
Proximity sensing with CAPSENSE™

About this document
Scope and purpose

This document provides a comprehensive technical guide for designing and implementing proximity-sensing
solutions using the CAPSENSE™ technology from Infineon.
Intended audience

The intended audience for this document is primarily developers, engineers, and designers who are interested
in implementing proximity sensing solutions using Infineon’s CAPSENSE™ technology.

Note: The document assumes a basic understanding of Infineon’s CAPSENSE™ technology, electronics, and
electrical engineering principles as well as software development and programming experience. If
you are new to CAPSENSE™ and PSOC™ architecture offered by Infineon, see the References section to
get familiar with these offerings.
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Abbreviations
Table 1 Abbreviations

Abbreviation Description
ADC Analog-to-Digital Converter

CMOD Modulator Capacitor

CP Parasitic Capacitance

CSD Self-Capacitance Sensing

CSH Shield Tank Capacitor

CSX Mutual-Capacitance Sensing

EMC Electromagnetic Compatibility

ESD Electrostatic Discharge

GND Ground

GPIO General-Purpose Input/Output

HID Human Interface Device

HMI Human machine interface

IDAC Current-Output Digital-to-Analog Converter

IDE Integrated Development Environment

IIR Infinite Impulse Response (filter)

MCU Micro Controller Unit

MSCLP Multi Scan Converter version 3 – Low Power

PSOC™ Programmable System on Chip controllers offered by Infineon

SNR Signal-to-Noise Ratio

VREF Programmable reference voltage blocks available inside PSOC™ used for
CAPSENSE™ and ADC operation
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1 Introduction
Proximity sensors allow users to interact with electronic devices and enable devices to detect the presence of
nearby objects without physical contact, which makes them ideal for applications such as touchless controls,
gesture control, object detection, and proximity switches.
Proximity sensing can be implemented using various technologies, such as capacitive, inductive, magnetic, Hall
effect, optical, ultrasonic sensors, and radar, each of which has its own advantages and disadvantages.
Capacitive proximity sensing is widely adopted as it enables robust designs with low cost, high reliability, low
power, sleek aesthetics, and seamless integration with existing user interfaces. Infineon’s CAPSENSE™ devices
provide robust proximity-sensing capabilities based on self-capacitance capable of a 30 cm proximity-sensing
distance.
This application note describes:
• Technology behind capacitive proximity sensing
• Design of proximity sensor using Infineon’s CAPSENSE™ devices
• Sensor layout guidelines for robust and reliable proximity sensing solution
• Firmware libraries and resources offered by Infineon to implement proximity-sensing solutions.
• Tuning guidelines of hardware and firmware parameters to achieve large proximity-sensing distances and

liquid tolerance.
• Guidelines for implementation of proximity-based gesture detection
• Troubleshooting tips and techniques

1.1 Proximity presence detection
Proximity sensing is the process of detecting the presence of a nearby object without any physical contact.
Capacitive proximity sensing technique based on CAPSENSE™ detects the presence of an (electrically
conductive) object by measuring the change in the capacitance of the sensor, which typically is in the range of a
few femtofarads (fF). The sensor could be a length of wire or a copper pad on PCB, the design is explained in
detail in subsequent sections of this document.

1.2 Gesture detection
Gesture detection is the technique of interpreting (human body) movements and providing gesture-type
information to the device. Gesture-based user interfaces provide an intuitive way to interact with the system.
This improves the user experience in applications such as 3D control of global maps on a computer screen.
Proximity sensors can also detect gestures, such as left-to-right or right-to-left swipes without any contact.
Proximity sensors based on CAPSENSE™ can be used to detect gestures without any physical contact between
the user and the device.

1.3 Applications
CAPSENSE™ is one of the popular human-machine interface technologies, CAPSENSE™-based capacitive
proximity sensing is widely used in a variety of applications such as:
• Wake-on-approach feature in battery-powered applications:

- Smart locks
- Wireless mouse, computer keyboards

• Gesture detection in a human-machine interface (HMI):
- 3D control computer interface
- Toys
- Musical Instruments (e.g., Theremin)
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• Presence and approach detection:
- Hearables, wearables such as smart watches, AR/VR glasses, headsets
- Specific absorption rate (SAR) regulation in tablets and mobile phones

• Smart home
- Smart speaker, door locks, wall switches, smart lights, home decor, rangehood, cooktops, backlight

control in control panels
• Climate and convenience

- Faucets, garbage bins, toilet, smart compost, thermostat (gesture control), toothbrush (turn on light on
approach), soap dispenser, towel dispensers, automatic door openers, etc.

1.4 Introduction to CAPSENSE™

Infineon’s CAPSENSE™ controllers use capacitive sensing where changes in capacitance because of the presence
of a finger on or near a sensor surface, are detected. Typically, capacitive sensors are circular metal-fill areas
itched on a PCB. Figure 1 illustrates an example of the capacitive sensor button. The sensing functionality is
achieved using a combination of hardware and firmware.

Figure 1 Illustration of a capacitive sensor

A capacitive sensor can be designed using two different techniques: self-capacitance or mutual capacitance as
shown in Figure 2.

Sensor

CP

CF

Self capacitive 
sensing 

hardware

Mutual 
capacitive 

sensing 
hardware

Sensor
(Rx)

Raw  
Count

Raw  
Count

Cm

Tx

PSOCTM

PSOCTM

Figure 2 Self and mutual capacitance-based touch sensing working principle

Proximity sensing with CAPSENSE™

1  Introduction

Application note 7 001-92239 Rev. *H
2025-11-25



PSOC™ devices use sensing methods known as capacitive sigma-delta (CSD) for self-capacitance sensing and
CAPSENSE™ Crosspoint (CSX) for mutual-capacitance sensing. The CSD and CSX touch sensing methods provide
the industry’s best-in-class Signal-to-Noise ratio (SNR).

1.4.1 Self-capacitance
Self-capacitance uses a single pin and measures the capacitance between the pin and nearby ground. In a
CAPSENSE™ self-capacitance system, the sensor capacitance measured by the controller is called CS.
When a finger is not near the sensor:
Sensor capacitance (CS) = Parasitic capacitance (CP) of the system
The parasitic capacitance, CP is a simplification of the distributed capacitance that includes the effects of the
sensor pad, the overlay, the trace between the CAPSENSE™ controller pin and the sensor pad, the vias through
the circuit board, and the pin capacitance of the CAPSENSE™ controller. CP is related to the electric field around
the sensor pad. Although Figure 3 shows field lines only around the sensor pad, the actual electric field is more
complicated.

CX = CP

PCB

CP CP
GroundGround

Proximity
Sensor

Overlay

Figure 3 Illustration of sensor parasitic capacitance and electric field

When an object, such as a finger approaches the sensor, some of the electric field lines couples to the target
object and add a small amount of finger capacitance (CF) to the existing CP, as shown in Figure 4. This change in
capacitance is measured by the CAPSENSE™ circuitry to detect the proximity of the target object.
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Figure 4 Illustration of electric field lines coupling to finger

When a finger is near the sensor:
Sensor capacitance (CS) = Parasitic capacitance (CP) + Finger capacitance (CF)
The change in total sensor capacitance (CS) due to addition of finger capacitance (CF) is measured to determine
user interaction with the system.

1.4.2 CAPSENSE™ system
Infineon’s PSOC™ devices use CAPSENSE™ system for self-capacitance sensing as shown in Figure 5. It operates
by charging the sensor capacitance connected to a PSOC™ pin and measuring the capacitance. A capacitance-
to-digital converter then converts it into a digital value that is proportional to the self-capacitance between the
electrodes, known as “raw count”.
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Figure 5 Simplified CSD modulator

Raw count and sensor capacitance relationship in CAPSENSE™ is:
Raw count = GCCS
where,
GC is the capacitance to digital conversion gain
CS is the self-capacitance of the electrode
Figure 6 shows a plot of raw count over time. When a finger approaches the sensor, the Sensor Capacitance (CS)
increases from CP to CP + CF, and the raw count increases. By comparing the change in the raw count to a
predetermined threshold, firmware logic decides whether the sensor is active (target object is present).

Figure 6 Raw count vs. time

1.4.3 Mutual capacitance
Mutual-capacitance sensing measures the capacitance created by electrical coupling between two nearby
electrodes, one of which is called the transmit (Tx) electrode, and another electrode is called the receive (Rx)
electrode. In a mutual-capacitance measurement system, a digital voltage (signal switching between VDD and
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GND) is applied to the Tx pin, and the amount of charge received on the Rx electrode is measured. The amount
of charge received on the Rx electrode is directly proportional to the mutual capacitance (CM) between the two
electrodes.
When a finger is placed between the Tx and Rx electrodes, the mutual capacitance (CM) decreases because of
the obstruction of the field by the finger, and the grounding effect of the finger as shown in Figure 2. The
CAPSENSE™ system measures the change in charge received on the Rx electrode to detect the touch/no touch
condition.
This application note aims to describe the design of a proximity-sensing solution using the self-capacitance
technique, therefore, the details of mutual capacitance provided here are limited. See AN85951 – PSOC™ 4 and
PSOC™ 6 MCU CAPSENSE™ design guide for more information on mutual capacitance-based touch sensing
solutions.
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2 Designing a CAPSENSE™ proximity-sensing solutions
Similar to any other product, certain requirement specifications need to be defined to design a proximity-
sensing solution. The specifications for proximity-sensing design can be listed as follows:
• Maximum sensing distance required
• Behavior in the presence of liquid
• Operation in extreme operational environmental conditions
• Operation in areas with high EMI noise
Figure 7 illustrates the typical flow of a CAPSENSE™ solution design. This flow is similar to any other electronic
product design flow except that CAPSENSE™ designs involve an additional step called “Tuning”.

Start

Specify proximity sensing requirements

Specify high level product requirements

Understand the basics and evaluate working 
of proximity sensing with development kit

Design schematic, Layout and Mechanical 
Structure

Is proximity sensing 
performance 
satisfactory?

