm 4 A rrrr:rqqq
93 Xm 4A rrrr:rqqq

Repeat
no
yes
yes

User's Manual

MAC Unit Instruction Set

CoSUB2R

Group

Syntax

Source Operand(s)
Arithmetic Instructions
Subtract
CoSUB2R

Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow 2^{*}(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})
\end{aligned}
$$

Description

Subtracts the 40-bit ACC contents from a 40 -bit operand and stores the result in the ACC register. The 40-bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW). The 40-bit operand is then multiplied by two before the 40 -bit ACC is subtracted.

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic
CoSUB2R
$R w_{n}, R w_{m}$
CoSUB2R $\quad R w_{n},\left[R w_{m} \otimes\right]$
CoSUB2R [IDXi $\otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 5200
83 nm 52 rrrr:rqqq
93 Xm 52 rrrr:rqqq

Repeat
no
yes
yes

CoSUBR

Subtract
Arithmetic Instructions
Group

Syntax CoSUBR op1, op2

Source Operand(s)
op1, op2 \rightarrow WORD
Destination Operand(s) ACC $\rightarrow 40$-bit signed value
Operation

$$
\begin{aligned}
& (\mathrm{tmp}) \leftarrow(\mathrm{op} 2) \|(\mathrm{op} 1) \\
& (\mathrm{ACC}) \leftarrow(\mathrm{tmp})-(\mathrm{ACC})
\end{aligned}
$$

Description

Subtracts the 40-bit ACC contents from a 40 -bit operand and stores the result in the ACC register. The 40-bit operand is a sign-extended result of the concatenation of the two source operands, op1 (LSW) and op2 (MSW).

MAC Flags

SL Set if the contents of ACC is automatically saturated. Not affected otherwise.
E Set if the MAE is used. Cleared otherwise.
SV Set if an arithmetic underflow occurred. Not affected otherwise.
C Set if a borrow is generated. Cleared otherwise.
Z Set if result equals zero. Cleared otherwise.
$\mathrm{N} \quad$ Set if the most significant bit of the result is set. Cleared otherwise.

Encoding

Mnemonic	
CoSUBR	$R w_{n}, R w_{m}$
CoSUBR	$R w_{n},\left[R w_{m} \otimes\right]$
CoSUBR	$[I D X i \otimes],\left[R w_{m} \otimes\right]$

Format
A3 nm 1200
83 nm 12 rrrr:rqqq
93 Xm 12 rrrr:rqqq

Repeat
no
yes
yes

Instruction Index

7 Instruction Index

This section lists alphabetically all C166S MAC Unit instructions together with references to respective pages holding the detailed descriptions. This helps to quickly find the explanation of any specific MAC instruction.CoABS30
CoADD 32
CoADD2 33
CoASHR 34
CoCMP 38
CoLOAD 39
CoLOAD- 40
CoLOAD2 41
CoLOAD2- 42
CoMAC 43
CoMAC- 47
CoMACM 49
CoMACM- 53
CoMACMR 55
CoMACMRsu 59
CoMACMRu 61
CoMACMRus 63
CoMACMsu 65
CoMACMsu- 67
CoMACMu 68
CoMACMu- 70
CoMACMus 71
CoMACMus- 73
CoMACR 74
CoMACRsu 78
CoMACRu 80
CoMACRus 82
CoMACsu 84
CoMACsu- 86
CoMACu 87
CoMACu- 89
CoMACus 90
CoMACus- 92
CoMAX 93
CoMIN 94
CoMOV 95
CoMUL 96
CoMUL- 99
CoMULsu 100
CoMULsu- 102
CoMULu 103
CoMULu- 106
CoMULus 107
CoMULus- 109
CoNEG 110
CoNOP 112
CoRND 113
CoSHL 114
CoSHR 116
CoSTORE 118
CoSUB 119
CoSUB2 120
CoSUB2R 121
CoSUBR 122

User's Manual C166S V1 MAC Unit

Keyword Index

8 Keyword Index

This section lists a number of keywords which refer to specific details of the C166S V1 Multiply-Accumulate Unit in terms of its architecture and functions. This helps to quickly find the answer to specific questions about the C166S V1 MAC.

Numerics

1-bit Scaler 10, 25
2's-Complement Representation 9
40-bit Accumulator 12

A

Accumulator 20
Address Pointer Post-Modification 6 Addressing

MAC Operands 19
MAC Registers 18

C

Concatenation 10
Control Word 24
CoReg Addressing Mode 9

D

Double Indirect Addressing Mode 6, 19

E

Extension,
Accumulator 22
Flag 22
over 32-bits to MAE 12
Sign 10

I

Instruction Pipeline 6
Interrupt,
Flag 23
Generation 15, 25
Implementation 15
Mask Flags 25
Responce Time 16

M

MAS Virtual Register 9
Multiplier 10

0

Overflow,
40-bit 11, 22
Intermediate 11
Limiter Output 12

P

Parallel Data Move 7

R

Repeat Count 13, 25
Rounding 11

S

Saturation, Enabling 11, 25
Flag 23
Performing 11
Shifting Operations 13
Status Word 21

Keyword Index

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.
Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher
http://www.infineon.com