Build prototype

Review design

Go to production

Yes

Design for mass production

Select CAPSENSE™ MCU

Design and configure firmware

Tune CAPSENSE™ parameters

Test and calculate SNR for required 
maximum sensing distance

No

See Sections 1 and 2

See Section 3

See Section 4

See Section 5

Figure 7 Recommended CAPSENSE™ design flow

2.1 Terminology
Table 2 defines CAPSENSE™ related terms that are used throughout the document:
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Table 2 Terminology

Terms Description

Detection distance Detection distance is the distance where the added capacitance exceeds some
threshold values. The detection distance depends on the sensor’s electrical field
propagation (electrical field strength). A longer propagation distance provides a longer
detection range.

Target object Object of which presence or movement is to be detected by proximity sensing design,
e.g., Human hand/finger, conductive objects.

Widget CAPSENSE™ widgets are a combination of one or more CAPSENSE™ sensors, which as a
unit represent a certain type of user interface, such as sliders or trackpads.
Widgets are broadly classified into four categories:
1. Buttons (Zero-Dimensional)
2. Sliders (1 Dimensional)
3. Touchpads/Trackpads (2 Dimensional),
4. Proximity sensors

Channel Each instance of the CAPSENSE™ peripheral in the PSOC™ MCU device is considered as a
channel and multiple instances imply multiple channels.

Raw count As mentioned earlier, sensor capacitance is converted into a count value by the
CAPSENSE™ hardware. The converted digital count value is referred to as the raw count.
Processing of the raw count results in ON/OFF states for the sensor.

Baseline A value resulting from a firmware algorithm that estimates a trend in the raw count
when there is no conductive object/human finger present on the sensor. The baseline
is less sensitive to sudden changes in the raw count and provides a reference point for
computing the difference count.

Baseline reset Event at which the baseline (raw count) value is set to a new value. Baseline is the
value recalculated based on the current raw count when the raw count is within noise
thresholds.

Difference count or
signal

Subtracting the baseline level from the raw count produces the difference count that is
used in the decision process. The thresholds are offset by a constant amount from the
baseline level.

LP-AoS mode Low Power-Always-on-Sensing mode of the devices with fifth-generation CAPSENSE™.
Devices in LP-AoS mode are capable of scanning and processing a widget while in Deep
Sleep mode. This feature wakes up the device on a touch detection or on a timeout.

Parasitic
capacitance, CP

The parasitic capacitance, CP is a simplification of the distributed capacitance that
includes the effects of the sensor pad, the overlay, the trace between the CAPSENSE™

controller pin and the sensor pad, the vias through the circuit board, and the pin
capacitance of the CAPSENSE™ controller.

Scan slot A scan slot represents a group of sensors scanned together. In single-channel mode,
one sensor is scanned per scanning slot.

Signal-to-noise ratio
(SNR)

As the name suggests it is the measure of the quality of the information in a signal
to noise present in the signal. In a capacitive proximity sensing system, SNR implies
reliable and accurate detection.

(table continues...)
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Table 2 (continued) Terminology

Terms Description

Shield (shield
electrode)

When any of the copper areas on the PCB, like hatch fill around the sensor (as shown in
Figure 14) is connected to the driven shield signal, it is referred to as a shield electrode.

2.2 Challenges
While designing robust and reliable real-world applications of capacitive proximity sensing, several challenges
need to be considered. This application note attempts to address most of the significant challenges as follows:

2.2.1 Low power
Low-power embedded design is motivated by the need to run battery-powered applications for as long as
possible while consuming minimum power and not requiring frequent battery charging. Furthermore, low
power implies a lower cost of operation and a smaller battery size.
This section describes a few of the recommended techniques that can be used to reduce power consumption in
CAPSENSE™ proximity sensing design:
Use of low-power MCU
The simplest way to reduce power consumption is to use a device that consumes very low power while
operating. See the CAPSENSE™ controllers page on the Infineon website to select a device that meets the design
requirements with the least possible operating current.
Infineon’s PSOC™ 4000T with fifth-generation CAPSENSE™ MSCLP is the lowest power MCU featuring always-on
capacitive sensing in Deep Sleep mode. Up to a 10x reduction in power consumption in low-power mode and 5x
reduction in power consumption in active mode, PSOC™ 4000T is recommended for low-power designs.
Use of Low Power modes with wake-on-approach
One of the ways to reduce power consumption is to implement Low Power modes on the MCU and operate in
normal/active mode only when required, such as Wake-on-Approach. This technique can be implemented
using Low-power widgets offered by fifth-generation CAPSENSE™ MSCLP devices. See the Wake-on-approach
section for more details.
Reducing scan times when MCU is active, reduces the total time device spends keeping the CPU active,
therefore, reducing power consumption. Scan time can be reduced with the following techniques:
• Increasing (CAPSENSE™) modulator clock frequency
• Reducing scan resolution
See the Tuning the proximity-sensing design section for more details on how to tune these parameters for
lowering power consumption.
Another technique to save power is Implementing the Wake-on-Approach using Sensor Ganging, which refers to
scanning all the capacitive sensors as a single proximity sensor. See the Sensor ganging section for more
details.
Turning off part of the circuit
One of the techniques to reduce the power consumption in a product is to turn off part of the circuit when not
required. Note that such a technique requires the circuit to be designed in such a way that part of the circuit
can be disabled by the firmware.
Relevant resources
Refer to the following resources for more information on reducing power consumption in CAPSENSE™-based
design solutions:
Application notes:
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• AN234231 - Achieving lowest-power capacitive sensing with PSOC™ 4000T
• AN85951 - PSOC™ 4 MCU low-power modes and power reduction techniques
Code examples:
• PSOC™ 4: MSCLP CAPSENSE™ low-power proximity tuning
• PSOC™ 4: MSCLP CAPSENSE™ low power

2.2.2 Large proximity-sensing distance
Achieving a large proximity-sensing distance in an end system is a challenge because the proximity-sensing
distance depends on multiple and interdependent factors.
Table 3 describes hardware, software, and system parameters that affect proximity-sensing distance.

Table 3 Factors affecting proximity sensing distance

Parameter Effect How to improve/Best Practices

Type and size of the
sensor

Proximity-sensing distance is directly
proportional to the area of the sensor.
However, the increase in the surface
area of the sensor also increases CP
which has an adverse effect on sensing
distance.

Use loop (or ring) sensors of the maximum size
possible instead of solid fill patterns. See the
Layout guidelines section for more details.

Parasitic
capacitance (CP) of
the sensor

Proximity-sensing distance increases
with an increase in the CF/CP ratio.

Design the sensor such that CP can be
minimized while keeping the large sensing
area. See the Layout guidelines section for
more details.

Nearby floating
or grounded
conductive objects

Conductive objects can absorb a part
of the electrical field and decrease the
propagation distance, and therefore, the
detection range.

1. Place the conductive object as far from
the sensor as possible

2. Use a shield between the object and the
sensor, OR

3. Use the object as a shield if possible

Scan resolution of
the sensor

Higher the resolution, the higher the
sensitivity and therefore, the sensing
distance.

Set Number of sub conversions (NSUB) to
change the resolution of scans, higher the
NSUB, higher the power consumption. See the
Tuning guidelines for details.

Nearby electrical
noise sources

Electrical noise interfering with the
proximity sensor electric field results
in reduced SNR and therefore, reduced
proximity-sensing distance.

• Design the product such that the noise
sources are as far as possible from the
sensor as possible

• Surround the sensor with a ground trace
• Filters help attenuate noise in the sensor

raw count and increase the SNR. See the
Filters section for details

Devices with CAPSENSE™ MSCLP are recommended for new designs requiring large proximity sensing distances.
It provides improved sensitivity based on the all-new ratio-metric analog architecture and advanced hardware
filtering.
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2.2.3 Liquid tolerance
Proximity sensors are used in applications such as faucets and soap dispensers. These applications require a
robust operation even in the presence of water droplets and other liquids which can cause false triggers.
Making the design liquid-tolerant requires various considerations at every stage of the design i.e., layout,
firmware, and tuning. Recommended strategies to make the CAPSENSE™ design liquid-tolerant are:
• Effective use of shield electrode
• Use of guard sensor
• Tuning for liquid tolerance
See the Layout guidelines for liquid tolerance, Firmware guidelines for liquid tolerance, and Tuning for liquid
tolerance for more details.
Relevant resources
Following code examples demonstrate how to achieve Liquid Tolerance in CAPSENSE™ based design:
• PSOC™ 4: CAPSENSE™ MSCLP Liquid tolerant proximity sensing
• PSOC™ 4: MSCLP robust low-power liquid-tolerant CAPSENSE™

2.2.4 High sensing reliability/noise tolerance
Proximity sensors are susceptible to noise because of their large sensor area and high sensitivity setting. High
noise makes it difficult to achieve a good signal-to-noise ratio (SNR) (typically greater than 5:1), which is
required for reliable proximity sensing.
Table 4 lists the common sources that contribute to noise in proximity sensing and respective recommended
mitigation techniques.

Table 4 Sources of noise

Noise source Examples Recommended noise mitigation technique

PWM driven devices LEDs, motors Design to keep these sources as far as possible
from the sensor. Add a ground hatch between these
devices and sensors.

Switching power converter AC-DC, DC-DC, DC-AC

High-speed communication
interfaces

USB, Ethernet Use shielded twisted pair wires, design to keep these
sources as far as possible from the sensor. Add a
ground hatch between these devices and sensors.

AC supply lines Relays and switches Use shielded twisted pair wires when power lines are
passing near the sensors.

Use of filters
The most effective method of reducing noise in CAPSENSE™-based design is to use filters. Filters help to reduce
the noise in raw count significantly and improve the SNR, and sensing accuracy. Various filters offered by the
CAPSENSE™ ecosystem are explained in the Filters section.
Infineon’s PSOC™ 4000T and PSOC™ 4100T Plus devices with fifth-generation CAPSENSE™ provide improved SNR
based on the all-new ratio-metric analog architecture and advanced hardware filtering to enable reliable and
robust capacitive proximity sensing.

2.2.5 Directionality
A proximity sensor can detect objects from all directions within a certain range. Implementing directional
proximity sensing in an end system poses a significant challenge as it relies on multiple factors such as overall
enclosure design, hardware components, and PCB layout.
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To achieve directional sensitivity in proximity sensors, place a ground plane at the bottom of the sensor as
shown in Figure 8. If the ground plane is too close to the sensor, sensitivity will be very low as it absorbs most of
the electric field lines generated by the sensor. This is because the ground plane provides a path for the electric
field lines to terminate, reducing the strength of the field that interacts with the object being sensed. As a
result, the sensor's ability to detect objects is impaired. To avoid this, the ground plane must be placed with
some separation from the shield. This will allow the electric field lines to interact with the object, while the
ground plane's absorption effect is minimized. As distance between ground plane and bottom layer (shield)
increases, signal strength from top side increases. The optimal distance depends on various system factors and
requires testing on the actual system to determine the best distance. As a rule of thumb, keep the separation
between ground plane and bottom layer (shield) at least 30% of the required sensing distance.

Top Layer (Proximity Sensor)

PCB (FR4 Material)

Bottom Layer (Shield)

Ground Plane
GND

Figure 8 Ground plane placement for proximity directionality

Note: Using a solid ground plane with a slight overhang from the sensor size can help achieve excellent
directionality. However, it is important to note that a solid ground plane also increases the parasitic
capacitance (Cp), which varies with the distance of the ground plane, which results in lower sensitivity.

2.3 Resource to get started on CAPSENSE™ proximity-sensing
This section describes the resource offered by Infineon to get started on designing CAPSENSE™ proximity-
sensing solutions.

2.3.1 Online resources
• Infineon CAPSENSE™ webpage
• Infineon ModusToolbox™ webpage
• ModusToolbox™ software help on GitHub
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2.3.2 Getting started kits
1. CY8CKIT-040T PSOC™ 4000T CAPSENSE™ Evaluation Kit

Figure 9 CY8CKIT-040T PSOC™ 4000T CAPSENSE™ Evaluation Kit

CY8CKIT-040T PSOC™ 4000T CAPSENSE™ Evaluation Kit demonstrates the following key capabilities of
the fifth-generation CAPSENSE™ technology available in the PSOC™ 4000T series MCU :

• Superior touch and proximity-sensing performance
• Ultra-low-power capability based on “Always-On” sensing
• Superior liquid tolerance

2. CAPSENSE™ proximity shield

Figure 10 CY8CKIT-024 with CAPSENSE™ proximity shield

This Arduino-compatible CY8CKIT-024 with CAPSENSE™ proximity shield demonstrates the proximity-sensing
capabilities of the CAPSENSE™ technology in PSOC™ products. It can be used with the PSOC™ Pioneer Kits such
as CY8CKIT-042 PSOC™ 4 Pioneer Kit or the CY8CKIT-040 PSOC™ 4000 Pioneer Kit.

2.3.3 Code examples
• PSOC™ 4: MSCLP CAPSENSE™ low-power proximity tuning
This code example demonstrates an implementation of a low-power proximity sensing application using
CY8CKIT-040T PSOC™ 4000T CAPSENSE™ Evaluation Kit to detect a target object (a hand) at large distance.
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It includes recommended power states, transitions, adjustments for tuning parameters, and the method of
tuning. This example uses a MSCLP low-power widget to demonstrate different considerations to implement a
low-power design.
This code example also explains how to manually tune the low-power widget for optimum performance and
largest distance with respect to parameters such as power consumption and response time using the CSD-RM
sensing technique and CAPSENSE™ Tuner.
• PSOC™ 4: CAPSENSE™ MSCLP liquid tolerant proximity sensing
This code example demonstrates an implementation of a low-power proximity sensing with liquid tolerance
using CY8CKIT-040T PSOC™ 4000T CAPSENSE™ Evaluation Kit.
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3 Layout guidelines
The sensor layout plays a crucial role in achieving the required proximity-sensing distance and reliability of the
detection. A capacitive proximity sensor can be constructed in various shapes, sizes, and using different
materials depending on the application requirement. The basic objective during sensor layout design is to:
• Achieve high sensitivity
• Reliable detection
• Maximum proximity-sensing distance
• Minimum CP

Though the fundamental principle of detection remains the same, the working of (proximity) gesture detection
is different from proximity presence detection. Except for the up-down gesture (e.g., moving the hand near and
far to the sensor), gesture detection requires more than one sensor. Therefore, the layout design of the sensor
for proximity presence detection and gesture detection will differ and are explained in this section.

3.1 Presence detection
As described earlier, proximity presence sensing is the process of detecting the presence of nearby objects
without any physical contact. Table 5 shows the possible types of capacitive proximity sensor designs and their
respective use cases:

Table 5 Types of capacitive proximity sensors

Sensor type Recommended use case Sensor CP Estimated sensing range

Button
sensor

When required proximity-sensing distance or
area available for the sensor is very small.

High ~Equal to the diameter of the
sensor1)

Ganged
sensor

When no dedicated sensor pin or area is
available on the PCB for implementing a
proximity sensor, but capacitive touch sensors
are available.

Highest Sensing range depends on the
types and number of sensors being
ganged together

PCB trace When the required proximity-sensing distance
is very large.

Optimal ~Equal to the diameter/diagonal of
the sensor1)

Wire-loop When the required proximity-sensing distance
is very large and not enough area is available
on PCB / other design constraints preventing
PCB trace type sensor.

Optimal ~Equal to the diameter/diagonal of
the sensor1)

1) The actual sensing distance is affected by multiple factors which are discussed in Section Large proximity-sensing distance earlier,
the sensing distance mentioned here is based on estimation.

3.1.1 Button sensor
When the sole purpose of the design is proximity sensing, button sensors are not recommended. Generally, the
reason for using button sensors is design constraints where existing touch sensors are repurposed for proximity
sensing.
Because of the way, the button sensor is constructed (with solid) surface area, it exhibits high CP, which results
in lower sensing resolution and effective sensing range. Also, because the diameter of a button sensor typically
ranges from 5 mm to 15 mm, the proximity-sensing distance achieved with a button sensor is limited when
compared to other sensor implementation methods.
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Figure 11 Proximity sensing with button sensor

In applications that need larger distance proximity sensing than what can be achieved with a simple button
sensor, a ring around the button working as a separate proximity sensor is recommended. Along with other
range improvement methods, like placing a Shield electrode at the bottom of the sensor electrode, can provide
improved sensing range.

3.1.2 Ganged sensor
Sensor ganging refers to connecting multiple sensors (buttons, proximity trace, proximity loop etc.) to the
CAPSENSE™ circuitry and scanning them as a single sensor, generally used for the wake-on-approach
technique. It is explained in detail in the Sensor ganging section.

3.1.3 PCB trace sensor
A long PCB trace on an FR4 or a Flexible Printed Circuit (FPC) board can form a proximity sensor. The trace can
be a straight line (Figure 12 (a)), or it can surround the perimeter of a system’s user interface, as shown in Figure
12 (b). Implementing a proximity sensor with a PCB trace has the following advantages when compared to
other sensor implementation methods:
• Low CP

• High proximity-sensing distance in case of loop sensor, as more electric field lines couple to the hand/
conductive object

• Suitable for mass production
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CAPSENSE™  
Controller

Proximity Sensor

PCB

CAPSENSE™  
Controller

Proximity Sensor
PCB

(a) Bar Proximity Sensor (b) Loop Proximity Sensor

Figure 12 CAPSENSE™-based proximity sensing with PCB trace

3.1.4 Wire sensor
A single length of wire looped back as shown in Figure 13, works well as a proximity sensor. Implementing a
proximity sensor with a wire loop has the following advantages when compared to other sensor
implementation methods:
• Provides greater flexibility of where the sensor can be placed in the product, e.g., a wire loop can be

mounted underneath the product casing/enclosure wall
• Because of the flexibility of implementation in size, a larger proximity distance can be achieved
However, using a wire sensor is not an optimal solution for mass production because of manufacturing cost
and complexity. Therefore, it is not recommended.

Figure 13 Proximity sensor prototype using copper tape as wire loop

3.2 General layout guidelines
This section describes the guidelines that apply to the construction of all types of capacitive proximity sensors.
These guidelines are recommended to improve the performance of the capacitive proximity-sensing design.

3.2.1 Size of the sensor vs. proximity sensing distance
A larger sensor area results in more electric field lines coupling with the target object, increasing the sensor
signal. Therefore, the size of the sensors increases with the required proximity-sensing distance in the design.
However, a large sensor area results in a high sensor CP and potentially higher noise levels. This can adversely
affects the proximity-sensing distance. Using a loop sensor of equivalent diameter/diagonal (Figure 12 (b))
instead of solid-fill sensor results in a lower sensor CP, lower noise, and improved proximity-sensing distance.
Because of the intrinsic high sensitivity of the proximity sensors, nearby noise sources and floating or grounded
conductive objects reduce the SNR and therefore, proximity-sensing distance.
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As a thumb rule, it is recommended to start with a minimum loop diameter (for a circular loop) or diagonal (for
a square loop) equal to the required proximity-sensing distance. If the required proximity-sensing distance
cannot be achieved with a loop diameter or diagonal equal to the required proximity-sensing distance, increase
the sensor size till the required proximity-sensing distance is achieved.

3.2.2 Parasitic capacitance of the sensor
As the CF indicates the change in capacitance in the presence of the target object, the proximity-sensing
distance depends on the ratio of the CF to the CP because of its effect on measurement resolution. The
proximity-sensing distance increases with an increase in the CF/CP ratio. For a given sensor size, the value of CF
depends on the distance between the sensor and the target object, and the size of the target object. Though CF
is not completely controllable by the design, to maximize CF/CP ratio, decreasing CP while keeping the sensing
area covered equivalent, is the easiest approach (e.g., loop sensor).
The CP of the sensor can be minimized by:
• Selecting an optimum sensor type
• Reducing the sensor trace length
• Minimizing the coupling of sensor electric field lines to the nearby ground or metal objects
To minimize the sensor trace length and, thereby, the sensor CP, place the CAPSENSE™ MCU device as close to
the sensor as possible.
To reduce the coupling of sensor electric field lines to the ground, implement a hatch fill surrounding the sensor
in the top layer and bottom layer of the PCB as explained in the following section.

3.2.3 Shield electrode
When the hatch fill as shown in Figure 14 is implemented around the sensor and is driven with a signal (same as
that of the sensor), it is referred to as a shield electrode. Shield electrode with hatch fill of 0.17 mm (7 mil) trace
and 1.143 mm (45 mil) grid, on the top layer and the bottom layer surrounding the sensor can be used for the
following purposes:
• To reduce the sensor CP
• Improve water tolerance
• To reduce the effect of floating/grounded conductive objects on the proximity-sensing distance
• To make the proximity sensing unidirectional
Figure 14 illustrates an example of shield design to reduce sensor CP.

Figure 14 Example of shield electrode pattern and placement
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3.3 External capacitors
CAPSENSE™ devices require an external capacitor for self-capacitance sensing. These external capacitors are
connected between a dedicated GPIO pin and the ground. Table 6 lists the recommended values of the external
capacitors for the respective CAPSENSE™ generation.

Table 6 Recommended values of the external capacitors

Type CAPSENSE™ generation Recommended values

CMOD 3rd and 4th 2.2 nF

CMOD1 and
CMOD2

5th 2.2 nF

CSH_TANK 3rd and 4th 10 nF if shield electrode is implemented, NA otherwise

For more information, see the “Schematic rule checklist” section of the AN85951 - PSOC™ 4 and PSOC™ 6 MCU
CAPSENSE™ design guide.

3.4 Pin assignment
An effective method to reduce the interaction between proximity sensor traces and communication or non-
sensor traces is to isolate each by port (pin) assignment. Figure 15 shows a basic version of this isolation for a
32-pin QFN package. Because each function is isolated, the CAPSENSE™ controller is oriented such that there is
no crossing of communication, LED, and sensing traces.
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Figure 15 Recommended: Port isolation for communication, CAPSENSE™, and LEDs

The CAPSENSE™ controller architecture imposes a restriction on the current budget for even and odd port pins.
For a CAPSENSE™ controller, if the current budget of an odd port pin is 100 mA, the total current is drawn
though all odd port pins must not exceed 100 mA. In addition to the total current budget limitation, there is also
a maximum current limitation for each port pin. See the datasheet of the CAPSENSE™ controller used in the
application for the details.
All CAPSENSE™ controllers provide high current sink and source capable port pins. When using the high current
sink or source from port pins, select the ports that are closest to the device ground pin to minimize the noise.

Note: While the CAPSENSE™ is scanning the sensor, limit the total source/sink current through GPIOs to
40 mA. Sinking/sourcing more than 40 mA during the sensor scan may result in excessive noise in the
sensor raw count.

ModusToolbox™ CAPSENSE™ configurator can be used for the pin assignment in the CAPSENSE™ design as
shown in Figure 16.
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Figure 16 PSOC™ pin assignment with ModusToolbox™ CAPSENSE™ configurator

3.4.1 External capacitors pin selection
Table 7 lists the recommended pins for CMOD and CSH_TANK capacitors for a CAPSENSE™-based design.

Table 7 Recommended pins for external capacitors

Device CMOD (or CMOD1 for fifth-generation
CAPSENSE™)

CSH_TANK (or CMOD2 for fifth-
generation CAPSENSE™)

PSOC™ 4000 P0[4] P0[2]

PSOC™ 4000T P4[2] P4[3]

PSOC™ 4100/PSOC™ 4200 P4[2] P4[3]

PSOC™ 4100T Plus P1[0] P1[1]
(table continues...)
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Table 7 (continued) Recommended pins for external capacitors

Device CMOD (or CMOD1 for fifth-generation
CAPSENSE™)

CSH_TANK (or CMOD2 for fifth-
generation CAPSENSE™)

PSOC™ 4200M/PSOC™ 4200L CSD0: P4[2] CSD0: P4[3]

CSD1: P5[0] CSD1: P5[1]

PSOC™ 4 Bluetooth® LE P4[0] P4[1]

PSOC™ 6 MCU P7[1] P7[2]

PSOC™ 4S-series, PSOC™ 4100S Plus P4[2] P4[3]

PSOC™ 4100PS P5[2] P5[3]

PSOC™ 4100S Max Channel0: P4[0] Channel0: P4[1]

Channel1: P7[0] Channel1: P7[1]

To know more about pins that support external capacitors in PSOC™ devices, see the respective device
datasheets.

3.5 Detection with nearby conductive object/metal
The proximity-sensing distance reduces drastically in presence of a floating or grounded conductive object
nearby. Following factors cause the proximity-sensing distance to reduce drastically when conductive objects
are placed close to the proximity sensor:
• As mentioned earlier in the Terminology section, detection distance is based on the electric field

propagation, a metal surface can absorb a part of the electrical field and decrease the propagation
distance, and therefore, the detection range

• Coupling of sensor field lines to conductive/ground objects increases the sensor CP. Larger sensor CP
reduces the CF/CP ratio and often requires reducing the sensor switching frequency, causing the proximity-
sensing distance to decrease (when the scan time cannot be increased)

Finger

Detection distance

PCB

Sensor Earth ground

Finger

Detection distanceSensor

PCB

Metal surface

Figure 17 Electrical field propagation with and without a metal object

The influence of a metal object on a sensor can greatly be reduced by placing a shield electrode between the
proximity sensor and the metal object as shown in Figure 18. A separate, sensor-dedicated PCB construction is
recommended for this implementation.
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Figure 18 Using a shield electrode to decrease the metal object’s influence

Because of design constraints, if a separate dedicated proximity sensor on a PCB is not possible and the sensor
is required to be implemented on the same PCB where other components are installed, following
recommendations can be implemented to improve the proximity sensing distance:
• Place the sensing electrode on the board perimeter
• The shield electrode must be located under the sensor at the bottom of the PCB layer
• Do not use the large ground fill area inside the proximity sensor which can cause sensitivity degradation
• If a multilayer PCB is used, fill the top layer with 20% to 25% hatched shield electrode copper pour; the

internal layers can be used for ground and signals routing
• If the device has a plastic case, glue the wire sensor with a shield electrode on the internal plastic case side

to maximize the detection distance. The recommended wire length is 10 cm to 20 cm
• The distance between the shield and the metal should be 10 mm to 20 mm

3.6 Layout guidelines for gesture detection
For detecting gestures, proximity sensor design and placement depend on the type of gesture that is to be
detected. For example, to detect gestures such as horizontal swipes (along the X-axis), two parallel proximity
sensors, PS1 and PS2, placed perpendicular to the horizontal hand movement, can be used as Figure 19 shows.
The width of the sensors must not be less than 2 mm as a thumb rule; however, the length and width depend
on the required sensing distance as mentioned in the Section Size of the sensor vs. proximity sensing distance.
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Swipe 
Direction

2mm PCB

Figure 19 Layout for detecting single-axis swipe using two proximity sensors

The sensor arrangement as shown in Figure 19 results in signals as shown in Figure 20.

Figure 20 Signal counts for object position over the gesture sensors

Similarly, to detect horizontal as well as vertical swipes (along both the X and Y-axis), 4 sensors can be used as
shown in Figure 21. The two parallel proximity sensors, PS1 and PS2 are used to detect horizontal swipes (along
the X-axis), and PS3 and PS4, are used to detect horizontal swipes (along the Y-axis).
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Figure 21 Proximity sensor design and placement for 2D gesture detection

Apart from being designed with multiple sensors, other aspects of the sensor design remain the same as those
of a single-sensor design. All the layout guidelines are recommended to be followed for each of the sensors
during the design of the gesture detection sensor.
Table 8 lists the parameters and respective recommended values to be considered during the design of the
gesture detection sensor layout.

Table 8 Recommended values of parameters for gesture detection sensor layout

Parameter Effect on design Recommended values

Trace/sensor width CP, sensitivity, and sensing distance 2 mm

Trace length 5 cm

Distance between traces Type of Gesture that can be detected 5 cm for swipe-type gesture
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3.7 Layout guidelines for liquid tolerance
Making the CAPSENSE™ design liquid-tolerant requires consideration of various approaches during layout
design along with the relevant firmware configuration and tuning. The two most helpful recommended layout
techniques for liquid-tolerant CAPSENSE™ proximity-sensing solutions are:
• Shield electrode
• Guard sensor

3.7.1 Design of shield electrode for liquid-tolerant proximity-sensing
Adding a carefully designed shield electrode can significantly reduce the interference of liquid droplets on the
sensing surface. As described in the Shield electrode section, design the shield electrode in and around the
entire proximity sensor, preferably with the hatch pattern. Maintain a minimum distance of 2 mm between the
sensor and shield electrodes.

3.7.2 Design of guard sensor for liquid-tolerant proximity-sensing
When a continuous liquid stream or a large amount of liquid is splashed on the sensor surface, it adds a large
capacitance to the CAPSENSE™ circuitry. This capacitance might be several times larger than CF. Because of
this, the effect of the shield electrode is completely masked, increasing the sensor raw count potentially higher
than a target object in proximity. In such situations, the guard sensor can prevent false detections.
A guard sensor is a copper trace that surrounds all the sensors on the PCB, as Figure 22 shows. A guard sensor is
similar to a touch sensor and is used to detect the presence of a liquid stream. Multiple guard sensors can be
used in combination as shown in Figure 22 for effective sensing of the presence of a liquid.
Configure the guard sensor as a CSX sensor in combination with the proximity sensor, where the guard sensor
acts as Rx and the proximity sensor acts as Tx (the proximity sensor works as the CSD sensor for target object
detection and Tx for liquid detection alternatively). When a guard sensor is triggered, the firmware can disable
the scanning of all other sensors in the system to prevent false detection. The firmware aspect of this technique
is explained in more detail in the Firmware guidelines for liquid tolerance section.

Proximity sensing with CAPSENSE™

3  Layout guidelines

Application note 31 001-92239 Rev. *H
2025-11-25



Guard Sensor
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Figure 22 PCB layout with shield electrode and guard sensor

Design the guard sensor layout such that:
1. The guard sensor should be rectangular in shape with curved edges and surround all the sensors.
2. The recommended thickness for a guard sensor is 2 mm.
3. The recommended minimum gap between the guard sensor and the shield electrode is 2 mm.
4. It should be the first sensor to turn ON when there is a liquid present on the sensor surface. To

accomplish this, the guard sensor surrounds all the sensors in a CAPSENSE™ system as Figure 22 shows.
5. It should not be triggered when the target object is in proximity (using high threshold values). Otherwise,

the proximity scanning will be disabled and the CAPSENSE™ system become non-operational until the
guard sensor turns OFF.

If there is no space on the PCB for implementing a dedicated guard sensor and the design has more than one
touch sensor, the guard sensor functionality can be implemented in the firmware. For example, when there is a
liquid present, more than one sensor will be active at a time and the ON/OFF status of different sensors can be
used to detect liquid presence.

3.8 Layout simulation
Contact Infineon technical support for more information on the simulation of a proposed CAPSENSE™ system
layout.
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4 Firmware design guidelines
After when the proximity sensor layout is ready, the next step is to implement the firmware. This section
describes the guidelines for the firmware and configuration of the CAPSENSE™ system parameters.
To learn more about using the ModusToolbox™ to create a CAPSENSE™ project, see the PSOC™ 4: MSCLP
CAPSENSE™ low-power proximity tuning code example.

4.1 Configuring type of widgets
PSOC™ devices with fifth-generation CAPSENSE™ offer two types of widgets configurations: active and low-
power widgets.

4.1.1 Active widgets
Active widgets are the regular widgets scanned during the active mode of the CPU and cannot be scanned
during the sleep mode. All the widget types available in CAPSENSE™ configurator are by default active widget
types, except the low-power widgets offered by the fifth-generation CAPSENSE™ devices.

4.1.2 Low-power widgets
PSOC™ devices offer multiple power modes such as Active, Sleep, Deep Sleep, etc. Devices with fifth-generation
CAPSENSE™ offer the capability to keep the CAPSENSE™ peripheral active even in deep sleep mode. This
capability can be implemented using a widget type called “Low-Power widget”. These widgets are scanned and
processed without any CPU intervention in deep sleep mode; they can act as a wakeup source for the device.
Widgets such as buttons, ganged sensors, and proximity sensors can be configured as low-power widgets (see
Figure 23) to enable wake-on-touch/wake-on-approach functionality.

Note: If a widget is configured as a low-power widget for normal operation in active mode, then they need
to be additionally configured as an active widget as well.
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Figure 23 Adding a low-power widget using CAPSENSE™ configurator in ModusToolbox™

4.2 Scan configuration
Scan configuration defines the distribution of the sensors among the CAPSENSE™ channels, make ganged
connection, pin assignments, and scan slots assignments for each sensor channel.
Channel
A channel represents an instance of the CAPSENSE™ convertor. Infineon offers PSOC™ fifth-generation
CAPSENSE™ devices with more than one channel. See the CAPSENSE™ Controllers page on the Infineon website
to know more. Multiple channels can scan multiple sensors simultaneously, each channel scanning one sensor
at a time. However, in most proximity sensing applications, the single channel should suffice.
Slot
A slot represents a time slice of complete scan cycle of (fifth-generation) CAPSENSE™. When a scan of all sensors
is triggered (in fifth-generation CAPSENSE™), sensors are scanned in order of slots assigned. In multi-channel
mode, a scan slot represents a group of sensors scanned together (one sensor scanned by each channel). In
Single-channel mode, one sensor is scanned per scanning slot.

4.2.1 Configuring Channel and Slots
Channel and slots for the sensors can be assigned using the Scan Configuration tab in CAPSENSE™ configurator.
See the CAPSENSE™ configurator user guide for more details.

4.3 Shield configuration
As mentioned earlier, any of the copper areas on the PCB, like hatch fill around the sensor is connected to a
signal (same as that of the sensor signal) referred to as a shield electrode.
Shield electrodes can be used for the following purposes:
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• To implement liquid-tolerant CAPSENSE™ designs
• To improve proximity sensing distance in the presence of floating or grounded conductive objects
• To reduce the parasitic capacitance of the sensor
The fifth-generation CAPSENSE™ architecture supports two shield modes:
1. Active shield (driven shield)
2. Passive shield
Shield configuration can be set with CAPSENSE™ configurator in ModusToolbox™ as shown in Figure 24:

Figure 24 Shield Configuration in CAPSENSE™ configurator in ModusToolbox™

4.3.1 Active shield
In active shielding mode, the shield circuit drives the shield electrode with a replica of the sensor signal using a
buffer as shown in Figure 25. This nullifies the potential difference between the sensors and the shield
electrode.
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Figure 25 Driven shield signal

Note: For the shield to be effective, the clock frequency driving the shield (sense clock) must be sufficiently
low so that the capacitance of the shield can charge and discharge completely.

4.3.2 Passive shield
In passive shielding mode, there is no buffer used instead shield is switched between VDDA and GND as shown
in Figure 26. The switching is controlled such that the net charge between the sensor and shield is nullified
every two sense clocks.

Sensor Signal

Passive Shield 
Signal

VDDA

VDDA/2

0

VDDA

0

1 sense clock

Figure 26 Passive shield signal

4.3.3 Configuring shield for proximity-sensing
Table 9 lists the configurable shield parameters for proximity-sensing along with their recommended values.
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Table 9 Shield parameters for proximity sensing

Parameter Description Recommended values

Inactive sensor
connection

Connection to the unused sensors
in the system which can be set to
shield or ground.

Set this parameter to value “Shield” to reduce CP and
achieve liquid tolerance.

Shield mode (5th
Gen CAPSENSE™)

It defines how the shield is driven,
as explained earlier – active or
passive mode.

Active shield mode is recommended unless the design
is required to have low power consumption in which
case, Passive mode can be used.

Total shield
count

Selects the number of sensors/
connections which can be
connected to the shield. Inactive
sensors (if set to ‘Shield’) are also
counted as separate shields.

Most designs work with one dedicated shield
connection but, some designs require multiple
dedicated shield electrodes to ease the PCB layout
routing or to reduce drive current.

Sense clock
divider

Divider to the system clock (IMO
Clock Frequency); the resulting
clock is used to drive the sensor
and shield.

32, if IMO clock frequency = ~46 MHz.
Higher the better for the shield drive, but also
increases sensor scan time

4.4 Wake-on-approach
Wake-on-approach (WoA) refers to a scheme where the MCU device is active only when required and enters low-
power modes such as sleep or deep sleep when waiting for inputs. It is a technique to reduce system power
consumption significantly while keeping the system responsive to a user.
Typical applications use one of the following methods to implement WoA:
• Stay in deep sleep and wake-up to a periodic interrupt source. One such source could be a watchdog timer.
• Stay in deep sleep and wake-up to an external event such as a GPIO interrupt trigger.
• Stay in deep sleep and wake-up to either of the above two.
PSOC™ devices with fifth-generation CAPSENSE™ offer the capability to keep CAPSENSE™ peripheral active and
scan sensors in deep sleep mode, called low power always on sensing (LP-AoS). LP-AoS mode can be effectively
used to implement wake-on-approach, where the approach of an object is detected by a low-power proximity
sensor waking the device up and allowing for normal operation with the CPU.
In applications where touch-based sensing is the primary interface, users may not frequently operate the panel;
all the touch sensors in the system can be ganged and scanned as a single proximity sensor at a very low
scanning frequency. When proximity is detected, the device can stop scanning the ganged sensor and scan each
sensor individually at a higher scanning frequency and detect finger touches. In such use cases, the Sensor
ganging of the existing button sensors can be effectively used to implement the wake-on-approach technique.
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Figure 27 Example of implementation of wake-on-approach in application

A wireless computer mouse is an example where wake-on-approach using CAPSENSE™ proximity-sensing could
be a perfect solution to provide always on feel while saving power. The mouse could be set to deep sleep mode
when not in use and can be set to active mode as soon as the hand approaches it. As the approach of the hand
itself wakes the system, the first touch will be considered for the normal operation providing always on feel.

4.5 Sensor ganging
Sensor ganging refers to simultaneously connecting multiple touch sensors to the CAPSENSE™ circuitry and
scanning them as a single proximity sensor, as shown in Figure 28.
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Figure 28 Proximity-sensing with sensor ganging

A proximity sensor can be implemented by ganging multiple button sensors or proximity sensors. Ganging
multiple sensors increases the effective sensor area and results in a large proximity-sensing distance. The
CAPSENSE™ configurator in ModusToolbox™ provides an easy method to implement sensor ganging.
Consider a CAPSENSE™ system that has three button sensors. To gang these sensors, follow these steps:
1. Assuming the 3 button widgets are already present in the configuration as shown in Figure 29, add

a proximity widget in the Basic tab in the CAPSENSE™ configurator and set the number of Sensing
Element(s) to 3.

Proximity sensing with CAPSENSE™

4  Firmware design guidelines

Application note 39 001-92239 Rev. *H
2025-11-25



Figure 29 Adding proximity widget in CAPSENSE™ configurator
2. Go to Scan Configuration tab and select Ganged option, a dropdown list will appear. Select the 3

button sensors that are already configured as shown in Figure 30. The dropdown list allows specifying
which sensors in the system should be ganged and scanned as a single proximity sensor.

3. This widget now can be configured and scanned as a proximity sensor.
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Figure 30 Ganging sensors as on proximity widget in CAPSENSE™ configurator
There are advantages and disadvantages when using a dedicated proximity sensor instead of ganging the
sensors together and scanning.

Table 10 Comparison of ganged vs. dedicated proximity sensor

Parameter Ganged proximity sensor Dedicated proximity sensor

Parasitic
capacitance CP

High CP, requires higher resolution, higher scan
time, and higher power

Lower CP

Tuning Difficult to tune for reliable performance because of
higher CP

Easy and reliable

Sensing range Depends on sensors ganged together, typically
much lower than the equivalent dedicated
proximity sensor

1–1.5 times the diameter/diagonal
of the proximity loop

Resources No extra MCU pin, dedicated sensor, or dedicated
space (e.g., area on PCB) required

Uses a dedicated MCU pin and
dedicated space

Apart from detecting an object in proximity, another use case of sensor ganging is to reduce the power
consumption of the MCU by implementing Wake-on-approach.

4.6 Gesture detection firmware guidelines
Gesture detection in firmware needs to be designed at the application level. The simplest gesture detected
using two sensors is a swipe, implemented similarly to the CAPSENSE™ touch slider.
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The sensor arrangement as shown in Figure 31 results in signals as shown in Figure 32, when a hand is swiped
across them.

PS 1 PS 2

Swipe 
Direction

2mm PCB

Figure 31 Single-axis swipe using two proximity sensors

Figure 32 Signal counts for object position over the gesture sensors

A variety of gestures can be detected using these signals. Simple horizontal X-axis swipes can be detected using
an algorithm that tracks if these signals cross a threshold one after the other within the defined time limit. For
example, when a left-to-right swipe is performed on the X-axis, hand position can be determined by splitting
the difference counts of both the sensor into three different regions as follows:
• Region A: Sensor PS1 is ON and PS2 is OFF. The hand is close to sensor PS1 and farther from sensor PS2.
• Region B: Both PS1 and PS2 are ON. The hand is between PS1 and PS2
• Region C: PS2 is ON and PS1 is OFF
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The hand is close to PS2 and farther from PS1. When a left-to-right swipe is performed, PS1 will be triggered
first, followed by PS2. This trigger pattern can be checked to interpret the gesture.
In the proximity gesture detection system, the direction of the gesture can be measured using the following
attributes:
• Time
• Distance of the object (being detected) from all the available sensors
• Number of sensors triggered

4.7 Filters
Proximity sensors are susceptible to noise because of their large sensor area and high sensitivity setting. Filters
help to greatly reduce the noise in the raw count, therefore, improving the SNR and the response time. A higher
SNR implies a large proximity-sensing distance and reliable sensing.
The CAPSENSE™ ecosystem features the following types of filters:
• Hardware filters
• Software filters
Based on what these filters are applied for, they are further classified as:
• Raw count filters
• Baseline filters
Because baseline is used as a reference for calculating the signal, it needs to be more stable than raw count.
Therefore, a separate filter needs to be applied for the baseline than that of the raw count.
Additionally, as the CAPSENSE™ widgets can be configured as active or low power, the ecosystem offers
separate filters for these types of widgets.
Table 11 shows an overview of the filters offered by the CAPSENSE™ ecosystem.

Table 11 Filters offered by CAPSENSE™

Implementation Filter application Filter type Active widget Low-power widget

Hardware Raw count filter CIC2 ✓ ✓

HW-IIR ✓ ✓

Software Raw count filter SW-IIR ✓  

Average ✓  

Median ✓  

Baseline filter SW-IIR ✓  

SW-IIR fast   ✓

SW-IIR slow   ✓

The following sections describe how to use and configure these filters effectively for proximity-sensing
applications.

4.7.1 Hardware filters
The PSOC™ devices with fifth-generation CAPSENSE™ architecture feature two types of hardware raw count
filters:
1. The cascaded integrator-comb 2 (CIC2) filter
2. First-order hardware IIR filter
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This section describes these filters and their configuration in more detail.

4.7.1.1 The cascaded integrator-comb 2 (CIC2) filter
It is a second-order digital low-pass (decimation) filter for delta-sigma converters. It provides a higher
resolution and thereby the SNR for a given scan period.
The CIC2 filter receives the output of the CAPSENSE™ analog front-end, which is a delta-sigma convertor. This
filter as shown in Figure 33 is a combination of a moving average low-pass filter and a down-sampler, also
known as a decimator. It provides significant improvement in SNR when used along with an IIR filter.

N = Decimation rate

Figure 33 CIC2 filter block diagram

Enabling CIC2 filter
Figure 34 shows how the CIC2 filter can be enabled in the Advanced tab of CAPSENSE™-configurator in
ModusToolbox™.
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Figure 34 Enabling CIC2 filter in Advanced tab of CAPSENSE™ configurator in ModusToolbox™

Tuning CIC2 filter
The objective of tuning the CIC2 filter is to improve conversion resolution while keeping the response time
optimal. The increased resolution obtained will be in terms of increased raw count. For constant sensor
capacitance (Cs), higher raw count implies higher effective resolution.
Equation 1 shows the maximum CIC2 output raw count that can be achieved:

RawCountmax = Decimation rate2 (1)

Maximum CIC2 output raw count equation

A minimum of two valid samples are required for effective CIC2 filtering. Considering two valid samples, the
optimum decimation rate shall be calculated using Equation 2 as:
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Decimation rate N = Sns_Clk_Div × Nsub
3 (2)

CIC2 recommended decimation rate equation

As seen from Equation 1, the higher the decimation rate, the higher the maximum raw count that can be
achieved and consequently, the higher the resolution (number of bits) of the signal. To achieve optimum
resolution, the decimation rate must be in accordance with Equation 2.
Parameters to be tuned
Table 12 describes the parameter that can be tuned for CIC2 filter.

Table 12 Parameters to be tuned

Parameter Description Effect on raw
count resolution

Dependency/trade-off

Sense clock
divider

Divider to the system clock
(IMO); the resulting clock is used
to drive the sensor signal.

Directly
proportional

Sense clock divider calculations are
highly dependent on sensor CP. Higher
CP requires lower frequency, therefore,
a higher clock divider value.
Note that, lower Sense Clock will result
in longer scanning time and therefore
higher power consumption.

NSUB Number of sub conversions
See the Tuning the proximity-
sensing design section for more
details.

Directly
proportional

Increasing NSUB will increase the scan
time

See the AN85951 - PSOC™ 4 and PSOC™ 6 MCU CAPSENSE™ design guide for more details on the calculation of
the Sense Clock Divider and NSUB.
Figure 35 shows CIC2 filter parameters that can be configured in the Widget Details tab of the CAPSENSE™

configurator in ModusToolbox™. Also, it is recommended to set the decimation rate mode parameter as ‘Auto.’
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Figure 35 Tuning CIC2 filter in Widget Details of CAPSENSE™ configurator in ModusToolbox™

4.7.1.2 First-order hardware IIR filter
This filter is used to filter raw counts of sensors (both Active widgets and Low-power widgets). Input to this filter
is:
• Output of CIC2 filter when CIC2 is enabled
• Output of the CAPSENSE™ analog front end when CIC2 filter is disabled
Equation 3 represents the instantaneous output raw count of the filter:
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RawCount = 1
2iirRCcoef RawCountCurrent + 1 − 1

2iirRCcoef RawCountPrevious (3)

Hardware IIR filter raw count equation

where,
• iirRCcoef – IIR filter raw count coefficient. The valid range is 1 to 8; a low coefficient means lower filtering,

but a faster response time
Enabling hardware IIR filter
Figure 36 shows how the hardware IIR filter can be enabled in the Advanced tab of CAPSENSE™-configurator in
ModusToolbox™.

Figure 36 Enabling the hardware IIR filter in the Advanced tab of CAPSENSE™-configurator in
ModusToolbox™

4.7.2 Software filters
The CAPSENSE™ ecosystem’s middleware library offers the following types of software filters:
• Raw count filters

- Average
- First-order IIR
- Median

• Baseline filters
- First-order IIR for active widgets
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- Slow baseline IIR filter for Low power widgets
- Fast baseline IIR filter for Low power widgets

For more information on the details of software filters, see the “Software filtering” section of the Getting started
with CAPSENSE™ design guide.
Software IIR filter
All the software IIR filters offered by CAPSENSE™ middleware are implemented with following equation:

Output = Coefficient
256 × input + 256 − Coefficient

256 × previous output (4)

Software IIR filter equation

Adding software filter(s) to the project
Required software filters can be added to the ModusToolbox™ project from the Advanced tab of CAPSENSE™

configurator as shown in Figure 37.

Figure 37 Adding software filter(s) to the project
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4.7.2.1 Software raw count filters
Three types of raw count filters are offered by CAPSENSE™ middleware which can be configured using the
CAPSENSE™ configurator tool. Table 13 describes these filters, their applications, and respective tunable
parameters.

Table 13 Software raw count filters offered by CAPSENSE™

Type Description Application Tuning Parameter

Average Simple moving average filter of 4 samples
length, as shown in Figure 37.

Periodic noise from
power supplies

None

IIR Similar to a simple RC filter, a software IIR
filter with tunable IIR co-efficient, as
shown in Figure 37.

High-frequency white
noise (1/f noise)

IIR co-efficient – Lower the
co-efficient, higher filtering
effect; The valid range: 1-128

Median Similar to a moving average filter, a
nonlinear filter that computes the median
input value from a buffer of size 3

Noise spikes from
motors and switching
power supplies

None

4.7.2.2 Software baseline filters
Because the baseline is used as a reference for calculating the signal, it needs to be more stable than the raw
count. Therefore, separate filters are offered in CAPSENSE™ middleware, which can be configured using the
CAPSENSE™ configurator tool.

Table 14 Software baseline filters offered by CAPSENSE™

Type Description Application Tuning Parameter

First-order IIR for active
widgets

A software IIR filter with
tunable IIR co-efficient

High-frequency
noise

IIR co-efficient – Lower the co-
efficient, higher filtering effect: The
valid range: 1-255

Slow baseline filter (5th

Gen CAPSENSE™)
IIR filter coefficient for slow
changing baseline (Low
power widget only)

High-frequency
white noise

IIR co-efficient – Lower the co-
efficient, higher filtering effect; The
valid range: 1-15

Fast baseline filter (5th

Gen CAPSENSE™)
IIR filter coefficient for fast
changing baseline (Low
power widget only)

High-frequency
white noise

4.8 Firmware guidelines for liquid tolerance
This section describes guidelines for liquid tolerant firmware design.

4.8.1 Using self-capacitance
A simple way to make CAPSENSE™ design liquid tolerance (splash proof) is to set the detection threshold thrice
that of the raw count received when a splash of liquid is present on the sensing surface. Additionally,
implementation of the shield as mentioned in the Layout guidelines for liquid tolerance section is
recommended to minimize the signal due to liquid presence.
See the Tuning for liquid tolerance section for more details on tuning the CAPSENSE™ CSD design for liquid
tolerance.
If the design comprises only of proximity sensor and does not need touch detection, a maximum limit threshold
can be used for detection of a large amount of liquid as shown in Figure 38. Presence of a large amount of liquid
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(or dipping the sensor in the liquid) results in a significantly high raw count than that of the target object in
proximity. The threshold to detect the presence of liquid must be higher than the maximum raw count that can
be achieved when the target object being detected in proximity is closest to the sensor. Note that this technique
needs to be implemented in the application.

Figure 38 Threshold for liquid detection compared to a proximity detection signal

4.8.2 Using CSX guard sensors
One of the recommended techniques for liquid tolerance in CAPSENSE™-based proximity sensing is using
mutual capacitive (CSX) guard sensors as mentioned in Layout guidelines for liquid tolerance.
This technique relies on the fact that the presence of liquid on the CSX-based sensor increases the mutual
capacitance between Tx and Rx electrodes, as explained in the Introduction section. However, the presence of
the human hand (or grounded object) will decrease the mutual capacitance (CM).
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Figure 39 PCB layout of guard sensor

Consider the scenario with presence of liquid on sensor setup as shown in Figure 39. The configuration and
algorithm as shown in Figure 40 can implemented in the application to achieve liquid tolerance.

Algorithm

Configuration

Calculate signal:
(difference count = raw 
count – baseline count)

difference count < 
lower threshold

Disable Proximity sensing

Proximity sensing 
disabled>

Enable Proximity sensing

Presence of liquid droplet on the 
sensor will increase mutual 

capacitance, and the raw count 
detected by Rx will drop below 

baseline

When liquid droplets are removed 
from the sensor surface mutual 
capacitance will decrease, and the 
raw count detected by Rx will 
Increase toward baseline

Yes

No

Yes

No

Add and configure the Guard sensors as CSX 
widget:

Proximity sensor = Tx,
Both guards sensors = ganged Rx,

Set Inactive sensor connection = ҂Ground ҃

Figure 40 Configuration and algorithm for CSX guard sensor

Note that this technique needs to be implemented in the application with the help of middleware APIs. See the
algorithm implemented in PSOC™ 4: CAPSENSE™ MSCLP Liquid tolerant proximity sensing code example for
more information.
The methods described in this section can be used in combination to implement robust liquid tolerance.

Proximity sensing with CAPSENSE™

4  Firmware design guidelines

Application note 52 001-92239 Rev. *H
2025-11-25

https://github.com/Infineon/mtb-example-psoc4-msclp-liquid-tolerant-proximity


4.9 Middleware library and APIs
Infineon provides a middleware library for CAPSENSE™ products and solutions which can be used to implement
the features mentioned in this Section (Firmware design guidelines).
See the CAPSENSE™ middleware library help document available in the ModusToolbox™ Quick panel as shown
in Figure 41.

Figure 41 CAPSENSE™ middleware library help document in the ModusToolbox™

PSOC™ 4: MSCLP CAPSENSE™ low-power proximity tuning code example available on GitHub can serve as an
excellent starting point to learn how to use Infineon’s CAPSENSE™ middleware library and respective APIs.
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5 Tuning guidelines
After the proximity sensor layout and firmware are ready, the next step is to tune the CAPSENSE™ CSD
parameters for the proximity sensor to achieve optimum performance.
The capacitance added by a target object at a distance from the proximity sensor is in tens of femtofarads,
unlike touching a button sensor, where the capacitance added is in hundreds of femtofarads. To detect such a
small change in capacitance, the CAPSENSE™ circuitry must be tuned for high sensitivity, and the threshold
parameters should be set to the optimum values. The process of setting CAPSENSE™ CSD parameters for an
optimum sensor performance is called “tuning”. This section describes how to tune the CAPSENSE™ parameters
in the ModusToolbox™ for a proximity sensor to achieve optimum performance.

5.1 Signal-to-noise ratio (SNR)
Before tuning the capacitive sensor for optimal sensing, it is important to understand the concept of SNR in the
context of proximity sensing and how to calculate it.
As a thumb rule, an SNR of ≥ 5:1 is required for reliable sensing. Higher the SNR, the higher the sensitivity can
be achieved and consequently higher the sensing distance.
How to calculate SNR
The first step in measuring SNR is to monitor the raw count for each sensor with OFF and ON scenarios. OFF
scenario is where the target object is not present in the proximity of the sensor. ON scenario is where the target
object is present and is detected by the sensor. At least 3000 samples each are recommended to be logged to
measure the SNR.
Another factor to consider is how the signal is produced. The worst-case ON and OFF scenarios should be used
when measuring SNR. If the system is designed to sense the presence of a human hand in proximity, then
measure SNR with the presence of the hand at the farthest required distance from the sensor.

Figure 42 CAPSENSE™ signal

As an example of measuring SNR, consider the raw count waveform in Figure 42, with the calculations
mentioned in Table 15:

Table 15 Parameters to calculate SNR

Parameters Value

Minimum raw count without a hand in the proximity 5910 counts

Maximum raw count without a hand in the proximity 5940 counts

Average raw count without a hand in the proximity (baseline) 5925 counts
(table continues...)
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Table 15 (continued) Parameters to calculate SNR

Parameters Value

Average raw count with a hand in the proximity 6055 counts

Diff Count (Signal) 6055 – 5925 = 130 counts

Noise count 5940 – 5910 = 30 counts

SNR 130:30 = 4.3 : 1

Using ModusToolbox™ to measure SNR
To make it easier, ModusToolbox™ provides a simple SNR measurement wizard for CAPSENSE™ designs as
shown in Figure 43. However, this method supports only I2C communication with the MCU to read the sensor
data and requires an application to run a specific set of APIs in the firmware. See the “Tuner GUI Interface”
section in the PSOC™ 4 CAPSENSE™ Component datasheet.

Figure 43 SNR measurement using CAPSENSE™ Tuner in ModusToolbox™

Note: SNR should be measured in the noise environment where CAPSENSE™ is intended to be used. In other
words, measure the system SNR under worst-case noise conditions.

Follow these steps to calculate the SNR with the help of CAPSENSE™ Tuner:
1. Connect the hardware to the system running ModusToolbox™

2. Open CAPSENSE™ Tuner and switch to the SNR Measurement tab
3. Select the proximity sensor in the Widget Explorer window and click Acquire Noise
4. After the noise is acquired, bring the target object in the proximity range of the sensor, and then click

Acquire Signal. Ensure that the target object remains above the proximity loop as long as the signal
acquisition is in progress.

The calculated SNR for the selected sensor will be displayed in the window.
See the PSOC™ 4: MSCLP CAPSENSE™ low-power proximity tuning code example for more details on measuring
SNR using the CAPSENSE™ Tuner.
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Table 16 describes the most relevant CAPSENSE™ parameters to maximize the SNR.

Table 16 Effects of CAPSENSE™ tuning parameters on SNR

Parameter Relation to SNR Trade-off

Sense clock divider Sense clock divider is directly proportional to
max raw count (when CIC2 filter is enabled) and
thus the resolution of the scan, higher resolution
improves SNR.

Higher sense clock divider results in
a higher scan time.

Number of sub
conversions (NSUB)

Increasing the number of sub-conversions
(NSUB) increases the signal resolution and SNR.

Higher NSUB results in Higher scan
time.

Shield mode Shield set to active mode will be driven by the
sensor signal and will help improve SNR.

Active and passive shield modes will
increase power consumption.

Raw count filter co-
efficient

Higher the filter raw count co-efficient, the
higher the SNR.

Higher co-efficient will lead to
a slower response, higher power
consumption, and longer processing
times for the scan results.

Revisiting filter configurations
The filters help to significantly improve the SNR in a CAPSENSE™ design. While trying to improve SNR, if tuning
all the parameters mentioned above do not improve SNR, it is recommended to revisit filter co-efficient
configurations as mentioned in the Filters section. Increasing the filter co-efficient will help in increasing SNR,
however, will also increase the processing time and power consumption.

5.2 Tuning the proximity-sensing design
Tuning a proximity sensor shall focus on following major objectives:
• Ensuring SNR ≥ 5:1
• Meeting required scan and response time
• Low power
• Liquid tolerance (if required)
The tuning procedure for the CAPSENSE™ proximity design can be explained in following stages:
1. Set initial hardware parameters
2. Set sense clock frequency
3. Fine-tune for required SNR, power, and refresh rate
4. Tune threshold parameters
5. Fine tune threshold parameters for liquid tolerance if required
Figure 44 shows the high-level steps for tuning a proximity sensor.
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Start

Set sense clock frequency Stage 2

Define tuning targets: 
sensing distance, 

SNR, 
Water tolerance, 
Response time, 

Power

Set initial hardware parametersStage 1

Test and calculate SNR

Is SNR > 5:1?

System meets timing and 
power requirements?

Increase Number of Sub-
conversions (Nsub)/ 

Enable filters/ Increase 
filter co-efficients

Yes

Set Thresholds

Test application

Yes

Stage 3

Stage 4

Stage 5 Fine tune thresholds for liquid tolerance in 
presence of liquid

Test application

End

Reduce the Number 
of Sub-conversions 

(Nsub)

No

No

Figure 44 High-level steps for tuning a proximity sensor

Parameters to be tuned
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CAPSENSE™ ecosystem provides great flexibility to support various types of CAPSENSE™ touch and proximity
sensing applications. Table 17 lists parameters along with their recommended values, available in
ModusToolbox™ which are important for proximity sensing.

Table 17 CAPSENSE™ tuning parameters

Parameter Description Recommended values

IMO clock frequency Frequency of clock used as source for the
CAPSENSE™ peripheral

Keep it default i.e.,
46 MHz (5th Gen
CAPSENSE™)

Modulator clock divider Divider value used to divide system clock; the
resulting clock then used as clock for sigma-delta
modulation

1

Sense clock divider Divider to the system clock (IMO clock frequency);
the resulting clock is used to drive the sensor and
shields.
(Value must be multiple of 4).

Set the divider such
that the resulting sense
clock frequency ensures
proper charging and
discharging of the sensor/
shield electrodes.

Clock source Source of the clock to be used for CAPSENSE™.
There are three source available:
1. Direct
2. Pseudo random sequence (PRSx)
3. Spread spectrum clock (SSCx)

Keep it default i.e., Direct.

Number of sub conversions
(NSUB)

The number of sub-conversions decides the
sensitivity of the sensor and sensor scan time. For a
fixed modulator clock and sense clock, increasing
the number of sub-conversions (NSUB) increases the
signal resolution and SNR. However, increasing the
number of sub-conversions also increases the scan
time of the sensor according to the following
equation:

Scan time = NSUBSense clockfrequency (5)

Maximize this parameter
till the point where SNR
is >= 5:1, diff count
is at least 50 and
response time does not
feel delayed. Minimize
NSUB to reduce power
consumption.

Decimation rate (CIC2) (5th
Gen CAPSENSE™)

Decimation rate or down sampling rate of CIC logic is
calculated by the following equation:

Decimation Rate = FLOORSns_Clk_Div × Nsubs
3

(6)

Auto

(table continues...)
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Table 17 (continued) CAPSENSE™ tuning parameters

Parameter Description Recommended values

CIC2 accumulator shift (5th
Gen CAPSENSE™)

Represents CIC2 hardware divider used to divide
output raw count. Refer “CIC2 filter” section
of AN234231 - Achieving lowest-power capacitive
sensing with PSOC™ 4000T

Auto

Proximity threshold Raw count above which algorithm returns positive
result for object detected in proximity

80 percent of signal
at maximum required
distance from the sensor

Touch threshold Raw count above which algorithm returns positive
result for touch detected on sensor

80 percent of signal when
sensor is touched

Noise threshold Raw count limit above which the baseline is not
updated, as shown in Figure 44.
In other words, the baseline remains constant as
long as the raw count is > baseline + noise threshold

40 percent of signal.
Because most of the
proximity solutions,
speed of human hand
movement is slower
to control algorithm,
keep this threshold as
low as possible, except
when liquid tolerance is
required.

Negative noise threshold Raw count limit below which the baseline is not
updated for the number of samples specified by the
low baseline reset parameter.

40 percent of signal

Low baseline reset Maximum number of samples above which baseline
is reset to the current raw count, if the raw count of
all these samples is abnormally below the negative
noise threshold.

Keep it default, i.e., 30

Hysteresis Value used in addition to thresholds as mentioned
below, to prevent the sensor status output from
toggling due to system noise.
Sensor state is reported:
• ON if the Difference Count > Threshold +

Hysteresis.
• OFF if the Difference Count < Threshold –

Hysteresis.

10 percent of signal

ON debounce This parameter indicates the number of consecutive
CAPSENSE™ scans during which a sensor must
be active to generate an ON state from the
system. Debounce ensures that high-frequency, high-
amplitude noise does not cause false detection.

3

(table continues...)
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Table 17 (continued) CAPSENSE™ tuning parameters

Parameter Description Recommended values

Multi-frequency scan Enabling multi-frequency scan, the CAPSENSE™

component performs a sensor scan with three
different sense clock frequencies and obtains
corresponding difference count. The median of
the sensor difference-count is selected for further
processing.

Use this feature for
robust operation in the
presence of external
noise at a certain sensor
scan frequency.
See the code example -
CE237687 - PSOC™ 4:
CAPSENSE™ multi
frequency scan

CDAC auto calibration This feature enables the firmware to automatically
calibrate the CDAC (at initialization) to achieve the
required calibration target of 70%.

CDAC auto-calibration
is recommended to be
always enabled.

Enabling compensation
CDAC

The compensation capacitor is used to compensate
excess parasitic capacitance from the sensor to
increase the sensitivity. Enabling this results in
increased signal.

Compensation CDAC is
recommended to be
enabled unless the CP is
too low.

Compensation CDAC divider Divider to ‘Sense clock divider’, which decides the
number of times the compensation capacitor is
switched (Kcomp) in a single sense clock.

Kcomp = Sense Clock DividerComp CDAC Divider (7)

Auto calibrated when ‘CDAC auto calibration’ is
enabled.

Recommended to set to
“Auto-calibrated”.

Enable CDAC dither As the input capacitance is swept, the raw count
should increase linearly with capacitance. There
are regions where the raw count does not change
linearly with input capacitance these are called
flat-spots, see section Flat-spots for more details.
Dithering helps to reduce flat-spots using a dither
CDAC. The dither CDAC adds white noise that moves
the conversion point around the flat region

Auto

Scan resolution
(4th Gen CAPSENSE™)

Scan resolution is resolution of the sigma delta
converter of CAPSENSE™. Scan resolution defines
scan time and sensitivity. Increase in sensitivity
increases effective proximity sensing distance.
It is configurable from 6-bit to 16-bit in 4th Gen
CAPSENSE™.
For 5th Gen CAPSENSE™, Scan resolution is auto
calculated based on multiple factors such as
Modulator clock, NSUB, sense clock and use of CIC2
filter.

Maximum available (16).

(table continues...)
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Table 17 (continued) CAPSENSE™ tuning parameters

Parameter Description Recommended values

Raw count calibration level
(%)

– 85%, If the sensor
raw count saturates
(equals max raw count)
reduce the raw count
calibration level (%). This
will prevent raw count
saturation.

CAPSENSE™ design tuning parameters can be tuned from CAPSENSE™ configurator in ModusToolbox™. See the
AN85951-PSOC™ 4 and PSOC™ 6 MCU CAPSENSE™ design guide to learn more about the CAPSENSE™ parameters.

5.3 Tuning for liquid tolerance
As described in the Firmware guidelines for liquid tolerance section, there are two recommended techniques to
implement liquid tolerance in CAPSENSE™ design. This section describes the tuning of CAPSENSE™ parameters
to improve liquid tolerance.

5.3.1 Tuning for liquid tolerance with CSD technique
Water droplets or other liquids may create false triggers when they fall on the proximity sensor. When droplets
of a liquid falls on the proximity sensor (implemented using CSD), it adds a capacitance equivalent to or more
than the capacitance added when a hand is placed over the proximity sensor, which could result in false
triggers. To eliminate false triggers because of liquid droplets, it is recommended to tune the CAPSENSE™ CSD
parameters in such a way that when a hand is placed over the proximity sensor (at the required proximity
sensing distance), the signal is at least three times greater than the signal because of liquid droplets. This
ensures that the sensor will operate reliably in all conditions.

Figure 45 Signal because of the target object in proximity vs. signal because of liquid droplets

Follow these steps to tune the proximity sensing design for liquid tolerance as shown in Figure 46.
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Start

Wipe off the liquid and move the target 
object towards sensor till the signal due to 
the object is at least three times the signal 

due to the liquid droplet

Tune the sensor for maximum proximity 
distance without Liquid Tolerance

Splash few liquid droplets on the proximity 
sensor and measure the signal

Measure the distance at which signal due to 
the object is at least three times the signal 

due to the liquid droplet

Proximity Distance 
meets requirements?

Increase proximity sensor loop diameter

This distance is the maximum possible 
proximity-sensing distance that can be 
achieved with liquid tolerance for this 
sensor layout

Set shield mode to ‘Active’

Sense Clock Divider such that shield is able to 
charge and discharge properlyEnd

Shield mode set to 
‘Active’?

Yes No

No

Set the threshold parameters to the values 
calculated as per Table 18

Yes

Figure 46 Flow chart for tuning proximity sensor for liquid tolerance

Table 18 shows the tuning parameters for the liquid tolerance technique based on CSD.

Table 18 Liquid tolerance tuning parameters for CSD

Parameters Effect Trade-off Recommended value

Shield mode Active shield mode reduces the effect of
sensor field line coupling to the nearby ground
because of the presence of liquid, reducing the
raw count measured because of the presence
of liquid.

Power
consumption

“Active”

Sense clock
divider

Higher value will reduce the sense clock
frequency; the sense clock frequency should
be low enough to allow shield capacitance to
charge and discharge properly.

Scan time Start with 28 and increase
in multiple of 4 if the
shield capacitance is not
able to charge properly.
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5.3.2 Tuning for CSX guard-based liquid tolerance technique
If the CSX guard sensor technique is used for the detection of the presence of liquid, set the parameters as
described in Table 19.

Table 19 Liquid tolerance tuning parameters for CSX guard

Parameters Description and effect on CSX sensing Recommended value

Raw count calibration level
%

Raw count calibration level indicates what the
current baseline count is the percentage of
maximum capacitance that can be sensed

50%

Number of sub conversions
(NSUB)

Higher the NSUB, the higher the resolution,
and therefore, the higher the sensitivity of the
guard sensor

Keep it the same as the value of
the proximity sensor setting

Finger threshold Because the presence of liquid droplets will
reduce the raw count below the baseline, the
positive raw count (above baseline) is not
of interest, and the finger threshold can be
ignored

–

Noise threshold Because only raw count values below baseline
are used, the positive noise threshold value
is to ensure the baseline is updated in
accordance with noise present in the system

40% of the signal raw count

Negative noise threshold Higher noise threshold will have lower
sensitivity towards the small amount of liquid
present. Since, baseline will be updated in
case the signal due to the liquid is under the
value of noise threshold.

40% of the signal raw count
is measured below the baseline
when liquid is present on the
surface

Low baseline reset Since this widget is configured as a guard, the
raw count value lower than the baseline will be
used to detect liquid presence. Set this value
such that the baseline does not reset at all
when there is a dip in the raw count because of
the presence of liquid

65535

Hysteresis Hysteresis value helps avoid toggling because
of variations in the raw count

Keep it the same as the value of
the proximity sensor setting

ON debounce This parameter indicates the number of
consecutive positive results required to
confirm the presence of liquid; the higher the
better, but will increase response time

Keep it the same as the value of
the proximity sensor setting

Liquid active threshold This is the value against which negative
difference count (= raw count – baseline) is
compared to detect the presence of liquid

This value depends on the signal
count measured when liquid is
present on the sensor surface.
This value needs to be
implemented in application
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5.4 Built in self-test (BIST)
CAPSENSE™ middleware library offers BIST which allows the following features to help in designing, tuning, and
debugging the CAPSENSE™ proximity sensing solutions.

5.4.1 Hardware tests
• Sensor pins integrity check
• External capacitors and sensors’ capacitance measurement
• VDDA measurement

5.4.2 Firmware tests
• Global and widget-specific configuration verification
• Sensor baseline integrity check
• Sensor raw count and baseline are in the specified range
See the CAPSENSE™ middleware library help as shown in Figure 47 in the ModusToolbox™ for more details on
how to implement and use the BIST.

Figure 47 CAPSENSE™ middleware library help in ModusToolbox™

5.5 Troubleshooting tips and techniques
See the “Tuning debug FAQs” section of the AN85951 - PSOC™ 4 and PSOC™ 6 MCU CAPSENSE™ design guide for
troubleshooting and debugging.
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